
How to Teach “Modern C++” to Someone
who Already Knows Programming?

Adalbert Gerald Soosai Raj
Department of Computer Sciences and Education

University of Wisconsin-Madison
gerald@cs.wisc.edu

Varun Naik
Department of Computer Sciences
University of Wisconsin-Madison

vnaik@wisc.edu

Jignesh M. Patel
Department of Computer Sciences
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Richard Halverson
Department of Educational Leadership and Policy Analysis

University of Wisconsin-Madison
rich.halverson@wisc.edu

ABSTRACT
�e C++ programming language has undergone major changes
since the introduction of C++11. ‘Modern C++,’ de�ned here as
C++11 and beyond, can be viewed as a new language compared to
C++98 (the version of C++ introduced in 1998). Many new features
have been added to modern C++, including lambda expressions
and automatic type deduction. �e standard library has also been
dramatically updatedwith constructs such as std::unordered set
and smart pointers. �e traditional way of teaching C++ by �rst
teaching C’s low-level features, such as raw pointers and char *
strings, is potentially ine�ective when teaching modern C++. Based
on this hypothesis, we updated the way in which we teach C++ at
UW-Madison by teaching the most important high-level features
(containers, iterators, and algorithms) �rst, and introducing the
low-level features (raw pointers, dynamic memory management,
etc.) only when they are necessary. In this paper, we present our
experiences teaching modern C++ with this top-down approach.
We �nd that with our new approach, students’ perceptions about
learning C++ are largely positive.

CCS CONCEPTS
•Social and professional topics→ Computer science education;

KEYWORDS
Modern C++ pedagogy, Top-down approach, Problem-oriented
approach, Syllabus design, Ordering of topics, Course experiences

ACM Reference format:
Adalbert Gerald Soosai Raj, Varun Naik, Jignesh M. Patel, and Richard
Halverson. 2018. How to Teach “Modern C++” to Someone
who Already Knows Programming?. In Proceedings of 20th Australasian
Computing Education Conference, Brisbane, QLD, Australia, Jan 30-Feb 2,
2018 (ACE 2018), 8 pages.
DOI: 10.1145/3160489.3160503

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACE 2018, Brisbane, QLD, Australia
© 2018 ACM. 978-1-4503-6340-2/18/01. . . $15.00
DOI: 10.1145/3160489.3160503

1 INTRODUCTION
C++ is one of the most popular programming languages today. It is
currently rated as the third most popular language next to Java and
C [26]. �e �rst standardization of C++ happened in 1998 (namely
C++98). Some major changes to the core language and the C++
Standard Library happened in 2011 with the introduction of C++11.
Some minor extensions over C++11 happened in 2014 as a part of
C++14. �e latest revision of the language, namely C++17, was
released in 2017.

�e new features that were introduced in C++11 change the
language in signi�cant ways, arguably making it very di�erent from
C++98. �e creator of C++, Bjarne Stroustrup, notes, “Surprisingly,
C++11 feels like a new language: �e pieces just �t together be�er
than they used to and I �nd a higher-level style of programming more
natural than before and as e�cient as ever. If you timidly approach
C++ as just a be�er C or as an object-oriented language, you are
going to miss the point. �e abstractions are simply more �exible
and a�ordable than before” [25]. �e standard library was also
improved immensely with new algorithms, container classes, and
smart pointers.

�e traditional approach of teaching C �rst before teaching C++
is considered ine�ective for learning modern C++ [8, 22]. Since
C++11 is considered a new language, the way we teach C++ needs
to change so that we can help students become be�er modern C++
programmers. With this intent, we updated our C++ curriculum so
that it be�er re�ects the philosophy behind modern C++.

In this paper, we report the changes we made to our C++ course
and share our pedagogical experiences. We also present students’
perceptions on learning modern C++ using a top-down approach.
We believe that our work has the potential to foster interest among
computing teachers/researchers to answer the following question:
How do we teach a new programming language to someone who
already knows some other programming language(s)?

2 RELATEDWORK
Bjarne Stroustrup [22] has shown an approach for learning and
teaching standard C++ (C++98). �is paper focuses on the de-
sign and programming techniques to be emphasized, subsets of
the language to be learnt �rst, and the subsets of the language to
be emphasized in real code while learning standard C++. Strous-
trup suggests using C++ as a higher-level language without loss

ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia Adalbert Gerald Soosai Raj, Varun Naik, Jignesh M. Patel, and Richard Halverson

of e�ciency when compared to lower-level style (C style of C++).
We consider our work to be an extension of this work speci�cally
focused on learning modern C++ (C++11 and beyond) using a top-
down approach.

Accelerated C++ [10], a textbook wri�en by Andrew Koenig
and Barbara E. Moo, takes a practical approach to solving problems
using C++. �is book helps studentswrite non-trivial C++ programs
right from day one. It starts with the most useful concepts (e.g.,
string and vector) and postpones the most primitive ones (e.g.,
pointers and dynamic memory allocation) to the end until they
are actually needed (e.g., for writing a customized vector class).
�e book mainly focuses on real problems and solutions instead
of just teaching the features of C++. �e features are introduced
as and when they are needed for solving problems. It also covers
the language and the standard library together, and the students
are required to use the standard library right from the beginning.
�is book was published in 2000 and was wri�en for standard C++
(C++98). �e ordering of topics in our course was inspired by this
book, although we updated our syllabus to be relevant for modern
C++.

In a series of articles [11–19], Koenig and Moo explain their
rationale behind the organization of topics in their C++ course at
Stanford University. �ese articles show that the order in which
topics are taught is as important as the topics themselves. We
have adopted these principles to organize the content for teaching
modern C++.

Howe et. al. propose a components-�rst approach for teaching
introductory CS courses [9]. Components-�rst approach is the pro-
cess of developing so�ware by reusing a library of existing so�ware
components (e.g., C++ Standard Library). �ey compare and con-
trast two such approaches, namely Koenig-Moo (KM) version [10]
and Reuseable So�ware Research Group (RSRG) version [20, 21].
Our approach is similar to their approach, but our goal is not to
teach component-based so�ware engineering but instead to teach
modern C++ using a top-down approach.

Ivaylo Donchev has shared his experiences of teaching C++11
to undergraduates [7]. �e report focuses mainly on the new
C++11 features (e.g., automatic type deduction, uniform initial-
ization, range-based for loops, lambda expressions, etc.) that were
added to an existing C++ course. �is report highlights the prob-
lems that the instructor faced when teaching C++11 features to
students (e.g., the di�culty of teaching lambda expressions because
of their non-intuitive syntax). Our work di�ers signi�cantly from
this work since we have modi�ed the course completely by focusing
on the higher-level abstractions provided by modern C++, and then
going to the lower-level details as and when needed.

Stroustrup has shared his experiences about teaching C++ in
an undergraduate freshman course [23]. In this report, he has de-
scribed in detail how he brought about a curriculum change for
the introductory programming course at Texas A & M University
(TAMU). He mainly argues that the primary goal of so�ware ed-
ucation is to be the foundation for professional work. He wrote
a book on programming using C++ [24] based on his experiences
teaching this course. He also highlights the importance of teaching
C++ as a high-level language with cleaner abstractions instead of
following a C-�rst approach. Our curriculum change also focused

on a similar philosophy with a larger focus on the C++ Standard
Library.

3 COURSE DETAILS
�e C++ course in this study was taught at the University of
Wisconsin-Madison during the Fall 2016 semester (the �rst semester
of the 2016-2017 academic year). It was a one credit course with one
50-minute lecture every week. �ere were 102 students enrolled in
the course. �e course was intended to teach C++ to students who
had already learnt Java in their introductory CS course. �ere were
seven programming assignments, one �nal project, and no exams.
�e duration of the course was 15 weeks. �ere was one instructor
and one Teaching Assistant (T.A.).

3.1 Java Background of Students
�e students in our course had previously taken an introductory
programming course in Java. �is Java programming course was a
prerequisite for taking our C++ course. �e following topics were
covered in the Java course:

(1) Programming basics: variables, conditionals, loops, meth-
ods, arrays, and ArrayLists.

(2) Object-oriented programming: objects, classes, com-
position, inheritance, polymorphism, exceptions, �le I/O,
abstract classes, and interfaces.

We note that our introductory Java programming course did not
focus on using Java’s in-built packages except ArrayList. More
details on the programming assignments and the projects that stu-
dents did as a part of our Java course can be found in this url:
h�p://pages.cs.wisc.edu/∼gerald/cs302/

3.2 Issues with the Previous Course Content
�e contents of our C++ course before Fall 2016 are shown in Ta-
ble 1. As can be seen, the previous course content was targeted
primarily towards teaching low-level topics in C �rst before in-
troducing additional, more complex concepts in C++. �e C++
Standard Library, which is useful for writing real-world programs,
was introduced only in the last two classes.

Our previous course content was suitable for teaching C++98.
We identi�ed the following issues with our previous syllabus and
ordering of topics for teaching modern C++:

(1) �ere is too much emphasis on C in a C++ course. �e �rst
half of the course (weeks 1 - 7) focuses mainly on the low-
level features of C rather than the high-level abstractions
of C++.

(2) Most useful ideas are taught at the very end. For example,
the topics in the C++ Standard Library (i.e., containers,
iterators, and algorithms) that are very useful to write
modern C++ code are taught at the very end of the course.

(3) Language features are introduced without proper moti-
vation. For example, topics such as the big three (copy
constructor, copy assignment operator, and destructor) are
introduced as C++ language features at a time when stu-
dents may not appreciate the need for these features.

(4) Students’ prior knowledge in Java is not utilized properly.
For example, �le I/O is taught very late in the course (dur-
ing week 12). If we can teach �le handling at the beginning

http://pages.cs.wisc.edu/~gerald/cs302/

How to Teach “Modern C++” to Someone
who Already Knows Programming? ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia

of the course, then this would enable us to develop non-
trivial programming assignments (using �le I/O) right from
the beginning of the course. Usually, when we teach a pro-
gramming language to beginners, we save �le I/O till the
end because it is considered to be a complex topic for begin-
ners. But since our students already know �le handling in
Java, it is potentially ine�ective to postpone �le handling
in C++ till the end.

A�er identifying the issues with our previous course content, we
decided to update our syllabus and ordering of topics for teaching
modern C++. As a �rst step in this process, we were interested
in �nding out the parts and features of the language that were
most frequently used in modern C++ code bases. We contacted
several graduate students and so�ware engineers using modern
C++ in their everyday work. As a result of the conversations we
had with these people, we found that the C++ Standard Library
plays an important role in writing modern C++ programs since
people generally write code by reusing the features provided by
the standard library.

Table 1: Previous syllabus for our C++ course

Week # Topic

1 Course information, history, high-level di�erences,
process of writing C++ programs using Linux tools

2 Constants, enumerations, structures, arrays
3 Enum, struct, arrays, vectors, parameter passing modes
4 Pointers to structs/classes, arrays, dynamic allocation

5 Abstract memory model, reference variables, passing
params to and return values from functions

6 .h and .cpp �les, de�ning classes, multi-�le compilation
7 Make�les, constructor, member initialization
8 Copy constructor, copy assignment, destructor

9 OperatorX syntax and use, member vs. non-member
options (assignment and arithmetic operators)

10 Explicit, member / non-member function pairs
11 Overloading, condition states, string class, C strings
12 File I/O, manipulators, C I/O
13 Templated functions and classes, containers
14 Iterators, generic algorithms, function objects

3.3 Principles for Course Content Organization
�e course content was organized based on the following principles
from Koenig and Moo [10]:

(1) Explain how to use language and library facilities before
explaining how they work.

(2) Motivate each facility with a problem that uses that facility
as an integral part of its solution.

(3) Present the most useful ideas �rst.
We added one principle, namely:

(4) Teach an idea/feature only when it is necessary to achieve
a speci�c goal.

We added the fourth principle because we wanted to teach the
features of C++ with proper motivation. We believe that if C++

features are taught at the right time when they are really necessary,
then the students will be be�er able to appreciate the value of
these features, when compared to introducing these C++ features
as language technical details/constructs without proper motivation.

3.4 Modi�ed Course Content
�e �rst major change that we made was to update the course
content. We also ordered the topics so that the most useful ideas
were taught �rst. We de�nemost useful ideas as the ones that would
enable a new C++ programmer to write a non-trivial application
program as quickly as possible. We de�ne a non-trivial program to
be something that may be useful in the real world, such as �nding
the set of students who are enrolled in two di�erent courses using
set intersection.

�e modi�ed course content that was used in Fall 2016 is shown
in Table 2. As we can see in this table, the topics are divided into
the following three components:

(1) Using the C++ Standard Library: weeks 1 - 6
(2) C++ language essentials: weeks 7 - 11
(3) Low-level programming: weeks 12 - 15

Table 2: New syllabus for our C++ course

Week # Topic
1 Introduction to C++
2 I/O streams, �le I/O, and strings
3 Sequence containers
4 Associative containers
5 Iterators and algorithms
6 Lambdas
7 References and classes
8 Inheritance and polymorphism
9 Operator overloading
10 Generic programming
11 Error handling
12 Smart and raw pointers
13 Resource management
14 Rule of zero and rule of three
15 C vs C++

�e topics we taught in the three components of the course are
described in more detail in the following sections.

3.5 Using the C++ Standard Library
�e �rst component of the course focused on how to use the C++
Standard Library. �e focus here was to help students understand
the importance of using the C++ Standard Library. We wanted
them to understand how the standard library is organized so that
they could make use of it e�ectively.

�e topics that were covered in this �rst component of the course
are as follows: �le I/O and strings, sequence containers (vectors),
associative containers (sets and maps), algorithms (std::find,
std::sort, std::reverse, std::transform), and lambdas (with
std::remove if and std::transform).

ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia Adalbert Gerald Soosai Raj, Varun Naik, Jignesh M. Patel, and Richard Halverson

Next, we explain our rationale behind emphasizing the impor-
tance of understanding the organization of the C++ Standard Li-
brary.

3.5.1 Organization of the C++ Standard Library. �e C++ Stan-
dard Library consists of three major elements, namely containers,
iterators, and algorithms. �e organization of these three elements
is shown in Figure 1.

Figure 1: �e organization of containers, iterators, and algo-
rithms in the C++ Standard Library.

Containers (e.g., vector, set, map) store data. Iterators are used to
access the elements in containers. Algorithms may perform some
operations on containers with the help of iterators. Algorithms
cannot directly act upon the containers, but instead they can only act
upon the iterators over the containers. �is fact was important for
students to reason about code snippets like the one shown below.

std::vector<int> v = {1, 3, 2, 3, 4};

v.erase(std::remove(v.begin(), v.end(), 3), v.end());

�is code snippet eliminates all the elements in the vector v that
have a value of 3. �e remove1 algorithm moves all the elements
that are not equal to 3 to the beginning of the vector and returns
an iterator to one element past the last unremoved element. �e
vector a�er applying std::remove is: {1, 2, 4, ?, ?}. In this example,
std::remove returns an iterator to the �rst element following the
number 4 (i.e., the �rst unwanted element). �e unwanted elements
are shown as ? since the C++ standard does not specify what those
elements should be. std::remove does not have the functionality
to change the size of the vector. Instead, a subsequent operation
is needed to eliminate the unwanted elements using the erase2

member function of the vector class, which has the power to directly
modify the structure of the container.

�e erasemember function takes two arguments, namely the �rst
and the last iterators, and eliminates elements in the range [first,
last). �e �rst iterator in our example is the one pointing to the
�rst unwanted element (iterator returned by std::remove) and
the last iterator is the end() iterator of the vector. Now, when
we apply erase on the vector from the �rst to the last iterator, the
vector size changes from 5 to 3 elements, leaving the two elements
shown as ? out of bounds. �is common C++ technique to eliminate
elements that satisfy a certain condition is popularly known as the
erase-remove idiom [4].

If we did not teach the organization of the C++ Standard Library
at the beginning of the course, then usage pa�erns like these could

1h�p://en.cppreference.com/w/cpp/algorithm/remove
2h�p://en.cppreference.com/w/cpp/container/vector/erase

confuse the students. �ey might not appreciate the subtle di�er-
ences between the erase and the remove functions when removing
some elements from a container. But with our approach, they can
understand why both these functions are necessary to eliminate
elements from a container and also gain a be�er understanding of
how the C++ Standard Library is organized.

3.5.2 Rationale behind starting with the C++ Standard Library.
We wanted our students to start writing non-trivial C++ programs
right from the beginning. A natural way to do so is for students
to start using the features o�ered by the C++ Standard Library.
For example, if one wants to sort a set of objects, it is be�er to
use the std::sort provided by the C++ Standard Library instead
of writing a sort function from scratch. If the implementation of
the sort became a performance issue, one could choose to write a
custom sort function later. However, a good starting point is to use
the C++ Standard Library’s implementation, which is developed
and maintained by experts in the �eld.

3.5.3 Why teach lambdas? We taught lambdas3 early in the
course since they enable more e�ective use of the C++ Standard
Library. Introducing lambdas earlier in the course helped us when
we taught how to sort user-de�ned objects using std::sort. As
shown below, std::sort takes in a function object that de�nes the
comparison function to sort a set of custom de�ned objects. In this
example, a lambda expression is used as a function object to de�ne
the comparison function for std::sort.
// sort using a lambda expression

std::sort(s.begin(), s.end(), [](int a, int b) {

return b < a;

});

Lambdas are heavily used in code examples of the Algorithms Li-
brary (e.g. std::remove if4, std::sort5). When students refer to
the algorithms in the C++ Standard Library, they encounter lambda
expressions in multiple places since function objects are wri�en
using lambdas instead of their predecessor, functors. �erefore, it
is very important for students to understand lambdas so that they
are able to read and make sense of the (many) algorithms in the
C++ Standard Library.

We gave an introduction to lambda calculus in mathematics
before introducing lambda expressions in C++. We introduced
lambda calculus as follows:

A function to square a number:
square(x) = x * x

In lambda calculus:
x -> x * x

Using this example for a square function in lambda calculus,
we helped students to understand that functions can be expressed
without a name in lambda calculus. Similarly, in C++, we showed
them that lambda expressions are functions without names (i.e.,

3h�p://en.cppreference.com/w/cpp/language/lambda
4h�p://en.cppreference.com/w/cpp/algorithm/remove
5h�p://en.cppreference.com/w/cpp/algorithm/sort

http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/container/vector/erase
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/sort

How to Teach “Modern C++” to Someone
who Already Knows Programming? ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia

anonymous functions). We showed them how a normal function in
C++ can be converted to a lambda expression as shown below:
// A square function in C++:

int square (int x) {

return x * x;

}

// A square function using lambdas:

[] (int x) {

return x * x;

}

Once we �nished teaching the �rst component of our course
(i.e., C++ Standard Library), we had given the students the most
important tools to write non-trivial C++ programs. By doing so,
we were able to align our course to principles (1) and (3) outlined
in Section 3.3.

3.6 C++ Language Essentials
�e second component focused on multiple essential topics in the
C++ core language. �e topics that were covered in this component
of the course were: object-oriented programming (OOP), operator
overloading, generic programming, and error handling.

Since the students in the course had already learnt OOP in Java,
we did not spend time teaching the concepts of OOP, but instead
spent more time teaching C++ speci�c details including syntax. �e
topics we covered in OOP were: member initializer lists, spli�ing
the interface and implementation of a class between the .hpp and
.cpp �les respectively, virtual functions, and pure virtual functions.

At this time, we introduced the C++ reference types. Since the
students came from a Java background, they were already aware
of the primitive data types like int, double, char, etc., and they
had a good understanding of references in Java. In C++, to avoid
ine�cient copying of data when passing a container of objects as
an argument, students needed to pass the container by reference
explicitly.

We were mindful of the need to introduce references when teach-
ing OOP in C++. For example, when teaching polymorphic func-
tions in OOP, we used reference variables as shown in the sample
code snippet below.
// A polymorphic function to print student details

// based on the type of the student.

void printDetails(Student &sRef) {

sRef.printStudent();

std::cout << std::endl;

}

Based on our principle (4) as outlined in Section 3.3, we took a
detour introducing references in C++, before delving into OOP (for
C++).

3.7 Low-Level Programming
�e third and the �nal component of our C++ course focused on
low-level programming. We taught the following topics in this
component: raw pointers and smart pointers, dynamic memory
allocation, rule of three and rule of zero, and resource acquisition
Is initialization (RAII).

Up until this point in our course, we had not discussed pointers,
since they were not necessary. �e rationale behind waiting until
the end of the course to introduce pointers was that we wanted
to focus on the higher-level abstractions in C++ �rst before we
delve into the lower-level details of how they work. For example,
we wanted students to understand how to use std::vector before
learning how they could write their own vector class.

We motivated the need to learn pointers by explaining how the
std::vector is implemented. We discussed how the vector may
resize itself when new elements are added. �is helped the students
understand that their vector class should manage its own memory.
�is was an ideal place to introduce pointers to manage resources
like memory using dynamic memory allocation. Also, the stage was
set for introducing destructors to free resources that were allocated
in their vector class.

Next, we discussed how copying works in std::vector. We
also showed that in the vector class we had created, copying does
not work as expected since only a shallow copy is made by the
default copy constructor provided by C++. �is was a good time to
introduce copy constructors and assignment operators, and students
appreciated the need for making a deep copy of their vector.

We also taught smart pointers and showed how freeing of mem-
ory works automatically when we use them. Speci�cally, we dis-
cussed the std::unique ptr and std::shared ptr constructs. We
taught smart pointers mainly because most modern C++ code bases
use them, and the students should be prepared to understand and
work with them.

We used the Resource Acquisition Is Initialization (RAII) pro-
gramming idiom right from the beginning of the course for con-
cepts such as reading and writing �les with �le streams such as
std::ifstream and std::ofstream, managing memory with vec-
tors, and smart pointers. Although we were using RAII throughout
the course, we did not actually explain how RAII works till the very
end. �e reason for this sequencing is that we introduced resource
management and destructors only at the end of the course, and
these concepts were necessary to understand how RAII works.

We aligned with our principle (1) in Section 3.3 by teaching low-
level programming at the end. For example, we �rst taught how to
use a library facility (e.g., vector APIs in week 3) before teaching
how it works (e.g., internals of a vector in week 13).

3.8 Resources
We did not require a textbook for the course and all the materials we
suggested were freely available on the Internet. We recommended
the following resources:

(1) Readings
(a) Keith Schwarz’s C++ course reader [1]
(b) David Kieras’ lambdas [2] and smart pointers [3]

(2) C++ reference: h�p://en.cppreference.com
(3) Videos

(a) ISOCPP [5]
(b) Meeting C++ [6]

�e URL for our course webpage is shown below:
h�p://pages.cs.wisc.edu/∼gerald/cs368/

http://pages.cs.wisc.edu/~gerald/cs368/

ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia Adalbert Gerald Soosai Raj, Varun Naik, Jignesh M. Patel, and Richard Halverson

3.9 Programming Assignments
�e order of assignments re�ects the top-down approach that we
used to teach modern C++. We covered the following topics in our
programming assignments:

(1) Assignment 0: Programming fundamentals
(2) Assignments 1 - 2: C++ Standard Library
(3) Assignments 3 - 5: C++ Language Essentials
(4) Assignment 6: Low-Level Programming

We enabled students to write non-trivial programs as early as
possible. In Assignment 0, students applied their prior knowledge
of Java to write a simple C++ program that interacted with the user
in the shell. In Assignment 2, students already had enough knowl-
edge of C++ to implement a simple machine-learning model for
predicting the ratings of movie reviews. �is assignment required
students to use associative containers, iterators, and algorithms
from the C++ Standard Library. We note that it would be nearly
impossible for students to complete a similar non-trivial assignment
if they weren’t taught �le I/O and the C++ Standard Library right
at the beginning of the course.

�e design of our programming assignments aligned with our
principle (2) in Section 3.3. �e complete set of programming as-
signments that we used for our course can be found on our course
webpage6.

3.10 Issues Resolution
We resolved the four issues we identi�ed with our previous syllabus
(shown in Section 3.2) using our modi�ed course content as follows:

(1) We focused more on teaching the high-level abstractions
in modern C++ over the low-level details of C. Apart from
the topics on raw pointers, dynamic memory allocation,
and the di�erences between C and C++, all topics in our
new syllabus focused entirely on C++.

(2) We taught the most useful topics in the C++ Standard
Library (i.e., containers, iterators, and algorithms) at the
beginning of our course (weeks 2 - 6). �is enabled our stu-
dents to use the features of the standard library throughout
the course.

(3) We introduced the low-level topics only when they were
necessary to achieve a particular task. For example, we
taught the big three (copy constructor, copy assignment
operator, and destructor) onlywhen students were required
to write their own custom vector class.

(4) We taught �le I/O as one of our �rst topics (in week 2)
since our students already knew �le handling in Java. �is
enabled us to create non-trivial programming assignments
involving �le I/O starting from assignment 1.

4 STUDENTS’ FEEDBACK
We collected feedback from the students using a survey that con-
sisted of Likert scale questions and open-ended feedback. In this
section, we present the feedback that we collected.

�roughout our course, we communicated with our students
about the changes we made to the course content and ordering of
topics for teaching modern C++. We showed the contents of the

6h�p://pages.cs.wisc.edu/∼gerald/cs368/assignments.html

previous syllabus (shown in Table 1) to our students and explained
our rationale behind the new syllabus (shown in Table 2) for teach-
ing modern C++. In this way, our students were aware about the
fact that they were learning modern C++ using a new and updated
syllabus when compared to the previous semesters.

4.1 Students’ Rating of Top-Down Approach
We asked the following question to understand how many students
liked our top-down approach:
‘How much did you like the top-down approach for learning C++? ’
and the responses were collected using a �ve-level Likert scale
survey (1 - not at all, 5 - completely). �is question was answered
by 64 students and the summary of student responses is shown in
Figure 2. Students’ responses were as follows: 85% of the students
responded positively (rating of 4 or 5), 12% responded neutrally
(rating of 3), 3% responded slightly negatively (rating of 2) and no
students responded extremely negatively (rating of 1).

Figure 2: Student responses for the �ve-item Likert scale
question ‘How much did you like the top-down approach
for learning C++?’ where a rating of one (1) means ‘not at
all’ and a rating of �ve (5) means ‘completely’.

4.2 Open-Ended Feedback
To further understand the students’ perceptions on our top-down
approach, we also collected open-ended feedback from the students
for the following question:
‘What are your thoughts about the organization of the course during
this semester?’

Some sample responses from the students are shown below:
“As compared to how this class was previously structured, this

semester’s curriculum was MUCH be�er. �e course �owed really
well and all topics were taught in a relevant, easy to understand
order. Moreover, in the previous version, it seemed to focus a lot on
C type C++, which could be learned in CS 354 [a course on machine
organization and programming] when learning C anyway. �e larger
emphasis on modern C++ was really good.”

“�e way that this class was reordered and the new syllabus was
great. It seemed like everything we learned kept building on each

http://pages.cs.wisc.edu/~gerald/cs368/assignments.html
http://pages.cs.wisc.edu/~gerald/cs368/assignments.html
http://pages.cs.wisc.edu/~gerald/cs368/assignments.html

How to Teach “Modern C++” to Someone
who Already Knows Programming? ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia

other and always felt like a progression and not skipping anything.
�is class was extremely enjoyable and has furthered my want to
learn more about C++.”

“�e course is fantastic. It is very well organized and laid out in
a fashion which teaches fundamentals in a growing fashion for a
�rst time experience with C++. I have no complaints about the course
material.”

“I like that the course was redesigned for this semester. �e outline
of the course seems well-organized and how it is laid out makes sense
to me.”

5 DISCUSSION
In this section, we summarize our �ndings about the students’
perceptions on our top-down approach. We also highlight the
di�culties we faced when teaching modern C++ using our updated
curriculum, and suggest some recommendations to teachers who
may be interested in adopting our syllabus and organization of
topics for teaching modern C++.

5.1 Students’ Perceptions
�e overall feedback from the students was positive, which is ev-
ident from the responses to the Likert scale question shown in
Figure 2 and the student responses to the open-ended question
shown in Section 4.2. Based on these student feedback data, we
summarize that most students have likely found our approach to
be valuable when learning modern C++.

5.2 Challenges Faced
�e challenges that we faced when teaching with the new format
were primarily due to the way in which the topics were organized
in our course. We highlight two of the major di�culties faced by
the instructor and students in our course.

5.2.1 C++ Mapping to Hardware. In Java, every variable of a
primitive type is passed by value, while every object is passed by
reference. Both these types of variables have simple behavior, and
so one can become a competent Java programmer without really
understanding how references work.

In C++, the parameter passing convention is decoupled from the
type of the parameter. �e fact that objects are not automatically
passed by reference confused many students since they come from
a Java background. �ere were many students who were good Java
programmers but struggled to become pro�cient C++ programmers.

�e main reason for this issue is because we had not introduced
the C++ mapping to hardware at the beginning of the course. We
felt that those were low-level details without which students may
be able to understand the C++ Standard Library. Although the
students were able to use the facilities o�ered by the C++ Standard
Library, most students were confused about why were we passing
a container of objects using a reference as shown below.
void removeWhiteSpaces(std::vector<std::string> &tokens) {

// TODO: Implement this method

}

We could have avoided this problem if we had warned the stu-
dents right at the beginning about the di�erences between Java and
C++ regarding the mapping to hardware, and continued on with

using our top-down approach a�er le�ing the students know that
this topic would be explored in detail in a later lecture.

5.2.2 References for Inheritance. �e reader might wonder how
we taught inheritance without introducing pointers. We followed
an approach suggested by Kate Gregory in her talk [8] where she
recommends using references instead of pointers for polymorphism.
Although references can generally support polymorphism, we faced
some issues when trying to store references in containers.

Containers cannot store references because the element type of
containers must be assignable7, but references are not assignable
(i.e., a reference cannot be changed to refer to some other object
once it has been initialized).

To overcome this problem, we used std::reference wrapper,
which wraps a reference in an assignable object. �e following
function signature shows how we wrote a polymorphic function
using std::reference wrapper that prints the details of a group
of students.

/* @brief Prints the details of a group of students.

@param students A vector of student references. */

void printStudents(

const std::vector<std::reference_wrapper<Student>> &students);

We note that such a function signature may be confusing for
students who are just starting to learn C++. It may have been
syntactically easier if we had used pointers instead of references
for inheritance.

5.3 Recommendations to Teachers
Based on our experiences teaching modern C++, we recommend the
following for C++ instructors interested in adopting our approach.

(1) If instructors are teaching C++ for Java programmers, then
starting with the C++ Standard Library is a great way to
teach C++ as a modern language.

(2) An important change that we recommend is to teach a
lecture on C++ mapping to hardware (i.e., references and
pass by value vs pass by reference) right at the beginning
of the course. We believe that this could reduce the di�cul-
ties that students face because of fundamental di�erences
between Java and C++.

(3) Another change that we recommend is to introduce point-
ers at the same time as OOP, to avoid issues with using
references for inheritance. In particular, some of the smart
pointer types in C++11, rather than raw pointers, should
be su�cient. Although pointers are a low-level topic, this
organization aligns with Principle (4) in Section 3.3.

(4) �e new programming assignments that we developed
to re�ect our top-down approach were crucial to teach
modern C++ e�ectively. �erefore, we recommend that
instructors use a similar approach when teaching modern
C++. Instructors are most welcome to use our assignments
for teaching their course.

7h�p://en.cppreference.com/w/cpp/concept/CopyAssignable

http://en.cppreference.com/w/cpp/concept/CopyAssignable
http://en.cppreference.com/w/cpp/concept/CopyAssignable

ACE 2018, Jan 30-Feb 2, 2018, Brisbane, QLD, Australia Adalbert Gerald Soosai Raj, Varun Naik, Jignesh M. Patel, and Richard Halverson

5.4 Limitations
�e following are the limitations of our course.

(1) Limited time: �is course had a total of 15 meetings,
each of 50 minutes duration. �is was very li�le time to
introduce even the most important features of C++. For
example, we did not have enough time to cover useful
topics like move semantics, rule of �ve, concurrency, etc.
�erefore, the total time we had for lectures was a limiting
factor in our course.

(2) Programming background: �e students in our course
had varied programming backgrounds. Although all the
students had learnt Java before, the knowledge and expe-
rience with the C programming language di�ered vastly
among students. �is created some problems within the
classroom when students asked questions like, ‘Are itera-
tors similar to pointers?’ before we had introduced point-
ers. Also, some students who knew C before were confused
about the syntax of references, which uses the same symbol
as the address-of operator (&) in C.

5.5 Future Work
�e following are some ideas for future work in the area of teaching
and learning a second programming language:

(1) Conduct a survey of the di�erent ways in which C++ is
taught as a second programming language by di�erent
instructors who teach modern C++. Understand the ratio-
nale behind their syllabus and organization of topics. �is
study may enable us to develop a standard approach for
teaching modern C++.

(2) Compare the e�ectiveness of teaching modern C++ using
a top-down approach versus a bo�om-up approach. Teach
C++ to two groups of participants. Use the top-down ap-
proach to teach one group and the bo�om-up approach to
teach the other group. Conduct a pre-test and a post-test
to evaluate the e�ectiveness of these two approaches for
learning modern C++.

(3) Evaluate the e�ectiveness of di�erent approaches for teach-
ing modern C++ by comparing the programming assign-
ments that students would be able to complete at various
points in time during the course when learning modern
C++ using a particular approach.

6 CONCLUSIONS
In order to keep up to date with the changes in the C++ program-
ming language, and to help create modern C++ programmers, it is
necessary for C++ instructors to update their syllabus and ordering
of topics when teaching modern C++. In this work, we have pre-
sented our experiences with such a curriculum change for teaching
modern C++ using a top-down approach. We have also presented
the students’ perceptions on these changes, and they were mostly
positive. Based on our experiences, we believe that the order in
which the topics are taught is as important as the topics themselves.
We hope that our work is a step towards answering a bigger ques-
tion: How do we teach a new programming language to someone who
already knows programming in a di�erent language?

ACKNOWLEDGMENTS
�is work was supported in part by grants from the National Sci-
ence Foundation (NSF) under grant IIS-1250886. We thank Bjarne
Stroustrup, the inventor of C++, for his valuable comments on our
course organization and earlier versions of this paper. We also
thank the graduate students at UW-Madison and so�ware engi-
neers at Google-Madison who provided useful feedback on our
work. Our sincere thanks to all our students who were enrolled in
our C++ course during the semester of Fall 2016, when we updated
the syllabus and the ordering of topics. We also thank the anony-
mous reviewers for their valuable feedback on earlier dra�s of our
paper.

REFERENCES
[1] 2010. Keith Schwarz’s C++ Course Reader. h�p://web.stanford.edu/class/cs106l/

handouts/full course reader.pdf. (2010).
[2] 2015. David Kieras’s Using C++ Lambdas. h�p://umich.edu/∼eecs381/handouts/

Lambda.pdf. (2015).
[3] 2015. David Kieras’s Using C++ Smart Pointers. h�p://umich.edu/∼eecs381/

handouts/C++11 smart ptrs.pdf. (2015).
[4] 2017. Erase-remove idiom in C++. h�ps://en.wikipedia.org/wiki/Erase-remove

idiom. (2017).
[5] 2017. ISOCPP’s C++ Videos. h�ps://isocpp.org/blog/category/video-on-demand.

(2017).
[6] 2017. Meeting C++ Videos. h�p://meetingcpp.com/. (2017).
[7] Ivaylo Donchev. 2013. Experience in teaching C++ 11 within the undergraduate

informatics curriculum. Informatics in Education-An International Journal Vol12 1
(2013), 59–79.

[8] Kate Gregory. 2015. Stop teaching C. h�ps://www.youtube.com/watch?v=
YnWhqhNdYyk&t=2002s. (2015).

[9] Emily Howe, Ma�hew�ornton, and Bruce WWeide. 2004. Components-�rst
approaches to CS1/CS2: principles and practice. ACM SIGCSE Bulletin 36, 1
(2004), 291–295.

[10] Andrew Koenig and Barbara Moo. 2000. Accelerated C++: practical programming
by example. Pearson Education India.

[11] A Koenig and BE Moo. 2000. Rethinking how to teach C++ Part 1: Goals and
principles. JOOP-Journal of Object-Oriented Programming 13, 7 (2000), 44–47.

[12] A Koenig and BEMoo. 2000. Rethinking how to teach C++ Part 2: Two interesting
decisions. JOOP-Journal of Object-Oriented Programming 13, 8 (2000), 36–40.

[13] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 3: �e �rst data
structures. JOOP-Journal of Object-Oriented Programming 13, 9 (2001), 35–38.

[14] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 4: Emphasizing
the library. JOOP-Journal of Object-Oriented Programming 13, 10 (2001), 25–27.

[15] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 5: Working with
strings. JOOP-Journal of Object-Oriented Programming 13, 11 (2001), 29–32.

[16] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 6: Analyzing
Strings. JOOP-Journal of Object-Oriented Programming 13, 12 (2001), 29–32.

[17] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 7: Payback time.
JOOP-Journal of Object-Oriented Programming 14, 1 (2001), 36–40.

[18] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 8: An interesting
revision. JOOP-Journal of Object-Oriented Programming 14, 2 (2001), 43–47.

[19] A Koenig and BE Moo. 2001. Rethinking how to teach C++ Part 9: What we
learned from our students. JOOP-Journal of Object-Oriented Programming 14, 3
(2001), 44–47.

[20] Timothy Long, Bruce Weide, Paolo Bucci, David Gibson, Joe Hollingsworth,
Murali Sitaraman, and Steve Edwards. 1998. Providing intellectual focus to
CS1/CS2. 30, 1 (1998), 252–256.

[21] Timothy Long, Bruce Weide, Paolo Bucci, and Murali Sitaraman. 1999. Client
view �rst: an exodus from implementation-biased teaching. 31, 1 (1999), 136–140.

[22] Bjarne Stroustrup. 1999. Learning standard C++ as a new language. CC Plus Plus
Users Journal 17 (1999), 43–54.

[23] Bjarne Stroustrup. 2009. Programming in an undergraduate CS curriculum. In
Proceedings of the 14th Western Canadian Conference on Computing Education.
ACM, 82–89.

[24] Bjarne Stroustrup. 2014. Programming: principles and practice using C++. Pearson
Education.

[25] Bjarne Stroustrup. 2016. C++11 - the new ISO C++ standard. h�p://www.
stroustrup.com/C++11FAQ.html. (2016).

[26] TIOBE. 2017. TIOBE index for C++. h�ps://www.tiobe.com/tiobe-index/. (2017).

http://web.stanford.edu/class/cs106l/handouts/full_course_reader.pdf
http://web.stanford.edu/class/cs106l/handouts/full_course_reader.pdf
http://umich.edu/~eecs381/handouts/Lambda.pdf
http://umich.edu/~eecs381/handouts/Lambda.pdf
http://umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf
http://umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf
https://en.wikipedia.org/wiki/Erase-remove_idiom
https://en.wikipedia.org/wiki/Erase-remove_idiom
https://isocpp.org/blog/category/video-on-demand
http://meetingcpp.com/
https://www.youtube.com/watch?v=YnWhqhNdYyk&t=2002s
https://www.youtube.com/watch?v=YnWhqhNdYyk&t=2002s
http://www.stroustrup.com/C++11FAQ.html
http://www.stroustrup.com/C++11FAQ.html
https://www.tiobe.com/tiobe-index/

	Abstract
	1 Introduction
	2 Related Work
	3 Course Details
	3.1 Java Background of Students
	3.2 Issues with the Previous Course Content
	3.3 Principles for Course Content Organization
	3.4 Modified Course Content
	3.5 Using the C++ Standard Library
	3.6 C++ Language Essentials
	3.7 Low-Level Programming
	3.8 Resources
	3.9 Programming Assignments
	3.10 Issues Resolution

	4 Students' Feedback
	4.1 Students' Rating of Top-Down Approach
	4.2 Open-Ended Feedback

	5 Discussion
	5.1 Students' Perceptions
	5.2 Challenges Faced
	5.3 Recommendations to Teachers
	5.4 Limitations
	5.5 Future Work

	6 Conclusions
	Acknowledgments
	References

