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Abstract. In the context of computer aided mammography, many standard al-
gorithms (e.g. SVM and neural networks) have been used for detecting lesions.
However, these general purpose learning methods make implicit assumptions like
sample independence that are commonly violated. A new ensemble algorithm is
proposed to explicitly account for the small fraction of outlier images whichtend
to produce a large number of false positives. A bootstrapping procedure is used
to ensure that the candidates from these outlier images do not skew the statisti-
cal properties of the training samples. We compared a standard state-of-the-art
method (SVM) for detecting clusters of micro-calcifications, with our ensemble
algorithm. This algorithm significantly improved the test set results, especially in
the operating region of interest (around 0.2 FP per image).

1 Introduction

In computer aided diagnosis(CAD) applications the goal is to detect structures of in-
terest to physicians in medical images:e.g.to identify potentially malignant lesions in
mammography. In an almost universal paradigm, this problemis addressed by a 3 stage
system: identification of potentially unhealthy candidateregions of interest(ROI) from
a medical image, computation of descriptive features for each candidate, and classifica-
tion of each candidate (e.g.normal or diseased) based on its features.

This paper focusses on automatic algorithms for designing (i.e. learning) pattern
classifiers for the third stage. Automatic learning algorithms are an important part of
the modern methodology for efficiently designing computer aided diagnostic products.
Besides improving the diagnostic accuracy, these technologies greatly reduce the time
required to develop algorithms that act as “second readers”.

In the context of computer aided mammography, many standardalgorithms (e.g.
SVM, Back-propagation for Neural Nets, Kernel Fisher Discriminants) have been used
to learning classifiers for detecting malignant lesions in computer aided mammogra-
phy [1–3]. However, these general purpose learning methodsmake implicit assump-
tions that are commonly violated in CAD applications, oftenresulting in sub-optimal
prediction accuracy for the classifiers that they learn. Forexample, these methods al-
most universally assume that the training samples areindependentlydrawn from an
identical—albeit unobservable—underlying distribution (i.i.d. assumption).

We propose a new ensemble algorithm that is designed to improve the classification
accuracy. This algorithm explicitly accounts for the fact that a small fraction of outlier
images tend to produce a large number of false (true) positives in the training set used



to learn classifiers, whereas a large number of other images only contribute very few
negative (positive) training samples each. A bootstrapping procedure is used to ensure
that the candidates from these outlier images do not skew thestatistical properties of
the training samples.

When we learnt a classifier using standard state-of-the-art methods (SVM) for de-
tecting clusters of micro-calcs, the resulting system performed (generalized) poorly on
a hold out set of test samples, in terms of per-image sensitivity & per-patient sensitivity.
By contrast, the proposed methods significantly improved the ROC curves, especially
in the operating region of interest (around 0.2 FP per image).

The rest of the paper is organized as follows. Section 2 highlights some of the as-
sumptions that underly almost all algorithms for learning pattern classifiers, and in-
dicates why some of them may be inappropriate for CAD. Based on this analysis,
Section 3 develops a novel method for learning classifiers that detect clusters of mi-
crocalcifications. Experimental results are provided in Section 4. We conclude with a
discussion of the broader applicability of the proposed algorithm and some ideas for
future extensions in Section 5.

2 Common assumptions while learning pattern classifiers

2.1 Creation of the training data

During the design of a CAD system, considerable human intervention and domain
knowledge engineering is employed in the first two stages of aCAD system for (a)
candidate generation (CG): identifying all potentially suspicious regions in a candidate
generation stage with very high sensitivity, and (b) feature-extraction: description of
each such region quantitatively using a set of medically relevant features. For exam-
ple quantitative measurements based on texture, shape, intensity and contrast and other
such characteristics may be used to characterize any regionof interest (ROI). Subse-
quently, for learning the classifier to be used in the third stage, a training dataset is
created by obtaining features to describe each candidate ROI in the training images,
and class labels are assigned to them based upon the overlap and/or distance from any
radiologist-marked (diseased) region.

2.2 Characteristic properties of the data

A few important characteristics of the data are relevant fordesigning classifiers that
generalize well. First, there is a form of stochastic dependence between the labeling
errors of a group of candidates, all of which are spatially proximate to the same radi-
ologist mark. Further, the features used to describe spatially adjacent or overlapping
samples are also highly correlated. As a result, both the labels and the features for the
training samples from an image tend to be highly correlated:the inter sample correlation
is particularly high for spatially adjacent candidates.

Second, some types of biological or image structures tend tobe identified much
more often by CG algorithms in the form of many spatially adjacent candidates. This
introduces a sampling bias in the training dataset as compared to the frequency of oc-
currence of these structures in screening populations. Also, some training images tend



to contain far more false positive candidates as compared tothe rest of the training
database, due to noise or various imaging artifacts presentin them.

2.3 Shortcomings in standard classification algorithms

In the CAD literature, many machine learning algorithms—such asneural networks,
support vector machines(SVM), and Fisher’s linear discriminant—have been em-
ployed to train classifiers. However, almost all the standard methods for classifier design
explicitly make certain assumptions that are violated by the somewhat special charac-
teristics of the data as discussed above.

In particular, most of the algorithms assume that the training samples or instances
are drawnidentically and independentlyfrom an underlying (unknown) distribution.
However, as mentioned above, due to spatial adjacency of theregions identified by a
candidate generator, both the features and the class labelsof several adjacent training
candidates are highly correlated.

Further, the standard methods for classifier design implicitly assume that the appro-
priate measure for evaluating the classifier is based only onthe accuracy of the system
on a per-lesion basis. In other words, these algorithms try to most correctly classify
each candidate from the CG algorithm; they do not account forthe sampling bias intro-
duced by the common tendency of CG algorithms to produce candidates corresponding
to certain types of structures and fewer candidates corresponding to others.

The appropriate measure of accuracy for evaluating a CAD system is different from
the standard measures that are optimized by conventional classifiers. In particular, even
if one of the candidates that refers to the underlying malignant structure is correctly
highlighted to the radiologist, thelesionis detected. Thus, correct classification of every
candidate instance is not as important as the ability to detect at least onecandidate
that points to a malignant lesion. At another level, in many CAD problems it is even
more relevant to measure the accuracy in terms of FROC curvesplotting the per-patient
sensitivity—the fraction of diseased patients correctly identified by the system—versus
the rate of false positives per patient.

These consideration motivated the development of a novel algorithm for learning
ensemble classifiers in an effort to adjust for the sampling bias of the CG algorithm and
the correlations between subsets of samples for the same image or patient.

3 Learning ensemble classifiers for CAD using boot-strapping

Instead of learning a single classifier, we learn a set or ensemble ofk classifiers. The
final prediction of the ensemble is obtained by weighted voting, this is, the final pre-
diction consists in a weighted sum (average) of the predictions of the members of the
ensemble. Furthermore, in order to achieve a diverse ensemble, we use the technique
known as bagging [], where each classifier is trained on a random redistribution of the
training set. In our case, each classifier’s training set is generated by randomly draw-
ing, without replacement,N+ positive examples andN− negative examples from the
original training set.



It is a well-known fact in the machine learning community that very unbalanced
training sets (number of negatives points or false positivecandidates is much larger
that the number of positive points or number of real microcalcifications) tend to make
most machine learning algorithms to be biased toward the majority class, producing
poor generalization over the minority class. In order to address this issue and to reduce
computational complexity, for each of the classifiers in theensemble we choseN− to
be a relatively smaller number (N+ = 1000 was chosen by tuning in our experiments).
The number of positivesN+ was chosen as a function of the number of positive images
in the training set. For each positive image in the training set onlyi positive datapoints
were randomly chosen from all the positive candidates in theimage.

Each one of the linear classifiers in the ensemble is obtainedby solving the Rel-
evance Vector Machine formulation (RVM) [].RVM produces a linear classifier that
makes its predictions using only a small number of relevant features which are auto-
matically selected from the original large pool of features. Enforcing each member of
the ensemble to depend on an small number of features also promotes diversity of the
ensemble since each classifier tends to make predictions based on different features.

Next, we present our proposed algorithm to learn an ensembleclassifier for detect-
ing clusters of micro-calcifications from digital mammograms:

Algorithm 1 BuildEnsemble return: W =
[

w1, . . . , wnc
]

:

0. Given
– the numbernc that define the number of classifiers in the ensemble.
– Thetraining setcomprised of a matrixA ∈ Rm×n (m is the number of points

andn is the number of input features and the vectorl ∈ {1,−1}
m containing

the labels.
– The number of positive pointsN+ and negative pointsN− to be randomly

selected to train each one of thenc classifiers members of the ensemble.
1. initializek = 0
2. If k = nc, stop, return the matrixW ∈ Rn×nc hyperplane coefficientsW =

[

w1, . . . , wnc
]

3. otherwise, generate training set for classifierk by randomly drawing, without re-
placement,N+ positive examples andN− negative examples from the original
training set.

4. Obtain the coefficientswk for classifierk by solving the RVM formulation []
5. dok = k + 1

Given an unseen datapoint (column vector)x ∈ Rn, the final ensemble classifier
prediction is given by:

pred(x) =

∑

nc

k=1
exp(xT wk)

nc

4 Experiments



Our numerical experiments were performed in a dataset consisting of 37098 microcal-
cification clusters candidates extracted from 1891 digitized film-screen mammography
(FSM) images belonging to 621 cases (242 Malignant and 379 normals). Each candi-
date consists in a vector of 1051 descriptors or features that were extracted from the
microcalcification clusters candidates based on shape, texture, density , etc. The images
of all the cases were digitized at high resolution (600 dpi, 12 bit) by a prototype CAD
device developed by Siemens CAD, Israel. In order to validate the generalization per-
formance of the proposed system, the available 621 cases were randomly divided into
two subsets:

– A training setcomprised of 945 images from 311 cases (190 normals and 121
malignants). 744 of the The 945 images belong to the normal cases (normal im-
ages) and the remaining 201 images belong to the malign cases. The total number
of candidates in the training set is 18459, only 443 of these candidates are real
microcalcification clusters, the remaining 18016 are falsepositives, i.e. candidates
pointing to structures in the breast that are not microcalcification clusters.

– A testingor validation setcomprised of 946 images from 310 cases (189 normals
and 121 malignants). 754 of the The 946 images belong to the normal cases (nor-
mal images) and the remaining 192 images belong to the maligncases. The total
number of candidates in the training set is 18639, 462 of these candidates are real
microcalcification clusters, the remaining 18177 are falsepositives.

The number of positive datapointsi indicates the number of positive candidates to
be randomly chosen from each positive image. The final numberof positive candidates
then, depends explicity on the choice ofi and the number of positive images. Since
our training set contains 201 malignant images, wheni = 2, this results in randomly
chosing up to 402 positive candidates to be included in the training set, this is, up to 2
for each malignant image (some images may not have 2 positiveclusters, in that case
only one was picked). We tried different values ofi and i = 1 gave the best results
in our problem. The idea behind this positive datapoints sampling scheme is to drive
the ensemble classifier performance to be optimized per image instead of per cluster. In
other words, by sampling positive clusters uniformly across all the positive images the
classifier gets to learn a more heterogeneous concept of positive or malignancy cluster.
By using all the positives candidates , the classifier may getbiased by some of the rare
images with an unusual number of positive candidates (see Figure 1) and that are not
representative of the general population of positive images.

The number of classifiers in the ensemblek was fixed to 101 based on empirical
experience.

4.1 Comparison to an standard SVM formulation

In order to show the effectiveness of our approach we our numerical experiments in-
cluded comparisons to the smooth support vector machine (SSVM) [4]. SSVM is an
efficient SVM formulation that consists in using an smoothing version of the plus func-
tion to reformulate the SVM problem as an unconstrained optimization problem that
can be solved very fast and that can handle large datasets.
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Fig. 1. Histogram on the training and testing sets showing number of images (y axis)with k
candidates (x-axis). Histograms for all the candidates, malignant candidates only and for normal
candidates only are shown. Note that some of the outlier images in both the training and the
testing set have an usnussual large number of positive and negative candidates.

In order to be as fair as possible the parameterν for the SSVM algorithm was
determined by cross-validation from the set

{

2−10, 2−9, . . . , 210
}

.
Figures 2,3 and 4 show that our proposed method is considerable more robust and

generalize better on the unseen cases (testing set) at all levels (per cluster, per image
and per patient respectively). As can be seen in igures 2,3 and 4, at the 0.15 FP/image
level our ensemble method obtained:

– 66.5% testing set sensitivity at the cluster level comparedto 62.3% testing set sen-
sitivity obtained by the SSVM algorithm.

– 88.8% testing set sensitivity at the image level compared to79.5% testing set sen-
sitivity obtained by the SSVM algorithm.

– 100.0% testing set sensitivity at the patient level compared to 95.0% testing set
sensitivity obtained by the SSVM algorithm.
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Fig. 2.Comparisons of SSVM and the proposed ensemble. The ROC curves illustrate the perfor-
mance on the training and testing sets at the cluster level

5 Related Work & Discussions

Most classification approaches used till today in the domainof computer aided diagno-
sis have assumed the data to fulfill some general assumptionslike sample independence,
and an identical distribution for all patients. In many cases those algorithms have been
used as so called black boxes. This despite the fact that these assumptions are violated
due to many different factors e.g. samples of the same patient are correlated and might
even come from a different distribution e.g. in the case of a very dense breast How-
ever, the results of this article show that taking explicitly the distribution of the data
into account can improve the classification results. This improvement results in a real
improvement in sensitivity and a decrease in false positives per case, leading to a real
clinical benefit. Note especially that this improvement is significantly observed for the
independent test set.

Since more explicitly modeling the data distribution seemsto lead to improved re-
sults one might therefore want to consider an even more detailed approach to modeling
the data in future work. The current model does not take spatial correlation of samples
which are spatially close to each other in the image into account. Also samples in differ-
ent images of the same patient might of course be correlated.These correlations could
be modeled using random effects models AND WHAT OTHER METHODS.
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