
Feature Selection and Kernel Design via Linear Programming

Glenn Fung, Romer Rosales, R. Bharat Rao
Siemens Medical Solutions, 51 Valley Stream Parkway, Malvern, PA, USA.

glenn.fung@siemens.com, romer.rosales@siemens.com, bharat.rao@siemens.com

Abstract

The definition of object (e.g.,data point)similar-
ity is critical to the performance of many machine
learning algorithms, both in terms of accuracy and
computational efficiency. However, it is often the
case that a similarity function is unknown or chosen
by hand. This paper introduces a formulation that
given relative similarity comparisons among triples
of points of the formobjecti is more like objectj
than objectk, it constructs a kernel function that
preserves the given relationships. Our approach is
based on learning a kernel that is a combination of
functions taken from a set of base functions (these
could be kernels as well). The formulation is based
on defining an optimization problem that can be
solved using linear programming instead of a semi-
definite program usually required for kernel learn-
ing. We show how to construct a convex problem
from the given set of similarity comparisons and
then arrive to a linear programming formulation by
employing a subset of the positive definite matrices.
We extend this formulation to consider represen-
tation/evaluation efficiency based on formulating a
novel form of feature selection using kernels (that
is not much more expensive to solve). Using pub-
licly available data, we experimentally demonstrate
how the formulation introduced in this paper shows
excellent performance in practice by comparing it
with a baseline method and a related state-of-the art
approach, in addition of being much more efficient
computationally.

1 Introduction and Related Work
The definition of adistanceor asimilarity functionover the
input or data space is fundamental in the performance of ma-
chine learning algorithms, both in terms of accuracy and ef-
ficiency. This can be easily verified by looking at the role
that the distance or similarity plays in common algorithms
(e.g.,k-means, nearest neighbors, support vector machines or
any other kernel method, etc.). However, since the concept
of similarity depends on the task of interest (objects can be
similar or dissimilar in many ways depending on the appli-
cation), a similarity function that is appropriate for one task

may not be appropriate for another. This task dependency has
been noted in a number of approaches that seek to build these
functions for a particular classification or regression model
given some training data (e.g., [Cohenet al., 1998; Xinget
al., 2002; Schultz and Joachims, 2003; Lanckrietet al., 2004;
Athitsoset al., 2004]).

In this paper, we are interested in automatically find-
ing good similarity functions after some basic information
about the task of interest has been provided (e.g., by an
expert user). Unlike approaches that rely on class labels
(e.g., [Lanckrietet al., 2004]) or on building sets of points
that are globallysimilar (or dissimilar) [Xing et al., 2002;
Wagstaffet al., 2001], here we explore a simpler-to-specify
form of user supervision: that provided by statements likeob-
ject i is more similar to objectj than to objectk1. We remark
that we are not only interested on building functions that are
consistent with this information provided by the user, but we
are also interested in obtaining functions that are efficient to
compute. Thus, in addition we focus on functions that can
be evaluated by looking only at part of the features or input
dimensions; therefore, implying some form of feature selec-
tion.

More formally, let us represent the objects of interest
as pointsxk in a D-dimensional spaceℜD, with k =
{1, 2, ..., N}. We would like to obtain a functionK :
ℜD × ℜD → ℜ that satisfies the above similarity com-
parisons and that in addition can be well approximated by
K̃ : ℜd × ℜd → ℜ which only usesd < D components of
xk. For this we will rely on (Mercer) Kernel representations
[Cristianini and Shawe-Taylor, 2000] and defineK (similarly
for K̃) as a kernelK(x,y) =

∑

j αjKj(x,y) whereα ∈ ℜ;
thus,K is a mixture of kernel functions2. Throughout this pa-
per, we will work with this representation of similarity func-
tions, define convex problems for obtainingK, and later ex-
tend this idea to focus oñK. Some of the motivation for the
framework in this paper is related to earlier work in metric
learning[Rosales and Fung, 2006]; however, here the focus
is on a different problem, kernel design.

1Example objects of interest include database records, user opin-
ions, product characteristics, etc.

2Note thatK is any affine combination of kernels not just a con-
vex combination. Also, we are not restrictingKj to be itself a ker-
nel.

In this paper, we first show how relative constraints, involv-
ing triples of points of the form,K(xi,xj) > K(xi,xk) can
be used to learnK. One can think of this first formulation as
parallel to other approaches for learningK that rely on super-
vised learning with class labels (and, unlike the one presented
here, are classification-algorithm dependent). These formu-
lations involve solving a semidefinite programming problem
(SDP)[Graepel, 2002; Lanckrietet al., 2004], but we show
how a different Linear Programming formulation, introduced
in this paper, is also sufficient in practice and much more
efficient computationally (e.g., it can be use to solve much
larger problems, faster). In addition, we extend this formu-
lation to consider the issue of representation/evaluationeffi-
ciency based on a form of feature selection. This formulation
leads to a linear programming approach for solving the ker-
nel design problem that also optimizes for succinct feature
representations.

1.1 Kernel Design
In recent years the idea of kernel design for learning algo-
rithms has received considerable attention in the machine
learning community. Traditionally, an appropriate kernelis
found by choosing a parametric family of well-known ker-
nels,e.g.,Gaussian or polynomial, and then learning a gen-
erally sub-optimal set of parameters by a tuning procedure.
This procedure, although effective in most cases, suffers from
important drawbacks: (1) calculating kernel matrices for a
large range of parameters may become computationally pro-
hibitive, especially when the training data is large and (2)very
little (to none) prior knowledge about the desired similarity
can be easily incorporated into the kernel learning procedure.

More recently, several authors[Bennett et al., 2002;
Lanckrietet al., 2004; Funget al., 2004] have considered the
use of a linear combination of kernels that belong to a fam-
ily or superset of different kernel functions and parameters;
this transforms the problem of choosing a kernel model into
one of finding anoptimal linear combination of the members
of the kernel family. Using this approach there is no need to
predefine a kernel; instead, a final kernel is constructed ac-
cording to the specific classification problem to be solved. In
this paper we also use a mixture model representation3; how-
ever, our approach does not depend on and is not attached
to any specific machine learning algorithm (for classifica-
tion, regression, inference, etc). Instead, inspired by the fact
that most kernels can be seen as similarity functions, we rely
on explicit conditions on similarity values among subset of
points in the original training dataset; this is, our formulation
allows the user to explicitly ask for conditions that have to
be satisfied or reflected in the desired kernel function to be
learned.

1.2 Relative Similarity Constraints
As explained above, we concentrate on examples of proxim-
ity comparisons among triples of objects of the typeobjecti is
more like objectj than objectk. In choosing this type of rel-
ative relationships, we were inspired primarily by[Athitsos

3But note that the elements of the mixture could be functions that
are not kernels.

et al., 2004; Cohenet al., 1998; Schultz and Joachims, 2003;
Rosales and Fung, 2006], where these relationships are de-
fined with respect to distances or rankings. The use of rela-
tive similarity constraints of this form for kernel design offers
different challenges. Note that we are not interested in pre-
serving absolute similarities, which are in general much more
difficult to obtain (absolute similarities imply relative similar-
ities, but the converse is not true).

One important observation for kernel design is that the ker-
nel conditions implied by these relationships are linear rela-
tionships among individual kernel entries in thekernel matrix
(defined over the points of interest) and can be expressed as
linear constraints. In addition to this, unlike any of the meth-
ods referred to above, by restricting the kernel family to have
only kernels that depend in one original feature at the time,
we are able to learn kernels that depend on a minimal set of
the original features. This can be seen as implicitly perform-
ing feature selection with respect to the original data space.
In combination with the benefits of a new linear program-
ming approach, the formulation proposed in this paper has a
unique set of attributes with significant advantages over re-
cent approaches for kernel design.

1.3 Notation and background

In the following, vectors will be assumed to be column vec-
tors unless transposed to a row vector by a superscript⊤.
The scalar (inner) product of two vectorsx andy in the d-
dimensional real spaceℜd will be denoted byx⊤y. The2-
norm and1-norm of x will be denoted by‖x‖

2
and ‖x‖

1

respectively. A column vector of ones of arbitrary dimension
will be denoted by~e, and one of zeros will be denoted by~0. A
kernel matrix for a given set of points will be denoted byK,
individual components byKij , and kernel functions byK()
or simplyK.

2 A Linear programming formulation for
kernel design

2.1 Using a linear combination of Kernels

Let us say we are given a set of pointsxk ∈ ℜD with
k = {1, ..., N} for which an appropriate similarity function is
unknown or expensive to compute. In addition we are given
information about a few relative similarity comparisons. For-
mally, we are given a setT = {(i, j, k)|K(xi,xj) >
K(xi,xk)} for somekernelfunctionK. The kernelK is not
known explicitly, instead a user may only be able to provide
these similarity relationships sparsely or by example. We are
interested in finding a kernel functionK() that satisfies these
relationships.

For the rest of the paper, let us suppose that instead of
the kernelK being defined by a single kernel mapping (e.g.,
Gaussian, polynomial, etc.), the kernelK is instead com-
posed of a linear combination of kernel functionsKj , j =
{1, . . . , k}, as below:

Kα(x,y) =

k
∑

j=1

αjKj(x,y). (1)

As pointed out in[Lanckriet et al., 2004], the setΩ =
{K1(x,y), . . . ,Kk(x,y)} can be seen as a predefined set of
initial guessesof the kernel matrix. Note that the setΩ could
contain very different kernel matrix models, all with different
parameter values. The goal is then to find a kernel function
Kα that satisfies relative kernel value constraints (specified
by the user as a setT). A general formulation for achieving
this is given by:

minα,ǫ

∑

t ǫt + γh(Kα)
s.t.

∀(i, j, k) ∈ T Kα(xi,xj) + ǫt > Kα(xi,xk)
∀t ǫt ≥ 0

Kα ≻ 0,

(2)

where ǫt are slacks variables,t indexesT , the function
h(Kα) is a regularizer on the kernel matrixKα (or alter-
natively the kernel functionKα) for capacity control, and
the parameterγ ≥ 0 controls the trade-off between con-
straint satisfaction and regularization strength (usually ob-
tained by tuning). Note that this formulation seems suffi-
cient, we can optimize the set of valuesαi in order to obtain a
positive semidefinite (PSD) linear combinationKα(x,y) =
∑k

j=1
αjKj(x,y) suitable for the specific task at hand. This

formulation, however requires solving a relatively expensive
semidefinite program (SDP). Enforcingαi ≥ 0,∀i, [Funget
al., 2004; Lanckrietet al., 2004] and moreover restricting all
the kernels in the setΩ to be PSD results inKα being PSD.
However this strongly limits the space of attainable kernel
functionsKα.

Instead of using these restrictions, we explore an alterna-
tive, general definition that allows us to consider any kernel
function inΩ and anyαk ∈ ℜ without compromising compu-
tational efficiency (e.g.,without requiring us to solve a SDP).
For this we will explicitly focus on a well characterized sub-
family of the PSD matrices: the set of diagonal dominant
matrices. In order to provide a better understanding of the
motivation for our next formulation we present the following
theorem as stated in[Golub and Van Loan, 1996]:

Theorem 1 Diagonal Dominance Theorem Suppose that
M ∈ ℜD×D is symmetric and that for eachi = 1, . . . , n ,
we have:

Mii ≥
∑

j 6=i

|Mij | ,

thenM is positive semi-definite (PSD). Furthermore, if the
inequalities above are all strict, thenM is positive definite.

Based on the diagonal dominance theorem (for matrices with
positive diagonal elements) above, by simplifying the nota-
tion letting Kα

ij ≡ Kα(xi,xj), we arrive to the following
alternative formulation:

minα,ǫ

∑T

t=1
ǫt + γ ‖α‖

1

s.t
∀t = (i, j, k) ∈ T Kα

ij − Kα
ik + ǫt ≥ 1

∀i ∈ T Kα
ii ≥

∑

j∈S,j 6=i |K
α
ij |

∀t ǫt ≥ 0,
(3)

whereKα
ij =

∑

Ki∈Ω
αiKi(xi,xj) andS is a set of train-

ing points (e.g.,those points used to define the triples inT).
Finally, defining auxiliary variablesrij ∈ ℜ+, γ1 ≥ 0, and
γ2 ≥ 0, formulation (3) can be rewritten as a linear program-
ming problem in the following way:

min
α,ǫ,s,r

∑T

t=1
ǫt + γ1

∑

i si + γ2

∑

i Kα
ii

s.t
∀t = (i, j, k) ∈ T Kα

ij − Kα
ik + ǫt ≥ 1

∀i 6= j|i, j ∈ S −rij ≤ Kα
ij ≤ rij

∀i, j ∈ S Kα
ii −

∑

j 6=i rij ≥ 0
∀j ∈ {1, ..., k} −sj ≤ αj ≤ sj

∀t ǫt ≥ 0,
(4)

wheres ∈ ℜk (same dimensionality asα) andsj ≥ 0. Note
that to simplify notation we have overloaded the variables
i, j, k (but their meaning should be clear from the context).

In order to better understand the motivation for formulation
(4) it is important to note that:

(i) Minimizing
∑

i Kα
ii is equivalent to minimizing

∑

j

j 6=i
rij sinceKα

ii ≥
∑k

j=1

j 6=i
rij , ∀i.

(ii) Since we are implicitly minimizing
∑

j

j 6=i
rij , at the op-

timal solution{α∗, r∗, ǫ∗, s∗} to problem (4), we have
that:

0 ≥ r∗ij =
∣

∣

∣
Kα∗

ij

∣

∣

∣
,∀(i, j ∈ S, i 6= j)

(iii) Combining (i) and (ii) we obtain:

∀(i)Kα∗

ii ≥
∑

j

r∗ij =
∑

j

|Kα∗

ij |

which implies thatKα∗

is diagonal dominant and hence
positive semidefinite.

2.2 Learning kernels that depend on fewer input
features (K̃)

Next, we will modify formulation (4) in order to learn kernels
that depend in a small subset of the original input features.
As far as we know, all of the existing direct objective opti-
mization methods for feature selection with kernels perform
feature selection in the implicit feature space induced by the
kernel and not with respect to the original feature space. Do-
ing this using traditional kernels, leads to nonlinear, noncon-
vex optimization problems that are difficult to solve due to the
nonlinearity relations among the original features introduced
by the kernel mappings.

In order to overcome this difficulty we propose a simple but
effective idea. Instead of using kernels that depend on all the
features we will only consider a setΩ̄ comprised ofweakker-
nels that depend on only one feature at a time. For example, if
xi = (x1

i , . . . , x
f
i , . . . , xD

i) andxj = (x1
j , . . . , x

f
j , . . . , xD

j)

are two vectors onℜD, then a weak Gaussian kernel only
depending on featuref is defined by:

K(f)(xi,yj) = exp(−µ
∥

∥

∥
xf

i − xf
j

∥

∥

∥

2

2
) (5)

Let us denote byIf the set of indicesi of kernelsKi ∈ Ω̄
that only depend on featuref for f ∈ {1, . . . ,D}. Then, any
linear combination of weak kernels in̄Ω can be written as:

Kα
ij = Kα(xi,xj) =

D
∑

f=1

∑

p∈If

αpKp(xi,xj) (6)

Note that ifαp = 0, ∀p ∈ If for a givenf , this implies that
Kα

ij does not depend on the original featuref . This motivates
our next formulation for feature selection that usesweak one-
dimensionalkernels:

min
α,ǫ,s

∑T

t=1
ǫt + γ1

∑

f sf + γ2

∑

i Kα
ii

s.t
∀t = (i, j, k) ∈ T Kα

ij − Kα
ik + ǫt ≥ 1

∀i 6= j −rij ≤ Kα
ij ≤ rij

∀i Kα
ii −

∑

j rij ≥ 0
∀f,∀p ∈ If −sf ≤ αp ≤ sf

ǫt ≥ 0,
(7)

where nows is indexed by the feature numberf rather
than the kernel number alone. It is interesting to note that
for each featuref , formulation (7) is minimizingMf =
max {|αp| /p ∈ If}. This is appropriate since:

Mf = 0 ⇒ |αp| ≤ 0,∀p ∈ If

⇒ αp = 0,∀p ∈ If

⇒ ∀i, j,Kα
ij does not depend on featuref.

(8)

3 Numerical Evaluation
For our experimental evaluation we used a collection of nine
publicly available datasets, part of the UCI repository4. A
summary of these datasets is shown in Table 1. These datasets
are commonly used in machine learning as a benchmark for
performance evaluation. Our choice of datasets is motivated
primarily by their use in evaluating a competing approach
[Xing et al., 2002] aimed to learn distance functions.

We evaluate our approach against single kernels by com-
paring against the standard Gaussian (at various widths), lin-
ear, and polynomial kernels. These kernels are also the ones
used as the basis for our mixture kernel design; thus it is a rea-
sonable baseline comparison. We compare both of our formu-
lations. One formulation attempts to perform implicit feature
selection by defining weak kernels, while the other uses full
kernel matrices (that depend on all input dimensions).

We have also chosen to compare our formulation against
that proposed in[Xing et al., 2002]. This obeys various rea-
sons. In addition to being a state-of-the-art method, the pri-
mary reason for our choice is that it uses a similar (but not
identical) type of supervision, as explained below. Unlike
other related approaches, computer code and data has been
made public for this method5. In addition, this method out-
performed a constrained version of K-means[Wagstaffet al.,
2001] in the task of findinggoodclusterings.

4http://www.ics.uci.edu/∼mlearn/MLRepository.html.
5Data for all experiments and code for[Xing et al., 2002] was

downloaded from http://www.cs.cmu.edu/∼epxing/papers/. The
class for dataset 1 was obtained by thresholding the median value
attribute to 25K.

Table 1: Benchmark Datasets
Name Pts (N) Dims (D) Classes

1 Housing-Boston 506 13 2
2 Ionosphere 351 34 2
3 Iris 150 4 3
4 Wine 178 13 3
5 Balance Scale 625 4 3
6 Breast-Cancer Wisc. 569 30 2
7 Soybean Small 47 35 4
8 Protein 116 20 6
9 Pima Diabetes 768 8 2

3.1 Evaluation Settings
The datasets employed in these experiments are generally
used for classification since class labels are available. How-
ever, the various methods to be compared here do not re-
quire explicit class labels. The method introduced in this pa-
per requires relative similarity information among a subset of
points (clearly class labels provide more information). We
use the available class labels to generate a set of triples with
similarity comparisons that respect the classes. More explic-
itly, given a randomly chosen set of three points (from the
training set), if two of these belong to the same class and a
third belongs to a different class, then we place this triplein
our setT (i.e., i andj are the points in the same class,k is
the remaining point). For the case of[Xing et al., 2002], the
supervision is in the form of two sets, one called asimilar set
and the other adissimilarset. In order to identify these sets,
we can again use the class labels, now to build a similar set of
pairs (likewise for a dissimilar set of pairs). Given this level
of supervision, this method attempts to find an optimal Ma-
halanobis distance matrix to have same-class points closerto
each other than different-class points (see[Xing et al., 2002]
for details).

For every triple(i, j, k) ∈ T used in our approach for
learning, we use(i, j) ∈ S and (i, k) ∈ D for learning in
[Xing et al., 2002]; whereS andD are the similar and dis-
similar sets. We believe this provides a fair level of supervi-
sion for both algorithms since roughly the same information
is provided. It is possible to obtain a superset ofT from S
andD, and by constructionS andD can be obtained fromT .

In order to evaluate performance for the various methods,
we use a0.85/0.15 split of the data into training and testing
(for the methods where training is required). From the train-
ing portion, we generate 1500 triples, as explained above, for
actual training. This information is provided, in the appropri-
ate representation, to both algorithms. For testing, we repeat-
edly choose three points at random, and if their class labels
imply that any two points are more similar to each other than
to a third (i.e., again if two points have the same class and a
third has a different class label), then we check that the correct
relationships were learned. That is, whether the two pointsin
the same class are more similar (or closer) to each other than
any of these points (chosen at random) to the third point. This
same measure is used for all algorithms. Thus, we define the

percentage correctsimply as the proportion of points from
the test set (sampled at random) that respect the class-implied
similarity or distance relationship.

Our method requires setting two balancing parameters. We
set them by using cross validation by splitting the training
set in two halves. The values tested (for both parameters)
were{10−4, 10−2, 10−1, 1, 10, 102}. These parameters have
an effect on the number of dimensions employed since a
higher value forγ1 favors using fewer kernels (or dimen-
sions). Likewise, larger values forγ2 favors kernel matrices
with a smaller trace.

3.2 Discussion and Results
Fig. 1 shows the performance of our approach compared
against various Gaussian and polynomial kernels. A linear
kernel performed almost identically to the polynomial kernel
of degree two and it is omitted in the graph. The mean and
standard deviation (of the performance measure) for each in-
dividual kernel was computed from 10 random samplings of
the dataset. In order to be consistent across approaches, the
number of samples used for testing was set to1000 triples.

One could expect an optimal mixture of kernels to provide
a higher performance in both cases (full and weak kernel mix-
tures) when compared with single kernels. This is generally
the case. It can be seen in the figure that in most cases single
predetermined kernels are suboptimal. In the case of weak
kernels, the performance is always better than single kernels.
However, for the case of mixtures of full kernels there are
cases where a single kernel provides a higher performance in
average. This can be at least due to two reasons: (1) simply
unlucky selection (sampling) of test points. In datasets1, 3,
and9, the standard deviation is large enough to justify this
possibility. A much more interesting reason is (2) the im-
posed restrictions on the solution space of the mixture kernel
(e.g.,dataset 6). Recall that we concentrated our solution on
a subspace of the PSD matrices, that of diagonal dominant
matrices. If the full cone of PSD matrices were to be incor-
porated as solution space, the kernel mixture could perform
as good as any base kernel (since a mixture of a single kernel
is a valid solution). Note however that, although this is possi-
ble, one would be required to pay much higher computational
costs (e.g.,for large datasets or number of constraints).

Interestingly, the performance for the mixture of weak ker-
nels is superior. This can be due to the larger number of
degrees of freedom (the number ofα mixing parameters is
larger) or also a feature selection effect on overfitting. How-
ever, even though this is the case for the datasets considered
in this paper (and results suggest that this may often be the
case), we remark that this result is not theoretically guaran-
teed since non-linear interactions among multiple dimensions
or features may not be representable using a linear combina-
tion of single features.

Fig. 2 shows the average optimal number of dimensions
found by this process in a 10-fold cross validation experiment
and the corresponding one-standard-deviation error bars.The
number of dimensions was identified by counting the number
of α’s larger than 0.01. This automatic choice of dimension-
ality was done using cross-validation as explained above and
is a valuable property of the method presented. Note that the

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset index

%
 c

or
re

ct
 d

is
ta

nc
e

re
la

tio
ns

hi
p

(×
 1

00
)

Gauss µ=1

Gauss µ=0.1

Poly degree 2

Mix Full Kernels

Mix Weak Kernels

Figure 1: Performance of single kernels and our approachs in the
nine UCI datasets. We show both instances of our approach (us-
ing full kernel matrices and weak kernels). Bars show performance
results on 10 random splits of training/test points (training only ap-
plicable to kernel mixtures). Performance is measured in terms of
the percentage of randomly chosen points (1000) from test set whose
distance relationship respect the class labels. The number of triples
used for training for all runs was 1500. Error bars show one standard
deviation.

method effectively reduces the number of features for all but
one dataset.

Fig. 3 shows the comparison of the present formulation
(using weak kernels) against[Xing et al., 2002]. We show
percentage correct averaged over 10 random splits of the data
along with one-standard-deviation bars. For each of the 10
splits, 1000 triples from the test set are randomly chosen.
When comparing the performance of both methods, we note
that, except for dataset5, our method clearly outperforms the
competing approach. Interestingly, this dataset was the same
for which the optimal number of dimensions was determined
to always be equal to the original dimensionality.

In addition to the implicit non-linear representations im-
plied by the kernels employed, we believe that a key reason
for the superior performance of the mixture of weak kernels is
the automatic identification of relevant dimensions. This re-
duction in dimensionality appears to provide an important ad-
vantage at the time of generalization. It is generally accepted
that a simpler representation is preferable (e.g., [Blumer et
al., 1987]) and it can reduce overfitting in practice.

From a computational efficiency perspective at test time,
being able to represent the original data more succinctly is
especially advantageous. In particular, when similarities can
be calculated directly using a low-dimensional representa-
tion, computational time savings can be significant for on-line
applications. The projection step in this approach can be pre-
computed off-line. In retrieval applications (e.g.,query-by-
example), the objects can be stored in their low-dimensional
representation. From a conceptual point of view, this formu-
lation also has the advantage of providing a more effective
tool for understanding the data since it can identify whether
variables (dimensions) are of high or low relevance for a task
of interest.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Dataset index

N
um

be
r

of
 d

im
en

si
on

s

#Original dims
#Used dims

Figure 2: Dimensionality reduction. Total number of dimen-
sions and average number of dimensions (along with one-standard-
deviation error bars) found by our algorithm for each dataset using
the optimal parametersγ1, γ2. Averages are computed over 10 ran-
dom splits of training/test points, and 1500 triples per run.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset number

%
 c

or
re

ct
 d

is
ta

nc
e

re
la

tio
ns

hi
p

(×
 1

00
) Xing et al.

This method

Figure 3: Performance comparison between competing approach
and our weak kernel approach in the nine UCI datasets. Bars show
performance results on 10 random splits of training/test points. Per-
formance is measured in terms of the percentage of randomly cho-
sen points (1000) from test set whose distance relationship respect
the class labels. The number of triples used for training for all runs
was 1500. Error bars show one standard deviation.

4 Conclusions and Future Work

We presented a novel formulation for learning kernel func-
tions from relative similarity information. Our general formu-
lation consisted of a convex optimization problem requiring
semidefinite programming to be solved. We designed a prac-
tical approximate problem, requiring linear programming in-
stead. In particular, we showed how the diagonal dominance
constraint on the kernel matrix leads to a general problem
that can be solved very efficiently. In addition to this, we
have shown how to extend the formulation to allow for im-
plicit feature selection using a combination of kernels. Ex-
periments indicated that our weak kernel formulation outper-
forms a state-of-the-art approach that uses similar informa-
tion to learn a distance (rather than a similarity function).

Although relative similarity constraints are used in this pa-
per, other constraints could potentially be imposed. For ex-
ample, we could have sign or magnitude restrictions on cer-
tain kernel components, we can impose local isometry con-
straints (similar to[Weinbergeret al., 2004]), or we can re-

quest the kernel to preserve local distances.
We believe this paper has potential implications in other

problems. Our results suggest that the SDP problem could,
in some cases, be replaced by a linear programming problem.
We suggested one way to achieve this goal; this has the poten-
tial to be applied to other problems whose solution involves
SDP.

References
[Athitsoset al., 2004] V. Athitsos, J. Alon, S. Sclaroff, and G. Kol-

lios. Boostmap: A method for efficient approximate similarity
rankings. InComputer Vision and Pattern Recognition, 2004.

[Bennettet al., 2002] K. Bennett, M. Momma, and M. Embrechts.
Mark: a boosting algorithm for heterogeneous kernel models. In
Proceedings Knowledge Discovery and Data Mining, 2002.

[Blumeret al., 1987] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Occam’s razor.Information Processing Letters,
24:377–380, 1987.

[Cohenet al., 1998] W. Cohen, R. Schapire, and Y. Singer. Learn-
ing to order things. InAdvances in Neural Information Process-
ing Systems 10, 1998.

[Cristianini and Shawe-Taylor, 2000] N. Cristianini and J. Shawe-
Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, 2000.

[Funget al., 2004] G. Fung, M. Dundar, J. Bi, and B. Rao. A fast it-
erative algorithm for fisher discriminant using heterogeneous ker-
nels. InProceedings of the twenty-first international conference
on Machine learning. ACM Press, 2004.

[Golub and Van Loan, 1996] G. H. Golub and C. F. Van Loan.Ma-
trix Computations. The John Hopkins University Press, Balti-
more, Maryland, 3rd edition, 1996.

[Graepel, 2002] T. Graepel. Kernel matrix completion by semidef-
inite programming. InProceedings of the International Confer-
ence on Neural Networks, ICANN, 2002.

[Lanckrietet al., 2004] G. Lanckriet, N. Cristianini, P. Bartlett,
L. El Ghaoui, and M. Jordan. Learning the kernel matrix with
semidefinite programming.Journal of Machine Learning Re-
search, 5:27–72, 2004.

[Rosales and Fung, 2006] R. Rosales and G. Fung. Learning sparse
metrics via linear programming. InProceedings Knowledge Dis-
covery and Data Mining, 2006.

[Schultz and Joachims, 2003] M. Schultz and T. Joachims. Learn-
ing a distance metric from relative comparisons. InAdvances in
Neural Information Processing Systems, 2003.

[Wagstaffet al., 2001] K. Wagstaff, C. Cardie, S. Rogers, and
S. Schroedl. Constrained k-means clustering with background
knowledge. InInternational Conference on Machine Learning,
2001.

[Weinbergeret al., 2004] K. Weinberger, F. Sha, and L. Saul.
Learning a kernel matrix for nonlinear dimensionality reduction.
In Proceedings of the Twenty First International Confernence on
Machine Learning, 2004.

[Xing et al., 2002] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell.
Distance metric learning, with application to clustering with side
information. InAdvances in Neural Information Processing Sys-
tems, 2002.

