
Automated Heart Wall Motion Abnormality Detection From
Ultrasound Images using Segmental Knowledge

Maleeha Qazi
Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA, USA

maleeha.qazi@siemens.com

Glenn Fung
Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA, USA

glenn.fung@siemens.com

Sriram Krishnan
Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA, USA

sriram.krishnan@siemens.com

ABSTRACT
Coronary Heart Disease can be diagnosed by measuring and scor-
ing regional motion of the heart wall in ultrasound images ofthe
left ventricle (LV) of the heart. Studies have shown that thequal-
ity of diagnosis has great inter- and intra-observer variation, even
among world-class expert cardiologists. This variabilityin diagno-
sis quality is particularly critical for CHD, because earlydiagnosis
is a key factor in improved prognosis. We describe a completely
automated and robust technique that detects diseased hearts based
on automatic detection and tracking of the endocardium and epi-
cardium of the LV. The local wall regions and the entire heartare
then classified as normal or abnormal based on the regional and
global LV wall motion. In order to leverage structural informa-
tion about the heart we applied Bayesian Networks to this problem,
and learnt multiple potential structures off of the data using differ-
ent algorithms. We checked the validity of these structuresusing
anatomical knowledge of the heart and medical rules as described
by doctors. We then used a novel feature selection techniquebased
on mathematical programming to add imaging features to the ba-
sic learnt structures. The resultant classifiers thus depend only on
a small subset of numerical features extracted from dual-contours
tracked through time. We verify the robustness of our systems on
echocardiograms collected in routine clinical practice atone hospi-
tal, both with the standard cross-validation analysis, andthen on a
held-out set of completely unseen echocardiography images.

Keywords
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ture selection, classification, Bayesian Networks, Recursive Mini-
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1. INTRODUCTION
Early detection (along with prevention) is an excellent wayof con-
trolling Coronary Heart Disease(CHD). CHD (along with Con-
gestive Heart Failure) can be detected by measuring and scoring
the regional and global motion of the left ventricle (LV) of the
heart; CHD typically results inwall-motion abnormalities, i.e., lo-

KDD 2006 Philadelphia, Pennsylvania USA

cal segments of the LV wall move abnormally (move weakly, not
at all, or out of sync with the rest of the heart), and sometimes
motion in multiple regions, or the entire heart, is compromised.
The LV can be imaged in a number of ways. The most com-
mon method is the echocardiogram – anultrasound video of dif-
ferent 2-D cross-sections of the LV. Echocardiograms are unfortu-
nately notoriously difficult to interpret, and even the bestof physi-
cians can misdiagnose heart disease. Hence there is a tremendous
need for an automated “second-reader” system that can provide ob-
jective diagnostic assistance, particularly to the less-experienced
cardiologist. Inter-observer studies have shown that evenworld-
class experts agree on their diagnosis only 80% of the time[19],
and intra-observer studies have shown a similar variation when
the expert reads the same case twice at widely different points in
time. Furthermore, the agreement between less-experienced cardi-
ologists and the experts is often below 50%.

In this paper, we address the task of building a computer-aided di-
agnosis system that can automatically detect wall-motion abnor-
malities from echocardiograms. Our goal is to develop a system
to assist physicians to interpret wall motion scores, and thereby re-
duce variability and improve diagnostic accuracy of wall motion
analysis. Section 2 provides some medical background on cardiac
ultrasound and the standard methodology used by cardiologists to
score wall-motion abnormalities. In Section 3 we describe our real-
life dataset, which consists of echocardiograms used by cardiolo-
gists at Erasmus Medical Centre to diagnose wall-motion abnor-
malities. Sections 4 and 5 provide an overview of our proposed
system which we built on top of an algorithm that detects and tracks
the inner and outer cardiac walls [17, 24, 13, 14]. It consists of a
classifier that classifies the local region of the heart wall (and the
entire heart) as normal or abnormal based on the wall motion.We
describe our methodology for feature selection and classification,
followed in Section 6 by our experimental results. We conclude
with some thoughts about our plans for future research in Section 7.

2. MEDICAL BACKGROUND KNOWLEDGE
2.1 What is Coronary Artery Disease?
The human heart is divided into four chambers: the left and right
atrium, and the left and right ventricle. The left ventricle(LV) is
the chamber responsible for pumping oxygenated blood to theen-
tire body. As a result, it is the largest and strongest of the four
chambers. Figure 2.1 shows the layout of the heart chambers in re-
lation to one another; the LV is in the lower right part of the figure.
The heart is fed by three major coronary arteries: the left anterior
descending(LAD), right coronary artery (RCA), and the leftcir-
cumflex coronary artery(LCX). All three of these vessels feed the



Figure 1: Major parts of heart labeled, including the four
chambers of the human heart: the left and right atrium, and
the left and right ventricle.

muscle surrounding the LV.Coronary artery diseaseresults from
the development of plaque within the artery, which usually deposits
along the walls. When the plaque restricts normal blood flow to
an extreme extent the patient will experience chest pain, known
as angina. When the blood flow to the heart muscle is reduced,
the function of that piece of muscle fed by the blocked arterywill
begin to become impaired. This is known asischemia. This func-
tional impairment can be seen from ultrasound images of the heart,
also called echocardiograms (echos). One of the first effects of
coronary artery disease is that the motion of the heart wall during
contraction will become impaired. Accurate regional wall motion
analysis of the LV is an essential component of interpretingechos
to detect this effect, particularly for early disease.

Heart disease has no gender, geographic or socio-economic bound-
aries. Cardiovascular Disease (CVD) is a global epidemic that is
the leading cause of death worldwide (17 mil. deaths per year)
[22]. Since 1900, CVD has been the No. 1 killer in the USA every
year except 1918. It claims more lives each year than the next4
leading causes of death combined, which are cancer, chroniclower
respiratory diseases, accidents, and diabetes mellitus [5]. Coro-
nary Heart Disease(CHD) accounts for more than half the CVD
deaths (roughly 7.2 mil. deaths worldwide every year, and 1 of
every 5 deaths in the US), and is thesingle largest killer in the
world. According to the CDC/NCHS, if all forms of major CVD
were eliminated, life expectancy would rise by almost 7 years. By
comparison, if all forms of cancer were eliminated, the gainwould
be 3 years [5]. Accurate early diagnosis of CHD - primarily with
cardiac ultrasound - has been identified as a critical factorin im-
proving patient outcomes for CHD.

2.2 Divisions of the Heart
There are many imaging modalities that have been used to mea-
sure myocardial perfusion, left ventricular function, andcoronary

Figure 2: Echocardiographic views for wall motion evaluation.
In the short-axis view, at the base and midventribular levels,
the left ventricle is divided into anterior septum (2,8) andante-
rior free wall (1,7), lateral (6,12), posterior (5,11), inferior free
wall (4,10), and posterior septal (3,9) segments. These same
wall segments are seen in apical views as indicated, plus thean-
terior(13), septal (14), inferior (15), and lateral (16) apical seg-
ments are seen. Modified from reference “Textbook of Clinical
Echocardiography” (segment numbers have been corrected to
reflect standard naming convention being used).

anatomy for clinical management and research; for this project we
chose to use echocardiography. The Cardiac Imaging Committee of
the Council on Clinical Cardiology of the American Heart Associa-
tion has created a standardized recommendation for the orientation
of the heart, angle selection and names for cardiac planes and num-
ber of myocardial segments [9]. This is the standardizationused in
this project.

Echo images are collected from four standard views: apical 4cham-
ber (A4C), apical 2 chamber (A2C), parasternal long axis (PLAX)
or apical 3 chamber (A3C), and parasternal short axis (PSAX)–
shown in Figure 2 The planes used to cut the heart to display these
standard views are displayed in Figure 3 from reference [7].The
long-axis view extends from the LV apex through the aortic valve
plane. The short-axis view is perpendicular to the long-axis view
resulting in a circular view of the LV. The four-chamber viewis per-
pendicular to both the long- and short-axis views and includes the
left and right ventricle, and left and right atrium. If one rotates the
4-chamber view plane counterclockwise about 60 degrees, the two-
chamber view is obtained which shows the LV and the left atrium.

The left ventricle (LV) is divided into 17 myocardial segments. The
short-axis view which results in a circular view of the LV canbe
taken at 3 locations, near the apex (apical), at the middle (mid-
cavity), or near the base (basal). The most desirable being the mid-
cavity cut. If one lays these 3 resultant rings against one another, all
segments of the heart are visible in relationship to one another, as
shown in Figure 4 (modified from reference [9]). The left anterior
descending(LAD) feeds segments 1, 2, 7, 8, 13, 14 and 17, the right
coronary artery (RCA) feeds segments 3, 4, 9, 10 and 15, and the
left circumflex coronary artery (LCX) feeds segments 5, 6, 11, 12
and 16.



Figure 3: The three basic image planes used in transthoracic
echocardiography. The ventricles have been cut away to show
how these image planes intersect the left and right ventricles.
Dashed lines indicate the image planes at the great vessel and
atrial levels. From reference “Textbook of Clinical Echocardio-
graphy”.

3. UNDERSTANDING THE DATA
The data is based on standard adult transthoracic B-mode ultra-
sound images collected from the four standard views described pre-
viously. Currently we utilize the three apical views - A2C, A3C,
and A4C - which show all 16 segments of interest (we ignore the
apex, segment 17, since it is near unto impossible to measurewith
ultrasound). These provide all the information needed to achieve
our goal of classifying hearts.

Even though we have images at different levels of stress (resting,
low-dose stress, peak-dose stress, recovery) this work is based on
images taken when the patient was resting. The goal is to auto-
matically provide an initial score, or classification, to determine
whether a heart is normal or abnormal given the resting ultrasound.

The echo data was collected from Erasmus Medical Centre, Rotter-
dam, The Netherlands (abbrev: Erasmus). The Erasmus data con-
sists of 345 cases for which we have associated images as wellas
ground truth and 2216 cases for which we only have ground truth
(no images); all of which were generated using pharmacological
stress, which allows the physician to control the amount of stress a
patient experiences (in this case induced by dobutamine). All the
cases have been labeled at the segment level by a group of trained
cardiologists; this is what we refer to as “ground truth”. Each of the
16 segments were labeled 1 - 5 (1 = normal, 2 = hypo-kinetic, 3 =
akinetic, 4 = dyskinetic, 5 = aneurysm), for simplification purposes
we converted this 5-class problem to a binary class problem (1 =
normal, 2 - 5 = abnormal) for most of the tests we will describe
(unless the 5-class problem is mentioned specifically, assume bi-
nary problem). The heart level classification labels can be obtained
from the segment level labels by applying the following doctor pro-
vided definition: A heart is considered abnormal if two or more
segments are abnormal.

4. PREPARATION OF THE DATA
Our application consists of two main parts: image processing, and
classification. The echos are run through an algorithm whichau-

Figure 4: Display, on a circumferential polar plot, of the 17
myocardial segments and the recommended nomenclature for
tomographic imaging of the heart. Modified from reference
“Standardized Myocardial Segmentation and Nomenclature
for Tomographic Imaging of the Heart”.

tomatically detects and tracks both the interior (endocardial) and
exterior (epicardial) borders of the LV [13, 14]. Motion interfer-
ences (e.g. probe motion, patient movement, respiration, etc.) are
compensated for by using global motion estimation based on robust
statistics outside the LV, this is done so that only the heart’s motion
is analyzed. Then numerical feature vectors, which are extracted
from the dual-contours tracked through time, form the basisfor the
regional wall motion classification.

4.1 Image processing
The first step toward classification of the heart involves automatic
contour generation of the LV [17]. Ultrasound is known to be nois-
ier than other common medical imaging modalities such as MRI
or CT, and echocardiograms are even worse due to the fast motion
of the heart muscle and respiratory interferences. The framework
used by our algorithm is ideal for tracking echo sequences since
it exploits heteroscedastic (i.e. location-dependent andanisotropic)
measurement uncertainties. The process can be divided into2 steps:

1. Border detection: First the LV is localized on multiple frames
of the image clip (shown in Figure 5 as a box drawn around
the LV). Then the internal (endocardial) border of the LV
is detected through contour shape inference (shape models
learnt from a collection of training cases are used to help
in this process). The shape of the border is represented by
configurations of labeled control points or landmark points,
assuming point correspondence from frame-to-frame. Land-
mark points are assigned based on anatomic features (e.g. the
apex, the papillary muscles, etc.). Currently 17 control points
are used for the apical views, and they are ordered in clock-
wise order, with the first point at the basal septal/inferiorre-
gion and the mid-point assigned at the apex [24]. The ex-
ternal (epicardial) border is found by extending the internal
(endocardial) border outwards [14].

2. Border tracking: Next the detected borders are tracked from
one frame to the next through the entire video clip. The inner
and outer contours are treated as a single shape for coupled



Figure 5: One frame from an A4C image clip with the (yellow)
box showing the localized LV, and the (yellow) dots represent-
ing the control points along the detected contour.

Figure 6: One frame from an A4C image clip with the outer
and inner contour control points shown. The (red) vertical line
shows use of global motion compensation, and the two squares
denote the centers of the individual contours.

double-contour tracking. “Intuitively, a double-contourap-
proach can propagate information from the endocardium to
guide the localization of the epicardium (or vice versa), thus
achieving more robust tracking of the two borders than track-
ing them independently” [24]. Motion interferences (e.g.
probe motion, patient movement, respiration, etc.) are com-
pensated for by using global motion estimation based on ro-
bust statistics outside the LV. This global motion estimation
can be seen in Figure 6 as a vertical line near the center of
the image. “The motion is always computed with reference
to the neighborhood on the control point in the first frame of
the sequence (i.e. the current frame is always compared to a
model extracted from the first frame). Thus, error accumu-
lation from frame to frame is avoided. Since the location of
the model is updated at each frame, the motion estimation
process always starts with a good initialization. The overall
procedure is suitable for the tracking of periodic sequences
such as the heart ultrasound data” [24].

After detection and tracking numerical features are computed from
the dual-contours tracked through time. The features extracted are
both global (involving the whole LV) and local (involving individ-
ual segments visible in the image), and are based on velocity, thick-
ening, timing, volume changes, etc.

4.2 Extracted Features
A number of features have been developed to characterize cardiac
motion in order to detect cardiac wall motion abnormalities, among
them: velocity, radial and circumferential strain, local and global
Simpson volume, global and local ejection fraction (EF) ratio, and
segmental volume. Some of these features, including velocity, cir-
cumferential strain, and local EF ratio, are based on the inner (en-
docardial) contour.

Due to the patient examination protocol, only the systole (i.e. con-
traction phase of the heart) is recorded for some patients. In or-
der for the features to be consistent, the systole is extracted from
each patient based on the cavity area change. For each frame,the
LV cavity area can be estimated accurately based on the inner(en-
docardial) contour of that frame. The frame corresponding to the
maximal cavity area that is achieved at the end of diastolic phase
(expansion phase of the heart) is the frame considered to be the be-
ginning of systole. The frame corresponding to the minimal cavity
area (achieved at the end of systolic phase) is the frame assumed
to be the end of systole. For the time being, all features are com-
puted based only on the systolic phase. However, the methodsused
to calculate the features are generally applicable for the diastolic
phase as well. The following is a basic description of some ofthe
features:

• Velocity features: determines how fast any pair of control
points change in the x and y coordinate system per frame.

• Circumferential strain features: also called Fractional Short-
ening, measures how much the contour between any two con-
trol points shrinks in the systolic phase.

• Radial strain features: measures how much the contour shrinks
for each control point between any two time frames.

• Local and Global Simpson Volume features: determine the
volume as computed by the Simpson rule (with 50 disks) for
each frame, and for the systolic phase of the heart as a whole
(this gives the global EF, which captures the whole heart’s
contraction abnormalities).

• Segmental Volume features: determine the volume per seg-
ment per frame, and the segmental EF values (i.e local EFs,
which aim to capture the local cardiac contraction abnormal-
ities).

In general, the global version of certain features (e.g. radial strain,
circumferential strain, etc) can be calculated by taking the mean,
or standard deviation, of the 6 segment’s respective feature values
from any one view. All in all we had 120 local and global features
for each of the 3 views (360 total), all of which were continuous.

5. DATA MINING
Our data mining process which forms the raw data (ultrasound
videos) into the final outcome, a robust classifier that predicts/ as-
sesses heart wall motion for the 16 segments of the heart, canbe
summarized as follows:



Figure 7: Diagram of process, from raw data to final classifier.

1. The image sequences are pre-processed to extract the areaof
interest (i.e. the LV). Intensity Normalization and an appro-
priate resizing are applied.

2. Given the initial contour, the border tracking is performed as
described in section 4.1, item 2.

3. A set of features is extracted from the tracked contours as
described in section 4.2.

4. Using the provided Ground Truth (assessments from the doc-
tors), a network structure is learnt that represents the corre-
lations among segments, this process is explained in detailin
section 5.2.

5. For each segment, a subset of relevant features for classi-
fication is selected (section 5.1), as a result the classifiers
we obtain only depend on a small number of numerical fea-
tures extracted from the dual-contours tracked through time.
Having classifiers depending on a small number of features
not only improves performance time but also results in better
generalization.

6. This subset of numerical features is provided as evidencefor
the networks’ variables of interest (the 16 heart segments)to
provide classification for each segment and the whole heart.
The entire process is diagrammed in figure 7.

5.1 Feature Selection
One of the difficulties in constructing a classifier for this task is the
problem of feature selection. It is a well-known fact that a reduction
on classifier feature dependence can improve the classifier’s gener-
alization capability. However, the problem of selecting an“opti-
mal” minimum subset of features from a large pool (in the order of
hundreds) of potential original features is known to be NP-hard. In
this paper we use a very simple but efficient filter-based approach.
In general, Filter-based methods aim to select features based on
simple auxiliary criteria, such as feature correlation, toremove re-
dundant features. We used the Kolmogorov-Smirnov test (KS-test)
[6, 10] to measure the maximum difference between the empiri-
cal cumulative distributions of the two classes according to a given
feature. All the available features are ranked by the score given by
the KS-test and only the features at the top of the list are selected

for classification. Note that a high rank according to the KS-test
implies that the corresponding empirical cumulative distributions
of the two classes according to these features are considerably dif-
ferent, making these features desirable for discrimination between
the two classes.

5.2 Bayesian Networks
A probabilistic graphical model comprises of a graph and param-
eters. The nodes in the graph correspond to random variables,
and the (lack of) arcs represent conditional independences. The
parameters quantify the dependence among variables. Graphical
models provide a compact representation of the joint probability
distributions over random variables. Bayesian Networks orBelief
Networks (BNs) are directed graphical models (e.g., see [4]for an
overview): the BN structure is a directed acyclic graph (DAG), and
the BN parameters are conditional probabilities, represented by a
contingency table in case of discrete variables. The directed edges
in the graph can often be interpreted in an intuitive way, namely as
causal relationships (requiring additional assumptions)[21].

Learning graphical model structures from data is computationally
expensive. In fact, finding the optimal graph with respect toa given
scoring function was shown to be NP-complete [11]. In the last
decades, many efficient heuristic learning algorithms havebeen de-
veloped for learning BN structures (e.g., [21, 18]), while learning
(general undirected) Markov models is computationally much more
expensive. The BN structure can only be learned up to Markov
equivalence in principle (e.g., [21]), so that the direction of some
edges cannot be determined based solely on given data. More-
over, small data sets introduce increased model uncertainty, obscur-
ing the (true) graph structure and edge-directions. The orientation
of those edges can only be determined based on additional back-
ground knowledge. Once a BN model is learned, not only can its
graph be interpreted as to gain new insights in the interdependences
of the variables, but also the BN model (structure and conditional
probabilities) can be used for quantitative predictions: given the
values of some variables as evidence, the probability distributions
of the remaining variables can be inferred, either exactly (e.g. junc-
tion tree algorithm [4]) or approximately (e.g., loopy belief propa-
gation [23]).

We applied BNs to automatically detecting heart abnormalities to
utilize the structural knowledge of the heart segments in hopes of
improving the classification accuracy for the whole heart. In this
paper, the following representation will be used

• numbers between 1 and 16 will be used to name the respec-
tive heart segment being referred to.

• arrows (for example:← ,→) are used to denote the direction
of causality. An arrow is drawn from the cause (parent) node
to the effect (child) node. Example: 5← 6 should be read
as 6 causes/influences 5, here 5 is the child node and 6 is the
parent node.

• a line connecting two segments denotes that a link exists be-
tween the two, but the directionality is indeterminable (see
above). Example: 1 – 7.

• Two segments are called “neighbors” if they share a common
boundary. For example: the neighbors of 1 are 6, 7, and 2 (as
shown in Figure 4). 8 and 12 are not neighbors since they lie
diagonal to 1 and share only a point of contact with 1. They
could only be influenced by 1 via one of the neighbors.



5.2.1 Prior Domain Knowledge expressed as Rules
We derived prior knowledge from prior clinical research – Moir
& Marwick [20] are well-known cardiologists who have provided
some basic rules about reading echos in standard views. Refer to
Figure 2 [7] to see the standard views. The sentence “...a lateral
segment should be matched with a posterior wall finding before cir-
cumflex disease is reported” extracted from [20] can be translated
into the following rules:

lateral segments: 6, 12
posterior wall segments: 5, 11
rules: 6← 5 and 12← 11

And the sentence “...the basal inferior wall should be matched to an
adjacent abnormal segment (basal septum, mid-inferior) toreduce
false positive interpretations” can be translated into thefollowing
rule:

basal inferior wall: 4
basal septum: 3
mid inferior: 10
rule: 4← 3 OR 4← 10

We also received input from our cardiologist collaborators. We
find that two rules of thumb that most doctors use while reading
a patient’s echos have to do with neighboring segments and shared
coronary artery territory. Neighboring segments influenceeach oth-
ers behavior. One strong example is if one looks at the basal inferior
segment in only the A2C view and believes it to be abnormal, then
the probability of it being abnormal increases if its nearest neigh-
bors in the A2C or PSAX views are seen to be abnormal (ABN).
This can be represented as:

basal inferior wall: 4
nearest neighbors: 10, or 3 and 5 (5 can be eliminated

as a choice since it does not share
blood territory with 4 as do 3 and 10)

rule: 4← 3 OR 4← 10
(NOTE: this same rule is also found in the above
mentioned article [20])

Also if two segments are fed by the same coronary artery, one is
ABN and the other unknown, then it is better to err on the side of
caution and classify the unknown segment as ABN.

As for the location of a segment in a view (2) influencing it’s chances
of being a true or false positive one can logically conclude the fol-
lowing:

LAD: basal (1,2), mid-cavity (7,8), apical (13,14)
– All on right hand side of standard
view images (Figure 2), thus are common sites
of false positives and should not be used
as a parent to another segment.

RCA: basal (3,4), mid-cavity (9,10), apical (15)
– All on left hand side of standard view images
(Figure 2), thus are most likely to be true
positives and do not need other segments
as parents.

LCX: basal (5,6), mid-cavity (11,12), apical (16)
– Segments found on right hand sides of standard
view images (6,12) should be backed up by
segments found on left hand side of images (5,11)
(Figure 2).
Rules: 6← 5, 12← 11.
(NOTE: these are the same rules as found in
the above mentioned article [20])

5.2.2 Learning Bayesian Network structure from data
Three different algorithms were used in the attempt to find a struc-
ture between the heart segments from the data. The resultingstruc-
tures was validated from our cardiac knowledge (as discussed in
Section 2). We applied multiple methods to learn the structure be-
cause to create a structure by hand using only physical knowledge
of the heart would have resulted in a cyclic graph. All the methods
used found structures that actually mirrored the physical relation-
ships within the heart but without creating cycles. The three algo-
rithms that were used to find a structure between the heart segments
are:

1. Chow and Liu algorithm [12]: An implementation of the de-
pendence tree finding algorithm proposed by Chow and Liu
was applied to the 5-class problem, with all 16 segments, and
it came up with the undirected links shown in Table 1. All,
but one, of these links make logical sense since the linked
segments are neighbors and/or share blood territory. The
link 10 – 5 does not make sense because the two segments
fail both requirements. Also the link 14 – 16 does not techni-
cally satisfy both requirements, but it still makes some sense
since the two segments are ‘neighbors’ in the standard views
(and since we are not considering the 17th segment - the apex
- they would be neighbors were that segment to be removed).

Table 1: Edges/Links learnt by different structure learning al-
gorithms

16 seg Chow & Liu 16 seg HUGIN NPC 16 seg BNT
1 – 7, 7 – 13, 1← 7, 13← 7, 7← 1, 13← 7,
2 – 8, 8 – 9, 2← 8, 9← 3, 8← 2, 9← 8,
3 – 9, 9 – 14, 9← 14, 6← 12, 9← 3, 14← 9,

6 – 12, 12 – 16, 16← 12, 4← 10, 12← 6, 16← 12,
4 – 10, 10 – 5, 15← 10, 11← 5, 10← 4,15← 10,
10 – 15, 5 – 11, 16← 14, 15← 14, 11← 5, 15← 14,
14 – 16, 14 – 15, 3← 4, 15← 13, 16← 13, 4← 3,

13 – 16 3← 2, 5← 6 12← 7, 10← 9,
14← 13, 6← 1,
3← 2, 6← 5,
2← 1, 5← 4,

13← 8

2. Hugin Lite (demo version of Hugin Expert) [1]: We used
both of Hugin Expert’s structure learning algorithms on our
binary class data: PC and NPC (Necessary Path Condition).
The demo is limited to 50 states and 500 cases for learn-
ing, hence we could not attempt to use the 5-class data. The
Hugin PC algorithm is a variant of the original PC algorithm
due to Sprites, Glymour & Scheines (2000) [21], and is a
constraint-based learning algorithm (cf. Hugin manual for
details). The basic idea of such like algorithms is to de-
rive a set of conditional independence and dependence state-
ments (CIDs) by statistical tests. The NPC algorithm im-
proves upon the PC algorithm as it can resolve inconsisten-
cies within the derived set of CIDs. The implementation of
the NPC algorithm in Hugin Lite also allows for user interac-
tion to decide the directionality of those links that could not
be determined based on the data only. We thus used the NPC
algorithm for most of our experiments. The PC algorithm
was applied mostly to check what would be learnt without
human interaction.

Multiple rounds of structure learning were performed.



Figure 8: Final resultant network learnt using Hugin Lite’s
NPC algorithm and all 16 heart segments.

Here we describe the final structure that will be tested in the
next section. We wanted to find the most common structure
for all the training data (Erasmus + another hospital). This
was done with all 16 segments using the NPC algorithm. 1
network was created using the Erasmus training cases, 1 net-
work with 169 training cases from the other hospital, and
5 networks from the 2216 Erasmus non-image cases (each
network created from a random sample of 500 cases). An
edge consensus of all networks was done to create the final
resultant network seen in Figure 8. When one overlays the
structural relationships learnt (i.e. arcs in the BN) on the
circular diagram of the heart segments as seen in Figure 9
it is easier to see how the edges relate to the physical rela-
tionships within the heart. Comparing these results with the
Chow and Liu algorithm results, most of the relationships
that made sense were covered, except 8 – 9 and 13 – 16. And
all the edges found between the segments match up with the
actual physical relationships within the heart. Results can be
seen in Table 1.

3. BNT algorithm [2]: We also applied the open-source code
created by Kevin Murphy to learn the most common structure
for all the training data with all 16 segments. For this we used
the multi-class labels (1 - 5) instead of the binary labels be-
cause of the illogical results given by the program when pro-
vided the binary data and many different topological order-
ings of the segments (a requirement of a program). When us-
ing the multi-class labels the program always gave the same
structure regardless of the topological ordering of the seg-
ments. This structure can be seen in Figure 10 Overlaying
the structural relationships learnt on the circular diagram of
the heart segments (see Figure 11) shows the logical sense
of them with respect to the physical heart. When compared
with the results of the Chow and Liu algorithm all of the
links, save 14 – 16, that made logical sense were covered.
And comparing the results to the 16 segment NPC algorithm
results gives the following result (Hugin Lite learnt 16 edges,
while BNT learnt 23 total edges): 7 edges kept the same, 7
edges had their directionality reversed, 9 new edges learntby
BNT, 2 edges not learnt by BNT. Results can be seen in Table
1. The two edges which were not learnt by BNT do not tech-

Figure 9: Structural relationships learnt using Hugin Lite ’s
NPC algorithm and all 16 heart segments, overlayed on physi-
cal heart diagram.

Figure 10: Structure learnt by BNT using multi-class labels.

Figure 11: Structural relationships learnt by BNT using multi-
class labels overlayed on physical heart diagram



nically satisfy the requirements of having the segments in-
volved be neighbors and/or share blood territory, but in each
case the segments are ‘neighbors’ in different standard views
(and since we are not considering the 17th segment - the apex
- they would be neighbors were that segment to be removed).

6. TESTING LEARNT BN MODELS
To test the BNs we learnt, we transferred the networks learntto
Netica [3] and did parameter training using the 220 Erasmus train-
ing cases with images, and 2216 Erasmus cases without images
(i.e. a subset of the same cases used to do structure learning).
The test set was 125 cases held out specifically for this purpose.
The testing process involved entering all available evidence into
the compiled network, running inference, and querying all vari-
ables of interest simultaneously. When evidence in enteredinto a
compiled network, Netica automatically incorporates the new in-
formation into the network (via junction tree propagation). In our
case, the evidence given to the network were the 6 best segment
specific features found by the Kolmogorov-Smirnov test (allcon-
tinuous attributes), and the variables of interest that were queried
were the nodes that represented each heart segment (S1, S2, ... ,
S16; all discrete attributes). After the structure betweenthe seg-
ments was learnt off of data via different methods describedabove,
we manually added the evidence variables using a naive Bayesian
methodology (each node representing a segment specific feature
was influenced only by the corresponding segment’s node in the
network, e.g. S2→ s2 A3C segvolef). Experiments done to learn
a better structure between the segment nodes and the new evidence
nodes showed that this simple approach was indeed the most logi-
cal and gave the best results.

All continuous valued features were discretized using Recursive
Minimal Entropy Partitioning [15], a method based on minimal en-
tropy heuristic, presented in [8, 16]. This is a supervised algorithm
that uses class information entropy of candidate partitions to select
bin boundaries for discretization.

We tested 2 networks (the last two mentioned in the learning sec-
tion) using the subset of selected features described above:

1. The 16 segment network learnt by Hugin Lite using the NPC
algorithm and binary segment GT

2. The 16 segment network learnt by BNT using the 5-class GT
labels

6.1 Numerical Experiments
We have obtained many different answers from doctors about the
trade off between false positives (FP, i.e. wrongly labeling the heart
abnormal) verses false negatives (FN, i.e. wrongly labeling the
heart normal); this depends on the clinical context. If thissystem
is used as an initial reader, then having too many FPs or FNs will
cause the doctors to shut off the system because it will be deemed
unreliable. But as we plan to use our system as a “second reader” to
validate a physician read, the main focus should be to keep the FN
rate low. In general, if you have a high FP rate then you are send-
ing too many patients for additional, more expensive tests,which
would lead to higher costs for health insurance. A high FN rate
could mean that a patient might go undiagnosed if the doctor using
the system is not well trained and also misses potential abnormali-
ties. In our context, the “cost” of a FN is thus higher than a FP. By
focusing on keeping the FN rate low, we lower the risk of missing
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Figure 12: Test ROC curves for segments 1 through 4: BNT
(dotted line) and HUGIN (solid line).

abnormalities and leave the final diagnosis to the expertiseof the
doctor. However, to take all variations into account, we decided
that the most objective way to evaluate the classifier performance
is to measure the area under the ROC curve (AUC).

Both our classifiers were trained using 220 cases, and were tested
on 125 cases. Their results can be compared per segment against
one another as shown by the ROC curves in Figures 12, 13, 14, and
15. Our feature selection resulted in each segment being dependent
on six features (both global and local). The same subset of features
were used for both classifiers. For each algorithm, Table 2 shows
the AUCs for the testing set. As the results show, both classifiers
did equally well on each segment, and on the whole achieved high
sensitivity, greater than or equal to 80%, for 80% specificity on
most segments.

Table 2: AUCs for test set
Segment 16 seg HUGIN NPC 16 seg BNT

S1 0.90883 0.90883
S2 0.89344 0.89617
S3 0.95798 0.96779
S4 0.9096 0.91673
S5 0.83913 0.84806
S6 0.99593 0.98374
S7 0.87192 0.86453
S8 0.82301 0.8208
S9 0.97436 0.96474
S10 0.92561 0.92763
S11 0.83764 0.84508
S12 0.97967 0.98374
S13 0.97434 0.97168
S14 0.92056 0.92552
S15 0.94682 0.94818
S16 0.94 0.945

7. FUTURE WORK
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Figure 13: Test ROC curves for segments 5 through 8: BNT
(dotted line) and HUGIN (solid line).
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Figure 14: Test ROC curves for segments 9 through 12: BNT
(dotted line) and HUGIN (solid line).
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Figure 15: Test ROC curves for segments 13 through 16: BNT
(dotted line) and HUGIN (solid line).

In the future we plan on expanding our classification to identify
different levels of CHD severity at the segment level (Levels 1-5:
1 = normal, 2 = hypo-kinetic, 3 = a-kinetic, 4 = dys-kinetic, 5=
aneurysm), incorporating the use of other standard echocardiogra-
phy views (for example: parasternal short axis (PSAX), parasternal
long axis(PLAX)), and including images from other levels ofstress
(e.g.: peak dose). We would also like to apply a ranking algorithm
to take advantage of multi-class scores for classification.

8. CONCLUSION
Cardiovascular Disease (CVD) is the single largest contributor to
“Disability Adjusted Life Years” (DALYs), which can be thought
of as “healthy years of life lost”. This measure indicates the to-
tal burden of a disease verses the deaths that result from it.CVD
accounts for 10% of DALY’s in low and middle income nations,
and 18% of DALY’s in high-income nations. This burden is pro-
jected to rise from 47 million DALYs globally in 1990 to 82 mil-
lion DALYs in 2020 [22]. Over 60% of the global burden of this
disease occurs in developing countries. Hence the WHO and CDC
agree that “CVD is no longer an epidemic. It is a pandemic”. Inthe
United States, CVD accounted for 37.3% of all deaths in 2003 (or
1 of every 2.7 deaths) and was the primary or contributing cause
in about 58% of all deaths that year [5]. Ultrasound is the best
diagnostic tool to detect this disease and is used routinelyfor this
purpose.

In this paper we address the task of building an objective classifi-
cation application for heart wall motion analysis, based onfeatures
calculated off of echocardiograms. The simple but effective feature
selection technique that was used results in classifiers depending
on only a small subset of the calculated features, and their limited
number makes it easier to explain the final classifier to physicians
in order to get their feedback. Although we only had a relatively
small number of cases with images and ground truth, we were able
to leverage a large number of additional cases - namely data with-
out images, but with ground truth only - to improve performance.
It was interesting to note that both Bayesian Network classifiers



tested performed equally well on the task and gave greater orequal
to 80% sensitivity for the same amount of specificity.
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