

NO SMOKING age Table - per process data structure Physical memory

Segment Selector

Segment Selector

Stack

July 5, 2017: CS 537-Intro to Operating Systems

Worksheet 1 - Segmentation

Assume a system that uses **segmented virtual memory**. The segmentation that this system uses is pretty simple: an address space has just **two** segments: segment 0 and segment 1; further, the top bit of the virtual address generated by the process determines which segment the address is in: 0 for **segment 0** (where, say, **code and the heap** would reside) and 1 for **segment 1** (where the **stack** lives). **Segment 0** grows in a **positive** direction (towards higher addresses), whereas **segment 1** grows in the **negative** direction.

address space size = 1K.

phy. memory size = 16K.

Segment register information:

Segment 0 base (grows positive) : 0x00001aea (decimal 6890)

Segment 0 limit : 472

Segment 1 base (grows negative): 0x00001254 (decimal 4692)

Segment 1 limit : 450

For each virtual address, either write down the physical address it translates to OR write down that it is an out-of-bounds address (a segmentation violation).

	Virtual Address	Physical Address OR Seg Fault	
*	0x0000020b (decimal: <u>523</u>)	Seg Fault.	
	0x0000019e (decimal: 414)	6898+414 =	7304
	0x00000322 (decimal: 802)	4470.	•
	0x00000136 (decimal: 310)	6890+310 =	7200
	0x000001e8 (decimal: 488)	Seq Fault.	
	•	. 1	

 $3 \rightarrow \square 1 \rightarrow stack.$

32-bit machine ISSUES WITH PAGING!

$$2^{32} = 4 \text{ GB}$$
 $2^{2} \times 2^{30}$

Page size = 4KB = 2^{12}
 $2^{2} \times 2^{20}$

Wirtual Pages

PT

PT

PTE

IPTE = 4 btyces

PT

5

PTE

1PTE = 4btycs

$$\frac{20}{4} \times 4 = 4MB$$

2

10 process

 $\frac{40MB}{40MB}$

400 MB Memory Waste!

instrat addr 20. mov 18, % eax What how does on each memory reference? extract VPN from V.A. access memory to access memory (EXPENSIVE

PFN VPNO, 3 -> valid VPN 1,2 -> invalled Virtual Memory Discussion AFTER CLASS Physical Memory Stack VPN3 VPN2 VPNI VPNO. Code - entire page o point of page 1 Heap - ent part of page 1 STACK Stack-part of page 3.

FREE > part of page 2 & part of page 3.