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Report on the Implementation of GASP Using Meta-Genetic Parameter Optimization 
 

Based on: 
[1] K. Shahookar and P. Mazumder.  A genetic approach to standard cell placement using 
meta-genetic parameter optimization.  IEEE Transactions on Computer Aided Design, 
9(5):500-511, May 1990. 
 
I. Overview 
 
The genetic technique for standard cell placement presented in [1] is a two-level, 
hierarchal random-search algorithm to find cell placements that have low routing cost.  
The lower level of the hierarchy consists of a genetic-based placement algorithm, taking a 
set of parameters and producing a locally optimal placement within the bounds of the 
parameters.  The upper level is another genetic optimization process, but optimizes 
parameters given to the lower level, rather than placement configurations.   
 

 
 
I.A. Genetic Algorithms 
 
In general, genetic algorithms operate on strings of data which each represent a solution 
to the given problem.  GAs maintain a dynamic population of solutions, usually “best” 
solutions, from which new solutions and future populations are formed.  The method by 
which new solutions are generated resembles the combination process of biological 
DNA, hence the term “genetic.”   
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To generate a new solution, two solutions are chosen from the population to serve as 
“parents” of the new solution.  The parents then undergo a process known as 
“Crossover,” in which some elements of each parent is given to the “offspring.”  The 
exact mechanism of crossover is implementation- and representation-specific, but the 
purpose of crossover is to allow each parent to contribute roughly half of its genetic data 
to its offspring. 
 
After the crossover process has completed, the new offspring will “mutate” with some 
probability (usually a parameter to GAs).  Mutation is intended to introduce new and 
untried genetic information into the population through random variation, just as 
biological mutation introduces variance in living populations.   
 
Once some number of offspring have been generated through crossover and mutation, the 
combined population of parents and offspring are evaluated.  The most fit members of 
this combined population are selected as potential parents of the next generation, and the 
algorithm continues iteratively.  Other solutions are discarded. 
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I.B. Genetic Placement 
 
Formulating the standard cell placement problem for use in a genetic algorithm depends 
entirely on the chosen representation of placements.  To apply the genetic algorithm, the 
solution space must be representable as strings or sets of strings—Shahookar and 
Mazumder describe the solution space (all feasible placements) as an unordered set of 
triples (one triple per cell) that enumerate a cell’s name (number), x-coordinate, and y-
coordinate.  A fourth quantity is used to quickly evaluate cell ordering (which otherwise 
would be determined from (x,y) coordinate pairs), but is not necessary for representation 
of the solution space.  The population consists of many such sets of ordered triples, which 
are initially generated at random. 
 
The use of unordered triples allows the authors to propose three different crossover 
operators: Order Crossover, PMX Crossover, and Cycle Crossover.  Cycle crossover was 
empirically determined to be superior to the previous operators in producing children of 
greater genetic value.  Only cycle crossover is included in this implementation. 
 
In the offspring created by cycle crossover, each cell is in the same position as in one of 
its parents.  If an arbitrary parent and position is chosen to begin with, this demands a 
cyclic progression.  That is, if cells A and B occupy the same position in either parent, 
then selecting cell A from the first parent to be in its original position also means that the 
child must inherit B’s position from that same parent.  Inheriting B’s position may further 
require that the child inherit cell C’s position as well, and so on.  This cycle ends when 
the non-chosen parent’s cell already exists in the new solution.  The role of the parents 
are then exchanged, and the crossover continues.  To illustrate, consider crossing over the 
following two placements: 
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Suppose the top parent’s first position is arbitrarily selected as a starting position.  Cell A 
from the top parent is copied to the offspring (1).  Because Cell I occupied position 1 in 
the bottom parent, the child must also inherit Cell I from the top parent, as in (2).  Cell I 
occupies position 9 in the top parent, which is occupied by Cell B in the bottom parent.  
Hence, Cell B is also inherited from the top parent (3) at position 2.   This cycle continues 
until (6), when the offspring inherits Cell H from the top parent at position 8.  Note that 
Cell A occupies position 8 in the bottom parent.  Cell A already appears in the offspring, 
so the role of the parents is reversed—the offspring will now inherit cell positions from 
the bottom parent.  In (7) the offspring inherits cell E at position 3 from the bottom 
parent, thereby forcing the offspring to also inherit Cells C, D, and G from the bottom 
parent in (8), (9), and (10). 
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Mutation takes two forms in Shahookar and Mazumder’s implementation of genetic 
placement.  The first of these is cell swapping: two cells’ positions in the placement are 
interchanged at random.  This form of mutation changes the placement represented by the 
unordered triple.  The second form is that of “inversion,” in which some portion of the 
array containing the unordered triples is reversed.  This reversal does not change the 
placement—only the representation thereof.  Inversion tends to allow genetic data to be 
interchanged differently during crossover than if no inversion had occurred. 
 
I.C. Meta-Genetic Optimization 
 
Genetic placement constitutes only the lower level of the meta-genetic placement 
hierarchy; the upper level is itself another genetic process.  In the higher level, the 
population consists of integer triples, representing crossover rate, mutation rate, and 
inversion rate variables that are passed to the lower level genetic placement algorithm 
during evaluation.  The quality of the solution returned by genetic placement determines 
the fitness of the integer triples, and is used to drive the evolution of the parameters 
passed to the genetic placement algorithm. 
 
Crossover of these triples is straightforward: the value of a given member of the triple for 
a new child is randomly chosen from the values belonging to the parents, with equal 
probability of selecting either parent.  Mutation is also straightforward—a value between 
[-2,2] is added at random to one of the members of the triple—thereby introducing 
potentially new triples at each mutation.  
 
As in the traditional genetic algorithm, individual fitness is used to determine which 
members of the combined population of parents and offspring will be used to produce the 
next generation of solutions.   
   
II. Compilation 
 
To compile: The command make in the presence of the implementation files will invoke 
the g++ compiler and linker as appropriate to generate the binary, genetic.  The code 
has been compiled and tested under Windows 2000 / MS-DOS and Linux 2.4.26 
environments, using the cl and gcc/g++ compilers, respectively. 
 
III. Data Structures 
 
In the genetic placement and meta-genetic portions of this implementations, the 
populations are represented as arrays of pointers.  The members of the populations are 
also represented as arrays—arrays of fixed length (3) for the meta-genetic case, and sets 
of four arrays of variable length in the case of genetic placement. 
 
This representation scheme is taken directly from the implementation described in [1].  A 
number of flag and storage variables were added to the representations to reduce 
redundant computation.   
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Arrays easily lend themselves to the genetic algorithm, due to their sequential, string-like 
access patterns.  Arrays are ideal for representing strings of genetic information, and 
greatly simplify crossover and mutation operations. 
 
IV. Pseudocode 
 
The pseudocode of the algorithm has been partitioned into two sections: one for genetic 
placement, and one for the higher-level meta-genetic optimization process: 
 
procedure MetaGenetic() 
 Given: Np – Number of members in the population 
        Ng – Number of generations 
        Rc – Crossover rate 
        Rm – Mutation rate 
 
1. population ← Np random triples 
2. Call Genetic() for each population member, 

a. Store the fitness of the placement returned as the 
population member’s fitness 

3. nGenerations ← 0 

4. nKids ← 0 
5. Select two random parents, A and B 
6. Perform crossover on A and B, produce child C[nKids] 
7. If( random < Rm ), Mutate C[nKids] 
8. nKids ← nKids + 1 
9. if(nKids < Np * (1 + Rc)) GOTO 5 
10. Call Genetic() for each child in C, 

a. Store the fitness of the placement retuned as the 
child’s fitness 

11. Add children C to the population of parents 
12. nRemovals ← 0 
13. Remove the least fit member of the combined population 

from the population 
14. nRemovals ← nRemovals + 1 
15. if( nRemovals < nKids) GOTO 13 
16. nGenerations ← nGenerations + 1 
17. if( nGenerations < Ng ) GOTO 4 

endprocedure MetaGenetic() 
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procedure Genetic() 
 Given: Np – Number of members in the population rate 
        Ng – Number of generations 
        Rc – Crossover rate 
        Ri – Inversion rate 
        Rm – Mutation rate 
1. population ← Np random placements 
2. Determine fitness of each population member (inverse 

wire length) 
3. nGenerations ← 0 
4. Perform inversion on Rc*Np members of the population at 

random 
5. nKids ← 0 
6. Select two parents A and B randomly with probabilities 

proportional to their fitnesses 
7. Perform crossover on A and B to produce child C[nKids] 

a. If( C[nKids] is a clone of A or B ), GOTO 6 
8. if( random < Rm ) Mutate child C[nKids] 
9. nKids ← nKids + 1 
10. if( nKids < Rc * Np ) GOTO 6 
11. Determine the fitness of all children in C (inverse 

wire length) 
12. Add children C to the population of parents 
13. nRemovals ← 0 
14. Remove the least fit member of the combined population 

from the population 

15. nRemovals ← nRemovals + 1 
16. if( nRemovals < nKids ) GOTO 14 
17. nGenerations ← nGenerations + 1 
18. if( nGenerations < Ng ) GOTO 5 

endprocedure Genetic() 
 
As is evident from the pseudocode, the key difference between the genetic placement 
algorithm and the meta-genetic optimization algorithm is that in the genetic placement 
algorithm the population consists of placements.  In the meta-genetic optimization 
algorithm the population consists of configurations.  The structure of the algorithms are 
otherwise identical. 
 
V. Structure and Organization 
 
The call stack of the implementation follows graphically below.  To narrate, the main 
function (in main_genetic.cpp) does some initial input parsing and checking, then begins 
keeping time.  Main() then calls metagenetic() (in metagenetic.cpp), which constitutes the 
top-level optimization described above.  Metagenetic() will make several calls to 
Genetic() in the course of its execution.  Genetic() (found in genetic.cpp) performs the 
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actual genetic placement, employing crossover and mutation functions Crossover(), 
Randomize(), Mutate(), and Invert() (all of which are found in placement.cpp). 
 
int main() 
 -Input parsing 
 -Start time 
 -Call Metagenetic() 
  -Do algorithm as described above 
  -Many calls to Genetic() 

- Do algorithm as described above 
    - Calls to: 
    - Crossover() 
    - Randomize() 
    - Mutate() 
    - Invert() 
   - Return best placement 
  -Keep track of best placement found 
  -Print the best placement 
  -Return 
 -Stop time 
 -Print running time 
 -Exit 
 
VI. Execution 
 
The implementation is command-line driven.  The binary executable genetic allows 
the user to specify parameters to the algorithm or to use built-in defaults.  A description 
of command-line options and syntax follows. 
 
Syntax: 
genetic –i <input filename> [<switch> <switch argument>] … 
 
Switch Argument Bounds Default Value 
-i Input file name <string> NONE 
-o Output file name <string> (terminal) 
-np Meta-Genetic population size [1,∞) 20 
-ng Meta-Genetic generations [1,∞) 10 
-npg Genetic population size [1,∞) 10 
-ngg Genetic generations [1,∞) 10 
-rc Meta-Genetic crossover rate [0.0, 1.0] 1.0 
-rm Meta-Genetic mutation rate [0.0, 1.0] 0.2 
-s Random seed [0, ∞) Time() 
-v Verbosity [0,10] 0 
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The last two switches allow the user to customize the para-algorithmic behavior of 
execution: specifying a random seed ensures deterministic execution, and verbosity 
specifies what information is printed to the specified output file.   
 
Verbosity Printed Information 

0 Meta-Genetic input parameters, final results, execution time 
1 Meta-Genetic and Genetic error conditions 
2 Meta-Genetic best solution updates 
3 Meta-Genetic initial solution fitnesses 
4 Meta-Genetic generated fitnesses and announcement of discarded 

configurations 
5 Detailed information of each child in Meta-Genetic 
6 Genetic() best solution updates 
7 Genetic() fitness of each population member 
8 Genetic() detailed fitnesses 
9 Genetic() placements of each population member 
10 Genetic() parameters passed from MetaGenetic() 

 
Note: Large specified verbosities cause increasingly larger output files and increasingly 
longer runtimes.   
 
Execution time varies greatly with the specified parameters.  In general, larger NG, NP, 
NPG, and NGG values tend to yield increased runtimes proportional to the square of the 
increase.  For large parameters, the most important parameter for determining runtime is 
verbosity, as large verbosities will result in many system calls and degrade performance.  
For best performance, leave verbosity at its default value of 0. 
 
VI.A. Suggested Executions 
 
To observe the meta-genetic optimization process, the following execution is suggested: 
genetic –i gen_10_1.txt –np 3 –ng 5 –v 4 
 
To observe the process of genetic placement, the following execution is suggested: 
genetic –i gen_10_1.txt –np 1 –ng 1 –npg 10 –ngg 5 –v 7 
 
To observe larger-scale interactions between the meta-genetic optimization and 
placement algorithms, the following execution is suggested: 
genetic –i gen_50_1.txt –v 4 
 
 
VII. Improvements 
 
An effective method to improve performance of the genetic algorithm is to ensure that the 
greatest amount of variation is present at any given time in execution.  The presence of 
diversity tends to cause maximal exploration of the available solution space in a 
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relatively short time.  To that end, I propose the following modifications to the algorithms 
presented above: 
 

1) Initial populations should not be generated randomly.  Instead, only the first and 
second population member should be generated at random.  Subsequent members 
of the initial population should be generated through anti-crossover.  The purpose 
of anti-crossover is to generate a solution that is genetically very different from its 
two parent solutions.  Anti-crossover could use mechanisms similar to but 
opposite of traditional crossover.  It may even be worthwhile to generate the 
initial population iteratively and genetically, employing anti-crossover in place of 
crossover and eliminating population members that are not sufficiently diverse. 

2) The genetic algorithm could be combined with the concept of simulated 
annealing.  While the temperature of the annealing process is “high,” the genetic 
algorithm is likely to allow inferior but more diverse solutions to remain in the 
breeding population, and may eliminate some superior solutions to maintain this 
diversity.  As the temperature “cools,” the genetic algorithm would be more and 
more likely to eliminate inferior solutions.  This would allow for a very rapid 
exploration of the solution space early in the algorithm, and more detailed 
examination in the final cycles of the algorithm. 

3) Instead of simply disallowing clones of parents as in the Genetic() procedure 
above, any generated clones should be automatically replaced with completely 
new, random solutions.  The automatic replacement of clones with random 
solutions should cause the genetic algorithm to “self-pollinate” with new genetic 
material as it is needed.  The same could be applied to the MetaGenetic() process, 
though it is less likely to “breed itself into a corner.” 


