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Abstract 

Branch prediction is of great importance to deep-pipeline design. Speculative execution is 

necessary to more fully utilize chip resources, and the need for issuing correct speculative 

instructions leads to demand for very accurate predictors. Single predictors have been successful 

in predicting branches with high accuracy for many workloads, though the increasing number of 

instructions in-flight demands increasingly more accurate predictors. Hybrid predictors show 

promise of fulfilling this demand, combining the capabilities of many individual predictors at the 

cost of increased predictor size. 

Phalanx is an implementation of a quickly reconfigurable hybrid predictor, intended to 

evaluate the effectiveness of many different predictor combinations. We have surveyed the 

effectiveness of several combinations of popular predictors against the SPEC2000 integer 

benchmark suite.  The total size of memory size allocated to branch prediction is fixed at 8 KB. 

Phalanx divides this space among sub-predictors.  Each configuration has been compared 

against its constituent predictors—each of which has been allocated memory equal to the 

combined size of all predictors in Phalanx. 

 

1. Introduction 

In modern processors, pipelines are growing deeper as design complexity increases. 

There are more instructions in flight due to high instruction issue rate, and it is becoming 

increasingly difficult to ensure that these instructions will reach the commit stage. One example of 

such processors is the Intel® Pentium 4, in which instructions can span as many as 20 pipeline 

stages. As a result, to avoid pipeline stalling for branch resolution, the amount of speculative work 

in the pipe becomes very large. Therefore, employing a high-performance branch predictor is 

critical to avoid wasting processor effort due to incorrect speculation. 

Currently, high-performance branch predictors can achieve around 97% accuracy for 

most workloads. The remaining 3% represents the misprediction rate, and can nonetheless result 

in substantial loss in performance due to the large number of instructions issued per cycle and 

the number of cycles these instructions are in the pipeline before an incorrect branch prediction is 
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resolved. In other words, branch prediction becomes a bottleneck of CPU performance, 

especially in deep-pipelined processors.  

The purpose of this project is to build and simulate several configurations of a 

comprehensive branch predictor, called Phalanx. This branch predictor is composed of several 

sub-predictors as well as a meta-predictor to select among these sub-predictors and make the 

final prediction of whether a conditional branch should be predicted taken or not taken.  Phalanx 

is intended to be used to evaluate many configurations, and does not tailor its multi-predictor 

architecture to any specific number of composition of sub-predictors. 

Through using many predictors, we hope to improve the prediction miss rate and 

therefore overall CPU performance. It has been shown that using two predictors [6,8,10] can 

reduce the miss rate associated with either constituent predictor evaluated independently to some 

extent. We will explore the more general case of using multiple (more than two) predictors in 

parallel. 

 

2. Related Work 

In general, Phalanx uses several combinations of the two-level predictors described by 

Yeh and Patt [1,2,3] and the bimodal predictor as in [5,6].  The two-level predictors use some 

number of branch history registers (BHR) indexing into pattern tables implementing two-bit finite-

state machines.  Specifically, Phalanx includes from the two-level family the global-address, 

global table (GAg) scheme, the  per-address history and global pattern scheme (PAg), the per-

address history and per-address pattern scheme (PAp), and gshare (GAg as outlined above, but 

using the least significant bits of the program counter under the xor operator with the BHR to 

provide the index).  

The bimodal predictor is not a member of the same two-level family. This scheme also 

implements a table of two-bit saturating counters to facilitate predictions on a per-address basis, 

but this table is indexed directly by the least significant bits of the program counter [5].  

Different branch prediction schemes have different advantages.  The notion of hybrid prediction 

has been explored in literature [6,7,8,9,10]. One hybrid predictor proposed by McFarling[6] uses a 
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combination of the bimodal and gshare predictors.  The combination of the gshare and bimodal 

predictors performs well using McFarling’s meta-prediction method. The result of McFarling’s 

experiment shows that this combination always achieves a higher prediction rate compared to 

either scheme alone, under the condition that the size of the hybrid predictor is three times as 

large as the size of the single predictors. McFarling also experimented with different divisions of 

resources among constituent predictors, giving the gshare predictor a greater portion of the 

available storage space. This combination also achieves higher accuracy than the single 

predictors, under the same assumptions. McFarling’s work shows that multiple branch predictors 

can be combined to achieve higher accuracy by keeping track of which predictor is more accurate 

for each individual branch. This scheme can reach around 98% accuracy for most workloads. [6] 

Other combinations of two-level adaptive branch prediction schemes were explored by 

Chang et al.[8] They used two-bit saturating counter predictor, Per-address address history and 

Per-set pattern (PAs), gshare and static predictor. PAs is a variation that combines the features of 

PAg and PAp. The combinations include: gshare and two-bit saturating counter, gshare and static 

prediction, gshare and PAs, PAs and two-bit saturating counter, PAs and static, as well as gshare 

alone as a control. The result shows that the combination of gshare and PAs performs the best 

among other combinations. However, since PAp is proven to perform better than PAs [3], we 

have elected to include PAp in Phalanx instead of PAs. 

Additionally, some work has been done by Patil and Emer [10] in combining inexpensive 

stateless branch predictors with stateful predictors.  The focus of this work was on the effect of 

aliasing that arises in many common stateful prediction schemes.  Static predictors are by 

definition immune to this effect. 

 

3. Phalanx 

The Phalanx project was intended to explore the idea of combining multiple (more than 

two) branch predictors to form a single, large hybrid predictor design. Hybrid predictors employing 

two sub-predictors have been very successful [6], although the exploration of multi-predictor 

hybrids has not enjoyed the same degree of success. There are many challenging and 
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performance-affecting considerations when designing and implementing multi-predictor hybrids; 

chief among these are resource division, predictor overlap, and meta-prediction (the heuristics by 

which a prediction is selected from a pool of predictors). Phalanx explores the effects of overlap 

and prediction strategies, using combinations of stateful, two-level adaptive branch prediction 

strategies (GAg, PAg, PAp, gshare) [1,6] and the bimodal predictor [5,6]. Phalanx attempts to 

divide resources (approximated by the number of bits used in storage elements) as equally as 

possible among constituent predictors, subject to total available space, and rounding each 

predictor’s size to appropriate powers of two, for addressability. 

Each Phalanx configuration is a hybrid branch predictor consisting of a combination of 

commonly used predictors operating in parallel to generate predictions. Since Phalanx is intended 

to evaluate many different configurations (inclusions of sub-predictors) rapidly, Phalanx uses 

meta-prediction schemes that can be applied to an arbitrary number of constituent branch 

predictors. This approach differs from that of many other hybrid implementations in that the meta-

prediction scheme is not tailored to each individual inclusion configuration, but allows rapid 

changes in predictor arrangement with very little modification to the meta-prediction mechanism. 

Specifically, Phalanx employs two meta-predictors that vary significantly in philosophy and 

implementation.   

The first of these meta-predictors uses a weighted voting method to select a predicted 

path at each branch. Under this scheme, every predictor included in Phalanx is assigned a 

numeric confidence. The confidence is a two-bit saturating counter, incremented whenever a 

constituent predictor predicts a branch correctly, and decremented on incorrect predictions.  

When predictions are requested, each sub-predictor is granted a voting weight according to the 

predictor’s current numeric confidence. In effect, the resulting prediction—branch taken or not 

taken (T/NT)—depends solely on which of T/NT receives the greatest combined voting weight 

from all constituent predictors.   

It is possible under the Phalanx – Majority Vote scheme (described above) for ties to 

occur. We have opted to always break ties in favor of a taken prediction, although this is another 

policy decision to consider. Other heuristics may be of use here, including backward-T/forward-
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NT, or to simply favor a particular predictor over another in the event of a tie. One of the 

advantages of the Phalanx – Majority Vote scheme is that it allows predictor confidence to 

change quickly. The size of the confidence values allows confidences to quickly adapt in 

response to changes in predictor success rates, given a weighting method that uses confidence-

based voting (i.e. voting weights vary with confidence). This advantage is shared by the other 

meta-prediction scheme implemented in Phalanx. 

The Phalanx – History meta-predictor uses 16-bit shift registers to record the correctness 

of the last 16 predictions for each of the constituent predictors. Based on these histories, the 

currently best-performing predictor is selected to provide all branch predictions. The predictions of 

all other sub-predictors are ignored for the purpose of deciding the overall prediction determined 

by Phalanx—though predictions are nonetheless checked for correctness when the branch is 

resolved.  The history registers are updated whenever a branch instruction is resolved, and its 

final address is known. 

Phalanx – History defines the “best performing predictor” as the predictor that has the 

longest run of 1’s in its history register, starting with the least-significant bit. This equates to the 

predictor that has been predicting most consistently correctly in recent execution (i.e. the last 16 

branches). As in the case of the Phalanx – Majority Vote meta-predictor, ties are possible.  Tie 

resolution is decided by population count—for two or more predictors with the same length run of 

correct predictions in the LSB positions in respective history registers, the “best performing 

predictor” is defined as the predictor with the greatest number of 1’s in its history register.  In the 

event of ties in population count as well as longest run, the predictor is chosen arbitrarily (for the 

simulation, we select the first predictor defined in the configuration file).   

The fundamental difference between the Phalanx – Majority Vote and Phalanx – History 

meta-predictors is that Phalanx – Majority Vote uses the predictions of all constituent predictors to 

determine the prediction for a given branch, whereas Phalanx – History relies only on the 

prediction of a single predictor that has performed well in the recent past. Phalanx – Majority Vote 

employs all available resources for each prediction and quantifies predictor agreement.  Phalanx 
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– History uses only the best-performing resources for each prediction, sacrificing predictor 

agreement. 

The earliest versions of the Phalanx predictors employed both stateful and stateless 

predictors, and simple meta-prediction schemes selected among the predictors.  It quickly 

became evident that while stateless predictors are simple (and inexpensive, in terms of on-chip 

area requirements) they cannot individually produce consistently accurate predictions. The most 

accurate of the stateless predictors examined was much less accurate than even the most 

rudimentary of the stateful predictors considered for inclusion in the Phalanx project. Moreover, 

the correct predictions of some stateless predictors approximate subsets of the correct 

predictions of stateful predictors—including such predictors would not likely improve correct 

prediction rates. Because of these two observations, Phalanx includes only stateful predictors. 

 

4. Implementation Details 

The Phalanx predictor was implemented for simulation purposes using the SimpleScalar 

3.0d branch prediction simulator, sim-bpred.  The SimpleScalar suite offers a variety of 

simulation tools, including an out-of-order execution simulator, on which we originally intended to 

evaluate the Phalanx predictor.  The validity of the branch prediction statistics produced by the 

out-of-order simulation engine (sim-outorder) fell into question during initial development of 

Phalanx, and work on the out-of-order simulator was abandoned.  As a caveat against future 

work using the SimpleScalar 3.0d out-of-order engine for branch prediction studies, the 

implementation of the branch prediction interface is not complete.   

Specifically, special-purpose values and incomplete parameter definitions prevent the 

out-of-order engine from allowing predictions of arbitrary addresses.  Predictors not employing 

branch target buffers (BTBs) are artificially handicapped by incomplete or nonexistent definitions 

of branch targets. Stateful predictors with BTBs are also handicapped by this effect, but only until 

the BTBs have been populated with meaningful values after the warm-up period. These values 

are supplied by the update stage of the branch prediction system in SimpleScalar, which 

produces correct results. Since stateless predictors take no action during the update phase, the 
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correct data passed to the branch prediction subroutines only benefits stateful predictors.  

Unfortunately, a further effect on stateful predictors is that warm-up periods are artificially 

extended by the incorrect information provided by the out-of-order engine—the predictors are 

unable to produce meaningful address predictions for most branches in the early stages of 

execution. The branch prediction simulator (sim-bpred) in SimpleScalar 3.0d does not exhibit 

the same incorrect behavior as the out-of-order engine, although it produces only branch 

prediction statistics (it produces no performance statistics, i.e. instructions per cycle). 

The net effect of sim-outorder’s shortcomings is that all stateless predictors behave 

identically to the static predict-not-taken predictor. Less noticeably, stateful predictors experience 

longer warm-up times as compared to those exhibited by the same predictors and benchmarks 

under sim-bpred. 

Additional effort was spent to allow the Phalanx implementation’s constituent predictors 

to share a single branch target buffer logically within SimpleScalar, although this led to 

significantly longer simulator execution times—the final implementation allows each predictor use 

of an exclusive BTB (of uniform size across all predictors) and simplifies the overall system.  In a 

true implementation, these target buffers could be combined into a single buffer, since the 

contents each of the buffers instantiated in the simulation engine remains identical throughout 

execution, as each sub-predictor is updated with the same branch targets as every other 

predictor. 

 

5. Simulation and Results 

5.1 Simulation Methodology 

Phalanx was simulated using the SPEC2000 integer benchmark suite for the Alpha 

instruction set.  This SimpleScalar (sim-bpred) simulator’s strength is that it produces branch 

prediction rates quickly when compared to the number of dynamic instructions executed.  Using a 

set of scripts to standardize simulation across four meta-prediction schemes and ten different 

configurations (inclusion) of Phalanx, we simulated for fifty million instructions on each of our 

benchmarks: gzip, vpr, gcc, mcf, crafty, eon, vortex, bzip2, timberwolf.  The principle behind our 
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simulation methodology was to distill a set of consistent, analyzable data, from which we could 

draw insightful conclusions. 

To focus on the effect of different predictor schemes, we fixed several variables across 

these simulations.  The most important of these was the 8kbit size of the predictor.  This predictor 

size reflects sizes that could be used in future processors with deep pipelines.  This size applies 

both to the Phalanx hybrid predictor and the single predictors it was measured against.  That is, a 

Phalanx configuration using four sub-predictors will have four predictors of roughly 2kbit size, but 

single predictors (used for comparison) will be sized to 8kbit.  Furthermore, for history-based 

meta-prediction, we fixed the history register length at 16, and voting-based meta-prediction fixes 

confidence size at two bits per predictor. 

5.2 Inclusion Schemes / Naming Conventions 

For our simulations, we devised a 5-bit nomenclature for our inclusion schemes.  In this 

scheme, each simulation is associated with an inclusion scheme by a bit vector.  If we include the 

sub-predictor in Phalanx, we set the corresponding bit in the bit vector.  Binary 1 denotes 

included, 0 denotes excluded.  From left to right, the bits denote the following predictors: GAg, 

PAg, PAp, gshare, bimod.  For example, the Phalanx configuration 10110 uses sub-predictors 

GAg, PAp, and gshare.   

We did not simulate all 32 possible combinations of inclusions schemes.  Based on our 

initial simulations, we were able to draw some conclusions about which inclusion schemes would 

be redundant.  We believed that simulating all 32 schemes would yield a great deal of redundant 

information.  The inclusions we simulated were selected such that most configurations represent 

hybrids that include both two-level and bimodal predictors, and the majority of configurations 

include more than two sub-predictors.  We opted not to include most of the three-predictor 

combinations that include the GAg predictor, as initial benchmarking indicated that this predictor 

hinders performance when included in Phalanx.  For comparison, we also opted to include the all-

inclusive predictor (11111), and the all-inclusive two-level predictor (11110).  

1. 00011 (gshare + bimod) 
2. 00101 (pap + bimod) 
3. 00111 (pap + gshare + bimod) 
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Phalanx 00101
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4. 01001 (pag + bimod) 
5. 01011 (pag + gshare + bimod) 
6. 10001 (gag + bimod) 
7. 10011 (gag + gshare + bimod) 
8. 11100 (gag + pag + pap) 
9. 11110 (gag + pag + pap + gshare) 
10. 11111 (gag + pag + pap + gshare + bimod) 

The naming conventions used in the following sections represent the overall Phalanx 

configuration used to produce the given results.  These names consist of the bit vector 

representation of the inclusion scheme (or the names of single predictors, if applicable), followed 

by either MV (denoting use of the Phalanx – Majority Vote meta-predictor) or H (denoting use of 

the Phalanx – History meta-predictor), followed by four hexadecimal digits.  These digits denote 

the voting weights of increasing confidences used by the Phalanx – Majority Vote meta-predictor.  

These digits are meaningless for results of the Phalanx – History meta-predictor. 

5.3 Simulation Results 

When assimilating data for our 

analysis, we compared Phalanx’s 

performance to the performance of its 

constituent predictors of the same total 

size as the hybrid predictor. (A complete 

set of charts and tables for our results can 

be found in Appendices A and B.) For 

example, as shown in the chart, when 

evaluating the Phalanx 00101 configuration, we compared the performance of the hybrid to the 

performance achieved by its sub-predictors, bimodal and PAp, when each is run as a single 

predictor.  The first observable result is that the Phalanx inclusion scheme had a dramatic effect 

on prediction rate.  Some Phalanx configurations we achieved strong performance, yet others 

had extremely poor performance compared to the single predictors.  The configurations that 

produced the most- and least-accurate predictions are discussed below.   
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Comparing Metaprediction Schemes for Phalanx 00011
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Another interesting result is that no Phalanx inclusion scheme was ever able to 

significantly outperform the best predictor of comparable size.  Meta-prediction was never able to 

combine the predictions of the sub-predictors to yield an improvement over a single predictor of 

the same size. 

Furthermore, we compared the 

results from the Phalanx – Majority Vote 

and Phalanx – History meta-predictors, 

given a specific configuration of 

Phalanx.  Phalanx used four different 

meta-prediction schemes (three of 

which are based on the Phalanx – 

Majority Vote meta-predictor).  The performance of the meta-predictors is not clearly 

distinguishable in most cases, gives us evidence that meta-prediction schemes are less important 

than other variables in combined branch predictors. 

Lastly, we compared results of simulations for 5M instructions versus 50M instructions.  

The purpose of this comparison was to determine how our predictors warm-up rate varied against 

those of the constituent predictors.  The notable result here is that as the number of instructions 

increases, the larger constituent predictors degrade in performance more significantly than that of 

the Phalanx predictors for the inclusion schemes shown.  While Phalanx’s performance also 

degrades, it does not degrade to as great an extent as the single predictors.  This result will be 

examined in more detail below. 

 

6 Conclusions 

Although the performance of the Phalanx predictors was not as high as we anticipated, 

we were able to draw many conclusions based on our results.  Here we present our conclusions 

on meta-prediction and inclusions schemes. 
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6.1 Combinations of Predictors 

The best-performing configuration observed from our experiments is 00101 (PAp + 

bimod).  Although this configuration never outperforms the best single predictor of the same total 

size for a given benchmark, it consistently performs well.  Not surprisingly, this is a combination 

similar to McFarling’s combined predictor.  The worst-performing configuration observed from this 

experiment is 11111 (PAp + PAg + GAg + gshare + bimod), the all-inclusive predictor.  This 

configuration consistently performs poorly, often the worst across a given benchmark. 

Firstly, we consider why 11111 is the worst predictor.  It seems counter-intuitive that the 

predictor with the most constituents performs poorly.  However, there is a logical explanation for 

this phenomenon.  Since Phalanx limits total size to a fixed number of bits, each additional 

constituent predictor that is added to Phalanx causes each other sub-predictor to sacrifice 

storage space to accommodate the new sub-predictor. This, in effect, makes every other sub-

predictor less intelligent.  Furthermore, overlapping predictors perform redundant work, which 

detracts from the usefulness of each predictor.  Including all four of the two-level predictors has 

the dual effect of small predictor storage sizes combined with redundant information in the 

various predictors. 

In general, the performance of a Phalanx predictor performance can be predicted, 

considering two broad observations: 

1. Fewer, smarter predictors are better than many, less intelligent predictors 

2. Minimize redundant predictions—Increase predictor diversity 

The first observation is that Phalanx inclusion schemes with fewer predictors generally 

outperform those that include a greater number of predictors.  Essentially, the greater the number 

of sub-predictors, the less information a given predictor may use to predict branches.  This 

observation is analogous to a scenario where a few experts compete against many novices in a 

contest.  The experts not only have are more well-informed than the novices, but they will reach 

consensus more quickly.  The same is true with predictors in Phalanx.  Most inclusion schemes 

with two sub-predictors outperform those with three sub-predictors.  The exceptions to this rule 
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are the two-predictor combinations using GAg, which perform on the same level as three-

predictor hybrids. 

The second characteristic of a good inclusion scheme is that it does not include multiple 

predictors of the same family which will make redundant predictions.  Multiple predictors 

generating the same prediction for similar reasons limits the robustness of the hybrid predictor.  

One principal of a combined predictor is that it chooses the best among multiple predictions for a 

given branch.  If all the predictions are made based on common heuristics, then this principal is 

compromised—it would be wiser to use a single, large predictor.  Therefore, with no diversity 

among constituent predictors, the main benefit of a combined predictor is lost. 

6.1 Meta-prediction 

Meta-prediction is used to select one prediction among many sub-predictions, which may 

disagree.  We anticipated this aspect of the project to play a significant role in the prediction rate 

of Phalanx.  To this end, we developed four different meta-prediction schemes: three schemes 

based on the Phalanx – Majority Vote meta-predictor, and one Phalanx – History scheme.  

However, as the results showed, the prediction rate was nearly identical across all meta-

prediction schemes.  We propose a few explanations for these results: 

1. Constituent predictors make correct predictions most of the time.  Slight modification 

shows that even under the Phalanx – History meta-predictor, the individual constituent 

predictors very often correctly predict branches.  Many correct predictors tend to 

reduce the need for meta-prediction. 

2. The meta-prediction schemes examined have common principles.  Both use the most 

recent performance of the sub-predictors to determine per-branch predictions.  In 

retrospect, it would have been interesting to consider less intelligent meta-predictors—

perhaps random selection—for comparison. 

3. Ties are arbitrated in similar ways across meta-prediction schemes.  While this has a 

lesser effect than 1 and 2 (as predictors are often in agreement), nonetheless some 

variation here could likely change meta-prediction effectiveness. 
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PAp : 5M v 50M Instructions
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6.2 Effect of the Number of 

Instructions Simulated 

We examined the 

performance of Phalanx for 

simulations of length 5M 

instructions and 50M instructions.  

We have determined that during 

the longer simulations, both the 

hybrid and single predictors performed worse on average than in the shorter simulations.  

However, the reduction in performance is less dramatic for the hybrid predictors, which indicates 

that combining predictors improves 

the performance of at least some 

branches.  This effect is not 

attributable to predictor warm-up, as 

predictors should, in theory, improve 

in performance over time as pattern 

tables and history registers change to 

reflect the particular workload.   

An exception to this rule is the 

performance of the stand-alone 

bimodal predictor on the crafty integer 

benchmark—its performance 

improves dramatically between the 

5M and 50M instruction simulations.  

This effect exists somewhat for the 

PAp predictor, though only very 

slightly and for different benchmarks. 
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We notice that for the best-performing multi-predictor configurations, the reduction in 

Phalanx’s accuracy is roughly equivalent to the average reduction in correctness among the 

constituent predictors.  This is an intuitive result, but shows that the selected meta-prediction 

schemes cannot always correctly ascertain which prediction is most likely to be correct. 

 

7. Future Work 

The work done for the Phalanx project leaves many questions unanswered.  Given 

resources and time, it would be possible to explore a greater range of hybrid predictors with the 

groundwork done for the Phalanx project.  For this work, we have selected a fixed (maximal) size 

for all predictors we evaluated of 8 kbits. It would be interesting to examine the effect of varying 

this number—intuition suggests that increasing this maximum size would allow combination 

predictors to use individually larger constituent predictors, and theoretically achieve a greater 

performance increase than the already-large single predictors used as controls in the 

experiments above.  Due to time constraints, we have not had a chance to explore other different 

options.  

We also have not considered the effect of the length meta-prediction history registers on 

the Phalanx – History meta-predictor.  It is not obvious whether more history bits would yield an 

improved prediction rate, as the exact histories of individual predictors during execution has not 

been studied.  Reducing the length of the history registers used by the meta-predictors may 

adversely affect prediction; conversely, lengthening these registers may improve performance. 

According to several papers that we referenced, dynamic branch classification has proven to be 

useful in choosing which sub-predictor should be chosen among other sub-predictors in order to 

yield a better accuracy. More advanced meta-prediction strategies could determine on a per-

branch basis which predictors are most likely to predict a given branch correctly, rather than 

relying on recent performance history.  This decision would be based on predictor specialization, 

and would use special-case predictors in combination with general-case predictors. 

An obvious variation that we believe would produce useful results would be to include 

other predictor families (aside from the two-level and bimodal families used in Phalanx). 
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Intuitively, employing branch predictors that predict branches using different methods will help to 

minimize redundant predictions among constituent predictors, and would lead to richer sub-

predictions.  Additionally, we could avoid redundant information stored in more than one sub-

predictor.  

Furthermore, Phalanx only considers the case where each sub-predictor is allotted an 

equal portion of the available storage space.  Successful hybrid predictors often opt to weight the 

sizes of sub-predictors unequally [6,8,10].  Uneven resource allocation would lend itself well to 

the most effective combination schemes seen above, and could be used to improve the 

performance of the poorest performing combinations through increased sub-predictor size for one 

or two constituent predictors (at the expense of others).  This would lead naturally into a 

modification of the Phalanx – Majority Vote meta-predictor, giving greater voting weights to 

predictors that are large in overall size. 

Finally, a number of statistic-based heuristics could be incorporated into Phalanx, 

especially among the meta-predictors.  Among these could be a bias toward a prediction of taken 

for looping branches, or a prediction biased toward not taken for forward directed branches.  This 

modification would be simple under the Phalanx – Majority Vote meta-predictor. 

 

8. References  

[1] T-Y. Yeh and Y. Patt, “Two-level Adaptive Training Branch Prediction”, Proceedings of the 24th 

Annual International Symposium on Microarchitecture, 1991 

[2] T-Y Yeh and Y. N. Patt, “Alternative Implementations of Two-Level Adaptive Branch 

Prediction”, Proceedings of the 19th Annual International Symposium on Computer Architecture, 

May 1992, pp. 124-134 

[3] T-Y Yeh and Y. N. Patt, “A Comparison of Dynamic Branch Predictors that Use Two-Levels of 

Branch History”, The 20th Annual International Symposium on Computer Architecture, May 1993, 

pp. 257-266 

[4] J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative Approach, 2nd Edition," 

Morgan Kaufmann Publishers, Inc., 1996 



 16

[5] J. Lee and A. Smith, "Branch Prediction Strategies and Branch Target Buffer Design", IEEE 

Computer Magazine 17, 1 Jan. 1984 

[6] S. McFarling, “Combining Branch Predictors”, Digital Equipment Corporation WRL Technical 

Note TN-36, June 1993 

[7] C. Young, N. Gray, and M. D. Smith, “A Comparative Analysis of Schemes for Correlated 

Branch Prediction”, Proceedings of the 22nd Annual International Symposium on Computer 

Architecture, 1995, pp. 276 – 286 

[8] P. Chang, E. Hao, and Y. Patt, “Alternate Implementations of Hybrid Branch Predictors”, 

Proceedings of the 28th Annual International Symposium on Microarchitecture, 1995. 

[9] K. Driesen and U. Hölzle, “The Cascaded Predictor: Economical and Adaptive Branch Target 

Prediction”, Proceedings of the 31st Annual International Symposium on ACM/IEEE, 1998, pp. 

249–258 

[10] Harish Patil and Joel Emer. “Combining Static and Dynamic Branch Prediction to Reduce 

Destructive Aliasing”, Proceedings of the 6th Annual International Symposium on High-

Performance Computer Architecture, 2000, pp. 251-262 

 

 

 

 

 

 

 

 

 

 

 



 17

 
 
 
 
 
 
 
 
 
 
 
 

Appendix A 
Charts and Tables 
5M Instructions
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 bzip2 crafty eon gcc gzip mcf twolf vortex vpr 
00011MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
00011MV1125 0.9983 0.8401 0.8668 0.7757 0.9972 0.9975 0.8814 0.8534 0.8772
00011MV125A 0.9983 0.8401 0.8668 0.7757 0.9972 0.9975 0.8814 0.8534 0.8772
00101MV1111 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00101MV1125 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00101MV125A 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00111MV1111 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00111MV1125 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00111MV125A 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
01001MV1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001MV1125 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001MV125A 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001MV1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001MV1125 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001MV125A 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01011MV1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01011MV1125 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01011MV125A 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
10001MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10001MV1125 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10001MV125A 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10011MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10011MV1125 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10011MV125A 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11100MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11100MV1125 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11100MV125A 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11110MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11110MV1125 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11110MV125A 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11111MV1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11111MV1125 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11111MV125A 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
00011H1111 0.9983 0.8401 0.8668 0.7757 0.9972 0.9975 0.8814 0.8534 0.8772
00101H1111 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
00111H1111 0.9985 0.9436 0.9578 0.9059 0.9975 0.9981 0.9539 0.9439 0.9202
01001H1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01001H1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
01011H1111 0.9984 0.9436 0.9456 0.8791 0.9974 0.9980 0.9435 0.9228 0.9125
10001H1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
10011H1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11100H1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11110H1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
11111H1111 0.9983 0.8335 0.8843 0.7709 0.9970 0.9976 0.8728 0.8231 0.8661
bimod 0.9987 0.7863 0.9319 0.9268 0.9980 0.9983 0.9801 0.9678 0.8957
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gshare 0.9982 0.8736 0.9012 0.8237 0.9971 0.9974 0.9189 0.8883 0.9193
pap 0.9986 0.9455 0.9687 0.9297 0.9978 0.9982 0.9668 0.9566 0.9352
pag 0.9986 0.9455 0.9687 0.9297 0.9978 0.9982 0.9668 0.9566 0.9352
gag 0.9984 0.8703 0.9108 0.8204 0.9971 0.9977 0.8876 0.8618 0.9013

 



 30

 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 
Charts and Tables 
50M Instructions 



 31

Phalanx 00011

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 00011MV11

00011MV11
00011H1111
bimod
gshare



 32

Phalanx 00101

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 00101MV11

00101MV11
00101H1111
bimod
pap



 33

Phalanx 00111

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 00111MV11

00111MV11
00111H1111
bimod
gshare
pap



 34

Phalanx 01001

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 01001MV11

01001MV11
01001H1111
bimod
pag



 35

Phalanx 01011

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 01011MV11

01011MV11
01011H1111
bimod
gshare
pag



 36

Phalanx 10001

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 10001MV11

10001MV11
10001H1111
bimod
gag



 37

Phalanx 10011

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 10011MV11

10011MV11
10011H1111
bimod
gshare
gag



 38

Phalanx 11100

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e 11100MV11

11100MV11
11100H1111
pap
pag
gag



 39

Phalanx 11110

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e

11110MV11
11110MV11
11110H1111
gshare
pap
pag
gag



 40

Phalanx 11111

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

bzip2 crafty eon gcc gzip mcf twolf vortex vpr

Benchmark

Pr
ed

ic
tio

n 
R

at
e

11111MV11
11111MV11
11111H1111
bimod
gshare
pap
pag
gag



 41

 
 bzip2 crafty eon gcc gzip mcf twolf vortex vpr 
00011MV1111 0.9952 0.7887 0.8265 0.7505 0.9775 0.9997 0.8830 0.8588 0.8805
00011MV1125 0.9952 0.7887 0.8265 0.7505 0.9775 0.9997 0.8830 0.8588 0.8805
00011MV125A 0.9952 0.7887 0.8265 0.7505 0.9775 0.9997 0.8830 0.8588 0.8805
00101MV1111 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00101MV1125 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00101MV125A 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00111MV1111 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00111MV1125 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00111MV125A 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
01001MV1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001MV1125 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001MV125A 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001MV1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001MV1125 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001MV125A 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01011MV1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01011MV1125 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01011MV125A 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
10001MV1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10001MV1125 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10001MV125A 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10011MV1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10011MV1125 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10011MV125A 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11100MV1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11100MV1125 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11100MV125A 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11110MV1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11110MV1125 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11110MV125A 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11111MV1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11111MV1125 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11111MV125A 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
00011H1111 0.9952 0.7887 0.8265 0.7505 0.9775 0.9997 0.8830 0.8588 0.8805
00101H1111 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
00111H1111 0.9948 0.8934 0.9550 0.8458 0.9781 0.9998 0.9541 0.9458 0.9188
01001H1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01001H1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
01011H1111 0.9948 0.8683 0.9416 0.8137 0.9780 0.9998 0.9437 0.9266 0.9123
10001H1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
10011H1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11100H1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11110H1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
11111H1111 0.9196 0.7873 0.8256 0.7522 0.9798 0.9998 0.8733 0.8212 0.8687
bimod 0.9962 0.8927 0.8724 0.9057 0.9814 0.9998 0.9806 0.9743 0.8943
gshare 0.9969 0.8309 0.8955 0.7816 0.9815 0.9997 0.9196 0.8894 0.9211
pap 0.9968 0.9112 0.9719 0.8722 0.9816 0.9998 0.9672 0.9570 0.9340
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pag 0.9968 0.9112 0.9719 0.8722 0.9816 0.9998 0.9672 0.9570 0.9340
gag 0.9595 0.8316 0.8710 0.7842 0.9833 0.9998 0.8876 0.8544 0.9033

 



 43

 
 
 
 
 
 
 
 
 
 
 

CS/ECE 752 
Project Report: 

Combining Branch Predictors 
 

Dan Gibson 
Chuck Tsen 
Inge Yuwono 

 
 

Fall, 2004 
 
 
 
 
 
 
 

Signatures: 

Dan Gibson 

 
 
 
 

Chuck Tsen 

 
 
 
 

Inge Yuwono 

 
 
 
 

 


