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Abstract. In the context of computer aided mammography, many standard al-
gorithms (e.g. SVM and neural networks) have been used for degdesions.
However, these general purpose learning methods make implicit pisnsilike
sample independence that are commonly violated. A new ensemble algdsith
proposed to explicitly account for the small fraction of outlier images wteak

to produce a large number of false positives. A bootstrapping proedéslused

to ensure that the candidates from these outlier images do not skew thi- statis
cal properties of the training samples. We compared a standard stiie-aft
method (SVM) for detecting clusters of micro-calcifications, with our erde
algorithm. This algorithm significantly improved the test set results, edpeicia

the operating region of interest (around 0.2 FP per image).

1 Introduction

In computer aided diagnosi€AD) applications the goal is to detect structures of in-
terest to physicians in medical imagesg.to identify potentially malignant lesions in
mammography. In an almost universal paradigm, this proldeaddressed by a 3 stage
system: identification of potentially unhealthy candid&gions of interes(ROI) from

a medical image, computation of descriptive features foheandidate, and classifica-
tion of each candidatee(g.normal or diseased) based on its features.

This paper focusses on automatic algorithms for designiiegléarning) pattern
classifiers for the third stage. Automatic learning aldoris are an important part of
the modern methodology for efficiently designing computded diagnostic products.
Besides improving the diagnostic accuracy, these techiedgreatly reduce the time
required to develop algorithms that act as “second readers”

In the context of computer aided mammography, many stanagatithms €.g.
SVM, Back-propagation for Neural Nets, Kernel Fisher Disénants) have been used
to learning classifiers for detecting malignant lesionsamputer aided mammogra-
phy [1-3]. However, these general purpose learning methwdse implicit assump-
tions that are commonly violated in CAD applications, oftesulting in sub-optimal
prediction accuracy for the classifiers that they learn.&@mple, these methods al-
most universally assume that the training samplesiradependentlydrawn from an
identical—albeit unobservable—underlying distribution (i.i.d. asgdion).

We propose a new ensemble algorithm that is designed to iraphe classification
accuracy. This algorithm explicitly accounts for the fawtta small fraction of outlier
images tend to produce a large number of false (true) pesitivthe training set used



to learn classifiers, whereas a large number of other imagigscontribute very few
negative (positive) training samples each. A bootstrappiocedure is used to ensure
that the candidates from these outlier images do not skewst#iistical properties of
the training samples.

When we learnt a classifier using standard state-of-the-etthads (SVM) for de-
tecting clusters of micro-calcs, the resulting systemagorened (generalized) poorly on
a hold out set of test samples, in terms of per-image seitgigper-patient sensitivity.
By contrast, the proposed methods significantly improvedRBC curves, especially
in the operating region of interest (around 0.2 FP per image)

The rest of the paper is organized as follows. Section 2 iggtd some of the as-
sumptions that underly almost all algorithms for learniregt@rn classifiers, and in-
dicates why some of them may be inappropriate for CAD. Basedhis analysis,
Section 3 develops a novel method for learning classifieas ditect clusters of mi-
crocalcifications. Experimental results are provided iotf®e 4. We conclude with a
discussion of the broader applicability of the proposeamtigm and some ideas for
future extensions in Section 5.

2 Common assumptions while learning pattern classifiers

2.1 Creation of the training data

During the design of a CAD system, considerable human iaetgion and domain
knowledge engineering is employed in the first two stages GA® system for (a)
candidate generation (CG): identifying all potentiallypicious regions in a candidate
generation stage with very high sensitivity, and (b) featextraction: description of
each such region quantitatively using a set of medicallgwait features. For exam-
ple quantitative measurements based on texture, shapesitytand contrast and other
such characteristics may be used to characterize any refimterest (ROI). Subse-
quently, for learning the classifier to be used in the thiabet a training dataset is
created by obtaining features to describe each candidaterR®e training images,
and class labels are assigned to them based upon the ovedéap distance from any
radiologist-marked (diseased) region.

2.2 Characteristic properties of the data

A few important characteristics of the data are relevantd@signing classifiers that
generalize well. First, there is a form of stochastic depecd between the labeling
errors of a group of candidates, all of which are spatiallyxpnate to the same radi-
ologist mark. Further, the features used to describe diyatidjacent or overlapping
samples are also highly correlated. As a result, both theldadnd the features for the
training samples from an image tend to be highly correlatesiinter sample correlation
is particularly high for spatially adjacent candidates.

Second, some types of biological or image structures tergketmentified much
more often by CG algorithms in the form of many spatially adjat candidates. This
introduces a sampling bias in the training dataset as cardparthe frequency of oc-
currence of these structures in screening population®, Atsme training images tend



to contain far more false positive candidates as compardhletaest of the training
database, due to noise or various imaging artifacts prasémem.

2.3 Shortcomings in standard classification algorithms

In the CAD literature, many machine learning algorithms—sasneural networks
support vector machine§SVM), and Fisher's linear discriminant-have been em-
ployed to train classifiers. However, almost all the staddaethods for classifier design
explicitly make certain assumptions that are violated leysbmewhat special charac-
teristics of the data as discussed above.

In particular, most of the algorithms assume that the tngirsamples or instances
are drawnidentically andindependentiffrom an underlying (unknown) distribution.
However, as mentioned above, due to spatial adjacency aktfiens identified by a
candidate generator, both the features and the class lafbstveral adjacent training
candidates are highly correlated.

Further, the standard methods for classifier design intjpliassume that the appro-
priate measure for evaluating the classifier is based onth@mccuracy of the system
on a per-lesion basis. In other words, these algorithmsotmnaost correctly classify
each candidate from the CG algorithm; they do not accourthfosampling bias intro-
duced by the common tendency of CG algorithms to produceidates corresponding
to certain types of structures and fewer candidates cayreipg to others.

The appropriate measure of accuracy for evaluating a CARsy:s different from
the standard measures that are optimized by conventicaedifiers. In particular, even
if one of the candidates that refers to the underlying maligrstructure is correctly
highlighted to the radiologist, tHesionis detected. Thus, correct classification of every
candidate instance is not as important as the ability toctietieleast onecandidate
that points to a malignant lesion. At another level, in ma®yDQproblems it is even
more relevant to measure the accuracy in terms of FROC cpletigg the per-patient
sensitivity—the fraction of diseased patients correctinitfied by the system—versus
the rate of false positives per patient.

These consideration motivated the development of a nogekighm for learning
ensemble classifiers in an effort to adjust for the sampliag bf the CG algorithm and
the correlations between subsets of samples for the sange iorgatient.

3 Learning ensemble classifiers for CAD using boot-strapping

Instead of learning a single classifier, we learn a set orrebkeof k classifiers. The

final prediction of the ensemble is obtained by weightedngptthis is, the final pre-

diction consists in a weighted sum (average) of the pramtistiof the members of the
ensemble. Furthermore, in order to achieve a diverse erleemé use the technique
known as bagging [], where each classifier is trained on aomnedistribution of the

training set. In our case, each classifier’s training seeisegated by randomly draw-
ing, without replacementy ™ positive examples anty — negative examples from the
original training set.



It is a well-known fact in the machine learning communityttkiary unbalanced
training sets (number of negatives points or false positeedidates is much larger
that the number of positive points or number of real microfightions) tend to make
most machine learning algorithms to be biased toward th@nibajclass, producing
poor generalization over the minority class. In order torads this issue and to reduce
computational complexity, for each of the classifiers in¢hseemble we chos¥ ~ to
be a relatively smaller numbeN™ = 1000 was chosen by tuning in our experiments).
The number of positived’ + was chosen as a function of the number of positive images
in the training set. For each positive image in the trainieigogly: positive datapoints
were randomly chosen from all the positive candidates inrttage.

Each one of the linear classifiers in the ensemble is obtaigesblving the Rel-
evance Vector Machine formulation (RVM) [].RVM producesiaehr classifier that
makes its predictions using only a small number of relevaatures which are auto-
matically selected from the original large pool of featutesforcing each member of
the ensemble to depend on an small number of features alewfes diversity of the
ensemble since each classifier tends to make predictiorsl loasdifferent features.

Next, we present our proposed algorithm to learn an ensecidssifier for detect-
ing clusters of micro-calcifications from digital mammoigist

Algorithm 1 BuildEnsemble return: W = [w?, ..., w"]:

0. Given

— the numbenc that define the number of classifiers in the ensemble.

— Thetraining setcomprised of a matrid € R™*™ (m is the number of points
andn is the number of input features and the vedter {1, —1}" containing
the labels.

— The number of positive point§+ and negative pointsV~ to be randomly
selected to train each one of the classifiers members of the ensemble.

1. initializek =0
2. If k = ne, stop, return the matrid¥ € R™*"¢ hyperplane coefficientd =
[wl, e ,w"c}

3. otherwise, generate training set for classifieby randomly drawing, without re-
placement, N positive examples and/ — negative examples from the original
training set.

. Obtain the coefficients” for classifierk by solving the RVM formulation []

5. dok=k+1

A

Given an unseen datapoint (column vectorf R", the final ensemble classifier
prediction is given by:
_ Doy exp(a’wh)

nc

pred(x)

4 Experiments



Our numerical experiments were performed in a dataset stimgiof 37098 microcal-
cification clusters candidates extracted from 1891 digitifilm-screen mammography
(FSM) images belonging to 621 cases (242 Malignant and 3n@ale). Each candi-
date consists in a vector of 1051 descriptors or featuraswhee extracted from the
microcalcification clusters candidates based on shaperéxensity , etc. The images
of all the cases were digitized at high resolution (600 dpipit) by a prototype CAD
device developed by Siemens CAD, Israel. In order to vadidia¢ generalization per-
formance of the proposed system, the available 621 casesraredomly divided into
two subsets:

— A training setcomprised of 945 images from 311 cases (190 normals and 121
malignants). 744 of the The 945 images belong to the normsdscormal im-
ages) and the remaining 201 images belong to the malign.clisedotal number
of candidates in the training set is 18459, only 443 of thes®lidates are real
microcalcification clusters, the remaining 18016 are falsgtives, i.e. candidates
pointing to structures in the breast that are not microfiastion clusters.

— A testingor validation setcomprised of 946 images from 310 cases (189 normals
and 121 malignants). 754 of the The 946 images belong to theal@ases (nor-
mal images) and the remaining 192 images belong to the madigaes. The total
number of candidates in the training set is 18639, 462 oktlsasdidates are real
microcalcification clusters, the remaining 18177 are falsgtives.

The number of positive datapointsndicates the number of positive candidates to
be randomly chosen from each positive image. The final numieositive candidates
then, depends explicity on the choiceichnd the number of positive images. Since
our training set contains 201 malignant images, when 2, this results in randomly
chosing up to 402 positive candidates to be included in theitrg set, this is, up to 2
for each malignant image (some images may not have 2 positigers, in that case
only one was picked). We tried different valuesiodind: = 1 gave the best results
in our problem. The idea behind this positive datapointspdang scheme is to drive
the ensemble classifier performance to be optimized perarmagead of per cluster. In
other words, by sampling positive clusters uniformly asrali the positive images the
classifier gets to learn a more heterogeneous concept diveasi malignancy cluster.
By using all the positives candidates , the classifier may@eted by some of the rare
images with an unusual number of positive candidates (spaéil) and that are not
representative of the general population of positive irsage

The number of classifiers in the ensemblavas fixed to 101 based on empirical
experience.

4.1 Comparison to an standard SVM formulation

In order to show the effectiveness of our approach we our nigaleexperiments in-
cluded comparisons to the smooth support vector machingNp$4]. SSVM is an
efficient SVM formulation that consists in using an smooghiersion of the plus func-
tion to reformulate the SVM problem as an unconstrainednuiptition problem that
can be solved very fast and that can handle large datasets.
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Fig. 1. Histogram on the training and testing sets showing number of images (yveitisk
candidates (x-axis). Histograms for all the candidates, malignantdzted only and for normal
candidates only are shown. Note that some of the outlier images in both ihiegrand the
testing set have an usnussual large number of positive and negatitiglates.

In order to be as fair as possible the parametdor the SSVM algorithm was
determined by cross-validation from the et 10,279,...,2'0}.

Figures 2,3 and 4 show that our proposed method is considaraire robust and
generalize better on the unseen cases (testing set) aveld iper cluster, per image
and per patient respectively). As can be seen in igures 2|3laat the 0.15 FP/image
level our ensemble method obtained:

— 66.5% testing set sensitivity at the cluster level comp#wegR.3% testing set sen-
sitivity obtained by the SSVM algorithm.

— 88.8% testing set sensitivity at the image level comparetdtb% testing set sen-
sitivity obtained by the SSVM algorithm.

— 100.0% testing set sensitivity at the patient level comgpaoe95.0% testing set
sensitivity obtained by the SSVM algorithm.
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Fig. 2. Comparisons of SSVM and the proposed ensemble. The ROC curvésaikuihe perfor-
mance on the training and testing sets at the cluster level

5 Related Work & Discussions

Most classification approaches used till today in the dorn&gomputer aided diagno-
sis have assumed the data to fulfill some general assumfitersmmple independence,
and an identical distribution for all patients. In many casg®se algorithms have been
used as so called black boxes. This despite the fact that Hessimptions are violated
due to many different factors e.g. samples of the same patiercorrelated and might
even come from a different distribution e.g. in the case otg/\dense breast How-
ever, the results of this article show that taking explcttie distribution of the data
into account can improve the classification results. Thigrowement results in a real
improvement in sensitivity and a decrease in false positper case, leading to a real
clinical benefit. Note especially that this improvementigagicantly observed for the
independent test set.

Since more explicitly modeling the data distribution seemtead to improved re-
sults one might therefore want to consider an even morelddtapproach to modeling
the data in future work. The current model does not take ajpatirelation of samples
which are spatially close to each other in the image intoastd\Iso samples in differ-
ent images of the same patient might of course be correlatezse correlations could
be modeled using random effects models AND WHAT OTHER METHODS
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