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cal segments of the LV wall move abnormally (move weakly, not

Coronary Heart Disease can be diagnosed by measuring ard sco at all, or out of sync with the rest of the heart), and somedime

ing regional motion of the heart wall in ultrasound imageghef
left ventricle (LV) of the heart. Studies have shown thatdoal-
ity of diagnosis has great inter- and intra-observer viarateven
among world-class expert cardiologists. This variabilitgliagno-
sis quality is particularly critical for CHD, because eadiggnosis

is a key factor in improved prognosis. We describe a comiglete
automated and robust technique that detects diseased baagd
on automatic detection and tracking of the endocardium amnd e
cardium of the LV. The local wall regions and the entire heaet
then classified as normal or abnormal based on the regionll an
global LV wall motion. In order to leverage structural infioa-
tion about the heart we applied Bayesian Networks to thiblpro,
and learnt multiple potential structures off of the datangsliffer-
ent algorithms. We checked the validity of these structuisag
anatomical knowledge of the heart and medical rules as ithescr
by doctors. We then used a novel feature selection techtigsed
on mathematical programming to add imaging features to #he b
sic learnt structures. The resultant classifiers thus depaty on

a small subset of numerical features extracted from duatecws
tracked through time. We verify the robustness of our system
echocardiograms collected in routine clinical practicera hospi-
tal, both with the standard cross-validation analysis, thed on a
held-out set of completely unseen echocardiography images
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1. INTRODUCTION

Early detection (along with prevention) is an excellent wagon-
trolling Coronary Heart Diseas¢CHD). CHD (along with Con-
gestive Heart Failure) can be detected by measuring anéhgcor
the regional and global motion of the left ventricle (LV) dfet
heart; CHD typically results imall-motion abnormalitiesi.e., lo-
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motion in multiple regions, or the entire heart, is compresai.
The LV can be imaged in a number of ways. The most com-
mon method is the echocardiogram —uwtrasound video of dif-
ferent 2-D cross-sections of the LEchocardiograms are unfortu-
nately notoriously difficult to interpret, and even the bafgphysi-
cians can misdiagnose heart disease. Hence there is a tteusen
need for an automated “second-reader” system that canderoti-
jective diagnostic assistance, particularly to the legsegenced
cardiologist. Inter-observer studies have shown that everd-
class experts agree on their diagnosis only 80% of the fitB¢
and intra-observer studies have shown a similar variatibenwv
the expert reads the same case twice at widely differentpain
time. Furthermore, the agreement between less-expedercdi-
ologists and the experts is often below 50%.

In this paper, we address the task of building a computerehdti-
agnosis system that can automatically detect wall-motimmoa
malities from echocardiograms. Our goal is to develop aesyst
to assist physicians to interpret wall motion scores, aadthy re-
duce variability and improve diagnostic accuracy of walltio
analysis. Section 2 provides some medical background atiacar
ultrasound and the standard methodology used by card#totp
score wall-motion abnormalities. In Section 3 we descrilrereal-
life dataset, which consists of echocardiograms used hjiaar
gists at Erasmus Medical Centre to diagnose wall-motiorogbn
malities. Sections 4 and 5 provide an overview of our progose
system which we built on top of an algorithm that detects aacks
the inner and outer cardiac walls [17, 24, 13, 14]. It cossidta
classifier that classifies the local region of the heart waaild(the
entire heart) as normal or abnormal based on the wall motida.
describe our methodology for feature selection and classidin,
followed in Section 6 by our experimental results. We codelu
with some thoughts about our plans for future research itiGet.

2. MEDICALBACKGROUND KNOWLEDGE
2.1 Whatis Coronary Artery Disease?

The human heart is divided into four chambers: the left agbtri
atrium, and the left and right ventricle. The left ventri¢ley) is
the chamber responsible for pumping oxygenated blood tenhe
tire body. As a result, it is the largest and strongest of the f
chambers. Figure 2.1 shows the layout of the heart chamivees i
lation to one another; the LV is in the lower right part of thgufie.
The heart is fed by three major coronary arteries: the |d&raor
descending(LAD), right coronary artery (RCA), and the laft
cumflex coronary artery(LCX). All three of these vesselgifdee
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Figure 2: Echocardiographic views for wall motion evaluaton.
In the short-axis view, at the base and midventribular leves,
) ] ] ) the left ventricle is divided into anterior septum (2,8) andante-
Figure 1. Major parts of heart labeled, including the four rior free wall (1,7), lateral (6,12), posterior (5,11), inkrior free
chambers of the human heart: the left and right atrium, and wall (4,10), and posterior septal (3,9) segments. These sam
the left and right ventricle. wall segments are seen in apical views as indicated, plus tha-

terior(13), septal (14), inferior (15), and lateral (16) ajcal seg-
ments are seen. Modified from reference “Textbook of Clinich
Echocardiography” (segment numbers have been corrected to

muscle surrounding the L\Coronary artery diseaseesults from reflect standard naming convention being used).
the development of plaque within the artery, which usuadipakits
along the walls. When the plaque restricts normal blood flow t
an extreme extent the patient will experience chest paiowkn
asangina When the blood flow to the heart muscle is reduced,
the function of that piece of muscle fed by the blocked arteitly
begin to become impaired. This is knowniashemia This func-
tional impairment can be seen from ultrasound images of ¢aeth
also called echocardiograms (echos). One of the first effect
coronary artery disease is that the motion of the heart walhg
contraction will become impaired. Accurate regional waditian
analysis of the LV is an essential component of interpre¢icigos

to detect this effect, particularly for early disease.

anatomy for clinical management and research; for thisptaye

chose to use echocardiography. The Cardiac Imaging Cogenift
the Council on Clinical Cardiology of the American Heart Assi-

tion has created a standardized recommendation for thetatien

of the heart, angle selection and names for cardiac plartesuan-

ber of myocardial segments [9]. This is the standardizatiged in

this project.

Echo images are collected from four standard views: apichbn-
ber (A4C), apical 2 chamber (A2C), parasternal long axisARL
or apical 3 chamber (A3C), and parasternal short axis (PSAX)

Heart disease has no gender, geographic or socio-econoomcb shown in Figure 2 The planes used to cut the heart to dispkseth

aries. Cardiovascular Disease (CVD) is a global epiderrat ith standar_d vi_ews are displayed in Figure 3 from reference‘_[Tl]e
the leading cause of death worldwide (17 mil. deaths per)year Ic?ng-ax!?hwevx exten_ds from_ the LV ag_ex IthrougE tr;e aortl_lya/a
[22]. Since 1900, CVD has been the No. 1 killer in the USA every plane. The short-axis view is perpendicular to the long-asew

year except 1918. It claims more lives each year than the qext fes“'?‘f‘g ina circular view of the LV. Thefqur-ghamber\{iismer-
leading causes of death combined, which are cancer, chinwar pendicular to both the long- and short-axis views and iretuithe

respiratory diseases, accidents, and diabetes melljus8ro- left and right ventricle, and left and right atrium. If ondates the

nary Heart Diseas€CHD) accounts for more than half the CVD 4-chamber_ VieV_V plane_ counte_rclockwise about 60 degreessv\m
deaths (roughly 7.2 mil. deaths worldwide every year, and 1 o chamber view is obtained which shows the LV and the left atriu

every 5 deaths in the US), and is thimgle largest killer in the . o . .
world. According to the CDC/NCHS, if all forms of major CVD The left ventricle (LV) is divided into 17 myocardial segnienThe
were eliminated, life expectancy would rise by almost 7 ye@y short-axis view which results in a circular view of the LV che

: . . . taken at 3 locations, near the apex (apical), at the middid-(m
comparison, if all forms of cancer were eliminated, the geduld X . .
be 3 years [5]. Accurate early diagnosis of CHD - primarilythwi cavity), or near the base (basal). The most desirable beégitd-

cardiac ultrasound - has been identified as a critical faotdm- cavity cut. |ff0|t11e Iﬁys these 3 r%sl,ul_tant :ln_gs ag?"”St owg, al
proving patient outcomes for CHD. segments of the heart are visible in relationship to onetempas

shown in Figure 4 (modified from reference [9]). The left ainte
L descending(LAD) feeds segments 1, 2, 7, 8, 13, 14 and 17igtte r
2.2 Divisions of the Heart coronary artery (RCA) feeds segments 3, 4, 9, 10 and 15, and th
There are many imaging modalities that have been used to mea-left circumflex coronary artery (LCX) feeds segments 5, 6,12
sure myocardial perfusion, left ventricular function, aratonary and 16.
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Figure 3: The three basic image planes used in transthoracic
echocardiography. The ventricles have been cut away to show
how these image planes intersect the left and right ventriels.
Dashed lines indicate the image planes at the great vessel and
atrial levels. From reference “Textbook of Clinical Echocadio-

graphy”.

3. UNDERSTANDING THE DATA

The data is based on standard adult transthoracic B-mod® ult
sound images collected from the four standard views destpbe-
viously. Currently we utilize the three apical views - A2C3@,

and A4C - which show all 16 segments of interest (we ignore the
apex, segment 17, since it is near unto impossible to meastire
ultrasound). These provide all the information needed toexe

our goal of classifying hearts.

Even though we have images at different levels of stressiriggs
low-dose stress, peak-dose stress, recovery) this wor&siscdoon
images taken when the patient was resting. The goal is te auto
matically provide an initial score, or classification, totefenine
whether a heart is normal or abnormal given the restingsdtrad.

The echo data was collected from Erasmus Medical CentréeiRot
dam, The Netherlands (abbrev: Erasmus). The Erasmus data co
sists of 345 cases for which we have associated images assvell
ground truth and 2216 cases for which we only have ground trut
(no images); all of which were generated using pharmaccébgi
stress, which allows the physician to control the amountres a
patient experiences (in this case induced by dobutamin#)thé&
cases have been labeled at the segment level by a groupraddrai
cardiologists; this is what we refer to as “ground truth” cEaf the

16 segments were labeled 1 - 5 (1 = normal, 2 = hypo-kinetic, 3 =
akinetic, 4 = dyskinetic, 5 = aneurysm), for simplificatiamrposes
we converted this 5-class problem to a binary class problem (
normal, 2 - 5 = abnormal) for most of the tests we will describe
(unless the 5-class problem is mentioned specifically, rmssbi-
nary problem). The heart level classification labels canliteined
from the segment level labels by applying the following dogtro-
vided definition: A heart is considered abnormal if two or mor
segments are abnormal.

4. PREPARATION OF THE DATA

Our application consists of two main parts: image processnd
classification. The echos are run through an algorithm whigh

Left Ventricular Segmentation
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Figure 4. Display, on a circumferential polar plot, of the 17
myocardial segments and the recommended nomenclature for
tomographic imaging of the heart. Modified from reference
“Standardized Myocardial Segmentation and Nomenclature
for Tomographic Imaging of the Heart”.

tomatically detects and tracks both the interior (endde§rénd
exterior (epicardial) borders of the LV [13, 14]. Motion énfer-
ences (e.g. probe motion, patient movement, respirattor), are
compensated for by using global motion estimation basedlounst
statistics outside the LV, this is done so that only the Pearbtion
is analyzed. Then numerical feature vectors, which areaetdd
from the dual-contours tracked through time, form the bfisithe
regional wall motion classification.

4.1 Image processing

The first step toward classification of the heart involve®matic
contour generation of the LV [17]. Ultrasound is known to loésh

ier than other common medical imaging modalities such as MRI
or CT, and echocardiograms are even worse due to the fastrmoti
of the heart muscle and respiratory interferences. Thedwark
used by our algorithm is ideal for tracking echo sequencasesi

it exploits heteroscedastic (i.e. location-dependentaamisbtropic)
measurement uncertainties. The process can be divided stéps:

1. Border detection: Firstthe LV is localized on multiplarfies
of the image clip (shown in Figure 5 as a box drawn around
the LV). Then the internal (endocardial) border of the LV
is detected through contour shape inference (shape models
learnt from a collection of training cases are used to help
in this process). The shape of the border is represented by
configurations of labeled control points or landmark pqints
assuming point correspondence from frame-to-frame. Land-
mark points are assigned based on anatomic features (e.g. th
apex, the papillary muscles, etc.). Currently 17 contrah{so
are used for the apical views, and they are ordered in clock-
wise order, with the first point at the basal septal/inferesr
gion and the mid-point assigned at the apex [24]. The ex-
ternal (epicardial) border is found by extending the in&érn
(endocardial) border outwards [14].

2. Border tracking: Next the detected borders are trackad fr
one frame to the next through the entire video clip. The inner
and outer contours are treated as a single shape for coupled
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Figure 5: One frame from an A4C image clip with the (yellow)
box showing the localized LV, and the (yellow) dots represen
ing the control points along the detected contour.

Figure 6: One frame from an A4C image clip with the outer
and inner contour control points shown. The (red) vertical ine
shows use of global motion compensation, and the two squares
denote the centers of the individual contours.

double-contour tracking. “Intuitively, a double-contoap-
proach can propagate information from the endocardium to
guide the localization of the epicardium (or vice versalisth
achieving more robust tracking of the two borders than track
ing them independently” [24]. Motion interferences (e.g.
probe motion, patient movement, respiration, etc.) are-com
pensated for by using global motion estimation based on ro-
bust statistics outside the LV. This global motion estioati

After detection and tracking numerical features are coegbériom
the dual-contours tracked through time. The features etettloare
both global (involving the whole LV) and local (involvingdivid-

ual segments visible in the image), and are based on veltuitik-

ening, timing, volume changes, etc.

4.2 Extracted Features

A number of features have been developed to characteridecar
motion in order to detect cardiac wall motion abnormalitesong
them: velocity, radial and circumferential strain, locablaglobal
Simpson volume, global and local ejection fraction (EFjoradnd
segmental volume. Some of these features, including \tgagi-
cumferential strain, and local EF ratio, are based on therifen-
docardial) contour.

Due to the patient examination protocol, only the systake @on-
traction phase of the heart) is recorded for some patiemtsor-I
der for the features to be consistent, the systole is exilaftom
each patient based on the cavity area change. For each fitagne,
LV cavity area can be estimated accurately based on the {ener
docardial) contour of that frame. The frame correspondnthé
maximal cavity area that is achieved at the end of diastdiesp
(expansion phase of the heart) is the frame considered teeldmet
ginning of systole. The frame corresponding to the mininaaity
area (achieved at the end of systolic phase) is the framenassu
to be the end of systole. For the time being, all features ane-c
puted based only on the systolic phase. However, the methszds
to calculate the features are generally applicable for thstalic
phase as well. The following is a basic description of soménef
features:

e \elocity features: determines how fast any pair of control
points change in the x and y coordinate system per frame.

e Circumferential strain features: also called Fractiortadr®
ening, measures how much the contour between any two con-
trol points shrinks in the systolic phase.

¢ Radial strain features: measures how much the contourkshrin
for each control point between any two time frames.

e Local and Global Simpson Volume features: determine the
volume as computed by the Simpson rule (with 50 disks) for
each frame, and for the systolic phase of the heart as a whole
(this gives the global EF, which captures the whole heart's
contraction abnormalities).

e Segmental Volume features: determine the volume per seg-
ment per frame, and the segmental EF values (i.e local EFs,
which aim to capture the local cardiac contraction abnormal
ities).

In general, the global version of certain features (e.giatadrain,

can be seen in Figure 6 as a vertical line near the center of circumferential strain, etc) can be calculated by takirg trean,
the image. “The motion is always computed with reference ©F standard deviation, of the 6 segment’s respective featalues
to the neighborhood on the control point in the first frame of from any one view. Allin all we had 120 local and global featsir
the sequence (i.e. the current frame is always compared to afor each of the 3 views (360 total), all of which were contingo

model extracted from the first frame). Thus, error accumu-
lation from frame to frame is avoided. Since the location of

5. DATA MINING

the model is updated at each frame, the motion estimation Our data mining process which forms the raw data (ultrasound
process always starts with a good initialization. The dvera videos) into the final outcome, a robust classifier that pteflas-

procedure is suitable for the tracking of periodic sequsnce
such as the heart ultrasound data” [24].

sesses heart wall motion for the 16 segments of the hearthean
summarized as follows:
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Figure 7: Diagram of process, from raw data to final classifier

1. The image sequences are pre-processed to extract thaf area
interest (i.e. the LV). Intensity Normalization and an appr
priate resizing are applied.

. Given the initial contour, the border tracking is perfedras
described in section 4.1, item 2.

. A set of features is extracted from the tracked contours as
described in section 4.2.

. Using the provided Ground Truth (assessments from the doc
tors), a network structure is learnt that represents theeeor
lations among segments, this process is explained in detail
section 5.2.

. For each segment, a subset of relevant features for classi
fication is selected (section 5.1), as a result the classifier
we obtain only depend on a small number of numerical fea-
tures extracted from the dual-contours tracked through.tim
Having classifiers depending on a small number of features
not only improves performance time but also results in bette
generalization.

. This subset of numerical features is provided as evidfarce
the networks’ variables of interest (the 16 heart segméats)
provide classification for each segment and the whole heart.
The entire process is diagrammed in figure 7.

5.1 Feature Selection

One of the difficulties in constructing a classifier for trask is the
problem of feature selection. Itis a well-known fact thagduction
on classifier feature dependence can improve the classiierier-
alization capability. However, the problem of selecting“apti-
mal” minimum subset of features from a large pool (in the oafe
hundreds) of potential original features is known to be N#dhin
this paper we use a very simple but efficient filter-based @aayr.
In general, Filter-based methods aim to select featuresdoas
simple auxiliary criteria, such as feature correlationegmove re-
dundant features. We used the Kolmogorov-Smirnov testt@¢y-
[6, 10] to measure the maximum difference between the empiri
cal cumulative distributions of the two classes accordig given
feature. All the available features are ranked by the scwendy
the KS-test and only the features at the top of the list arecsed

for classification. Note that a high rank according to the tk§-
implies that the corresponding empirical cumulative dsiions
of the two classes according to these features are consigetif
ferent, making these features desirable for discrimimaietween
the two classes.

5.2 Bayesian Networks

A probabilistic graphical model comprises of a graph ancpar
eters. The nodes in the graph correspond to random varjables
and the (lack of) arcs represent conditional independendés
parameters quantify the dependence among variables. Gaaph
models provide a compact representation of the joint pritibab
distributions over random variables. Bayesian NetworkBelref
Networks (BNs) are directed graphical models (e.g., seéofdn
overview): the BN structure is a directed acyclic graph (DA&hd
the BN parameters are conditional probabilities, repriesthy a
contingency table in case of discrete variables. The ditketiges
in the graph can often be interpreted in an intuitive way, elgras
causal relationships (requiring additional assumpti¢Rg).

Learning graphical model structures from data is compuratiy
expensive. In fact, finding the optimal graph with respeet ¢iven
scoring function was shown to be NP-complete [11]. In th¢ las
decades, many efficient heuristic learning algorithms leen de-
veloped for learning BN structures (e.g., [21, 18]), whiarning
(general undirected) Markov models is computationally immore
expensive. The BN structure can only be learned up to Markov
equivalence in principle (e.g., [21]), so that the directaf some
edges cannot be determined based solely on given data. More-
over, small data sets introduce increased model uncertaiogcur-

ing the (true) graph structure and edge-directions. Thentation

of those edges can only be determined based on additionkl bac
ground knowledge. Once a BN model is learned, not only can its
graph be interpreted as to gain new insights in the intemkgreces

of the variables, but also the BN model (structure and caoit
probabilities) can be used for quantitative predictionieny the
values of some variables as evidence, the probabilityildigions

of the remaining variables can be inferred, either exaetly.(junc-

tion tree algorithm [4]) or approximately (e.g., loopy lelpropa-
gation [23]).

We applied BNs to automatically detecting heart abnormeslito
utilize the structural knowledge of the heart segments pekof
improving the classification accuracy for the whole heantthis
paper, the following representation will be used

e numbers between 1 and 16 will be used to name the respec-
tive heart segment being referred to.

arrows (for example— , —) are used to denote the direction

of causality. An arrow is drawn from the cause (parent) node
to the effect (child) node. Example: <5 6 should be read

as 6 causes/influences 5, here 5 is the child node and 6 is the
parent node.

a line connecting two segments denotes that a link exists be-
tween the two, but the directionality is indeterminablee(se
above). Example: 1 -7.

Two segments are called “neighbors” if they share a common
boundary. For example: the neighbors of 1 are 6, 7, and 2 (as
shown in Figure 4). 8 and 12 are not neighbors since they lie
diagonal to 1 and share only a point of contact with 1. They
could only be influenced by 1 via one of the neighbors.



5.2.1 Prior Domain Knowledge expressed as Rules 5.2.2 Learning Bayesian Network structure from data

We derived prior knowledge from prior clinical research —iMo
& Marwick [20] are well-known cardiologists who have proeitl

some basic rules about reading echos in standard viewsr ®efe

Figure 2 [7] to see the standard views. The sentence “.egalat
segment should be matched with a posterior wall finding leetor
cumflex disease is reported” extracted from [20] can be kated
into the following rules:

lateral segments: 6, 12
posterior wall segments: 5, 11
rules: 6—5and 12— 11

And the sentence “...the basal inferior wall should be meddb an
adjacent abnormal segment (basal septum, mid-inferio®dace
false positive interpretations” can be translated intoftewing
rule:

basal inferior wall: 4
basal septum: 3

mid inferior: 10

rule: 4— 3 0R 4+ 10

We also received input from our cardiologist collaboratok&/e

find that two rules of thumb that most doctors use while regadin

a patient’s echos have to do with neighboring segments a@édh
coronary artery territory. Neighboring segments influezeeh oth-
ers behavior. One strong example is if one looks at the bafalor

segment in only the A2C view and believes it to be abnormal) th

the probability of it being abnormal increases if its netiresgh-

bors in the A2C or PSAX views are seen to be abnormal (ABN).

This can be represented as:

Three different algorithms were used in the attempt to fintlecs
ture between the heart segments from the data. The ressiting
tures was validated from our cardiac knowledge (as discusse
Section 2). We applied multiple methods to learn the stmeche-
cause to create a structure by hand using only physical laumel
of the heart would have resulted in a cyclic graph. All thehmoes
used found structures that actually mirrored the physiektion-
ships within the heart but without creating cycles. The ¢hafgo-
rithms that were used to find a structure between the heartesgg
are:

1. Chow and Liu algorithm [12]: An implementation of the de-

pendence tree finding algorithm proposed by Chow and Liu
was applied to the 5-class problem, with all 16 segments, and
it came up with the undirected links shown in Table 1. All,
but one, of these links make logical sense since the linked
segments are neighbors and/or share blood territory. The
link 10 — 5 does not make sense because the two segments
fail both requirements. Also the link 14 — 16 does not techni-
cally satisfy both requirements, but it still makes somessen
since the two segments are ‘neighbors’ in the standard views
(and since we are not considering the 17th segment - the apex
- they would be neighbors were that segment to be removed).

Table 1: Edges/Links learnt by different structure learning al-

basal inferior wall: 4

nearest neighbors: 10, or 3 and 5 (5 can be eliminated
as a choice since it does not share
blood territory with 4 as do 3 and 10)

rule: 4+ 3 0OR 4+ 10

(NOTE: this same rule is also found in the above

mentioned article [20])

Also if two segments are fed by the same coronary artery, ene i
ABN and the other unknown, then it is better to err on the side o

caution and classify the unknown segment as ABN.

As for the location of a segment in a view (2) influencing iteaces
of being a true or false positive one can logically concluaefol-
lowing:
LAD: basal (1,2), mid-cavity (7,8), apical (13,14)
— All on right hand side of standard
view images (Figure 2), thus are common sites
of false positives and should not be used
as a parent to another segment.
RCA: basal (3,4), mid-cavity (9,10), apical (15)
— All on left hand side of standard view images
(Figure 2), thus are most likely to be true
positives and do not need other segments
as parents.
LCX: basal (5,6), mid-cavity (11,12), apical (16)

— Segments found on right hand sides of standard

view images (6,12) should be backed up by

segments found on left hand side of images (5,11)

(Figure 2).

Rules: 6— 5, 12+ 11.

(NOTE: these are the same rules as found in
the above mentioned article [20])

gorithms

16 seg Chow & Liu| 16 seg HUGIN NPC 16 seg BNT

1-7,7-13, 17,137, 71,137,

2-8,8-9, 2+—8,9< 3, 82,98,

3-9,9-14, 9+ 14,6 12, 9+ 3,149,
6-12,12-16, 16— 12,410, | 12+ 6,16+ 12,
4-10,10-5, 15+ 10, 11 5, 10— 4,15 10,
10-15,5-11, 16— 14, 15— 14, | 115, 15+ 14,
14 -16, 14 - 15, 34,15+ 13, 16— 13,4+ 3,
13-16 3+—2,5—6 12— 7,109,
14— 13,6+ 1,

3« 2,605,

2+ 1,54,

13— 8

2. Hugin Lite (demo version of Hugin Expert) [1]: We used

both of Hugin Expert’s structure learning algorithms on our
binary class data: PC and NPC (Necessary Path Condition).
The demo is limited to 50 states and 500 cases for learn-
ing, hence we could not attempt to use the 5-class data. The
Hugin PC algorithm is a variant of the original PC algorithm
due to Sprites, Glymour & Scheines (2000) [21], and is a
constraint-based learning algorithm (cf. Hugin manual for
details). The basic idea of such like algorithms is to de-
rive a set of conditional independence and dependence state
ments (CIDs) by statistical tests. The NPC algorithm im-
proves upon the PC algorithm as it can resolve inconsisten-
cies within the derived set of CIDs. The implementation of
the NPC algorithm in Hugin Lite also allows for user interac-
tion to decide the directionality of those links that coulat n

be determined based on the data only. We thus used the NPC
algorithm for most of our experiments. The PC algorithm
was applied mostly to check what would be learnt without
human interaction.

Multiple rounds of structure learning were performed.



Figure 8: Final resultant network learnt using Hugin Lite’s
NPC algorithm and all 16 heart segments.

Here we describe the final structure that will be tested in the
next section. We wanted to find the most common structure
for all the training data (Erasmus + another hospital). Thie
was done with all 16 segments using the NPC algorithm.
network was created using the Erasmus training cases, 1 r
work with 169 training cases from the other hospital, an
5 networks from the 2216 Erasmus non-image cases (ec
network created from a random sample of 500 cases). /
edge consensus of all networks was done to create the fi
resultant network seen in Figure 8. When one overlays tl
structural relationships learnt (i.e. arcs in the BN) on th
circular diagram of the heart segments as seen in Figure
it is easier to see how the edges relate to the physical re
tionships within the heart. Comparing these results with tr
Chow and Liu algorithm results, most of the relationship
that made sense were covered, except 8 —9 and 13 — 16. /£
all the edges found between the segments match up with 1
actual physical relationships within the heart. Resultslza
seen in Table 1.

. BNT algorithm [2]: We also applied the open-source code
created by Kevin Murphy to learn the most common structure
for all the training data with all 16 segments. For this weduse
the multi-class labels (1 - 5) instead of the binary labels be
cause of the illogical results given by the program when pro-
vided the binary data and many different topological order-
ings of the segments (a requirement of a program). When us-
ing the multi-class labels the program always gave the same
structure regardless of the topological ordering of the seg
ments. This structure can be seen in Figure 10 Overlaying
the structural relationships learnt on the circular diagiet

the heart segments (see Figure 11) shows the logical sense
of them with respect to the physical heart. When compared
with the results of the Chow and Liu algorithm all of the
links, save 14 — 16, that made logical sense were covered.
And comparing the results to the 16 segment NPC algorithm
results gives the following result (Hugin Lite learnt 16 edg
while BNT learnt 23 total edges): 7 edges kept the same, 7
edges had their directionality reversed, 9 new edges legrnt
BNT, 2 edges not learnt by BNT. Results can be seen in Table

A2C
Left anterior descending

Right coronary artery Left cireurafle x coronary artery

Figure 9: Structural relationships learnt using Hugin Lite’s
NPC algorithm and all 16 heart segments, overlayed on physi-
cal heart diagram.

Figure 10: Structure learnt by BNT using multi-class labels

AT

Left anterior descending

A3C

Right caronary artery Left circurnfls x coronary artery

Figure 11: Structural relationships learnt by BNT using multi-

1. The two edges which were not learnt by BNT do not tech- C1ass labels overlayed on physical heart diagram



nically satisfy the requirements of having the segment:
volved be neighbors and/or share blood territory, but irhe
case the segments are ‘neighbors’ in different standavesy
(and since we are not considering the 17th segment - the
- they would be neighbors were that segment to be remo'

6. TESTING LEARNT BN MODELS

To test the BNs we learnt, we transferred the networks lear
Netica [3] and did parameter training using the 220 Erasmaus-t
ing cases with images, and 2216 Erasmus cases without ir
(i.e. a subset of the same cases used to do structure lear
The test set was 125 cases held out specifically for this ger,
The testing process involved entering all available ewdeimto
the compiled network, running inference, and querying ai-
ables of interest simultaneously. When evidence in enterteda
compiled network, Netica automatically incorporates tee rin-
formation into the network (via junction tree propagatiofr) our
case, the evidence given to the network were the 6 best sé(
specific features found by the Kolmogorov-Smirnov test ¢a-
tinuous attributes), and the variables of interest thaewgreried
were the nodes that represented each heart segment (S1, S2, .
S16; all discrete attributes). After the structure betwdenseg-
ments was learnt off of data via different methods descréizle,
we manually added the evidence variables using a naive Bayes
methodology (each node representing a segment specifirréeat
was influenced only by the corresponding segment’s nodeén th
network, e.g. S2-» s2 A3C_segvolef). Experiments done to learn
a better structure between the segment nodes and the nesmeeid
nodes showed that this simple approach was indeed the ngist lo
cal and gave the best results.

All continuous valued features were discretized using Reeel

Minimal Entropy Partitioning [15], a method based on minier:

tropy heuristic, presented in [8, 16]. This is a supervidgdrithm

that uses class information entropy of candidate parstiorselect
bin boundaries for discretization.

We tested 2 networks (the last two mentioned in the learnéng s
tion) using the subset of selected features described above

1. The 16 segment network learnt by Hugin Lite using the NPC
algorithm and binary segment GT

2. The 16 segment network learnt by BNT using the 5-class GT
labels

6.1 Numerical Experiments

We have obtained many different answers from doctors albaut t
trade off between false positives (FP, i.e. wrongly lalgethe heart
abnormal) verses false negatives (FN, i.e. wrongly labethre
heart normal); this depends on the clinical context. If gyistem

is used as an initial reader, then having too many FPs or FNs wi
cause the doctors to shut off the system because it will bmede
unreliable. But as we plan to use our system as a “secondrféade
validate a physician read, the main focus should be to keefkh
rate low. In general, if you have a high FP rate then you ard-sen
ing too many patients for additional, more expensive tegtéch
would lead to higher costs for health insurance. A high Fi rat
could mean that a patient might go undiagnosed if the doctioigu
the system is not well trained and also misses potentialratmle
ties. In our context, the “cost” of a FN is thus higher than aBP
focusing on keeping the FN rate low, we lower the risk of nmgsi
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Figure 12: Test ROC curves for segments 1 through 4: BNT
(dotted line) and HUGIN (solid line).

abnormalities and leave the final diagnosis to the expeofiske
doctor. However, to take all variations into account, weidied
that the most objective way to evaluate the classifier pevémice
is to measure the area under the ROC curve (AUC).

Both our classifiers were trained using 220 cases, and wstedte
on 125 cases. Their results can be compared per segmenstagain
one another as shown by the ROC curves in Figures 12, 13, d4, an
15. Our feature selection resulted in each segment beirendept

on six features (both global and local). The same subsettiifes
were used for both classifiers. For each algorithm, Tableo#vsh
the AUCs for the testing set. As the results show, both diessi

did equally well on each segment, and on the whole achiewg hi
sensitivity, greater than or equal to 80%, for 80% specyfiom
most segments.

Table 2: AUCs for test set

Segment| 16 seg HUGIN NPC| 16 seg BNT
S1 0.90883 0.90883
S2 0.89344 0.89617
S3 0.95798 0.96779
S4 0.9096 0.91673
S5 0.83913 0.84806
S6 0.99593 0.98374
S7 0.87192 0.86453
S8 0.82301 0.8208
S9 0.97436 0.96474
S10 0.92561 0.92763
S11 0.83764 0.84508
S12 0.97967 0.98374
S13 0.97434 0.97168
S14 0.92056 0.92552
S15 0.94682 0.94818
S16 0.94 0.945

7. FUTURE WORK
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Figure 13: Test ROC curves for segments 5 through 8: BNT
(dotted line) and HUGIN (solid line).
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Figure 14: Test ROC curves for segments 9 through 12: BNT
(dotted line) and HUGIN (solid line).
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Figure 15: Test ROC curves for segments 13 through 16: BNT
(dotted line) and HUGIN (solid line).

In the future we plan on expanding our classification to idgnt
different levels of CHD severity at the segment level (Level5:
1 = normal, 2 = hypo-kinetic, 3 = a-kinetic, 4 = dys-kineticz5
aneurysm), incorporating the use of other standard ectiocaa-
phy views (for example: parasternal short axis (PSAX), ptaraal
long axis(PLAX)), and including images from other levelstkss
(e.g.: peak dose). We would also like to apply a ranking dtigor
to take advantage of multi-class scores for classification.

8. CONCLUSION

Cardiovascular Disease (CVD) is the single largest coumtibto
“Disability Adjusted Life Years” (DALYs), which can be thgit

of as “healthy years of life lost”. This measure indicates tb-

tal burden of a disease verses the deaths that result fro@MD
accounts for 10% of DALY’s in low and middle income nations,
and 18% of DALY’s in high-income nations. This burden is pro-
jected to rise from 47 million DALYs globally in 1990 to 82 mil
lion DALYs in 2020 [22]. Over 60% of the global burden of this
disease occurs in developing countries. Hence the WHO ar@ CD
agree that “CVD is no longer an epidemic. Itis a pandemic’thin
United States, CVD accounted for 37.3% of all deaths in 2@03 (
1 of every 2.7 deaths) and was the primary or contributingseau
in about 58% of all deaths that year [5]. Ultrasound is the bes
diagnostic tool to detect this disease and is used routiioelthis
purpose.

In this paper we address the task of building an objectivesdia
cation application for heart wall motion analysis, basedeatures
calculated off of echocardiograms. The simple but effedi@ature
selection technique that was used results in classifierendipg
on only a small subset of the calculated features, and tineited
number makes it easier to explain the final classifier to s
in order to get their feedback. Although we only had a reddgiv
small number of cases with images and ground truth, we wéee ab
to leverage a large number of additional cases - namely diétta w
out images, but with ground truth only - to improve perform@n
It was interesting to note that both Bayesian Network cfessi



tested performed equally well on the task and gave greatgual
to 80% sensitivity for the same amount of specificity.
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