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Parallel programming is becoming an increasingly 

popular method of improving computer performance.  

Unfortunately, parallelized hardware remains expensive 

in the form of complicated symmetric multiprocessors and 

high-end server platforms.  To provide a more available 

platform for parallel execution, we revisit the topic of 

implementing distributed shared memory on networks of 

commodity workstations.  We discuss the implementation 

and evaluation of a distributed shared memory system, 

using existing Ethernet/IP-based networks for 

communication between logical threads.  Our 

implementation leverages user-space programming 

primitives to provide a software-only solution for 

executing parallel programs on commodity hardware and  

operating systems.  We demonstrate application-

dependent speedup over uniprocessor executions for 

simulated workloads, even on small networks.  We also 

observe the effect of heterogeneity in our network, and its 

significant performance impact. 

 

1. Introduction 
 

With commodity hardware becoming cheaper, and 

open-source, free operating system solutions such as 

Linux or FreeBSD gaining popularity, cluster computing 

has become commonplace for applications that exhibit 

large amounts of control parallelism.  Concurrent 

execution of batch jobs, as in Condor [13], and parallel 

servicing of web and other requests [3] dominates the 

cluster industry, employing inexpensive systems to 

achieve very high throughput rates.  Some cluster systems 

also employ otherwise idle cycles on workstations 

connected to a network to improve performance of batch, 

concurrent jobs. 

 

While some workloads can benefit from concurrently 

running processes on separate machines with little or no 

communication, many workloads do not have sufficient 

explicit parallelism to exploit concurrency in this manner.  

Some of these workloads can achieve speedup on 

networks of workstations using other cluster technologies, 

such as the MPI programming interface [15].  Under MPI, 

machines may explicitly pass messages, but do not share 

variables or memory regions directly.  For applications 

that do not easily lend themselves to the message passing 

programming model, the only other option for parallel 

execution is to run the workload on a large simultaneous 

multiprocessor computer, which supports shared memory. 

 

As an alternative to this approach, we present an 

implementation of distributed shared memory (DSM) that 

operates over networks of workstations.  Under our 

implementation, each node on a network can host a single 

thread that operates inside a larger pool of threads within 

a shared memory program.  Memory is identically named 

at the level of C++ source code, with all sharing details 

hidden by the implementation.  Additionally, we provide 

a mechanism by which the user can tune the sharing 

behavior and performance of the underlying DSM 

implementation by overtly specifying the sharing 

granularity.  This gives the opportunity to tailor sharing 

parameters to a given workload, or working set size. 

 

The challenges inherent in the creation of a 

distributed shared memory system over an IP network are 

great.  Firstly, the semantics of IP networks allow 

messages (packets) to be dropped if the network becomes 

congested, which implies that any implementation must 

account for the loss of an arbitrary packet.  Even the 

presence of QoS measures for network reliability cannot 

provide guaranteed packet delivery [7,18].  Only use of 

the TCP/IP transport protocol adequately hides packet 

loss, but the overhead of TCP/IP overhead is large, both 

in memory and execution time.  Furthermore, IP networks 

can deliver packets any time after they are sent, subject to 

network availability and buffering at routers and switches.  

This policy differs greatly from an in-order, fixed-latency 

interconnect. 

 

In addition to unreliability, IP networks are extremely 

latent compared to typical memory systems.  Round-trip-

times in the range of 100 µs are common in modern “fast” 

100M Ethernet.  Communication latencies can easily 

climb to hundreds of millions of execution cycles over IP 

networks.   

 

The sustained bandwidth of IP networks also does 

not compare to typical memories; typically 100M 

Ethernet will support approximately 12.5 MB per second 

in a sustained point-to-point connection.  This figure is 

separated by orders of magnitude from even mediocre 

commodity memories. 
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Perhaps most daunting, there exists no convenient, 

low-overhead mechanism to provide access to a 

consistent memory state on a remote machine, yet also 

preserve existing shared-memory programming binaries 

and source code functionality.  The most often employed 

mechanism to accomplish this sharing is the use of page-

level protection bits to automatically interpose on certain 

loads and stores to that page of memory.  However, this 

dictates page-granularity sharing, ignores the effect of 

unshared variables, and has significant execution 

overhead. 

 

Our solution accounts for these difficulties and 

demonstrates speedup among some simulated workloads, 

under both strict and relaxed consistency models.  The 

remainder of this paper is organized as follows: Section 2 

surveys prior work related to DSM over IP (DSM/IP); 

Section 3 describes the authors’ implementation of 

DSM/IP; Section 4 outlines the experimental methods 

used in the correctness and performance evaluation of 

DSM/IP; Section 5 presents performance results; Sections 

6 and 7 summarize our findings present concluding 

remarks. 

 

2. Related Work 
 

There have been many implementations of DSM on 

IP networks.  A common approach is to use the virtual 

memory system to provide a level of consistency 

checking in hardware, employing system calls to protect 

page-sized regions of programs.  Chief among the 

DSM/IP systems using this technique are Quarks (and its 

predecessor, Munin) [25], and TreadMarks [2].  The 

primary difference in these two implementations lies in 

their design philosophies—TreadMarks assumes a large 

computation overhead to attempt to reduce the IP 

communication overheads required by DSM.  In line with 

this philosophy, TreadMarks uses the UDP transport 

protocol for communication.  Quarks takes the opposite 

role, attempting to minimize the computational 

requirements of DSM/IP as much as possible, while 

allowing a greater degree of communication overhead.  In 

contrast to TreadMarks, Quarks uses a connection-

oriented communication scheme, TCP/IP. One of the 

greatest weaknesses of both Quarks and TreadMarks is 

the pre-defined granularity of sharing dictated by use of 

the virtual memory system (page-level sharing).  IVY 

[12] is another example of DSM/IP employing page-level 

sharing, but IVY enforces a single-writer, sequentially 

consistent programming model, where other 

implementations allow multiple writers.  Also falling into 

this category is StarDust [4], which, in addition to DSM, 

implements message passing [15]. 

 

Another popular approach to DSM/IP is in realm of 

operating systems.  Plurix [20,27] from the University of 

Ulm is a Java-based operating system that supports 

DSM/IP natively for Java applications.  The Java 

language is very conducive to DSM/IP, as it runs on a 

virtual machine monitor (VMM), which may change 

depending on the given operating system.  Thus, it is 

possible for multi-threaded Java code to run largely 

without modification under Plurix.  The Mirage system 

[8] is similar.  It is integrated into an existing operating 

system, and employs page-level sharing. 

 

The Brazos project at Rice University [22,23] 

represents another class of DSM over IP 

implementations—those that exist entirely in user 

program space.  Brazos executes on Microsoft ® 

Windows ® -based machines (as does an implementation 

of TreadMarks [2]) in a multi-threaded environment 

designed to hide communication latencies.  In place of IP 

broadcast, Brazos uses IP multicast, which has a slightly 

higher performance overhead than broadcast packets, but 

with the added benefit of improved scalability.  This also 

mandates the use of TCP/IP connections in Brazos.   

 

The SHRIMP multicomputer [6] is another example 

of commodity hardware used for DSM, but SHRIMP does 

not use an IP network.  Instead, it uses a SAN-like custom 

network to produce a more closely coupled cluster of 

independent x86/Linux based systems.  Communication 

among these nodes is based on the stream programming 

model, but has significantly less overhead than streams 

over IP networks. 

 

The consistency model varies widely among the 

systems listed above.  Popular among these is lazy release 

consistency, used by TreadMarks [2] and others.  Under 

this scheme, multiple writers to a given memory location 

are allowed, provided a final memory image is eventually 

built from the contributions of all writers.  Several 

systems have successfully implemented sequentially 

consistent DSM, including IVY [12] and Plurix [20,27].  

Quarks [25] uses a configurable consistency model, 

allowing release or sequential consistency. 

 

Our technique of syntax modification is similar to the 

Check-In/Check-Out annotations as described in [10].  

CICO semantics require the programmer to specify when 

memory regions are expected to be accessed, and what 

type of accesses will occur (read or exclusive).  These 

annotations enable simpler coherence protocols, but never 

change the correctness of a program.  They merely serve 

as “hints” that accesses of a certain type may occur in the 

near future, or that accesses to a particular region will not 

occur for some time. 
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Our implementation also shares some similar features 

to the Tempest project [10,19].   Under Tempest, the 

programmer makes use of explicit coherence 

organization, and is also provided message-passing 

primitives.  Tempest’s fine-grained access control and 

user-defined permissions allow a great amount of 

customization of sharing patterns among processors.  

Alternatively, Tempest allows programmers to use 

already written coherence policies, to reduce 

programming complexity. Tempest is a description of an 

interface, that does not assume any particular 

implementation. One such  implementation is Typhoon, 

described in [19]. 

 

In general, all of these DSM/IP systems have shown 

speedup for some classes of applications—those that 

tolerate communication latency well, and have course-

grained sharing between threads.   

 

3. DSM/IP Implementation 
 

We present a software-only realization of distributed 

shared memory, implemented as a user-level library.  In 

our system, each node maintains a copy of each shared 

memory region at all times.  At times, some portions of 

shared memory may be inaccessible, due to coherence 

and consistency requirements.  In general, shared regions 

are not page-aligned, and can be of arbitrary size.  The 

granularity of sharing can be selected by the programmer 

if desired as an optimization to their DSM-enabled 

software, or assigned automatically to optimize network 

traffic.   

 

3.1 API Overview 

 
Our implementation changes the manner in which 

shared memory regions are declared and accessed, using a 

very simple set of accessor and mutator methods.  Each 

shared memory region is declared as a C++ object, 

derived from a single SharedObject class.  Children 

of SharedObject include SharedInt, 

SharedIntArray, SharedFloatArray, etc.  Each 

object can be accessed through accessor function 

Read() or mutator function Write().  Thus, the syntax 

by which shared memory is accessed is different than that 

of normal variables in C++, but the semantics of read and 

write accesses are not changed.  Each Read() and 

Write() operation is atomic, and behaves according to 

the expectation of the programmer.  Note that these 

operations do not provide any additional 

synchronization—though primitives are provided for 

synchronization (below).  The use of explicit access and 

mutate functions allows user-level code (within our 

library) to perform coherence checks and any required 

network communication without intervention from the 

OS.  We note that it is possible to hide some uses of the 

accessor and mutator functions through use of operator 

overloading in C++, which would unify some syntactic 

differences.  We have not implemented this feature, as it 

would not be possible to provide both identical array 

reading and array writing syntax using this method, due to 

conflicts in the use of the [] operator in C++. 

 

At declaration points of shared memory regions, most 

object types allow the user to specify the granularity at 

which coherence information should be maintained.  This 

granularity determines the segment size, the size of the 

region protected by a single coherence state variable.  The 

segment size may vary from object to object, at the whim 

of the programmer.  In order to ensure that coherence 

messages are not too large, the DSM implementation may 

increase the granularity of sharing, to improve 

performance.  We have not explored the effect of 

variable-sized coherence granularity in our system’s 

performance, but we expect that there will exist an 

optimal sharing granularity on a per-workload, per-data 

set basis. 

 

In addition to providing shared access to memory 

regions, our API also provides lock and barrier 

synchronization primitives.  The DSM_Barrier() 

function guarantees that no thread executes subsequent 

instructions until all threads have arrived at the barrier.  

Class DSM_Lock() provides mutual exclusion 

functionality, with the usual lock acquisition and release 

semantics. 

 

As with many APIs, function calls are required to 

initialize the multithreaded environment and to gracefully 

exit the program.  After the initial setup call, 

DSM_Startup(), the requested number of threads 

begin execution immediately at the return point of the 

function, synchronized to within a single barrier delay.  

At that point, the only perceivable difference between 

logical threads (aside from residing on separate machines) 

is the value returned by DSM_Startup().  This value is 

a unique thread identifier, between zero and the number 

of threads minus one, inclusive. 

 

3.2 Library Implementation 

 
The DSM library is two-layered; the lower layer is an 

abstraction built from available UDP networking 

primitives, and is used by the upper layer for all inter-

machine communication—we refer to this layer as the 

Communication Backbone (CB).  The upper layer is the 

Coherence Engine (CE), which implements the shared-

memory functionality using the primitives provided by 

the CB.  The Read() and Write() functionality is 

provided by the coherence engine, while all other API 
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(synchronization and startup) is built directly into the 

communication backbone.  It is the coherence engine that 

determines the consistency model provided by the DSM 

implementation. 

 

 

Figure 1 - Interaction of engine, backbone, and user program 

 

3.2.1 Communication Backbone 

 

The CB is the means by which all inter-machine 

(inter-thread) communication occurs.  It is built from the 

UDP/IP networking interface, and is optimized for round-

trip time (RTT) on a local area network (LAN).  The CB 

extends the functionality of UDP to include guaranteed 

message delivery and at-most-once message delivery.  

Thus, the CB abstracts the IP network as a much more 

reliable interconnect.  This added reliability is necessary 

to provide arbitrary program consistency models.   

 

Upon receipt of a message, the CB delivers the 

received message and all data associated with it to a 

specified handler function, which is similar to an 

asynchronous interrupt.  These handlers include built-in 

functions in the CB to handle certain classes of message, 

and vectored handlers for each of the message types used 

by a given CE. 

 

The CB enables messages to be passed between 

threads using only the logical thread number as a 

destination address.  That is, the CB maintains a list of 

thread identifier to IP address/port mappings, which is 

established in the initial system synchronization phase.  

The details of network communication are hidden from 

the implementation of the coherence engines to provide 

modularity and to enable changes in the CE without 

reworking the CB.  Below, we outline how the backbone 

provides these abstractions. 

 

 

 

 

3.2.1.1 Packet Formatting, Thread-ID Addressing, 

Vectored Interrupts 

 

The CB operates on top of the usual UDP/IP 

interface, using the recvfrom() and sendto() 

system calls.  The CB forms an additional layer of 

abstraction, including its own specific message header 

fields in each packet.  Those fields are: 

 

• progID: A unique 16-bit integer associated 

with each DSM-enabled program.  This number 

is agreed upon out-of-band, in a globally visible 

dsm_setup file.  Use of this identifier allows, 

in theory, for multiple DSM-enabled programs to 

run concurrently, and prevents latent messages 

form previously run programs from affecting 

current executions. 

• msgType: A 16-bit integer specifying the 

message type associated with a given packet.  

This value is used primarily to vector interrupts 

to the CE and other supporting software.  The 

upper three bits are reserved for designating 

ACK, ACK_REQUESTED, and NACK (note: 

no CE implementations currently use NACKs). 

• dataLen: A 16-bit integer specifying the length 

of accompanying data in bytes.  DataLen is 

used for bookkeeping and the mechanics of the 

UDP/IP library interface. 

• retransNum: An 8-bit integer specifying the 

number of retransmissions allowable on this 

message.  No implementations currently employ 

this field; the default value is five. 

• frag: An 8-bit integer indicating the 

fragmentation state of packet, used for 

reassembly.  Note that sub-fragmentation is 

never needed, but fragmentation may occur if 

sending more than the number of bytes allowable 

by UDP/IP (1450). 

• seqNum: A 64-bit sequence number field.  Each 

thread has 2
64

 / N sequence numbers reserved for 

that thread, where N is the number of threads in 

the system.  Therefore, for our target systems (N 

on the range [1,128]), each thread can send 

around 144 quadrillion packets.  Given a typical 

round-trip-time (RTT) of 0.1ms,  this represents 

over nine million years of continuous packet 

transmission.  Hence, we do not check for the 

case of wrap-around of sequence numbers. 

 

Each of the above fields is filled in automatically by 

the CB, with the exception of the dataLen field, which 

is filled in by the CE.  The final formatting is shown in 

Figure 2. 
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Figure 2 - DSM/IP Packet Format 

 

The CB also provides a mapping of thread-identifier-

to-IP-addresses, that allows messages to be passed among 

threads, identifiable by logical thread number, instead of 

by specifying IP address and port information.  This 

mapping becomes available on the receipt of the first 

message from a given thread, namely the DSM_JOIN 

message.  This typically occurs during the HELLO phase 

of initial synchronization, described in subsequent 

sections. 

 

On each SendMessage() call or receive message 

event, the address mappings are accessed to determine 

either destination address or sender thread identifier.  That 

information is then passed to the vectored event handler 

for message receipt, or the UDP/IP interface via 

sendto().  This information is reflected in the 

corresponding packet’s IP and UDP message headers, 

respectively.  DSM relies upon the Linux operating 

system to cache physical Ethernet (MAC) addresses for 

machines, or to use the address resolution protocol (ARP) 

as needed [18]. 

 

When the CB receives a packet from the network, the 

backbone determines the message type by use of 

msgType field in the DSM header.  Based on this type, 

the CB then calls a specific message handler to handle the 

message.  Often, this message is delivered to the CE, and 

results in some change in the coherence state of the local 

machine.  In other cases, the message is intended for the 

synchronization API functions, or could be part of the 

initialization scheme.  In general, message handlers 

cannot be interrupted by subsequent messages—instead, 

interrupts are deferred until after the handler completes.  

However, network polling still occurs within 

SendMessage() primitives, even in event handlers, to 

prevent deadlock. 

 

3.2.1.2 Startup and Synchronization 

 

Before the parallel phase of a DSM-enabled program 

may begin, each thread must initiate communication with 

other threads to determine IP/port mappings, ensure the 

correct number of machines are participating, and 

establish synchronization between threads.  All of this 

functionality is implemented in the CB, via the API call 

DSM_Startup().   This call takes as parameters the 

argument stream of the currently running process and the 

desired number of processors to use for the workload.  

After DSM_Startup() returns, the requested number of 

processors are logically available, and each processor has 

logically “just exited” from DSM_Startup(). 

 

On entrance to this call, the local thread broadcasts a 

DSM_JOIN message on the network.  This is a unique 

broadcast message that expects only one response, from 

the first DSM process to enter the network.  This process 

is always mapped to thread identifier zero, and serves a 

special “server” purpose during initialization and during 

error conditions.  Thread zero is otherwise in a peer-to-

peer relationship with all other threads during normal 

execution. 

 

If the “server” thread responds, the response includes 

the local machine’s thread identifier for this execution and 

thread zero’s IP address/port information.  The local 

machine can then enter the HELLO phase, which is 

described in detail below. 

 

 

Figure 3 - Communication pattern of all non-zero threads during 

initialization 

If the server thread does not respond after a fixed 

number of randomized exponentially longer timeouts 

(totaling approximately 1.25 seconds), the local process 

assumes it is the first DSM-enabled process on the 

network.  It then enters server mode, and assumes thread 

identifier zero.   

 

Immediately after entering server mode, thread zero 

broadcasts a single DSM_WAKEUP message on well-

known port.  This message contains the number of threads 

requested, the name and program identifier of the binary 

to be executed, and the argument stream to the binary.  

We implemented a useful process-spawning daemon to 

listen for DSM_WAKEUP messages, and automatically 

fork() and exec() DSM-enabled processes as needed 

by a new “thread zero.”  These new processes arrive at 

their subsequent DSM_Startup() calls, and eventually 
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send DSM_JOIN messages, to which thread zero then 

responds. Figure 4 corresponds to the execution of the 

first thread’s initialization communication pattern in a 

DSM-enabled network. 

 

 

Figure 4 - Communication pattern of thread zero during initialization 

 

Note that more than the necessary number of threads 

may respond to DSM_WAKEUP with DSM_JOIN.  In 

general, for a request of N threads, there will be M 

DSM_JOIN messages inside of a small timeout period.  If 

M<N, then an insufficient number of threads have joined 

the system, and the API startup call fails.  If M≥N, thread 

zero sends thread identifiers inside DSM_JOIN_ACK 

messages to the first N threads to respond.  Subsequent 

DSM_JOIN messages (M-N in total) will receive 

DSM_JOIN_NACK responses, in which case the 

receiving process exits under normal conditions, as it is 

unneeded to fulfill the requested number of threads. 

 

Once at least N threads have been issued thread 

identifiers, thread zero initiates the HELLO phase 

(below).  From the above initialization, all threads have 

determined mappings for their local machines and thread 

zero’s machine, but do not have mappings for other 

threads.  The purpose of the HELLO phase is to 

“introduce” each thread to all other threads, through a 

series of handshakes. 

 

 

Figure 5 - HELLO phase operation 

 

Thread zero initiates the HELLO “free-for-all” with a 

special HELLO(0) message, which signals to all threads 

that all other threads are ready to begin the HELLO 

phase.  After receipt of the first HELLO(0) message, all 

threads then broadcast their own HELLO messages, 

roughly simultaneously.  Each of these messages reaches 

all other threads, thereby creating an IP/port mapping on 

receipt.  Once all N mappings are present on the local 

machine, a READY(j) message is sent to thread zero, and 

the local thread spin-waits until receipt of a second 

HELLO(0) message.  This second message is generated to 

signal the end of the HELLO phase, and is sent when all 

threads have valid IP/port mappings for all other threads 

in the system.  At this point, it is possible to send arbitrary 

messages between threads.  After completion of HELLO, 

threads enter a DSM_Barrier() synchronization 

function, to ensure that all threads leave 

DSM_Startup() at approximately the same time. 

 

3.2.1.3 Synchronization API Implementation 

 

Two synchronization primitives are implemented 

within the CB: DSM_Barrier() functions and 

DSM_Lock objects.  Barrier functionality is realized 

using one global integer at each node for each logical 

thread, indicating the last barrier at which a particular 

node has arrived.  Barrier arrivals are broadcast to all 

nodes on the network—as soon as all threads are observed 

at a given node to have arrived at the next logical barrier 
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number, the local thread exits the barrier.  Under this 

scheme, an  invariant exists such that all logical barrier 

numbers in the system differ at most by one at any time. 

 

DSM_Lock objects have two methods: Acquire() 

and Release().  A delicate correctness issue arises in 

the implementation of these functions, and is related to 

similar issues arising from the implementation of 

sequentially consistent coherence engines.  The 

Acquire() and functions Release() must be 

interruptible, as at any time the CB may handle an 

incoming message, which could include attempts to 

acquire or release a lock.  Specifically, there must be no 

opportunity for an incoming DSM_LOCK_ACQUIRE 

message to enable two or more threads to acquire a lock 

simultaneously.  Our general technique to avoid this class 

of problem is presented in subsequent sections, with 

emphasis on sequential consistency concerns relating to 

coherence engine realizations and race conditions. 

 

3.2.1.4 Guaranteed Message Delivery 
 

The communication backbone provides guaranteed 

delivery in the same manner as the TCP/IP transport 

protocol—through the use of explicit acknowledge 

messages.  The presence of these messages is mostly 

invisible to the coherence engine, so one-way 

communication appears as a single message.  In general, 

ACK messages are handled entirely in the CB, without 

calling any handlers in the CE.  However, since many 

coherence messages already follow the request/response 

model (i.e. a message requesting data), the CE may opt to 

use the ACK message to carry data. This data is not in 

turn protected by a subsequent ACK message—however, 

failed delivery of an ACK within a timeout period 

generates a retransmission. [18] points out that 

retransmissions are a potential source of multiple message 

deliveries.  This concern and potential side effects are 

addressed in subsequent sections.  As the case of message 

loss is very small under UDP/IP, this code addressing this 

case need not be extremely efficient, it need only ensure 

that in the event of packet loss, correct semantics are 

maintained.  If guaranteed delivery is enabled for a 

particular message, the SendMessage() call to the CB 

blocks until receipt of all expected ACK messages.   

 

UDP/IP was chosen primarily for its lower overhead 

as compared to TCP/IP [7,18,21], though UDP/IP also 

allows us to use ACK messages to carry data, which 

greatly decreases network response times.  This advantage 

is critical to network performance, as under TCP/IP at 

least four packets would be required to send round-trip 

messages, discounting connection startup overhead.  As a 

final added bonus, UDP/IP is a stateless protocol, which 

presents a simple “datagram” service.  TCP/IP is 

connection-based, which would require each node to 

maintain connections to all other nodes, which would 

limit system scalability [9,18]. 

 

3.2.1.5 At-most-once delivery 

 
In addition to guaranteed delivery, the CB also 

provides at-most-once delivery.  The intersection of these 

services is guaranteed-once delivery, the semantics often 

used in traditional SMP systems.   

 

To provide this and other services, the 

communication backbone implements additional header 

fields in addition to the usual UDP/IP header information. 

At-most-once semantics are easily achieved provided: 

• No two packets with equal seqNum fields are 

ever processed (that is, messages already 

processed should be ACKed but otherwise 

ignored). 

• All packets (including ACK packets) have a 

unique sequence number. 

 

The CB ensures both of these points, by tracking the 

last sequence number received from each host.  Incoming 

messages with lower sequence numbers have already 

been processed.  While it is possible for disagreement to 

exist between hosts about what a particular host’s next 

sequence number is (due to unicast messages), it is 

permissible to allow each host to track sequence numbers 

without synchronization. 

 

3.2.2 Coherence Engines 

 
We have implemented three different coherence 

engines (CE’s) using the communication and 

synchronization primitives provided by the 

communication backbone.  Each CE is described below in 

detail.  We have included both sequentially consistent 

engines and an engine that leverages weaker consistency 

models for improved performance.  Performance of the 

three engines is discussed further in section 5. 

 

3.2.2.1 ENGINE_OU: Naïve Sequential Consistency 

 

Sequential consistency as defined by Lamport [9] 

mandates that a total ordering of all reads and writes to a 

specific memory location must exist and correspond with 

the memory state of all participating threads, and this 

interleaving must maintain program order.  This can be 

implemented by servicing all read and write events to a 

particular location in the order they are received, one-at-a-

time, provided they are presented in program order.  As 

our DSM implementation is software-based, all read/write 

events already occur in-order—ENGINE_OU simply 

ensures that all reads and writes are serviced one at a time 

and at the same location. 
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Specifically, ENGINE_OU assigns to each shared 

segment a permanent thread owner, evenly distributed 

across all threads.  Each access (Read() or Write() 

call) to that particular segment must communicate with 

the owning thread, unless the owning thread resides on 

the local machine.  In this manner, a total ordering of 

loads and stores is generated at the segment’s owner.  

ENGINE_OU is very communication intensive, as nearly 

every access will generate network traffic. 

 

3.2.2.2 ENGINE_NC: Ignoring Consistency 

 

ENGINE_OU represents an extreme, literal 

implementation of sequential consistency.  ENGINE_NC 

follows the reverse philosophy: ignore all consistency 

models and simply make accesses as fast as possible.  

Under this engine, no coherence state is maintained 

whatsoever.  All Read() calls are serviced locally, using 

whatever value is present in local memory.  All 

Write() calls are simply broadcast to the network as 

notifications of updates—ENGINE_NC disables the CB’s 

guaranteed delivery mechanism to make the 

SendMessage() primitive non-blocking (and fast).  As 

a result, not only is there no ordering of memory accesses, 

but certain processors may never become aware of all 

other processor’s writes (due to lost packets), and final 

memory state is not guaranteed to be consistent across all 

machines.  This extreme form of non-consistency goes 

beyond the release consistency model presented in [1], 

earning the engine the name engine non-consistent, hence 

ENGINE_NC. 

 

It is important to note that no use of DSM_Lock and 

DSM_Barrier() primitives is sufficient to upgrade the 

consistency of ENGINE_NC.  Since ENGINE_NC allows 

coherence messages (write updates) to be lost, no 

guarantee exists that memory will ever reach a consistent 

state across all machines.   

 

3.2.2.2 ENGINE_MSI: Smarter Sequential 

Consistency 

 
Seeking stronger semantics than those of 

ENGINE_NC, but better performance than ENGINE_OU, 

we implemented an engine based on the MSI coherence 

protocol, as described in [26]. 

 

The basic MSI protocol uses three states to track 

memory read or write permissions at each node: 

MODIFIED (M), SHARED (S), and INVALID (I).  If a 

block of shared memory is in the M state at a given node, 

it has both read (Read()) and write (Write()) 

permissions to the data.  Memory in the S state has read 

permissions associated with it, but writes are not allowed.  

Nodes with memory in the I state have neither read nor 

write permissions for their data.  If a node needs to 

perform an operation for which it has no permissions, it 

must block and send a message over the network.  When 

it has received the proper number of responses, it can 

upgrade its permissions and proceed with its operation.  

The following invariants always hold for the MSI CE: 

 

1. If any node is in the M state for a given segment, 

all other nodes are in the I state for that segment. 

2. There is always at least one node in either the M 

state or the S state. 

 

We enhanced the MSI coherence protocol to make it 

run more smoothly on our DSM/IP system.  The main 

goal we had in mind when making enhancements was to 

ensure consistency, given the semantics of our 

communication backbone.  To achieve this, we keep track 

two extra pieces of “distributed-directory-style” 

information: 1) the number of total sharers of a given 

grain of data, and 2) whether a node exists somewhere on 

the network in the M state—we refer to this node as the 

“owner.”  This knowledge updated at each node when 

handling messages, and it is used to ensure the 

consistency of our implementation. 

 

To demonstrate how ENGINE_MSI saves bandwidth 

and how the “distributed-directory-style” information 

augments our protocol, consider a node which has a 

shared variable in the I state and needs to obtain read 

permissions by upgrading to the S state.  First, the 

upgrading node must broadcast an upgrade request to all 

nodes.  Every other node will increment the number of 

sharers for the segment, but will respond with a message 

only if it has the segment in the S state.  The upgrading 

node waits for n responses, where n is the number of 

sharers for the object as traced by the upgrading node.   

The upgrading node also checks that each sharing node 

returns a consistent value.  We could eschew this check to 

improve performance; we did not remove the check as 

additional, dynamic verification of invariant 1, above.  

Once the requesting node has received shared 

permissions, the data may be read (via Read() calls) 

without sending any additional messages over the 

network, which significantly reduces network traffic. 

 

To explain the necessity for keeping distributed-

directory-style information about segment “ownership,” 

consider the case when one node has data in the M state, 

and another node needs to obtain read permissions 

(upgrade from I to S).  To accommodate this change, the 

bookkeeping for the number of sharers must increase 

from 0 to 2 at each node.  To make this transition, each 

node must have knowledge of whether a segment is 

shared (in the S state remotely) or “owned” (in the M state 
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remotely).  This extra bookkeeping is necessary due to the 

unordered interconnect presented by the CB. 

 

3.2.3 Consistency Races 

 

The communication backbone leverages the user-

space interrupts provided by the Linux operating system 

to provide a mechanism by which incoming messages 

from the network can be serviced.  The single thread 

operating on the local node does not observe this 

transparent interruption, but the DSM implementation 

must be aware of its effects.  One concern is that 

coherence permissions may change shortly after a 

permissions check (as soon as a single instruction after), 

thereby raising concerns about consistency.  Since the 

communication backbone does not guarantee that 

implementations of Read() and Write() are atomic, 

they must account for this phenomenon (Note that the CB 

does guarantee atomicity of interrupt handlers).  Consider 

the code presented in Figure 6, which is a naïve 

realization of the Write() function and invalidate 

message handler for the MSI-based coherence engine (the 

OU engine uses a similar strategy).  For illustration 

purposes, let us assume that the functions AcquireM() 

and SendMessage() are atomic (In practice, 

SendMessage() is fully interruptible but is not 

interrupted in this case because it is called from an 

interrupt handler.  Regardless, this interrupt can be 

modeled as interrupts placed immediately before or after 

calls to SendMessage(). Furthermore, the 

implementation of AcquireM()’s functionality can 

simply use a heavyweight mechanism to ensure 

consistency, such as the disabling of interrupts.).  This 

example applies to other interrupt handlers that change 

coherence state, as well as to the invalidation handler as 

outlined. 

 
  void Write(int newValue) { 

1   if( coherence != MSI_M ) 

2     AcquireM(); 

3   x = newValue; 

4   return; 

  } 

 

  void Inv_Handler() { 

5   coherence = MSI_I; 

6   SendMessage(INVALIDATED); 

7   return; 

  } 

Figure 6 - Naive implementation 

Clearly, the intent of the Write() function is to 

ensure the variable x is in coherence state MSI_M at the 

time of the write.  However, observe that an interrupt by a 

competing Write() call on a remote machine could 

generate an invalidation message interrupt at program 

point 3.  The resulting ordering of statements is              

[1-2][5-7][3-4]. This interrupt leaves the                           

x = newValue statement unexecuted, while the 

function INV_Handler() gives up write permissions 

for variable x.  After the interrupt returns, the write to 

variable x occurs while coherence == MSI_I.  This 

is a clear violation of the desired consistency semantics. 

 

However, correct semantics are still attainable, 

allowing the Write() function to be interrupted.  Figure 

7 illustrates modifications to both Write() and 

INV_Handler() to ensure the desired invariants—that 

is, 1) writes occur exactly once, and 2) writes occur only 

in states that allow writing (MSI_M in this example). 

 
  void Write(int newValue) { 

1   g_temp = newValue; 

2   g_flag = 1; 

3   if( coherence != MSI_M ) 

4     AcquireM(); 

5   if( g_flag == 1 ) 

6     x = g_temp; 

7   g_flag = 0; 

8   return; 

  } 

 

  void INV_Handler() { 

10  if( g_flag == 1  

        && coherence == MSI_M) { 

11    x = g_temp; 

12    g_flag = 0; 

    } 

13  coherence = MSI_I; 

14  SendMessage(INVALIDATED); 

15  return; 

  } 

Figure 7 - Improved implementation 

The improved implementation above ensures both 

invariants.  Consider the following per-case illustrative 

proof (assuming an interrupt occurs sometime during the 

execution of Write() that invokes INV_Handler()): 

 

Case 1: [1][10-15][2-8] 

Assuming g_flag == 0 before Write(), 

newValue is unchanged and coherence != MSI_M 

at line 3, thereby write permissions are acquired at 4.  

Variable g_flag remains unchanged (1), so the write 

occurs at point 6 with invariants 1 and 2 maintained. 

 

Case 2: [1-2][10-15][3-8] 

In the interrupt handler, g_flag == 1 implies that 

a write was in progress.  The handler finishes the write at 

points 11 and 12.  Coherence permissions change, and 
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control returns to Write().  Write() then acquires 

MSI_M permissions (needlessly, as the write has already 

logically occurred during the previous MSI_M 

permissions epoch).  Write() observes              

g_flag == 0, therefore it should not again write to the 

variable.  This case exhibits pathological performance, as 

extra permissions are acquired but not used. 

 

Case 3a: coherence == MSI_M [1-3][10-15][4-8] 

Write() observes coherence == MSI_M at 3. 

Immediately after, within INV_Handler(), the write is 

completed on 10-12 as in Case 2.  Upon reaching 5, 

Write() observes g_flag == 0, thus the write has 

already occurred. 

 

Case 3b: coherence != MSI_M [1-3][10-15][4-8] 

Write() observes coherence != MSI_M at 3. 

Immediately after, within INV_Handler(), 

coherence != MSI_M implies  no write occurs.  

Permissions change, the handler returns. Write() 

observes insufficient permissions to continue, acquires 

new permissions, and completes the write. 

 

Case 4: [1-4][10-15][5-8] 

In this case coherence == MSI_M after 4. 

Write() continues as in 3a. 

 

Case 5: [1-5][10-15][6-8] 

Write() has observed g_flag == 1. 

INV_Handler() observes g_flag == 1, completes 

the write and relinquishes permissions.  Upon returning 

to Write(), x is again written.  This cannot violate 

consistency, because writes to variables are not 

broadcasted, but lazily updated (under sequentially-

consistent engines).  Since no corresponding Read() 

call could have interposed, statement 6 does not affect the 

value of x.  Hence, either the invariant                 

g_temp == newValue or g_temp == x holds at 

statement 6. 

 

Case 6: [1-6][10-15][7-8] 

Write() has written to x.  INV_Handler() 

observes g_flag == 1, and repeats the write.  As in 

Case 5, this write is redundant and cannot violate 

consistency.  Permissions change, INV_Handler() 

returns. Write() completes, and returns. 

 

Case 7: [1-7,8][10-15][8] 

Logically, Write() has completed.  

INV_Handler() relinquishes permissions and 

returns.  Write() returns. 

 

For all cases, the write occurs logically once (or 

subsequent writes are guaranteed to have no effect), and 

each write occurs while coherence state is MSI_M.  The 

technique outlined here is used in both the ENGINE_OU 

and ENGINE_MSI CE’s (note that the implementation of 

ENGINE_NC need not consider this race), and in the 

DSM_Lock object realization. 

 

4. Methodology 
 

To evaluate our DSM/IP implementation, we 

executed our software on four heterogeneous x86/Linux-

based machines.  To verify the correctness of our 

implementation over the network, we developed a small 

suite of microbenchmarks.  Next, to evaluate performance 

across applications with varying communication 

demands, we developed three simulated workloads.  We 

tested each of the three engines outlined above in the 

context of these workloads.  Finally, for each 

engine/workload pair, we varied the number of machines 

in the cluster to analyze the performance of different 

network configurations. 

 

We originally intended our implementation to operate 

on medium-sized networks of up to 128 workstations.  

Unfortunately, we were unable to secure access to any 

such networks due administrative difficulties.  Our 

DSM/IP implementation overwhelms a LAN to the point 

of suppressing TCP/IP streams due to the large number of 

UDP packets, which is undesirable for any public cluster.  

The network administrators we consulted refused to allow 

us access to their machines for this reason.   

 

This setback allowed for the investigation of 

heterogeneity in DSM/IP.  The heterogeneity of our 

network enabled us to evaluate the effects of adding a 

slow computer to a fast cluster.  Two questions raised by 

heterogeneity are 1) Does adding a computer always 

contribute to improving the performance of a network?  2) 

If not, what is the threshold above which a computer must 

perform to for it to be beneficial?  Furthermore, it is 

important to see how this answer varies across simulated 

workloads.   

 

To gather information, we utilized event counters and 

cycle timers.  By inserting counters into our code, we 

could record important events, such as the number of 

messages sent, the number of messages received, the 

number of timeouts, et cetera.  Furthermore, we used 

high-granularity cycle timers to determine latencies of 

key events, such as barrier latency and the time spent 

waiting for responses to coherence requests. 

 

4.1 Microbenchmarks 

 
We used three microbenchmark to test for correctness 

of our implementations.  Since we had several coherence 
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engines and unpredictable network behavior, the 

microbenchmarks were essential to ensuring correct 

functionality of our implementation. 

 

  The first microbenchmark, message_test, 

attempts to overload the network backbone and produce 

incorrect execution.  From each thread, it sends a 

specified (large) number of messages to the next thread in 

rapid succession.  This has the effect of generating many 

more messages than might be expected for the same 

number of threads under normal execution, and 

empirically demonstrates the backbone’s ability to handle 

large numbers of messages.  The second 

microbenchmark, barrier_test, iterates over a 

specified (large) number of barriers to stress the 

DSM_Barrier() mechanism.  This puts maximal 

pressure on barrier synchronization, as the previous 

microbenchmark did for simple packet handling.  The 

third microbenchmark, lock_test, puts maximal 

pressure on the DSM_Lock() primitive by using all 

threads to acquire the lock and increment a global 

variable simultaneously.  If the configuration of the 

network passed these three tests for large numbers of 

iterations, we assumed the configuration was sufficiently 

functional to use these primitives to build more significant 

workloads. 

 

4.2 Simulated workloads 

 
 We developed three simulated workloads to evaluate 

our DSM/IP implementation and to analyze it for 

performance.  The goal in developing the simulated 

workloads was to represent workloads that might be run 

in a multiprocessor environment.  Furthermore, we chose 

three applications that had varying levels of inter-node 

communication.  It is worth mentioning that our 

implementations are relatively simplified, to facilitate 

quick development. 

 

The first workload we developed, sea, had the 

highest level of inter-node communication.  Sea is an 

integer version of the popular OCEAN benchmark from 

the SPLASH-2 suite [28].  A large array of integers is 

used to estimate the temperature at a given locale in the 

sea.  As in OCEAN, we iteratively take averages of the 

adjacent points in the sea in each direction.  For 

synchronization, we use the heavy-duty 

DSM_Barrier() between iterations.  The frequency of 

interactions, and the division of sea locales across the 

network generate large amounts of network 

communication for this workload. 

 

Our next workload, genetic, is a typical iterative 

genetic algorithm, which represents a moderate level of 

network communication.  Using a distributed genetic 

process to “breed” a specific integer from a random 

population, it iterates in two phases.  In the first phase, we 

determine potential solutions from the most fit members 

of the population, according to an evaluation metric.  This 

metric contributes to the “think time” of genetic, as it 

does not access shared elements while evaluating a 

population member.  We opted to keep this think time 

shorter than might be expected in a typical genetic 

process, to stress network latencies.  In the second phase, 

we remove the least fit solutions from the population.  We 

use DSM_Barrier() for synchronization, as there is 

still a significant amount of network traffic, and the two 

phases require changing reader/writer roles between 

threads. 

 

Our final workload, xstate, is an exhaustive solver 

for complex mathematical expressions.  It is a compute-

intensive integer solver to find the zeroes of arbitrary 

functions.  It has the lowest level of network 

communication, as most of the calculation is 

accomplished without need for communication across 

machines.  We use a single DSM_Lock() primitive to 

protect a globally shared array of solutions to the 

multidimensional analysis performed by xstate, and a 

single barrier for end-of-execution synchronization. 

 

4.3 Timer Validation 

 

High-resolution counters were used extensively in 

this project, provided by the Intel ® x86 instruction 

rdtsc.  This instruction provides a 64-bit cycle-accurate 

count of elapsed clock cycles since the counter was last 

reset.  Timer validation was performed using more 

accessible but less accurate system calls, namely 

gettimeofday() and sleep().   

 

 
Figure 8 - Accuracy of rdtsc timer 
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More specifically, we observed that the value 

returned by rdtsc instruction increases linearly in 

time—thereby changes in the value returned by rdtsc 

correspond linearly to actual time elapsed, and provides 

reliable comparative values of elapsed time.  We 

performed this experiment for all machines on our 

network, with similar results as presented below. 

 

Figure 8 shows both the indicated time elapsed by the 

cycle counter and the plot of a curved-fit line, with slope 

and y-intercept as shown in the figure  (here, “True 

Elapsed Time” is given by the gettimeofday() call).  

We observed in our experiments that measurements of 

over one hour’s duration did not show error in measured 

time in excess of one half of a standard deviation.  We 

also note that the best-fit slope corresponds precisely to 

the clocking frequency of the host processor. 

 

5. Experimental Results 
 

We executed each simulated workload with each 

coherence engine with 1-, 2-, 3-, and 4-machine network 

configurations.  The N=1 configuration is a special case, 

and uses binaries that do not make calls to our DSM 

implementation, for efficiency.  We normalized all 

execution times against the runtime of this uniprocessor 

case.  The execution times we examine are taken from the 

parallel phases of the workloads, ignoring the startup 

overhead of the DSM system and other initialization 

times. 

 

As we add additional nodes to the system, they are 

added in order of decreasing performance.  For instance, 

for the N=2 configuration, the two highest-performance 

machines participate in the computation.  These machines 

consist of an Intel ® Pentium IV 4.0 GHz-based machine 

and an Intel ® Celeron 1.70 GHz-based machine.  The 

slower machines are both Pentium III-based, with 

800MHz and 600MHz clock speeds. 

 

5.1 Experimental Results for sea 

 

From the runtime results for sea (Figure 9), we 

make two major observations.  First, as we increase the 

number of machines operating on the workload, the 

runtime decreases.  This is an expected result.  

Furthermore, we notice that the coherence engine has a 

dramatic impact on runtime.  Specifically, engines that 

have the smallest communication overhead perform best 

for this workload. On all network configurations, we 

notice that ENGINE_MSI outperforms all other 

coherence engines.  ENGINE_MSI outperforms 

ENGINE_OU on average by over a factor of 14.  We also 

observe that ENGINE_NC performs almost as well as 

ENGINE_MSI, but without ensuring consistency.  The 

non-consistent engine suffers a performance penalty for 

sea because it broadcasts on every write to a shared 

element, and sea is write-intensive.  A final observation 

for sea is that we obtain speedup over the uniprocessor 

case for ENGINE_MSI, regardless of the number of 

nodes.  Speedup is not achieved for ENGINE_OU.  

 

The vastly inferior performance of ENGINE_OU can 

be attributed to its frequent and naïve use of 

communication with remote nodes to achieve total 

load/store ordering.  Our analysis of executions under this 

workload show that ENGINE_OU spends 82% of its 

execution time simply waiting for acknowledgements of 

coherence messages.  ENGINE_NC spends 10% of its 

time waiting (due to barriers), and ENGINE_MSI spends 

only 15% waiting.   

 

 

 
Figure 9 – sea Results 

 

5.2 Experimental Results for genetic 

 

The results for genetic (Figure 10) show some 

unexpected trends.  We notice that an increase in the 

number of machines participating in computation does not 

necessarily yield an increase in performance. We attribute 

this slowdown to the effects of our heterogeneous 

network.   When we add the third and fourth computers 

(recall that these machines are inferior to the first two), 

we observe that computation power they contribute does 

not outweigh the communication overheads they 

introduce.  A similar, more dramatic effect is noted for the 

third simulated workload.  However, as with sea, the 

choice of coherence engine still has a significant effect on 

the runtime of the workload. 

 

The percent time waiting for responses over the 

network is 1% for ENGINE_MSI, 9% for ENGINE_NC, 

and 20% for ENGINE_OU.  These numbers are lower for 

genetic than for sea, as the number of messages sent 

is lower relative to computation time. 

 

The only cases for which we obtain speedup with this 

workload are those using the non-consistent engine with 2 

and 3 nodes.  Though the genetic results were not as 
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promising as the results for sea, they do lend some 

insight into the behavior of our DSM/IP implementation. 

 

 

 
Figure 10 – genetic Results 

 

5.3 Experimental Results for xstate 

 

 From the runtime results for xstate (Figure 11), we 

make several observations.  First, we notice speedup over 

the uniprocessor case for all combinations of engines and 

network configurations.  Next, we see an even more 

dramatic effect of the heterogeneity of the network.  For 

all coherence engines, as we increase the number of 

machines in the network, performance degrades.  We 

observe that the average time spent in barriers grows 

dramatically as we add more nodes.  This indicates that 

the fastest machines finish their computation quickly, then 

must wait for the slowest machines to finish before 

proceeding past the barrier. 

 

We also observe that the coherence engine has little 

effect on the runtime of this workload.  In every case, 

ENGINE_MSI performs slightly better than 

ENGINE_NC; ENGINE_OU always lags behind the non-

consistent engine.  However, the difference is less than 3 

percent for all cases.  This indicates that when execution 

time is not dependent on communication, the choice of 

coherence engine is largely irrelevant.  This finding is 

intuitive, as xstate is a workload dominated by 

computation of local, unshared variables, and incurs 

communication overhead only when a new solution has 

been found. 

 

 
Figure 11 – xstate Results 

 

6. Summary 
 

 We have presented an implementation of distributed 

shared memory on clusters of workstations, connected via 

an IP-based network.  Our all-software system consists of 

a communication backbone, and one of three coherence 

engines.  The CB is responsible for inter-machine 

communication, and abstracts a reliable network on top of 

the readily available UDP transport protocol.  The 

coherence engines use the message-passing abstraction 

provided by the CB to implement shared memory, using 

three different consistency models and coherence 

strategies.  A simple API for startup and synchronization, 

built into the CB, is available as black-box primitives for 

user-level code development.   

 

 Evaluation of our system was performed on a small 

network of four heterogeneous machines, running a 

commodity operating system.  We produced 

microbenchmarks to test the functional correctness of 

each coherence engine, and the communication backbone 

itself.  The benchmarks stressed our implementation 

beyond the normal loads that are generated by DSM-

enabled processes, to validate the robustness of our 

implementation.   

 

For performance evaluation, we produced three 

simulated workloads, with varying degrees of inter-thread 

communication and synchronization.  These workloads 

are inspired by true scientific workloads, but are scaled-

down for manageability in a short timeframe.  The 

performance of the overall DSM/IP system was measured 

for all combinations of coherence engine, workload, and 

network configuration, using cycle-accurate timers and 

event counters. 

 

7. Concluding Remarks 
 

 Let us conclude by first pointing out that, like others 

before us, we observed application-dependent 

performance in our DSM/IP implementation.  

Performance seems to be closely linked to the amount of 

communication inherent in an application.  We observe 

that sophisticated coherence protocols can partially 

mitigate the effects of frequent communication. However, 

communication is extremely latent, and applications 

requiring a great deal of inter-thread interaction must 

tolerate this latency under our implementation. 

 

We further observe that the common case may incur 

too much computation overhead.  For each load and store 

(abstracted as Read() and Write()), a quick execution 

time is desirable.  The execution time is determined by 

how many instructions correspond to a Read() or 

Write() function call, and  whether the current node 
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has appropriate permissions.  If a node does not have 

sufficient permissions for execution of a request, it must 

initiate network communication to obtain permissions to 

read or write (for the consistent engines).  In the best case, 

when a node has sufficient permissions, a single load or 

store becomes a function call and a check of coherence 

state, which corresponds to roughly ten x86 assembly 

instructions, depending on the coherence engine.  In the 

worst case, when we must obtain permissions from other 

nodes, a single Read() or Write() can require from 

one million to 100 million instruction times, depending on 

the load of the network and the speed of the host 

processor.  We estimate that a single Read() or 

Write() can take from 100-1000 instruction times on 

average, depending on the workload.  

 

Third, our implementation can achieve speedup on 

small networks, though the improvement is marginal.  It 

would be interesting to examine how well our 

implementation might perform on larger and/or 

homogeneous networks. 

 

We also conclude that a heterogeneous network is not 

ideal for distributed shared memory implementations in 

which one cannot easily scale work for less efficient 

computers.  If other machines in the network must wait 

for the slowest to finish its work, this slow computer hurts 

the aggregate performance of the cluster.  One solution to 

this problem is to assign smaller work sizes to weaker 

computers.  However, this solution is non-trivial, as much 

information is needed a priori, such as which partition of 

shared memory will be assigned to the slowest computers, 

and how much work should be assigned to inferior 

machines.  It is possible to perform this division of labor 

in the workload software, but our implementation cannot 

guarantee that a particular logical thread will be bound to 

the same node in each execution. 

 

Despite these challenges, our user-level software 

implementation of DSM/IP has shown speedup for 

simulated workloads, even under strict consistency 

models.  Our implementation avoids incurring sharing 

overhead for unshared local variables, and allows the user 

to specify an arbitrary sharing granularity, instead of 

using a fixed, large size.  These and other optimizations 

were instrumental in extracting parallelism from difficult 

workloads. 
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