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Abstract

The definition of object€.g., data point)similar-

ity is critical to the performance of many machine
learning algorithms, both in terms of accuracy and
computational efficiency. However, it is often the
case that a similarity function is unknown or chosen
by hand. This paper introduces a formulation that
given relative similarity comparisons among triples
of points of the formobject: is more like objecy
than objectk, it constructs a kernel function that
preserves the given relationships. Our approach is
based on learning a kernel that is a combination of
functions taken from a set of base functions (these
could be kernels as well). The formulation is based
on defining an optimization problem that can be
solved using linear programming instead of a semi-
definite program usually required for kernel learn-
ing. We show how to construct a convex problem
from the given set of similarity comparisons and
then arrive to a linear programming formulation by
employing a subset of the positive definite matrices.
We extend this formulation to consider represen-
tation/evaluation efficiency based on formulating a
novel form of feature selection using kernels (that
is not much more expensive to solve). Using pub-
licly available data, we experimentally demonstrate
how the formulation introduced in this paper shows
excellent performance in practice by comparing it
with a baseline method and a related state-of-the art
approach, in addition of being much more efficient
computationally.

I ntroduction and Related Wor k

The definition of adistanceor asimilarity functionover the

input or data space is fundamental in the performance of M&ramework in this paper is related to earlier work in metric

c_h_ine Iearnir)g algorithms,_both ip_ terms of accuracy and ef1earning[RosaIes and Fung, 20peowever, here the focus
ficiency. This can be easily verified by looking at the role jg on a different problem, kernel design.

that the distance or similarity plays in common algorithms

(e.g..k-means, nearest neighbors, support vector machines or 1gyample objects of interest include database records, user opin-
any other kernel method, etc.). However, since the concepgns, product characteristics, etc.

of similarity depends on the task of interest (objects can be  2Note thatK is any affine combination of kernels not just a con-
similar or dissimilar in many ways depending on the appli-vex combination. Also, we are not restrictirig; to be itself a ker-
cation), a similarity function that is appropriate for ok

may not be appropriate for another. This task dependency has
been noted in a number of approaches that seek to build these
functions for a particular classification or regression siod
given some training data(g.,[Cohenet al, 1998; Xinget

al., 2002; Schultz and Joachims, 2003; Lanckeiedl. 2004;
Athitsoset al., 2004).

In this paper, we are interested in automatically find-
ing good similarity functions after some basic information
about the task of interest has been providedy.( by an
expert user). Unlike approaches that rely on class labels
(e.g.,[Lanckrietet al., 2004) or on building sets of points
that are globallysimilar (or dissimilar) [Xing et al,, 2002;
Wagstaffet al., 2001, here we explore a simpler-to-specify
form of user supervision: that provided by statementsdie
jecti is more similar to objecj than to object:. We remark
that we are not only interested on building functions that ar
consistent with this information provided by the user, bet w
are also interested in obtaining functions that are efftdien
compute. Thus, in addition we focus on functions that can
be evaluated by looking only at part of the features or input
dimensions; therefore, implying some form of feature selec
tion.

More formally, let us represent the objects of interest
as pointsx; in a D-dimensional spac&”, with k =
{1,2,...,N}. We would like to obtain a functiornk’

NP x NP — R that satisfies the above similarity com-
parisons and that in addition can be well approximated by
K : R4 x R4 — R which only uses! < D components of
x. For this we will rely on (Mercer) Kernel representations
[Cristianini and Shawe-Taylor, 20pand definek (similarly

for K) as akermneK (x,y) = >_; o; K;(x,y) Wherea € R;
thus, K is a mixture of kernel functiors Throughout this pa-
per, we will work with this representation of similarity fon
tions, define convex problems for obtainiag and later ex-
tend this idea to focus oA’. Some of the motivation for the

nel.



In this paper, we first show how relative constraints, involv et al, 2004; Coheret al., 1998; Schultz and Joachims, 2003;
ing triples of points of the formi (x;,x;) > K(x;,x;) can  Rosales and Fung, 20p@vhere these relationships are de-
be used to leart’. One can think of this first formulation as fined with respect to distances or rankings. The use of rela-
parallel to other approaches for learniRiggthat rely on super- tive similarity constraints of this form for kernel desigffieys
vised learning with class labels (and, unlike the one pitesen different challenges. Note that we are not interested in pre
here, are classification-algorithm dependent). Thesederm serving absolute similarities, which are in general mucineno
lations involve solving a semidefinite programming problemdifficult to obtain (absolute similarities imply relativenslar-
(SDP)[Graepel, 2002; Lanckriedt al,, 2004, but we show ities, but the converse is not true).
how a different Linear Programming formulation, introddce ~ One important observation for kernel design is that the ker-
in this paper, is also sufficient in practice and much morenel conditions implied by these relationships are lineta-re
efficient computationally€.g., it can be use to solve much tionships among individual kernel entries in tenel matrix
larger problems, faster). In addition, we extend this formu (defined over the points of interest) and can be expressed as
lation to consider the issue of representation/evaluatitin  linear constraints. In addition to this, unlike any of thetine
ciency based on a form of feature selection. This formutatio ods referred to above, by restricting the kernel family teeha
leads to a linear programming approach for solving the kerenly kernels that depend in one original feature at the time,
nel design problem that also optimizes for succinct featurgve are able to learn kernels that depend on a minimal set of

representations. the original features. This can be seen as implicitly penfor
] ing feature selection with respect to the original data epac
11 Kernel Design In combination with the benefits of a new linear program-

In recent years the idea of kernel design for learning algoming approach, the formulation proposed in this paper has a
rithms has received considerable attention in the machinghique set of attributes with significant advantages over re
learning community. Traditionally, an appropriate kerisel cent approaches for kernel design.

found by choosing a parametric family of well-known ker- )

nels,e.g.,Gaussian or polynomial, and then learning a gen-1.3 Notation and background

erally sub-optimal set of parameters by a tuning procedurgy, the following, vectors will be assumed to be column vec-
This procedure, although effective in most cases, sufferaf 5,5 unless transposed to a row vector by a supersgipt
important drawbacks: (1) calculating kernel matr_ices for arhe scalar (inner) product of two vectaxsandy in the d-
large range of parameters may become computationally progimensional real spacg? will be denoted byx | y. The2-
hibitive, especially when the training data is large and/€y  ,5ym and1-norm of x will be denoted by||x]|, and ||x]|
litle (to none) prior knowledge about the desired similari espectively. A column vector of ones of arbitrary dimensio
can be easily incorporated into the kernel learning proczdu will be denoted by, and one of zeros will be denoted ByA
More recently, several authoriBennettet al, 2002; kernel matrix for a given set of points will be denoted By

Lanckrietet al., 2004; Funget al,, 2004 have considered the ; .. : - :
use of a linear combination of kernels that belong to a famgrds'\i/rﬁsslfgompone”ts by<;;, and kernel functions by ()

ily or superset of different kernel functions and paranster
this transforms the problem of choosing a kernel model into . . )

one of finding aroptimallinear combination of the members 2 A Linear programming formulation for

of the kernel family. Using this approach there is no need to  kernel design

predefine a kernel; instead, a final kernel is constructed ac- ] ) o

cording to the specific classification problem to be solved. | 2.1 Using alinear combination of Kernels

this paper we also use a mixture model representitiaw- Let us say we are given a set of points € R” with
ever, our approach does not depend on and is not attached_ ; "'} for which an appropriate similarity function is
to any specific machine learning algorithm (for classifica-ynknown or expensive to compute. In addition we are given
tion, regression, inference, etc). Instead, inspired BYféitt  jnformation about a few relative similarity comparisonsr+
that most kernels can be seen as similarity functions, we relmajly we are given a sef’ = {(i, 7, k)| K (xi,%;) >

on explicit conditions on similarity values among subset of i (y; ;)1 for somekernelfunction K. The kernelk is not
points in the original training dataset, this is, our foratidn - hqwn explicitly, instead a user may only be able to provide
allows the user to explicitly ask for conditions that have t0ihege similarity relationships sparsely or by example. Yée a
be satisfied or reflected in the desired kernel function to bgyterested in finding a kernel functidii() that satisfies these
learned. relationships.

; T ; For the rest of the paper, let us suppose that instead of
1.2 Relative Similarity Constraints the kernelK being defigeg by a single k%?na mappiregd.,

As explained above, we concentrate on examples of proximGaussian, polynomial, etc.), the kern&l is instead com-

ity comparisons among triples of objects of the tgigectiis  posed of a linear combination of kernel functioR, j =
more like objecyj than objectk. In choosing this type of rel- {1,...,k}, as below:

ative relationships, we were inspired primarily pythitsos

- k
3But note that the elements of the mixture could be functions that Ke(x,y) = Z a; Kj(x,y). (1)
are not kernels. =



As pointed out in[Lanckrietet al, 2004, the set) =  whereK = >, _, a;K;(x;,%x;) andS is a set of train-
{K1(x,y),...,Kr(x,y)} can be seen as a predefined set ofing pomts €.g., those points used to define the tripleszii
initial guessesf the kernel matrix. Note that the s@tcould  Finally, defining auxiliary variables;; € ®*, 1 > 0, and
contain very different kernel matrix models, all with diffat  ~, > 0, formulation (3) can be rewritten as a linear program-
parameter values. The goal is then to find a kernel functioming problem in the following way:

K that satisfies relative kernel value constraints (specified

by the user as a s€f). A general formulation for achieving min - Y e t+ndys o+ Y, Kg
this is given by: ‘“;Tt
- o Vt= (i, k) eT K& —K§+e > 1
mlngi Zt ° i Vh(K ) Vi 7é .7|Za.7 € S —Tij < Ka S Tij
V(i,j, ]f) € T KQ(XZ‘,Xj)+6t > Ka(Xi,Xk) (2) VZ,] €S K(X E];ﬁz le Z 0
Vi e¢ > 0 Vie{l,..,k} —s;<a; < s
K~ - O, Vt €t 2 Oa

4
where ¢; are slacks variables, indexes7, the function wheres € R* (same dimensionality as) ands; > 0. N(()té
h(K®) is a regularizer on the kernel matriX® (or alter-  that to simplify notation we have overloaded the variables
natively the kernel functioni’®) for capacity control, and 4, j, k (but their meaning should be clear from the context).
the parametery > 0 controls the trade-off between con-  |n order to better understand the motivation for formulatio
straint satisfaction and regularization strength (usuab- (4) it is important to note that:
tained by tuning). Note that this formulation seems suffi- .. . . .. Ko | . S
cient, we can optimize the set of valuesin order to obtain a (i) Minimizing 3_; K 'Sk equivalent to minimizing
positive semidefinite (PSD) linear combinatiéf (x, y) = > ;'T'LJ since K 2 Z:{:l_ Tijy, Vi
Zk 1 o K (x,y) suitable for the specific task at hand. This 7
formulanon however requires solving a relatively expeas (i) Since we are |mpI|C|tIy minimiziny ;ﬁ. rij, at the op-
semidefinite program (SDP). Enforciag > 0, i, [Funget timal solution{a*, r*, ¢*, s*} to problem (4), we have
al., 2004; Lanckrieet al,, 2004 and moreover restricting all that:
the kernels in the sdé? to be PSD results ilK“ being PSD. ’
However this strongly limits the space of attainable kernel 0= VG.j €807 ])
functionsK. (iii) Combining () and {i) we obtain:

Instead of using these restrictions, we explore an alterna-
tive, general definition that allows us to consider any kerne KC“ > Zr — Z
function inQ2 and anyx, € R without compromising compu- g
tational efficiency €.g.,without requiring us to solve a SDP).
For this we will explicitly focus on a well characterized sub which implies that®” is diagonal dominant and hence
family of the PSD matrices: the set of diagonal dominant positive semidefinite.
matrices. In order to provide a better understanding of the
motivation for our next formulation we present the follogin 2.2 Learning kernelsthat depend on fewer input

J

theorem as stated [Golub and Van Loan, 1996 features (K)
Theorem 1 Diagonal Dominance Theorem Suppose that Next, we will modify formulation (4) in order to learn kerrsel
M e RP*P is symmetric and that for each=1,...,n, that depend in a small subset of the original input features.
we have: As far as we know, all of the existing direct objective opti-
mization methods for feature selection with kernels penfor
M > Z |M;|, feature selection in the implicit feature space inducedhy t
i kernel and not with respect to the original feature space. Do

ing this using traditional kernels, leads to nonlinear,con
vex optimization problems that are difficult to solve duete t
nonlinearity relations among the original features introet
Based on the diagonal dominance theorem (for matrices withy the kernel mappings.

positive diagonal elements) above, by simplifying the nota In order to overcome this difficulty we propose a simple but
tion letting K5 = K“(x;,x;), we arrive to the following effective idea. Instead of using kernels that depend othell t

then M is positive semi-definite (PSD). Furthermore, if the
inequalities above are all strict, thel/ is positive definite.

alternative formulation: features we will only consider a s@tcomprised ofveakker-
. ZT n nels that depend on only one feature at a time. For example, if
mmog_ft =€t ol x; = (¢}, 2, . zP) andxj:(x;7...,$§,...,xf)
Vt=(i,j,k)eT Kg—Ki+e > 1 are two vectors ofR”, then a weak Gaussian kernel only
1J '3 L - . . . .
VieT Kg > YiesulKSl depending on featurg is defined by:
Vit €t > O7 I I 2
@) K(f)(xiry5) = o=y ®




Let us denote by, the set of indices of kernelsK; € Q

that only depend on featurkfor f € {1,..., D}. Then, any

linear combination of weak kernels §d can be written as:
D

K = K(xi,%5) = Y Y apKp(xi,%;)  (6)

f=1pely

Note that ifoy, = 0, Vp € Iy for a givenf, this implies that

K7 does not depend on the original featyteThis motivates

our next formulation for feature selection that usesak one-

dimensionakernels:

min Y e+n s+ 7Y K
s.t
Vt=(i,j,k) €T Ky —Kj+ea > 1
Vi # j —ri; S K <o
Vi K;’;—Zjn-j > 0
Vf,Vp ey —sf<ap < sy
€t 2 Oa
(7)

where nows is indexed by the feature numbet rather

Table 1: Benchmark Datasets

Name Pts (V) Dims (D) Classes

1 Housing-Boston 506 13 2
2 lonosphere 351 34 2
3 Iris 150 4 3

4 Wine 178 13 3

5 Balance Scale 625 4 3
6 Breast-Cancer Wisc. 569 30 2
7 Soybean Small 47 35 4
8 Protein 116 20 6

9 Pima Diabetes 768 8 2

3.1 Evaluation Settings

The datasets employed in these experiments are generally
used for classification since class labels are availablev-Ho
ever, the various methods to be compared here do not re-

than the kernel number alone. It is interesting to note thaguire explicit class labels. The method introduced in tfzis p

for each featuref, formulation (7) is minimizingM; =
max {|a,| /p € Ir}. This is appropriate since:
My;=0 = |ap| <0,Vpely
= o, =0,Ypecly
= Vi, j, K{; does not depend on featyfre

(8)
3 Numerical Evaluation

per requires relative similarity information among a suloée
points (clearly class labels provide more information). We
use the available class labels to generate a set of triptés wi
similarity comparisons that respect the classes. Mordaexpl
itly, given a randomly chosen set of three points (from the
training set), if two of these belong to the same class and a
third belongs to a different class, then we place this triple
our set7 (i.e.,i andj are the points in the same clagsis

the remaining point). For the case[dfing et al,, 2003, the

For our experimental evaluation we used a collection of ningyperyision is in the form of two sets, one callesimilar set

publicly available datasets, part of the UCI reposiforyA

and the other dissimilarset. In order to identify these sets,

summary of these datasets is shown in Table 1. These datasgfg can again use the class labels, now to build a similar set of
are commonly used in machine learning as a benchmark fQfqirs (likewise for a dissimilar set of pairs). Given thigee
performance evaluation. Our choice of datasets is motvateof spervision, this method attempts to find an optimal Ma-
primarily by their use in evaluating a competing approachyajanobis distance matrix to have same-class points doser

[Xing et al,, 2004 aimed to learn distance functions.

each other than different-class points (Bimg et al,, 2004

We evaluate our approach against single kernels by comyy getajls).

paring against the standard Gaussian (at various widihs), |

For every triple(é,j,k) € 7T used in our approach for

ear, and polynomial kernels. These kernels are also the ongsarning, we usdi, j) € S and(i,k) € D for learning in
used as the basis for our mixture kernel design; thus itiaare [xjnqg et al, 200J: whereS andD are the similar and dis-
sonable baseline comparison. We compare both of our formusimijar sets. We believe this provides a fair level of superv

lations. One formulation attempts to perform implicit fiexat

sion for both algorithms since roughly the same information

selection by defining weak kernels, while the other uses fulis provided. It is possible to obtain a supersetfofrom S

kernel matrices (that depend on all input dimensions).

andD, and by constructio® andD can be obtained frord .

We have also chosen to compare our formulation against |, order to evaluate performance for the various methods,
that proposed ifiXing et al, 2003. This obeys various rea- \ye yse #.85,/0.15 split of the data into training and testing
sons. In addition to being a state-of-the-art method, the pr (for the methods where training is required). From the train
mary reason for our choice is that it uses a similar (but NOfng portion, we generate 1500 triples, as explained above, f
identical) type of supervision, as explained below. Unlike 3¢t al training. This information is provided, in the apmio
other related approaches, computer code and data has begg representation, to both algorithms. For testing, weaep

made public for this methdd In addition, this method out-
performed a constrained version of K-me@wéagstaffet al.,
2001] in the task of findinggoodclusterings.

“http:/iwww.ics.uci.edutmlearn/MLRepository.html.
SData for all experiments and code f¥ing et al, 2009 was
downloaded from http://www.cs.cmu.edwépxing/papers/. The

edly choose three points at random, and if their class labels
imply that any two points are more similar to each other than
to a third {.e., again if two points have the same class and a
third has a different class label), then we check that theecor
relationships were learned. That is, whether the two paints
the same class are more similar (or closer) to each other than

class for dataset 1 was obtained by thresholding the median valugny of these points (chosen at random) to the third points Thi

attribute to 25K.

same measure is used for all algorithms. Thus, we define the



percentage correcsimply as the proportion of points from T
the test set (sampled at random) that respect the clasgednpl osf
similarity or distance relationship.

Our method requires setting two balancing parameters. We
set them by using cross validation by splitting the training
set in two halves. The values tested (for both parameters)
were{107%,1072,1071, 1,10, 10%}. These parameters have
an effect on the number of dimensions employed since a
higher value fory; favors using fewer kernels (or dimen-
sions). Likewise, larger values far favors kernel matrices
with a smaller trace.
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3.2 Discussion and Results

Fig. 1 shows the performance of our approach compared °
against various Gaussian and polynomial kernels. A linear

kernel performed almost identically to the polynomial k&M  £igyre 1: Performance of single kernels and our approachs in the
of degree two and it is omitted in the graph. The mean anghine UCI datasets. We show both instances of our approach (us-
standard deviation (of the performance measure) for each inng full kernel matrices and weak kernels). Bars show performance
dividual kernel was computed from 10 random samplings ofesults on 10 random splits of training/test points (training only ap-
the dataset. In order to be consistent across approaclees, thlicable to kernel mixtures). Performance is measured in terms of
number of samples used for testing was s€t@o triples. the percentage of randomly chosen points (1000) from test set whose
One could expect an optimal mixture of kernels to proVidedistance relationship respect the class labels. The number of triples
a higher performance in both cases (full and weak kernel mixused for training for all runs was 1500. Error bars show one standar
tures) when compared with single kernels. This is generally'€//21o"-
the case. It can be seen in the figure that in most cases single
predetermined kernels are suboptimal. In the case of wegleihoq effectively reduces the number of features for all bu
kernels, the performance is always better than single kerne ;.o gataset.
However, for the case of mixtures of full kernels there are  _. . .
cases where a single kernel provides a higher performance jn F19: 3 shows the comparison of the present formulation
average. This can be at least due to two reasons: (1) simpé}s'ng weak kernels) againkxing et al, 2003. We show
unlucky selection (sampling) of test points. In datadets ercentage correct averaged over 10 random splits of the dat
and9, the standard deviation is large enough to justify this2/0nd with one-standard-deviation bars. For each of the 10
possibility. A much more interesting reason is (2) the im_spllts, 1000 tr!ples from the test set are randomly chosen.
posed restrictions on the solution space of the mixturegtern "WNen comparing the performance of both methods, we note
(e.g.,dataset 6). Recall that we concentrated our solution off1al €xcept for datasét our method clearly outperforms the
a subspace of the PSD matrices, that of diagonal dominal mpeting apprqach. Interestmgly, this .dataset was tme'sa
matrices. If the full cone of PSD matrices were to be incor-0" Which the optimal number of dimensions was determined
porated as solution space, the kernel mixture could perforri® 8Ways be equal to the original dimensionality.
as good as any base kernel (since a mixture of a single kernel In addition to the implicit non-linear representations im-
is a valid solution). Note however that, although this isgpos  Plied by the kernels employed, we believe that a key reason
ble, one would be required to pay much higher computationafor the superior performance of the mixture of weak kerrels i
costs é.g.,for large datasets or number of constraints). the automatic identification of relevant dimensions. Tleis r
Interestingly, the performance for the mixture of weak ker-duction in dimensionality appears to provide an importaht a
nels is superior. This can be due to the larger number o¥antage at the time of generalization. It is generally atemep
degrees of freedom (the number @fmixing parameters is that & simpler representation is preferalseg(, [Blumer et
larger) or also a feature selection effect on overfittingwHo &, 1987) and it can reduce overfitting in practice.
ever, even though this is the case for the datasets condidere From a computational efficiency perspective at test time,
in this paper (and results suggest that this may often be thieeing able to represent the original data more succinctly is
case), we remark that this result is not theoretically guara especially advantageous. In particular, when similariten
teed since non-linear interactions among multiple dinmmsi  be calculated directly using a low-dimensional representa
or features may not be representable using a linear combingion, computational time savings can be significant forioe-|
tion of single features. applications. The projection step in this approach can be pr
Fig. 2 shows the average optimal number of dimensiongomputed off-line. In retrieval applications.§., query-by-
found by this process in a 10-fold cross validation experniimne example), the objects can be stored in their low-dimensiona
and the corresponding one-standard-deviation error baes.  representation. From a conceptual point of view, this formu
number of dimensions was identified by counting the numbetation also has the advantage of providing a more effective
of o’s larger than 0.01. This automatic choice of dimension-tool for understanding the data since it can identify whethe
ality was done using cross-validation as explained abode anvariables (dimensions) are of high or low relevance for k tas
is a valuable property of the method presented. Note that thef interest.

|| L || || L
7 8 9 10

2 3 4 5 6
Dataset index



quest the kernel to preserve local distances.

We believe this paper has potential implications in other
problems. Our results suggest that the SDP problem could,
in some cases, be replaced by a linear programming problem.
We suggested one way to achieve this goal; this has the poten-
tial to be applied to other problems whose solution involves
SDP.
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