
Dan Gibson

ECE/CS 757 HW 1

Due 2/7/2005

Program Descriptions

randmatrix:

A simple program that generates random square matrices of the specified dimension and

integer range. Usage:
randmatrix [N] [min_val] [max_val] > [output filename]

unimatrix:

A single-threaded, very simple matrix multiplier. The output of this program is the file

called “matrix.” This file is automatically overwritten on execution. Usage:
unimatrix [N] [infile1] [infile2] [infile3]

sharedmatrix:

A multi-threaded matrix multiplier, written in the shared memory programming model.

As with all the matrix multipliers, the output matrix is in the file “matrix.” This file is

automatically overwritten on execution. Usage:
sharedmatrix [numprocs] [N] [infile1] [infile2] [infile3]

This program is parallelized by assigning threads to calculate the values of rows of

matrices—each thread is responsible for one or more rows of computation. The program

requires no overt spin-locks, as in each epoch (separated by barrier statements) a given

element is either read-only (in the case of the source matrices) or written by exactly one

thread (in the case of the destination matrix). If there is no k for which N=k*P, then P is

automatically reduces to the first P for which such a k exists.

passingmatrix:

A multi-threaded matrix multiplier, written in the message-passing programming model.

This matrix multiplier uses file “matrix” for output—this file is NOT overwritten on

execution—it is appended. Between executions, one must execute rm matrix for

proper output. Usage:
mpirun.ch_shmem –np [numprocs] passingmatrix [N] [infile1]

[infile2] [infile3]

It should be noted that the mpirun.ch_shmem is necessary to execute

passingmatrix correctly. It can be located in the same directory tree as mpirun.

This program is parallelized by giving each process ownership of separate portions of the

matrices. The computational goal is A*B*C, which is implemented as R=A*B followed

by R*C—each process “owns” k rows of A and R, and k columns of B and C, where

k=N/P. The computations then proceed along column boundaries—the process that

“owns” the current column provides the column via message passing to all other

processes. Thereby, each process can compute a row of the result matrix per

communication.

Performance Analysis

The performance of the matrix multipliers was tested for data sets ranging from N=16 to

N=1024, where N denotes matrix dimensions of NxN. Each of the three input matrices

were generated randomly. The data was gathered on the machine suggested for use in the

homework description, cabernet.cs.wisc.edu. At the time that this data was

gathered, there were some 10-20 users on the test machine, accounting for around 30

processes on average. As a result, average execution times of the matrix multipliers is

somewhat unevenly skewed, but there is a general trend of speedup in the parallel cases.

In the case of the shared memory multiplier, a data size of N=1024 is required before the

multiplier reliably requires more than sixty seconds of execution, an average of 84

seconds over three runs. Improvements to the synchronization structure of the shared

matrix multiplier have reduces this runtime to 71 seconds on average, with quickest

execution at approximately 61 seconds. These improvements reduced the number of

barrier statements, and also improves the runtime of individual barriers.

Result of Empirical Testing

For all of the runtime tests below (except the uniprocessor case, naturally), 16 processors

were used for the shared memory program, and 16 processes were allocated for the

memory passing program. All execution times listed and plotted below are the result of

two-way averaging. Times are listed in seconds.

N Uni Shared Passing

16 0.009 0.581 0.497

32 0.079 1.366 0.248

48 0.245 1.378 0.465

64 0.606 0.36 0.86

80 0.13 0.42 0.822

96 0.218 0.467 1.09

128 0.597 0.504 0.777

256 0.485 1.15 3.592

512 55.614 8.884 9.426

1024 939.554 71.302 38.272

Appendix I

randmatrix

Appendix II

unimatrix

Appendix III

sharedmatrix

Appendix IV

passingmatrix

