
- 1 -

Distributed Shared Memory on IP Networks

CS 757 Project Report

Instructor: Mark Hill

University of Wisconsin-Madison Department of Computer Science

Students: Dan Gibson, Chuck Tsen

University of Wisconsin-Madison Department of Electrical and Computer Engineering

degibson@wisc.edu; chuck.tsen@gmail.com

Parallel programming is becoming an increasingly

popular method of improving computer performance.

Unfortunately, parallelized hardware remains expensive

in the form of complicated symmetric multiprocessors and

high-end server platforms. To provide a more available

platform for parallel execution, we revisit the topic of

implementing distributed shared memory on networks of

commodity workstations. We discuss the implementation

and evaluation of a distributed shared memory system,

using existing Ethernet/IP-based networks for

communication between logical threads. Our

implementation leverages user-space programming

primitives to provide a software-only solution for

executing parallel programs on commodity hardware and

operating systems. We demonstrate application-

dependent speedup over uniprocessor executions for

simulated workloads, even on small networks. We also

observe the effect of heterogeneity in our network, and its

significant performance impact.

1. Introduction

With commodity hardware becoming cheaper, and

open-source, free operating system solutions such as

Linux or FreeBSD gaining popularity, cluster computing

has become commonplace for applications that exhibit

large amounts of control parallelism. Concurrent

execution of batch jobs, as in Condor [13], and parallel

servicing of web and other requests [3] dominates the

cluster industry, employing inexpensive systems to

achieve very high throughput rates. Some cluster systems

also employ otherwise idle cycles on workstations

connected to a network to improve performance of batch,

concurrent jobs.

While some workloads can benefit from concurrently

running processes on separate machines with little or no

communication, many workloads do not have sufficient

explicit parallelism to exploit concurrency in this manner.

Some of these workloads can achieve speedup on

networks of workstations using other cluster technologies,

such as the MPI programming interface [15]. Under MPI,

machines may explicitly pass messages, but do not share

variables or memory regions directly. For applications

that do not easily lend themselves to the message passing

programming model, the only other option for parallel

execution is to run the workload on a large simultaneous

multiprocessor computer, which supports shared memory.

As an alternative to this approach, we present an

implementation of distributed shared memory (DSM) that

operates over networks of workstations. Under our

implementation, each node on a network can host a single

thread that operates inside a larger pool of threads within

a shared memory program. Memory is identically named

at the level of C++ source code, with all sharing details

hidden by the implementation. Additionally, we provide

a mechanism by which the user can tune the sharing

behavior and performance of the underlying DSM

implementation by overtly specifying the sharing

granularity. This gives the opportunity to tailor sharing

parameters to a given workload, or working set size.

The challenges inherent in the creation of a

distributed shared memory system over an IP network are

great. Firstly, the semantics of IP networks allow

messages (packets) to be dropped if the network becomes

congested, which implies that any implementation must

account for the loss of an arbitrary packet. Even the

presence of QoS measures for network reliability cannot

provide guaranteed packet delivery [7,18]. Only use of

the TCP/IP transport protocol adequately hides packet

loss, but the overhead of TCP/IP overhead is large, both

in memory and execution time. Furthermore, IP networks

can deliver packets any time after they are sent, subject to

network availability and buffering at routers and switches.

This policy differs greatly from an in-order, fixed-latency

interconnect.

In addition to unreliability, IP networks are extremely

latent compared to typical memory systems. Round-trip-

times in the range of 100 µs are common in modern “fast”

100M Ethernet. Communication latencies can easily

climb to hundreds of millions of execution cycles over IP

networks.

The sustained bandwidth of IP networks also does

not compare to typical memories; typically 100M

Ethernet will support approximately 12.5 MB per second

in a sustained point-to-point connection. This figure is

separated by orders of magnitude from even mediocre

commodity memories.

- 2 -

Perhaps most daunting, there exists no convenient,

low-overhead mechanism to provide access to a

consistent memory state on a remote machine, yet also

preserve existing shared-memory programming binaries

and source code functionality. The most often employed

mechanism to accomplish this sharing is the use of page-

level protection bits to automatically interpose on certain

loads and stores to that page of memory. However, this

dictates page-granularity sharing, ignores the effect of

unshared variables, and has significant execution

overhead.

Our solution accounts for these difficulties and

demonstrates speedup among some simulated workloads,

under both strict and relaxed consistency models. The

remainder of this paper is organized as follows: Section 2

surveys prior work related to DSM over IP (DSM/IP);

Section 3 describes the authors’ implementation of

DSM/IP; Section 4 outlines the experimental methods

used in the correctness and performance evaluation of

DSM/IP; Section 5 presents performance results; Sections

6 and 7 summarize our findings present concluding

remarks.

2. Related Work

There have been many implementations of DSM on

IP networks. A common approach is to use the virtual

memory system to provide a level of consistency

checking in hardware, employing system calls to protect

page-sized regions of programs. Chief among the

DSM/IP systems using this technique are Quarks (and its

predecessor, Munin) [25], and TreadMarks [2]. The

primary difference in these two implementations lies in

their design philosophies—TreadMarks assumes a large

computation overhead to attempt to reduce the IP

communication overheads required by DSM. In line with

this philosophy, TreadMarks uses the UDP transport

protocol for communication. Quarks takes the opposite

role, attempting to minimize the computational

requirements of DSM/IP as much as possible, while

allowing a greater degree of communication overhead. In

contrast to TreadMarks, Quarks uses a connection-

oriented communication scheme, TCP/IP. One of the

greatest weaknesses of both Quarks and TreadMarks is

the pre-defined granularity of sharing dictated by use of

the virtual memory system (page-level sharing). IVY

[12] is another example of DSM/IP employing page-level

sharing, but IVY enforces a single-writer, sequentially

consistent programming model, where other

implementations allow multiple writers. Also falling into

this category is StarDust [4], which, in addition to DSM,

implements message passing [15].

Another popular approach to DSM/IP is in realm of

operating systems. Plurix [20,27] from the University of

Ulm is a Java-based operating system that supports

DSM/IP natively for Java applications. The Java

language is very conducive to DSM/IP, as it runs on a

virtual machine monitor (VMM), which may change

depending on the given operating system. Thus, it is

possible for multi-threaded Java code to run largely

without modification under Plurix. The Mirage system

[8] is similar. It is integrated into an existing operating

system, and employs page-level sharing.

The Brazos project at Rice University [22,23]

represents another class of DSM over IP

implementations—those that exist entirely in user

program space. Brazos executes on Microsoft ®

Windows ® -based machines (as does an implementation

of TreadMarks [2]) in a multi-threaded environment

designed to hide communication latencies. In place of IP

broadcast, Brazos uses IP multicast, which has a slightly

higher performance overhead than broadcast packets, but

with the added benefit of improved scalability. This also

mandates the use of TCP/IP connections in Brazos.

The SHRIMP multicomputer [6] is another example

of commodity hardware used for DSM, but SHRIMP does

not use an IP network. Instead, it uses a SAN-like custom

network to produce a more closely coupled cluster of

independent x86/Linux based systems. Communication

among these nodes is based on the stream programming

model, but has significantly less overhead than streams

over IP networks.

The consistency model varies widely among the

systems listed above. Popular among these is lazy release

consistency, used by TreadMarks [2] and others. Under

this scheme, multiple writers to a given memory location

are allowed, provided a final memory image is eventually

built from the contributions of all writers. Several

systems have successfully implemented sequentially

consistent DSM, including IVY [12] and Plurix [20,27].

Quarks [25] uses a configurable consistency model,

allowing release or sequential consistency.

Our technique of syntax modification is similar to the

Check-In/Check-Out annotations as described in [10].

CICO semantics require the programmer to specify when

memory regions are expected to be accessed, and what

type of accesses will occur (read or exclusive). These

annotations enable simpler coherence protocols, but never

change the correctness of a program. They merely serve

as “hints” that accesses of a certain type may occur in the

near future, or that accesses to a particular region will not

occur for some time.

- 3 -

Our implementation also shares some similar features

to the Tempest project [10,19]. Under Tempest, the

programmer makes use of explicit coherence

organization, and is also provided message-passing

primitives. Tempest’s fine-grained access control and

user-defined permissions allow a great amount of

customization of sharing patterns among processors.

Alternatively, Tempest allows programmers to use

already written coherence policies, to reduce

programming complexity. Tempest is a description of an

interface, that does not assume any particular

implementation. One such implementation is Typhoon,

described in [19].

In general, all of these DSM/IP systems have shown

speedup for some classes of applications—those that

tolerate communication latency well, and have course-

grained sharing between threads.

3. DSM/IP Implementation

We present a software-only realization of distributed

shared memory, implemented as a user-level library. In

our system, each node maintains a copy of each shared

memory region at all times. At times, some portions of

shared memory may be inaccessible, due to coherence

and consistency requirements. In general, shared regions

are not page-aligned, and can be of arbitrary size. The

granularity of sharing can be selected by the programmer

if desired as an optimization to their DSM-enabled

software, or assigned automatically to optimize network

traffic.

3.1 API Overview

Our implementation changes the manner in which

shared memory regions are declared and accessed, using a

very simple set of accessor and mutator methods. Each

shared memory region is declared as a C++ object,

derived from a single SharedObject class. Children

of SharedObject include SharedInt,

SharedIntArray, SharedFloatArray, etc. Each

object can be accessed through accessor function

Read() or mutator function Write(). Thus, the syntax

by which shared memory is accessed is different than that

of normal variables in C++, but the semantics of read and

write accesses are not changed. Each Read() and

Write() operation is atomic, and behaves according to

the expectation of the programmer. Note that these

operations do not provide any additional

synchronization—though primitives are provided for

synchronization (below). The use of explicit access and

mutate functions allows user-level code (within our

library) to perform coherence checks and any required

network communication without intervention from the

OS. We note that it is possible to hide some uses of the

accessor and mutator functions through use of operator

overloading in C++, which would unify some syntactic

differences. We have not implemented this feature, as it

would not be possible to provide both identical array

reading and array writing syntax using this method, due to

conflicts in the use of the [] operator in C++.

At declaration points of shared memory regions, most

object types allow the user to specify the granularity at

which coherence information should be maintained. This

granularity determines the segment size, the size of the

region protected by a single coherence state variable. The

segment size may vary from object to object, at the whim

of the programmer. In order to ensure that coherence

messages are not too large, the DSM implementation may

increase the granularity of sharing, to improve

performance. We have not explored the effect of

variable-sized coherence granularity in our system’s

performance, but we expect that there will exist an

optimal sharing granularity on a per-workload, per-data

set basis.

In addition to providing shared access to memory

regions, our API also provides lock and barrier

synchronization primitives. The DSM_Barrier()

function guarantees that no thread executes subsequent

instructions until all threads have arrived at the barrier.

Class DSM_Lock() provides mutual exclusion

functionality, with the usual lock acquisition and release

semantics.

As with many APIs, function calls are required to

initialize the multithreaded environment and to gracefully

exit the program. After the initial setup call,

DSM_Startup(), the requested number of threads

begin execution immediately at the return point of the

function, synchronized to within a single barrier delay.

At that point, the only perceivable difference between

logical threads (aside from residing on separate machines)

is the value returned by DSM_Startup(). This value is

a unique thread identifier, between zero and the number

of threads minus one, inclusive.

3.2 Library Implementation

The DSM library is two-layered; the lower layer is an

abstraction built from available UDP networking

primitives, and is used by the upper layer for all inter-

machine communication—we refer to this layer as the

Communication Backbone (CB). The upper layer is the

Coherence Engine (CE), which implements the shared-

memory functionality using the primitives provided by

the CB. The Read() and Write() functionality is

provided by the coherence engine, while all other API

- 4 -

(synchronization and startup) is built directly into the

communication backbone. It is the coherence engine that

determines the consistency model provided by the DSM

implementation.

Figure 1 - Interaction of engine, backbone, and user program

3.2.1 Communication Backbone

The CB is the means by which all inter-machine

(inter-thread) communication occurs. It is built from the

UDP/IP networking interface, and is optimized for round-

trip time (RTT) on a local area network (LAN). The CB

extends the functionality of UDP to include guaranteed

message delivery and at-most-once message delivery.

Thus, the CB abstracts the IP network as a much more

reliable interconnect. This added reliability is necessary

to provide arbitrary program consistency models.

Upon receipt of a message, the CB delivers the

received message and all data associated with it to a

specified handler function, which is similar to an

asynchronous interrupt. These handlers include built-in

functions in the CB to handle certain classes of message,

and vectored handlers for each of the message types used

by a given CE.

The CB enables messages to be passed between

threads using only the logical thread number as a

destination address. That is, the CB maintains a list of

thread identifier to IP address/port mappings, which is

established in the initial system synchronization phase.

The details of network communication are hidden from

the implementation of the coherence engines to provide

modularity and to enable changes in the CE without

reworking the CB. Below, we outline how the backbone

provides these abstractions.

3.2.1.1 Packet Formatting, Thread-ID Addressing,

Vectored Interrupts

The CB operates on top of the usual UDP/IP

interface, using the recvfrom() and sendto()

system calls. The CB forms an additional layer of

abstraction, including its own specific message header

fields in each packet. Those fields are:

• progID: A unique 16-bit integer associated

with each DSM-enabled program. This number

is agreed upon out-of-band, in a globally visible

dsm_setup file. Use of this identifier allows,

in theory, for multiple DSM-enabled programs to

run concurrently, and prevents latent messages

form previously run programs from affecting

current executions.

• msgType: A 16-bit integer specifying the

message type associated with a given packet.

This value is used primarily to vector interrupts

to the CE and other supporting software. The

upper three bits are reserved for designating

ACK, ACK_REQUESTED, and NACK (note:

no CE implementations currently use NACKs).

• dataLen: A 16-bit integer specifying the length

of accompanying data in bytes. DataLen is

used for bookkeeping and the mechanics of the

UDP/IP library interface.

• retransNum: An 8-bit integer specifying the

number of retransmissions allowable on this

message. No implementations currently employ

this field; the default value is five.

• frag: An 8-bit integer indicating the

fragmentation state of packet, used for

reassembly. Note that sub-fragmentation is

never needed, but fragmentation may occur if

sending more than the number of bytes allowable

by UDP/IP (1450).

• seqNum: A 64-bit sequence number field. Each

thread has 2
64

 / N sequence numbers reserved for

that thread, where N is the number of threads in

the system. Therefore, for our target systems (N

on the range [1,128]), each thread can send

around 144 quadrillion packets. Given a typical

round-trip-time (RTT) of 0.1ms, this represents

over nine million years of continuous packet

transmission. Hence, we do not check for the

case of wrap-around of sequence numbers.

Each of the above fields is filled in automatically by

the CB, with the exception of the dataLen field, which

is filled in by the CE. The final formatting is shown in

Figure 2.

- 5 -

Figure 2 - DSM/IP Packet Format

The CB also provides a mapping of thread-identifier-

to-IP-addresses, that allows messages to be passed among

threads, identifiable by logical thread number, instead of

by specifying IP address and port information. This

mapping becomes available on the receipt of the first

message from a given thread, namely the DSM_JOIN

message. This typically occurs during the HELLO phase

of initial synchronization, described in subsequent

sections.

On each SendMessage() call or receive message

event, the address mappings are accessed to determine

either destination address or sender thread identifier. That

information is then passed to the vectored event handler

for message receipt, or the UDP/IP interface via

sendto(). This information is reflected in the

corresponding packet’s IP and UDP message headers,

respectively. DSM relies upon the Linux operating

system to cache physical Ethernet (MAC) addresses for

machines, or to use the address resolution protocol (ARP)

as needed [18].

When the CB receives a packet from the network, the

backbone determines the message type by use of

msgType field in the DSM header. Based on this type,

the CB then calls a specific message handler to handle the

message. Often, this message is delivered to the CE, and

results in some change in the coherence state of the local

machine. In other cases, the message is intended for the

synchronization API functions, or could be part of the

initialization scheme. In general, message handlers

cannot be interrupted by subsequent messages—instead,

interrupts are deferred until after the handler completes.

However, network polling still occurs within

SendMessage() primitives, even in event handlers, to

prevent deadlock.

3.2.1.2 Startup and Synchronization

Before the parallel phase of a DSM-enabled program

may begin, each thread must initiate communication with

other threads to determine IP/port mappings, ensure the

correct number of machines are participating, and

establish synchronization between threads. All of this

functionality is implemented in the CB, via the API call

DSM_Startup(). This call takes as parameters the

argument stream of the currently running process and the

desired number of processors to use for the workload.

After DSM_Startup() returns, the requested number of

processors are logically available, and each processor has

logically “just exited” from DSM_Startup().

On entrance to this call, the local thread broadcasts a

DSM_JOIN message on the network. This is a unique

broadcast message that expects only one response, from

the first DSM process to enter the network. This process

is always mapped to thread identifier zero, and serves a

special “server” purpose during initialization and during

error conditions. Thread zero is otherwise in a peer-to-

peer relationship with all other threads during normal

execution.

If the “server” thread responds, the response includes

the local machine’s thread identifier for this execution and

thread zero’s IP address/port information. The local

machine can then enter the HELLO phase, which is

described in detail below.

Figure 3 - Communication pattern of all non-zero threads during

initialization

If the server thread does not respond after a fixed

number of randomized exponentially longer timeouts

(totaling approximately 1.25 seconds), the local process

assumes it is the first DSM-enabled process on the

network. It then enters server mode, and assumes thread

identifier zero.

Immediately after entering server mode, thread zero

broadcasts a single DSM_WAKEUP message on well-

known port. This message contains the number of threads

requested, the name and program identifier of the binary

to be executed, and the argument stream to the binary.

We implemented a useful process-spawning daemon to

listen for DSM_WAKEUP messages, and automatically

fork() and exec() DSM-enabled processes as needed

by a new “thread zero.” These new processes arrive at

their subsequent DSM_Startup() calls, and eventually

- 6 -

send DSM_JOIN messages, to which thread zero then

responds. Figure 4 corresponds to the execution of the

first thread’s initialization communication pattern in a

DSM-enabled network.

Figure 4 - Communication pattern of thread zero during initialization

Note that more than the necessary number of threads

may respond to DSM_WAKEUP with DSM_JOIN. In

general, for a request of N threads, there will be M

DSM_JOIN messages inside of a small timeout period. If

M<N, then an insufficient number of threads have joined

the system, and the API startup call fails. If M≥N, thread

zero sends thread identifiers inside DSM_JOIN_ACK

messages to the first N threads to respond. Subsequent

DSM_JOIN messages (M-N in total) will receive

DSM_JOIN_NACK responses, in which case the

receiving process exits under normal conditions, as it is

unneeded to fulfill the requested number of threads.

Once at least N threads have been issued thread

identifiers, thread zero initiates the HELLO phase

(below). From the above initialization, all threads have

determined mappings for their local machines and thread

zero’s machine, but do not have mappings for other

threads. The purpose of the HELLO phase is to

“introduce” each thread to all other threads, through a

series of handshakes.

Figure 5 - HELLO phase operation

Thread zero initiates the HELLO “free-for-all” with a

special HELLO(0) message, which signals to all threads

that all other threads are ready to begin the HELLO

phase. After receipt of the first HELLO(0) message, all

threads then broadcast their own HELLO messages,

roughly simultaneously. Each of these messages reaches

all other threads, thereby creating an IP/port mapping on

receipt. Once all N mappings are present on the local

machine, a READY(j) message is sent to thread zero, and

the local thread spin-waits until receipt of a second

HELLO(0) message. This second message is generated to

signal the end of the HELLO phase, and is sent when all

threads have valid IP/port mappings for all other threads

in the system. At this point, it is possible to send arbitrary

messages between threads. After completion of HELLO,

threads enter a DSM_Barrier() synchronization

function, to ensure that all threads leave

DSM_Startup() at approximately the same time.

3.2.1.3 Synchronization API Implementation

Two synchronization primitives are implemented

within the CB: DSM_Barrier() functions and

DSM_Lock objects. Barrier functionality is realized

using one global integer at each node for each logical

thread, indicating the last barrier at which a particular

node has arrived. Barrier arrivals are broadcast to all

nodes on the network—as soon as all threads are observed

at a given node to have arrived at the next logical barrier

- 7 -

number, the local thread exits the barrier. Under this

scheme, an invariant exists such that all logical barrier

numbers in the system differ at most by one at any time.

DSM_Lock objects have two methods: Acquire()

and Release(). A delicate correctness issue arises in

the implementation of these functions, and is related to

similar issues arising from the implementation of

sequentially consistent coherence engines. The

Acquire() and functions Release() must be

interruptible, as at any time the CB may handle an

incoming message, which could include attempts to

acquire or release a lock. Specifically, there must be no

opportunity for an incoming DSM_LOCK_ACQUIRE

message to enable two or more threads to acquire a lock

simultaneously. Our general technique to avoid this class

of problem is presented in subsequent sections, with

emphasis on sequential consistency concerns relating to

coherence engine realizations and race conditions.

3.2.1.4 Guaranteed Message Delivery

The communication backbone provides guaranteed

delivery in the same manner as the TCP/IP transport

protocol—through the use of explicit acknowledge

messages. The presence of these messages is mostly

invisible to the coherence engine, so one-way

communication appears as a single message. In general,

ACK messages are handled entirely in the CB, without

calling any handlers in the CE. However, since many

coherence messages already follow the request/response

model (i.e. a message requesting data), the CE may opt to

use the ACK message to carry data. This data is not in

turn protected by a subsequent ACK message—however,

failed delivery of an ACK within a timeout period

generates a retransmission. [18] points out that

retransmissions are a potential source of multiple message

deliveries. This concern and potential side effects are

addressed in subsequent sections. As the case of message

loss is very small under UDP/IP, this code addressing this

case need not be extremely efficient, it need only ensure

that in the event of packet loss, correct semantics are

maintained. If guaranteed delivery is enabled for a

particular message, the SendMessage() call to the CB

blocks until receipt of all expected ACK messages.

UDP/IP was chosen primarily for its lower overhead

as compared to TCP/IP [7,18,21], though UDP/IP also

allows us to use ACK messages to carry data, which

greatly decreases network response times. This advantage

is critical to network performance, as under TCP/IP at

least four packets would be required to send round-trip

messages, discounting connection startup overhead. As a

final added bonus, UDP/IP is a stateless protocol, which

presents a simple “datagram” service. TCP/IP is

connection-based, which would require each node to

maintain connections to all other nodes, which would

limit system scalability [9,18].

3.2.1.5 At-most-once delivery

In addition to guaranteed delivery, the CB also

provides at-most-once delivery. The intersection of these

services is guaranteed-once delivery, the semantics often

used in traditional SMP systems.

To provide this and other services, the

communication backbone implements additional header

fields in addition to the usual UDP/IP header information.

At-most-once semantics are easily achieved provided:

• No two packets with equal seqNum fields are

ever processed (that is, messages already

processed should be ACKed but otherwise

ignored).

• All packets (including ACK packets) have a

unique sequence number.

The CB ensures both of these points, by tracking the

last sequence number received from each host. Incoming

messages with lower sequence numbers have already

been processed. While it is possible for disagreement to

exist between hosts about what a particular host’s next

sequence number is (due to unicast messages), it is

permissible to allow each host to track sequence numbers

without synchronization.

3.2.2 Coherence Engines

We have implemented three different coherence

engines (CE’s) using the communication and

synchronization primitives provided by the

communication backbone. Each CE is described below in

detail. We have included both sequentially consistent

engines and an engine that leverages weaker consistency

models for improved performance. Performance of the

three engines is discussed further in section 5.

3.2.2.1 ENGINE_OU: Naïve Sequential Consistency

Sequential consistency as defined by Lamport [9]

mandates that a total ordering of all reads and writes to a

specific memory location must exist and correspond with

the memory state of all participating threads, and this

interleaving must maintain program order. This can be

implemented by servicing all read and write events to a

particular location in the order they are received, one-at-a-

time, provided they are presented in program order. As

our DSM implementation is software-based, all read/write

events already occur in-order—ENGINE_OU simply

ensures that all reads and writes are serviced one at a time

and at the same location.

- 8 -

Specifically, ENGINE_OU assigns to each shared

segment a permanent thread owner, evenly distributed

across all threads. Each access (Read() or Write()

call) to that particular segment must communicate with

the owning thread, unless the owning thread resides on

the local machine. In this manner, a total ordering of

loads and stores is generated at the segment’s owner.

ENGINE_OU is very communication intensive, as nearly

every access will generate network traffic.

3.2.2.2 ENGINE_NC: Ignoring Consistency

ENGINE_OU represents an extreme, literal

implementation of sequential consistency. ENGINE_NC

follows the reverse philosophy: ignore all consistency

models and simply make accesses as fast as possible.

Under this engine, no coherence state is maintained

whatsoever. All Read() calls are serviced locally, using

whatever value is present in local memory. All

Write() calls are simply broadcast to the network as

notifications of updates—ENGINE_NC disables the CB’s

guaranteed delivery mechanism to make the

SendMessage() primitive non-blocking (and fast). As

a result, not only is there no ordering of memory accesses,

but certain processors may never become aware of all

other processor’s writes (due to lost packets), and final

memory state is not guaranteed to be consistent across all

machines. This extreme form of non-consistency goes

beyond the release consistency model presented in [1],

earning the engine the name engine non-consistent, hence

ENGINE_NC.

It is important to note that no use of DSM_Lock and

DSM_Barrier() primitives is sufficient to upgrade the

consistency of ENGINE_NC. Since ENGINE_NC allows

coherence messages (write updates) to be lost, no

guarantee exists that memory will ever reach a consistent

state across all machines.

3.2.2.2 ENGINE_MSI: Smarter Sequential

Consistency

Seeking stronger semantics than those of

ENGINE_NC, but better performance than ENGINE_OU,

we implemented an engine based on the MSI coherence

protocol, as described in [26].

The basic MSI protocol uses three states to track

memory read or write permissions at each node:

MODIFIED (M), SHARED (S), and INVALID (I). If a

block of shared memory is in the M state at a given node,

it has both read (Read()) and write (Write())

permissions to the data. Memory in the S state has read

permissions associated with it, but writes are not allowed.

Nodes with memory in the I state have neither read nor

write permissions for their data. If a node needs to

perform an operation for which it has no permissions, it

must block and send a message over the network. When

it has received the proper number of responses, it can

upgrade its permissions and proceed with its operation.

The following invariants always hold for the MSI CE:

1. If any node is in the M state for a given segment,

all other nodes are in the I state for that segment.

2. There is always at least one node in either the M

state or the S state.

We enhanced the MSI coherence protocol to make it

run more smoothly on our DSM/IP system. The main

goal we had in mind when making enhancements was to

ensure consistency, given the semantics of our

communication backbone. To achieve this, we keep track

two extra pieces of “distributed-directory-style”

information: 1) the number of total sharers of a given

grain of data, and 2) whether a node exists somewhere on

the network in the M state—we refer to this node as the

“owner.” This knowledge updated at each node when

handling messages, and it is used to ensure the

consistency of our implementation.

To demonstrate how ENGINE_MSI saves bandwidth

and how the “distributed-directory-style” information

augments our protocol, consider a node which has a

shared variable in the I state and needs to obtain read

permissions by upgrading to the S state. First, the

upgrading node must broadcast an upgrade request to all

nodes. Every other node will increment the number of

sharers for the segment, but will respond with a message

only if it has the segment in the S state. The upgrading

node waits for n responses, where n is the number of

sharers for the object as traced by the upgrading node.

The upgrading node also checks that each sharing node

returns a consistent value. We could eschew this check to

improve performance; we did not remove the check as

additional, dynamic verification of invariant 1, above.

Once the requesting node has received shared

permissions, the data may be read (via Read() calls)

without sending any additional messages over the

network, which significantly reduces network traffic.

To explain the necessity for keeping distributed-

directory-style information about segment “ownership,”

consider the case when one node has data in the M state,

and another node needs to obtain read permissions

(upgrade from I to S). To accommodate this change, the

bookkeeping for the number of sharers must increase

from 0 to 2 at each node. To make this transition, each

node must have knowledge of whether a segment is

shared (in the S state remotely) or “owned” (in the M state

- 9 -

remotely). This extra bookkeeping is necessary due to the

unordered interconnect presented by the CB.

3.2.3 Consistency Races

The communication backbone leverages the user-

space interrupts provided by the Linux operating system

to provide a mechanism by which incoming messages

from the network can be serviced. The single thread

operating on the local node does not observe this

transparent interruption, but the DSM implementation

must be aware of its effects. One concern is that

coherence permissions may change shortly after a

permissions check (as soon as a single instruction after),

thereby raising concerns about consistency. Since the

communication backbone does not guarantee that

implementations of Read() and Write() are atomic,

they must account for this phenomenon (Note that the CB

does guarantee atomicity of interrupt handlers). Consider

the code presented in Figure 6, which is a naïve

realization of the Write() function and invalidate

message handler for the MSI-based coherence engine (the

OU engine uses a similar strategy). For illustration

purposes, let us assume that the functions AcquireM()

and SendMessage() are atomic (In practice,

SendMessage() is fully interruptible but is not

interrupted in this case because it is called from an

interrupt handler. Regardless, this interrupt can be

modeled as interrupts placed immediately before or after

calls to SendMessage(). Furthermore, the

implementation of AcquireM()’s functionality can

simply use a heavyweight mechanism to ensure

consistency, such as the disabling of interrupts.). This

example applies to other interrupt handlers that change

coherence state, as well as to the invalidation handler as

outlined.

 void Write(int newValue) {

1 if(coherence != MSI_M)

2 AcquireM();

3 x = newValue;

4 return;

 }

 void Inv_Handler() {

5 coherence = MSI_I;

6 SendMessage(INVALIDATED);

7 return;

 }

Figure 6 - Naive implementation

Clearly, the intent of the Write() function is to

ensure the variable x is in coherence state MSI_M at the

time of the write. However, observe that an interrupt by a

competing Write() call on a remote machine could

generate an invalidation message interrupt at program

point 3. The resulting ordering of statements is

[1-2][5-7][3-4]. This interrupt leaves the

x = newValue statement unexecuted, while the

function INV_Handler() gives up write permissions

for variable x. After the interrupt returns, the write to

variable x occurs while coherence == MSI_I. This

is a clear violation of the desired consistency semantics.

However, correct semantics are still attainable,

allowing the Write() function to be interrupted. Figure

7 illustrates modifications to both Write() and

INV_Handler() to ensure the desired invariants—that

is, 1) writes occur exactly once, and 2) writes occur only

in states that allow writing (MSI_M in this example).

 void Write(int newValue) {

1 g_temp = newValue;

2 g_flag = 1;

3 if(coherence != MSI_M)

4 AcquireM();

5 if(g_flag == 1)

6 x = g_temp;

7 g_flag = 0;

8 return;

 }

 void INV_Handler() {

10 if(g_flag == 1

 && coherence == MSI_M) {

11 x = g_temp;

12 g_flag = 0;

 }

13 coherence = MSI_I;

14 SendMessage(INVALIDATED);

15 return;

 }

Figure 7 - Improved implementation

The improved implementation above ensures both

invariants. Consider the following per-case illustrative

proof (assuming an interrupt occurs sometime during the

execution of Write() that invokes INV_Handler()):

Case 1: [1][10-15][2-8]

Assuming g_flag == 0 before Write(),

newValue is unchanged and coherence != MSI_M

at line 3, thereby write permissions are acquired at 4.

Variable g_flag remains unchanged (1), so the write

occurs at point 6 with invariants 1 and 2 maintained.

Case 2: [1-2][10-15][3-8]

In the interrupt handler, g_flag == 1 implies that

a write was in progress. The handler finishes the write at

points 11 and 12. Coherence permissions change, and

- 10 -

control returns to Write(). Write() then acquires

MSI_M permissions (needlessly, as the write has already

logically occurred during the previous MSI_M

permissions epoch). Write() observes

g_flag == 0, therefore it should not again write to the

variable. This case exhibits pathological performance, as

extra permissions are acquired but not used.

Case 3a: coherence == MSI_M [1-3][10-15][4-8]

Write() observes coherence == MSI_M at 3.

Immediately after, within INV_Handler(), the write is

completed on 10-12 as in Case 2. Upon reaching 5,

Write() observes g_flag == 0, thus the write has

already occurred.

Case 3b: coherence != MSI_M [1-3][10-15][4-8]

Write() observes coherence != MSI_M at 3.

Immediately after, within INV_Handler(),

coherence != MSI_M implies no write occurs.

Permissions change, the handler returns. Write()

observes insufficient permissions to continue, acquires

new permissions, and completes the write.

Case 4: [1-4][10-15][5-8]

In this case coherence == MSI_M after 4.

Write() continues as in 3a.

Case 5: [1-5][10-15][6-8]

Write() has observed g_flag == 1.

INV_Handler() observes g_flag == 1, completes

the write and relinquishes permissions. Upon returning

to Write(), x is again written. This cannot violate

consistency, because writes to variables are not

broadcasted, but lazily updated (under sequentially-

consistent engines). Since no corresponding Read()

call could have interposed, statement 6 does not affect the

value of x. Hence, either the invariant

g_temp == newValue or g_temp == x holds at

statement 6.

Case 6: [1-6][10-15][7-8]

Write() has written to x. INV_Handler()

observes g_flag == 1, and repeats the write. As in

Case 5, this write is redundant and cannot violate

consistency. Permissions change, INV_Handler()

returns. Write() completes, and returns.

Case 7: [1-7,8][10-15][8]

Logically, Write() has completed.

INV_Handler() relinquishes permissions and

returns. Write() returns.

For all cases, the write occurs logically once (or

subsequent writes are guaranteed to have no effect), and

each write occurs while coherence state is MSI_M. The

technique outlined here is used in both the ENGINE_OU

and ENGINE_MSI CE’s (note that the implementation of

ENGINE_NC need not consider this race), and in the

DSM_Lock object realization.

4. Methodology

To evaluate our DSM/IP implementation, we

executed our software on four heterogeneous x86/Linux-

based machines. To verify the correctness of our

implementation over the network, we developed a small

suite of microbenchmarks. Next, to evaluate performance

across applications with varying communication

demands, we developed three simulated workloads. We

tested each of the three engines outlined above in the

context of these workloads. Finally, for each

engine/workload pair, we varied the number of machines

in the cluster to analyze the performance of different

network configurations.

We originally intended our implementation to operate

on medium-sized networks of up to 128 workstations.

Unfortunately, we were unable to secure access to any

such networks due administrative difficulties. Our

DSM/IP implementation overwhelms a LAN to the point

of suppressing TCP/IP streams due to the large number of

UDP packets, which is undesirable for any public cluster.

The network administrators we consulted refused to allow

us access to their machines for this reason.

This setback allowed for the investigation of

heterogeneity in DSM/IP. The heterogeneity of our

network enabled us to evaluate the effects of adding a

slow computer to a fast cluster. Two questions raised by

heterogeneity are 1) Does adding a computer always

contribute to improving the performance of a network? 2)

If not, what is the threshold above which a computer must

perform to for it to be beneficial? Furthermore, it is

important to see how this answer varies across simulated

workloads.

To gather information, we utilized event counters and

cycle timers. By inserting counters into our code, we

could record important events, such as the number of

messages sent, the number of messages received, the

number of timeouts, et cetera. Furthermore, we used

high-granularity cycle timers to determine latencies of

key events, such as barrier latency and the time spent

waiting for responses to coherence requests.

4.1 Microbenchmarks

We used three microbenchmark to test for correctness

of our implementations. Since we had several coherence

- 11 -

engines and unpredictable network behavior, the

microbenchmarks were essential to ensuring correct

functionality of our implementation.

 The first microbenchmark, message_test,

attempts to overload the network backbone and produce

incorrect execution. From each thread, it sends a

specified (large) number of messages to the next thread in

rapid succession. This has the effect of generating many

more messages than might be expected for the same

number of threads under normal execution, and

empirically demonstrates the backbone’s ability to handle

large numbers of messages. The second

microbenchmark, barrier_test, iterates over a

specified (large) number of barriers to stress the

DSM_Barrier() mechanism. This puts maximal

pressure on barrier synchronization, as the previous

microbenchmark did for simple packet handling. The

third microbenchmark, lock_test, puts maximal

pressure on the DSM_Lock() primitive by using all

threads to acquire the lock and increment a global

variable simultaneously. If the configuration of the

network passed these three tests for large numbers of

iterations, we assumed the configuration was sufficiently

functional to use these primitives to build more significant

workloads.

4.2 Simulated workloads

 We developed three simulated workloads to evaluate

our DSM/IP implementation and to analyze it for

performance. The goal in developing the simulated

workloads was to represent workloads that might be run

in a multiprocessor environment. Furthermore, we chose

three applications that had varying levels of inter-node

communication. It is worth mentioning that our

implementations are relatively simplified, to facilitate

quick development.

The first workload we developed, sea, had the

highest level of inter-node communication. Sea is an

integer version of the popular OCEAN benchmark from

the SPLASH-2 suite [28]. A large array of integers is

used to estimate the temperature at a given locale in the

sea. As in OCEAN, we iteratively take averages of the

adjacent points in the sea in each direction. For

synchronization, we use the heavy-duty

DSM_Barrier() between iterations. The frequency of

interactions, and the division of sea locales across the

network generate large amounts of network

communication for this workload.

Our next workload, genetic, is a typical iterative

genetic algorithm, which represents a moderate level of

network communication. Using a distributed genetic

process to “breed” a specific integer from a random

population, it iterates in two phases. In the first phase, we

determine potential solutions from the most fit members

of the population, according to an evaluation metric. This

metric contributes to the “think time” of genetic, as it

does not access shared elements while evaluating a

population member. We opted to keep this think time

shorter than might be expected in a typical genetic

process, to stress network latencies. In the second phase,

we remove the least fit solutions from the population. We

use DSM_Barrier() for synchronization, as there is

still a significant amount of network traffic, and the two

phases require changing reader/writer roles between

threads.

Our final workload, xstate, is an exhaustive solver

for complex mathematical expressions. It is a compute-

intensive integer solver to find the zeroes of arbitrary

functions. It has the lowest level of network

communication, as most of the calculation is

accomplished without need for communication across

machines. We use a single DSM_Lock() primitive to

protect a globally shared array of solutions to the

multidimensional analysis performed by xstate, and a

single barrier for end-of-execution synchronization.

4.3 Timer Validation

High-resolution counters were used extensively in

this project, provided by the Intel ® x86 instruction

rdtsc. This instruction provides a 64-bit cycle-accurate

count of elapsed clock cycles since the counter was last

reset. Timer validation was performed using more

accessible but less accurate system calls, namely

gettimeofday() and sleep().

Figure 8 - Accuracy of rdtsc timer

- 12 -

More specifically, we observed that the value

returned by rdtsc instruction increases linearly in

time—thereby changes in the value returned by rdtsc

correspond linearly to actual time elapsed, and provides

reliable comparative values of elapsed time. We

performed this experiment for all machines on our

network, with similar results as presented below.

Figure 8 shows both the indicated time elapsed by the

cycle counter and the plot of a curved-fit line, with slope

and y-intercept as shown in the figure (here, “True

Elapsed Time” is given by the gettimeofday() call).

We observed in our experiments that measurements of

over one hour’s duration did not show error in measured

time in excess of one half of a standard deviation. We

also note that the best-fit slope corresponds precisely to

the clocking frequency of the host processor.

5. Experimental Results

We executed each simulated workload with each

coherence engine with 1-, 2-, 3-, and 4-machine network

configurations. The N=1 configuration is a special case,

and uses binaries that do not make calls to our DSM

implementation, for efficiency. We normalized all

execution times against the runtime of this uniprocessor

case. The execution times we examine are taken from the

parallel phases of the workloads, ignoring the startup

overhead of the DSM system and other initialization

times.

As we add additional nodes to the system, they are

added in order of decreasing performance. For instance,

for the N=2 configuration, the two highest-performance

machines participate in the computation. These machines

consist of an Intel ® Pentium IV 4.0 GHz-based machine

and an Intel ® Celeron 1.70 GHz-based machine. The

slower machines are both Pentium III-based, with

800MHz and 600MHz clock speeds.

5.1 Experimental Results for sea

From the runtime results for sea (Figure 9), we

make two major observations. First, as we increase the

number of machines operating on the workload, the

runtime decreases. This is an expected result.

Furthermore, we notice that the coherence engine has a

dramatic impact on runtime. Specifically, engines that

have the smallest communication overhead perform best

for this workload. On all network configurations, we

notice that ENGINE_MSI outperforms all other

coherence engines. ENGINE_MSI outperforms

ENGINE_OU on average by over a factor of 14. We also

observe that ENGINE_NC performs almost as well as

ENGINE_MSI, but without ensuring consistency. The

non-consistent engine suffers a performance penalty for

sea because it broadcasts on every write to a shared

element, and sea is write-intensive. A final observation

for sea is that we obtain speedup over the uniprocessor

case for ENGINE_MSI, regardless of the number of

nodes. Speedup is not achieved for ENGINE_OU.

The vastly inferior performance of ENGINE_OU can

be attributed to its frequent and naïve use of

communication with remote nodes to achieve total

load/store ordering. Our analysis of executions under this

workload show that ENGINE_OU spends 82% of its

execution time simply waiting for acknowledgements of

coherence messages. ENGINE_NC spends 10% of its

time waiting (due to barriers), and ENGINE_MSI spends

only 15% waiting.

Figure 9 – sea Results

5.2 Experimental Results for genetic

The results for genetic (Figure 10) show some

unexpected trends. We notice that an increase in the

number of machines participating in computation does not

necessarily yield an increase in performance. We attribute

this slowdown to the effects of our heterogeneous

network. When we add the third and fourth computers

(recall that these machines are inferior to the first two),

we observe that computation power they contribute does

not outweigh the communication overheads they

introduce. A similar, more dramatic effect is noted for the

third simulated workload. However, as with sea, the

choice of coherence engine still has a significant effect on

the runtime of the workload.

The percent time waiting for responses over the

network is 1% for ENGINE_MSI, 9% for ENGINE_NC,

and 20% for ENGINE_OU. These numbers are lower for

genetic than for sea, as the number of messages sent

is lower relative to computation time.

The only cases for which we obtain speedup with this

workload are those using the non-consistent engine with 2

and 3 nodes. Though the genetic results were not as

- 13 -

promising as the results for sea, they do lend some

insight into the behavior of our DSM/IP implementation.

Figure 10 – genetic Results

5.3 Experimental Results for xstate

 From the runtime results for xstate (Figure 11), we

make several observations. First, we notice speedup over

the uniprocessor case for all combinations of engines and

network configurations. Next, we see an even more

dramatic effect of the heterogeneity of the network. For

all coherence engines, as we increase the number of

machines in the network, performance degrades. We

observe that the average time spent in barriers grows

dramatically as we add more nodes. This indicates that

the fastest machines finish their computation quickly, then

must wait for the slowest machines to finish before

proceeding past the barrier.

We also observe that the coherence engine has little

effect on the runtime of this workload. In every case,

ENGINE_MSI performs slightly better than

ENGINE_NC; ENGINE_OU always lags behind the non-

consistent engine. However, the difference is less than 3

percent for all cases. This indicates that when execution

time is not dependent on communication, the choice of

coherence engine is largely irrelevant. This finding is

intuitive, as xstate is a workload dominated by

computation of local, unshared variables, and incurs

communication overhead only when a new solution has

been found.

Figure 11 – xstate Results

6. Summary

 We have presented an implementation of distributed

shared memory on clusters of workstations, connected via

an IP-based network. Our all-software system consists of

a communication backbone, and one of three coherence

engines. The CB is responsible for inter-machine

communication, and abstracts a reliable network on top of

the readily available UDP transport protocol. The

coherence engines use the message-passing abstraction

provided by the CB to implement shared memory, using

three different consistency models and coherence

strategies. A simple API for startup and synchronization,

built into the CB, is available as black-box primitives for

user-level code development.

 Evaluation of our system was performed on a small

network of four heterogeneous machines, running a

commodity operating system. We produced

microbenchmarks to test the functional correctness of

each coherence engine, and the communication backbone

itself. The benchmarks stressed our implementation

beyond the normal loads that are generated by DSM-

enabled processes, to validate the robustness of our

implementation.

For performance evaluation, we produced three

simulated workloads, with varying degrees of inter-thread

communication and synchronization. These workloads

are inspired by true scientific workloads, but are scaled-

down for manageability in a short timeframe. The

performance of the overall DSM/IP system was measured

for all combinations of coherence engine, workload, and

network configuration, using cycle-accurate timers and

event counters.

7. Concluding Remarks

 Let us conclude by first pointing out that, like others

before us, we observed application-dependent

performance in our DSM/IP implementation.

Performance seems to be closely linked to the amount of

communication inherent in an application. We observe

that sophisticated coherence protocols can partially

mitigate the effects of frequent communication. However,

communication is extremely latent, and applications

requiring a great deal of inter-thread interaction must

tolerate this latency under our implementation.

We further observe that the common case may incur

too much computation overhead. For each load and store

(abstracted as Read() and Write()), a quick execution

time is desirable. The execution time is determined by

how many instructions correspond to a Read() or

Write() function call, and whether the current node

- 14 -

has appropriate permissions. If a node does not have

sufficient permissions for execution of a request, it must

initiate network communication to obtain permissions to

read or write (for the consistent engines). In the best case,

when a node has sufficient permissions, a single load or

store becomes a function call and a check of coherence

state, which corresponds to roughly ten x86 assembly

instructions, depending on the coherence engine. In the

worst case, when we must obtain permissions from other

nodes, a single Read() or Write() can require from

one million to 100 million instruction times, depending on

the load of the network and the speed of the host

processor. We estimate that a single Read() or

Write() can take from 100-1000 instruction times on

average, depending on the workload.

Third, our implementation can achieve speedup on

small networks, though the improvement is marginal. It

would be interesting to examine how well our

implementation might perform on larger and/or

homogeneous networks.

We also conclude that a heterogeneous network is not

ideal for distributed shared memory implementations in

which one cannot easily scale work for less efficient

computers. If other machines in the network must wait

for the slowest to finish its work, this slow computer hurts

the aggregate performance of the cluster. One solution to

this problem is to assign smaller work sizes to weaker

computers. However, this solution is non-trivial, as much

information is needed a priori, such as which partition of

shared memory will be assigned to the slowest computers,

and how much work should be assigned to inferior

machines. It is possible to perform this division of labor

in the workload software, but our implementation cannot

guarantee that a particular logical thread will be bound to

the same node in each execution.

Despite these challenges, our user-level software

implementation of DSM/IP has shown speedup for

simulated workloads, even under strict consistency

models. Our implementation avoids incurring sharing

overhead for unshared local variables, and allows the user

to specify an arbitrary sharing granularity, instead of

using a fixed, large size. These and other optimizations

were instrumental in extracting parallelism from difficult

workloads.

References

[1] Sarita V. Adve and Kourosh Gharachorloo, “Shared Memory

Consistency Models: A Tutorial,” IEEE Computer, 29(12):66-76,

December 1996.

[2] C. Amza et al., “TreadMarks: Shared Memory Computing on

Networks of Workstations,” In IEEE Computer, 29(2): 18-28,

February 1996.

[3] Luiz Andre Barroso, Jeffrey Dean, Urs Holzle. “Web Search For a

Planet: The Google Cluster Architecture,” In: IEEE Micro,

23(2):22-28, March-April 2003.

[4] G. Cabillic and I. Puaut. “Stardust: an environment for parallel

programming on networks of heterogeneous workstations.” IRISA

Technical Report No.1006, April 1996.

[5] J. Carter et al., “Techniques for Reducing Consistency-Related

Information in Distributed Shared Memory Systems,” ACM

Transactions on Computer Systems, Vol. 13, No. 3, Aug. 1995, pp.

205-243.

[6] S. Damianakis, A. Bilas, C. Dubnicki, and E. W. Felten. “Client

Server Computing on the SHRIMP Multicomputer.” In IEEE

Micro, February 1997.

[7] M. Donahoo, K. Calvert. TCP/IP Sockets in C: Practical Guide for

Programmers. Morgan Kaufmann Publishers. San Diego, 2001.

[8] B. D. Fleish and G. J. Popek. "Mirage: A Coherent Distributed

Shared Memory Design." In: Proceedings of the 14th ACM

Symposium on Operating System Principles, 1989.

[9] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, P. Gauthier. “Cluster-

Based Scalable Network Services”, In: SOSP-16, October, 1997.

[10] Mark D. Hill James R. Larus, David A. Wood. “Parallel Computer

Research in the Wisconsin Wind Tunnel Project,” In: NSF

Conference on Experimental Research in Computer Systems, Jun.

1996.

[11] L. Lamport, “How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess Programs,” IEEE Transactions

on Computers, September 1979, pp. 690-691.

[12] K. Li. "IVY: A Shared Virtual Memory System for Parallel

Computing." In 1988 International Conference on Parallel

Processing, 1988.

[13] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of Idle

Workstations", In: Proceedings of the 8th International

Conference of Distributed Computing Systems, pages 104-111,

June, 1988.

[14] H. Lu, “Message Passing versus Distributed Shared Memory on

Networks of Workstations,” Master’s thesis, Rice University,

Tech. Report Rice Comp-TR-250, ftp cs.rice.edu under

public/TreadMarks/papers.

[15] Message Passing Interface (MPI) standard. http://www-

unix.mcs.anl.gov/mpi/

[16] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token Coherence:

Decoupling Performance and Correctness,” International

Symposium on Computer Architecture, June 2003.

[17] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable

Synchronization on Shared-Memory Multiprocessors.” In: ACM

Transactions on Computer Systems. February 1991, pp. 21-65

[18] L. Peterson, B. Davie. Computer Networks: A Systems Approach.

3rd Edition. Morgan Kaufmann Publishers. San Diego, 2003.

[19] Steven K. Reinhardt, James R. Larus, David A. Wood. “Typhoon

and Tempest: User-level Shared Memory,” In: ACM/IEEE

International Symposium on Computer Architecture (ISCA), April

1994.

- 15 -

[20] M. Schoettner, S. Traub, and P. Schulthess. “A transactional DSM

Operating System in Java.” In Proceedings of the 4th International

Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, 1998.

[21] A. Silberschatz, P. Galvin, G. Gagne. Operating System Concepts,

6th Edition. John Wiley & Sons, Inc. New York, 2002.

[22] E. Speight, H. Abdel-Shafi, and John K. Bennett. “An Integrated

Shared-Memory/Message Passing API for Cluster-Based

Multicomputing.” In Proceedings of the Second International

Conference on Parallel and Distributed Computing and Networks

(PDCN), December, 1998.

[23] E. Speight and J.K. Bennett. “Brazos: A third generation DSM

system.” In Proceedings of the 1997 USENIX Windows/NT

Workshop, pp. 95-106, August 1997.

[24] M. Stumm and S. Zhou, “Algorithms Implementing Distributed

Shared Memory,” Computer, Vol. 24, No. 5, May 1990, pp. 54-64.

[25] M. Swanson, L. Stoller, and J. Carter. "Making Distributed Shared

Memory Simple, Yet Efficient." In Proceedings of the Third

International Workshop on High-Level Parallel Programming

Models and Supportive Environments, March 1998.

[26] P. Sweazey and A. J. Smith, “A Class of Compatible Cache

Consistency Protocols and their Support by the IEEE Futurebus,”

In Proc. Thirteenth International Symposium on Computer

Architecture, June 1986.

[27] M. Wende, M. Schoettner, O. Schirpf, and P. Schulthess.

“Adopting the Internet Protocols in a transactional DSM Operating

System.” In Proceedings of the 4th. World Multiconference on

Systemics, Cybernetics and Informatics, Orlando, 2000.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The

SPLASH-2 Programs: Characterization and Methodological

Considerations” In: Proc. International Symposium on Computer

Architecture, June 1995.

Signatures

Dan Gibson

Chuck Tsen

