
Report on the Implementation of the Kernighan-Lin Bi-Partition Algorithm

To compile: The command make in the presence of the implementation files will invoke
the g++ compiler and linker as appropriate to generate the binary, klpart.

I. Data Structures

Three distinct data structure type were used in the implementation of the Kernighan-Lin
bi-partition algorithm:

Arrays: I have used arrays in many places in my implementation of KL Bi-Partitioning

(hereafter KLPart). Chiefly these include lists of D-values and G-values, and the
representation of the partitions themselves.

Queues: In an attempt to mimic the pseudocode presented in the text, I opted to use a

queue data structure to track partition swapping in the inner loops of KLPart.

Matrices: To store the cost matrix, I opted to use a 2n x 2n matrix (essentially a 2n x 2n

array). Note that this matrix has size (#nodes)^2.

II. Pseudocode

The pseudocode of the algorithm is very similar to that of the text, and is briefly repeated
here:
1. Partition vertices V into A, B st. A union B = V and A intersect B is empty.
2. Compute Dv for all vertices.
3. Empty swap queue and set iteration = 1, set A’=A and B’=B, empty array G
4. Find some node pair ai,bi st. gi = Dai+Dbi-2caibi is maximal
 Store this value of gi in array G
5. Add the pair ai,bi to the swap queue, and remove the pair from A’ and B’
6. If A’ and B’ are not empty
 update Dv for remaining vertices
 increment iteration variable
 Goto 4
7. Find k st the sum of the first k values of array G is maximal, call this sum G_max
 If G_max > 0
 Make changes in swap queues permanent, and Goto 4
 Else STOP the algorithm

III. Structure and Organization

The call stack of the implementation follows graphically below. To narrate, the main
function (in klmain.cpp) does some initial input parsing and checking, then begins
keeping time. Main() then calls klpart() (in klpart.cpp), which performs the bipartitioning
algorithm described above. Klpart() is responsible for reading its data from the disk; it
does so by calling the readmatrix() function (in readmatrix.cpp). Throughout its

execution, klpart() uses IntegerMatrix and IntegerQueue objects to organize its data
(found in intmatrix.cpp and intqueue.cpp respectively).

int main()
 -Input parsing
 -Start time
 -Call klpart()
 -Call readmatrix()
 -Do algorithm as described above.
 -Return
 -Stop time
 -Print running time
 -Exit

IV. Running Time

The implementation’s running time is summarized in the table below. The table is
organized by OS, machine specifications, and running conditions. Note that for the runs
on CAE Unix machines, the nice command was used (by request of CAE) to give remote
and long-running jobs lower priority than real-time, and therefore likely negatively
affected running time.

 MS-DOS, PIII 800MHz,

128MB main memory
UNIX (niced),
sun-100.cae.wisc.edu

KL_2000_sparse.txt 138.279 seconds 318.354 seconds
KL_1000_dense.txt 747.214 seconds 1751.051 seconds

V. Improvements

It would be possible to improve (reduce) the memory requirements of the program by
noting that the cost matrix is transitive, that is Cij = Cji for all i,j. Therefore, a complete
2n x 2n matrix is not needed to store the cost matrix, only n(n-1)/2 elements. However,
for the simplicity of addressing a particular cost, the full 2n x 2n matrix was used. Note
that the matrix memory requirement is still quadratic in the size of the input.
Similarly, it would be possible to improve the performance by eliminating certain data
structures altogether: the G-array for instance. It would be more effective to simply track
which combination has given a maximal gain, rather than record each permutation and
then re-discover G_max.
Finally, the best way to speed performance of this implementation would be to eliminate
the descriptive output. Most of the algorithm’s running time is bound by I/O, and to
eliminate intermediate (descriptive) I/O would be to cut running time dramatically.

