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Abstract 
 
 Recent work done at Microsoft and 
elsewhere suggests that the concept of RF-based 
location and tracking (RADAR) is useful from 
the perspective of user location and tracking in 
local-area networks.  RADAR operates by 
sampling signal strengths from some number of 
nearby transmitters.  These samples are 
compared against samples of known locations, 
stored in an RF-based map.   
 

We have replicated a portion of the 
Microsoft RADAR system, and speculate on 
possible adaptations of the RADAR concept for 
use in ubiquitous computing scenarios and 
wireless sensor networks.  We have extended the 
RADAR concept to include a client/server model, 
which significantly reduces storage and 
processing requirements of the mobile device. 
 
1 Introduction 
 

Recent work done at Microsoft and 
elsewhere suggests that the concept of RF-based 
location and tracking (RADAR) is useful from 
the perspective of user location and tracking in 
local-area, wireless-based networks.  Ability to 
locate mobile users (nodes) allows a system to 
tailor itself to changing network topology and to 
provide services based on user location.  For 
instance, a network print request from mobile 
user could be automatically forwarded to the 
nearest public printer without requiring the user 
to manually determine which printer is closest to 
his/her location. 
 
   RADAR is also useful from the perspective 
of ubiquitous computing.  Locations determined 
from RADAR-equipped sensor nodes could be 
used to dynamically control room temperatures, 
lighting conditions, or air circulation based on 
the number of users in a particular area.  It is 
because of this omnipresent-monitoring property 
that RADAR is also useful to wireless sensor 
networks: it is conceivable that a RADAR-like 

system could be combined with data-
dissemination protocols to determine which 
nodes in networks may be eligible to enter a 
sleep state to conserve power based on proximity 
of mobile, RADAR-equipped data sinks [Kim].  
That is, given a geographic routing scheme, 
RADAR could be used to quantify a given 
node’s routing usefulness. 
 
 Unfortunately, RADAR requires an RF-map 
of the sensing field, usually generated (manually 
or mathematically) prior to deployment.  For 
each mobile sink or node to store and process a 
large RF-map is an unreasonable request for a 
wireless sensor network platform.  Hence, we 
have developed a client / server RADAR system, 
(CS/RADAR) which permits mobile nodes to 
use RADAR without knowledge of local RF 
conditions and without significant computation. 
 
2 Related Work 
 
 The RADAR concept is a product of Bahl 
et. al. at Microsoft Research.  Much of the work 
presented here is intended to replicate some of 
the results presented in “A Software System for 
Locating Mobile Users: Design, Evaluation, and 
Lessons”.  RADAR is a representative of 
location discovery algorithms using RSSI 
(Received Signal Strength Indicator) -based or 
simpler connectivity-based strategies.  Among 
these (but not exclusively limited to) are 
Daedalus [Balakrishnan] and the Duress Alarm 
Location System [Christ].   
 

RSSI-based algorithms need not use radio-
frequency information as in the case of 
RADAR—indeed schemes exist using infared 
signals [Want], and many other media could be 
used in a RADAR-like system (eg. ocean 
currents). 

 
Our work is primarily intended to replicate 

the work done by Microsoft Research.  It differs 
only in that we present RADAR as a network 
service.  Like the work done at Microsoft, our 
implementations use no RADAR-specific 



- 2 - 

hardware and form an overlay of an existing 
network structure. 
 
3 Assumptions  
 
 Use of RADAR as a location discovery 
mechanism in mobile computing in the context 
of a wireless network assumes that: 

• An RF-map to which samples of the 
current RF conditions will be compared 
exists, either pre-mapped or 
mathematically generated. 

• Transmitters (base stations) used to 
generate the RF-map are fixed in 
position and number, and do not 
experience periods of non-functionality; 
they emit a constant-amplitude radio 
signal. 

• Mobile users/nodes are able to sample 
the RSSI of each base station within 
communication range. 

• RF conditions do not change due to 
environmental factors (e.g. opening 
doors, cordless phones, microwave 
ovens, etc.). 

 
In addition to the assumptions of general 

wireless networking, to adapt RADAR to use in 
wireless sensor networks (WSNs) further 
assumes that: 

• Acquiring the needed information for 
RF-sampling is not costly in terms of 
power or computing. 

• The RF-map may be accessed without 
incurring cost of large storage or 
computational requirements, and the 
cost of RADAR in terms of power is 
low. 

 
The concept of CS/RADAR in WSNs 

requires a similar set of assumptions.  Namely, 
we assume: 

• Some number of nodes have fixed 
positions—these nodes are used to 
generate an initial RF-map of the 
sensing field. 

• At least one base station exists where 
the RF-map may be stored.  This base 
station is presumed to have greatly 
increased storage and computational 
capability. 

• Some underlying communication 
infrastructure exists to allow 
communication between mobile 
nodes/sinks and base stations. 

 
Note that it is not necessary that the position of 
each node in the sensing field be known for 
RADAR to be useful—they need only generate 
RF traffic.  The positions of other non-mobile 
nodes are not used in RADAR-based location. 
 
4 CS/RADAR Operation 
 

In a RADAR-based location system, a 
mobile node or sink generates a sample of the 
RF-conditions at its location each time it wishes 
to determine its location.  This sample contains 
an RSSI value for each node in communication 
range of the mobile node.  For many 
communication strategies, the generation of this 
sample does not require any extra effort on the 
part of the mobile node/sink; connectivity-based 
information would already be gathered in most 
routing schemes, and some indication of signal 
strength is often available from RF hardware (an 
RSSI register in 802.11b implementations, for 
instance).  It is even possible for a mobile 
sink/node to estimate an approximate signal-to-
noise ratio (SNR) by considering the number of 
lost packets in a given time frame.  The sample 
may include SNR or other parameters, such as 
noise level or channels in use.  The sample is 
intended to represent the RF characteristics 
endemic to a particular locale, regardless of how 
a sample is represented. 

 
Once a sample has been generated, the 

sample is compared to similar samples in the RF-
map describing the region.  The exact method of 
comparison is implementation-specific, and 
greatly affects the accuracy and granularity of a 
location divined in this way.  In general, the 
simplest classes of algorithms compare samples 
against known position/sample pairs and report 
the mobile node’s location as the position of the 
position/sample pair that most closely matches 
the current sample.  More advanced algorithms 
attempt to interpolate position by employing 
cost-based heuristics and averaging of multiple 
position/sample pairs.  Yet a third approach 
involves keeping a history of the last N positions 
of a node.  Interpolation and path-based 
heuristics are used in conjunction with this 
location history to produce a likely current 
position. 

 
CS/RADAR differs from the above scheme 

in that the RF-map is not stored locally at the 
mobile node.  Instead, the mobile node submits 
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its sample via the underlying network 
infrastructure to a base station, which advertises 
a CS/RADAR positioning service.  This base 
station performs the necessary algorithm(s) to 
estimate the mobile node’s position, and returns 
that information to the node, again employing 
the underlying routing scheme.  This separation 
of sampling from position divination is advan-
tageous in WSNs for a number of reasons: 

• Mobile devices need not store an RF-
map locally. 

• No device is privy to the information in 
the RF-map, which could be used 
maliciously in some environments. 

• Client / server models allow individual 
nodes to be queried for their positions in 
a simple manner. 

• Locale-switching does not require a 
device to acquire a new RF-map; the 
node need only communicate with a 
different server. 

 
The client/server model lends itself to many 

networking situations, and WSNs in general, 
simply because of the divisibility of the RADAR 
concept into the sample / compare stages.   
 
5 Location Discovery 
 
 We implemented five algorithms for 
location discovery.  The first of these algorithms 
we called “match by audible nodes” (MBAN).  
MBAN determines position by weighting a 
location based on the number of base stations 
from the node sample that match the base 
stations in the map sample.  As an example, 
assume we took a sample and were able to hear 
base stations A and B.  In our map assume 
location 1  (L1) hears base stations A, B and C, 
while location 2 (L2) hears base stations A, C, 
and D.  In this example L1 would receive a 
weight of 2 and L2 would receive a weight of 1.  
This indicates that L1 is the more likely position. 
 
 The second algorithm is called “choose the 
smallest MBAN” (CTSM).  The purpose of 
CTSM was to fix a problematic area in MBAN.  
The specific issue that arose is illustrated here: 
Assume you node sample hears A and B.  Now 
assume the map has L1 with A and C, and L2 
with B, C and D.  In this case both L1 and L2 
would receive a weight of one.  Through 
experimentation we found position L1 is much 
more likely in this case because the probability 
of not detecting 1 node that should be withing 

communication range are much greater than the 
odds of not hearing 2 nodes.  To address this 
issue, CTSM breaks ties between locations with 
the greatest weight in MBAN by choosing the 
location that has the least amount of base stations 
heard (among the tied solutions). 
 The third location discovery algorithm we 
implemented showed the best results in 
predicting position.  It has been dubbed “CTSM 
plus signal strength” (CPSS), and is denoted 
“M3” in (6).  We developed CPSS in order to 
increase the prediction resolution of CTSM.  
CPSS works by first running CTSM, and taking 
all the locations that tie as potential candidate 
locations. CPSS further narrows down the 
candidate pool, considering the difference in 
measured signal strength to the signal strength 
recorded in the map.  CPSS then choses the 
location with the least difference, as this is the 
most likely position. 
 
 The fourth and fifth location discovery 
algorithms were not very successful in predicting 
locations.  These algorithms were interpolating 
position and guessing position based on the last 
known position (history-based, as described 
above).  We tried many different 
implementations of these algorithms but were 
unsuccessful on improving any of the previous 
three algorithms.   
 
Interpolation was based on the best three 
candidates for our position returned from the 
CPSS method.  Once we had these three 
candidates we took a weighted average of the 
coordinates from the three candidates as our 
position.  Typically, these candidate postions 
were far from each other, and yielded poor 
results. We believe that with the resolution we 
were trying to achieve there was not enough 
difference in IEEE 802.11b RF-characteristics 
over small distances in our map.  This caused the 
second and third best solutions to be more like 
random points from a large area that we could be 
in, rather than actual likely points we were at. 
 
 Using history to weight possible positions 
was unsuccessful for one main reason:  When 
predicting positions it was common for the 
guessed position to deviate slightly from your 
actual position.  When this deviation was 
opposite from the direction we were actually 
traveling, weighting history would cause it to be 
unlikely to make the jump from the bad guess to 
the ever-more-distant current (true) position.  
Using history was, however, successful in 
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eliminating the large jumps we see occasionally 
with CPSS.  It also worked well if you watched 
your position as you where moving, and when it 
got off track you went back to where it was 
predicting; this would allow the algorithm to 
track correctly again.  We believe some fine 
tuning of the weighting parameters might be able 
to be done to fix the issue, but it is not a good 
idea to use in practice: once the prediction starts 
going wrong, it rarely corrects itself. 
 
6 Methodology 
 
 We implemented CS/RADAR on the third 
floor of a three-story building.  We chose the 
east wing of the building because we believed its 
layout would produce distinct RF characteristics 
throughout the area.  We relied on an in-place 
system of IEEE 802.11b access points to produce 
the sampled conditions; the positions of these 
access points were not known. 
 
 Our implementation of CS/RADAR was 
written for Linux and Windows 2000 
environments; these environments were chosen 
for their academic usefulness and GUI 
capability; CS/RADAR could be implemented 
on virtually any platform. 
 
 We performed our experiments in two 
phases: in the first phase we generated RF-maps 
of our target area with varying sample densities.  
These maps were generated empirically by 
sampling many positions in our target area and 
storing the position/sample pairs for later use in 
RF-maps.  The second phase called for a number 
of traversals of our target area, employing 
different location algorithm, RF-map density and 
movement speed combinations. 
 
6.1 Mapping 

 
Three RF-maps were generated during the 

mapping portion of this project.  Maps sparse, 
moderate, and dense have increasing levels 
of sample density.  Samples in sparse were 
generated taking only one sample per room, and 
allowing one sample at the intersection of each 
hallway.  The moderate map includes all 
samples in the sparse map, three samples 
spaced equidistant between all sparse hallway 
samples, and three to four additional samples in 
each mapped room. Map dense contains 
roughly one sample per square yard of mapped 
area, though does not necessarily include the 

same samples as found in sparse or 
moderate. 

 
To reduce the effect of antennae orientation, 

all samples in this phase were taken facing the 
same compass direction.  Additionally, we 
allowed a fixed time to elapse between arriving 
at a location and sampling to allow transient 
effects specific to our implementation’s sampling 
method to disappear.    
 
 The effectiveness of these maps in 
combination with the CPSS algorithm discussed 
above is discussed in section 6, below. 
 
6.2 Pathing 

 
A single path through our mapped area was 

chosen for testing of CS/RADAR.  We evaluated 
each of our three sampling densities with two 
sampling schemes: 1-Sample and 3-Sample 
Majority Vote.  All pathing experiments were 
performed with only a single mobile node, for 
manpower constraints only.  The CS/RADAR 
system could allow multiple mobile nodes with 
minimal additional overhead. 

 

 
Fig. 1  Evaluation Path 

 
The testing path was selected to attempt to 

challenge the location discovery mechanism with 
architectural trials as well as to provide regions 
where location divination would be relatively 
straightforward.  We opted to include many 
hallways, individual rooms, and staircases—
especially windowed areas—to maximize the 
diversity of our testing environment.   
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7 Performance/Results 
 
7.1 Evaluation Criteria 
 

The obvious criterion for a location 
discovery system is the discrepancy between the 
indicated location and the true location.  We 
have used this difference as our primary 
evaluation criteria, though we have included 
others, specific to indoor location discovery 
techniques: 

• Room-correctness: A sample is room-
correct if the indicated position 
corresponds to the same room as the 
true position. 

• Closest-point correct: A sample is 
closest-point correct if the algorithm 
returns the best possible match to a 
given location.  Some algorithms only 
return positions that were mapped 
during the mapping phase—it is 
impossible for these algorithms to be 
exactly correct in most cases. 

• Hit: A sample is a “hit” if the true 
location corresponds to a mapped 
location and the algorithm returned that 
location as the indicated position. 

• Miss: A sample is a “miss” if the true 
location corresponds to a mapped 
location, but the algorithm returned a 
different location as the indicated 
position. 

 
7.2 Single Sample Performance 
 

We evaluated each of our generated maps 
(sparse, moderate, and dense) using only 
a single sample of RF-conditions at each point 
on our selected path.  The values in the graphs 

and tables correspond to units of normalized 
distance—true distance (in feet) is approximately 
one-third of the normalized distance. 
 
 Map Density 
 sparse moderate dense 

Average 45.1 50.7 34.8 
Median 25.0 35.1 22.8 
Std. Dev. 49.1 57.2 50.2 
Cum. Sum. 2302 2584 1775 
Rel.Cum.Err. 14% 16% 11% 
Table 1. Single Sample Performance (Distance) 
 
 Map Density 
 sparse moderate dense 

Closest Room 86% 96% 94% 
Closest Point 69% 49% 29% 
Miss 6% 49% 71% 
Table 2. Single Sample Performance (Indoor-specific) 
 

As is evident from the data, CS/RADAR’s 
single-sample performance suffers from both 
glitching effects (dense map, position 10 for 
instance) and noise-like errors.  Even these 
seemingly high cumulative errors (2584 NDU ≈ 
860 feet!) are small compared to the total 
distance traveled in the course of the entire path 
length (just over 16,000 NDU).  The relative 
cumulative error in Table 1 shows the 
cumulative distance error divided by the entire 
path length. 
 

Considering only distance as a metric, there 
is little performance difference between the runs 
using the sparse and moderate maps.  The 
average and cumulative errors are comparable 
for both densities—only dense significantly 
outperforms the other maps, if only by a modest 
30%. 
 

When considering the other metrics, the 
difference between the mapping strategies 
becomes more evident.  All three of the maps 
generated produced good results at determining 
room-level granularity, but the number of 
closest-point samples declines sharply as sample 
density increases.  Simultaneously, the rate of 
“misses” increases dramatically.   

 
7.3 3-Sample Majority Performance 
 
 For the moderate map, we repeated our 
experiment allowing three samples per location 
(or more, if needed for majority voting) to 
determine the indicated position.  We hoped that 

Fig 2. Single Sample Error (Distance) as a function of 
position (51 points / path) 
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this modification to the sampling scheme would 
reduce the effects of RF-variation and eliminate 
the “glitches” as seen in the single-sample 
experiments. 
 

 
Fig. 3.  Moderate sample error for single-sample (top) and 
3-sample majority vote (bottom) 
 
 Sampling Scheme 
 Single-sample 3-sample MV 
Average 50.7 14.9 
Median 35.1 1.0 
Std. Dev. 57.2 24.2 
Cum. Sum. 2584 760 
Rel.Cum.Err. 16% 4.7% 
Table 3. 3-sample performance (distance) 
 
 Sampling Scheme 
 Single-sample 3-sample MV 
Closest Room 96% 94% 
Closest Point 49% 75% 
Miss 49% 6% 
Table 4. 3-sample performance (Indoor-specific) 
 

Figure 3 and Tables 4 and 5 reflect the effect 
of using a multi-sample majority-vote scheme to 
determine position.  Total distance error across 
the entire path length is reduced fourfold, and the 
median error is very small; many predictions are 
accurate to a few feet.  The average distance 
error is reduced 70%, and the distribution of 
error is clustered more tightly about the median. 
 

Considering the indoor-specific criteria, the 
majority-vote scheme combines the miss rate and 
closest-point rate of the sparse map with the 
room-level accuracy of the moderate and 
dense maps. 
 
7 Improvements 
 

There are a few improvements we could 
make to CS/RADAR that became clear during 

the testing phases of our design.  One of the 
limiting factors of our implementation is the 
wireless hardware we are using.  802.11b 
wireless networking cards vary in quality.  It is 
quite common for the signal strength measured 
in one card to be different than what is measured 
from another card, even of the same brand and 
model.  It is also common for cards to have 
different ranges so they may detect different 
wireless access points at the same location.  
Detecting position is dependent on this in our 
algorithms, so in order to make the system more 
generalized, a calibration function would help 
greatly.  If the software could be calibrated to 
take into account the characteristics of different 
wireless cards an RF-map generated by very 
sensitive card would be useful for a whole range 
of wireless hardware. 

 
Another useful extension of CS/RADAR 

would be adding the notion of intermittent base 
stations.  We often ran into problems when we 
were at the edge of a base station’s range:  At 
times the node could here the base station while 
other times it could not.  If the base station was 
detected when mapping the area but not during 
location discovery, or vice versa, CS/RADAR 
would generally predict a position very far from 
our actual location.  If a method could be devised 
of marking base stations at a given position as 
intermittent, we could penalize less for sampling 
differently than the map at that position, and 
would therefore be more likely to predict the 
correct position. 

 
Adding a reverse lookup of a position would 

be another useful feature.  Finding RF-coverage 
of an area would be simple if we were to add a 
function that would give the RF-characteristics 
of any point that was asked of it.  With the time 
already taken to measure RF-characteristics all 
over the target area, it would not add any 
overhead to query the map to check that 
sufficient base station coverage exists. 

 
A downfall of this system is generating the 

RF-map.  Currently, this is done by manually 
sampling every point that is needed in the map.  
This is quite time consuming and repetitive.  
Deriving a way to generate these maps 
automatically would greatly increase the 
usefulness of CS/RADAR.  There is a large cost 
associated with generating the map initially and 
regenerating it if any of the RF-characteristics of 
the area change.  Automating this process would 
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allow CS/RADAR to be much more useful in 
dynamic environments. 
 
 
8 Conclusions 
 

RADAR works well for location discovery 
under existing static 802.11 wireless networks.  
Indoors, it provides room-level location 
discovery granularity and does not require any 
extra hardware on top of the existing wireless 
infrastructure.  However, RADAR is subject to 
RF noise in the area as well as a glitching effect 
when at the edge of signal range.  We have 
shown using a majority-voting scheme can 
reduce these effects though.  It also performs 
poorly in environments where the base stations 
may change location or transmitting 
characteristics. 

 
The concept of RADAR can be extended to 

other sensible medium besides RF as well.  The 
only requirements being that the characteristics 
of the medium vary with position but remain 
static over time.  The characteristics need not 
vary predictably with position, but predictability 
would allow automatic generation of condition 
maps.  It is also possible that the characteristics 
of the medium vary with time, so long as they do 
it in a predictable manner, or can be remapped 
easily and quickly. 
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