2 ISA

The RISC-E architecture is based on a RISC-type MIPS instruction set, with some
extended instructions to aid in the use of the peripherals attached to the processor.

The RISC-E architecture includes 28 general purpose registers (registers R1-R28).
Register R30 is used as a stack pointer, but if no stack operations are performed, it too
could be considered a general purpose register. Register R31 is used by jal (jump
and link) instructions to store return IP values, and is by convention used for jr (jump
register or jump return) instructions, though it, too, is available for general purpose use.

Use of register R29 is limited to the following special purposes:

1) Writes to R29 will write characters (ASCII, lower eight bits only) to the VGA
controller as character output, if there is sufficient space in the VGA pixel
buffer. Use of the brvid instruction allows a programmer to poll availability
of this buffer.

2) Reads from R29 will read characters from the keyboard input controller, if a
new key has been depressed. If no key has been depressed, an unspecified
value will be read from register R29 (see brchar instruction).

The following registers represent the primary operands for the instruction set following:

Key

ddddd — 5 bit destination register

aaaaa — 5 bit source register A

bbbbb — 5 bit source register B

ooooo — variable length offset (dependent on instruction type)
AAAAA — 18 bit address

xxxxx —don’t care field

-10 -

2.1 Arithmetic instructions

Arithmetic instructions perform basic mathematic operations on registered operands
and store the result into a register. Opcodes for arithmetic instructions begin with Oh.

add
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23 :19 18:14 13:9 8:0
0000 0000 ddddd aaaaa bbbbb XXXXXXXXX

ddddd < aaaaa + bbbbb
add sd $a $b

Adds the values in $a and $b together and stores in $d. Works on two’s compliment
values and does not consider overflow.

sub
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23 :19 18:14 13:9 8:0
0000 0001 ddddd aaaaa bbbbb XXXXXXXXX

ddddd <« aaaaa - bbbbb
sub $d $Sa $b

Subtracts the value in $b from the value in $a and stores the result in register $d.
Works on two’s compliment values and does not consider overflow.

Forwarding / Hazerd Detection Urit

Pt

—sre:
—srobsels:3

I—E
azel[1:0]

po+ +hoft

botha1[12:0]

made(3:0]
e:

ssssss

brtaken etz
l o
; alu_out 1+1131:0]
l_on

77

Ffoatasel[1:0]
mem_data_in[31:0]
ot

mem_ciata_in[31:0} . o chata[31:0]
e " al_out_t+1[31:0]
—_ mem_off_se[31:0]—|
FI0CAT 01 30t1:0] g | vm mem ciata_in[31:0]—]
ey by oy = e e —) iostat[2:0]
% srcbsel4:0]
fetchstal destal estall memstal
tiui

ne14) To left SRAM To right SRAM
(2518 |- sreamsertaol | ‘ ‘ ‘ ‘
memacsel 53 £ ¢ 22 5
] 7 g o 9
pol17:0] memaddr{17:0] ZZ - = s g 3

ahi_out_t+1[17:0] Scelr[17:0] £ £ — rkey instat[0]—— 55

fall oyl B—{svea2e0l &

) sezol F O 170l zE

wevga—| wevas
aaaaaa o ad ey
MEMORY CONTROLLER K oard Controller VGA Control
mem_data_in[31:0]
mmmmm tte ——| write shata_out[31:0] oardrr ol voa[7:0] =] vaa(7.0] ramuiac[2:0]—
| iostat]2:1]—
To Keyboard wga—] e

Data flow for add and sub instructions.

-11 -

inc

Opcode
31:28

Mode
27 : 24

Destination
23 :19

SrcA
18:14

SrcB
13:9

8:0

0000

0010

dddadd

ddddd

XXXXX

XXXXXXXXX

ddddd « ddddd + 1

inc $d

Increments the value in register $d by one and stores the result in register $d.

dec

Opcode
31:28

Mode
27 : 24

Destination
23:19

SrcA
18:14

SrcB
13:9

8:0

0000

0011

dddadd

ddddd

XXXXX

XXXXXXXXX

ddddd « ddddd — 1

dec $d

Decrements the value in register $d by one and stores the result in $d.

dcstatus — pe
xmstals — —stalls _ Y
mwﬁﬁﬁz — Forwarding f Hazard Detection Unit | sycasel[1:0] —— npipeline stage 1
srchsel[4:3] pipeline stage 2
— pipeling stage 3
—— pipsline stage 4
—— pipeline stage 5
poite po+1 +boff
opeode(x0]— Control D boift[13:0]
Fo = 4 i
— mode[3:0]
ortaken exctr[20]
z sreasel1:0]
sroaadar] 0] —— a_ad 32
srcbaddr[a:ﬂ]—%— b ad A metmn_data_in
L ' RF alu_outt_{+1 [—rictatasel1:0]
L WA 0] —) vy _ad | | ahu_out t+1[30:0) | |—mom_deta_in[31:0]
mem_data_in[31:0]—] EECER] D po+1 clata[31:0]
- W ——| Wie vigal7:0] alu_outt_t+1
- e [— —alu_out_t+1[31:0]
limm(31:0] slu_out
-0]—| . mem_off_se[31:0] -
YRG0 ——r30ctr11:0] e | v mem ieta, inj31-0] Ao
key[7:0] ——| rkey |- rkey ke i
Y170l £ ey srchasl4.0]
T oL
tetchistal destall excstal memstall
lilai
e To left SRAM To right SRAM
[23:19] sreaacdr4:0]
= o = 5 ¢ o
memaddrsel 5 ,_; & @ % :;
. 3 7 7
pe[17:0] memadd7:00 | oo [x N - £z H
alu_out t+1[17.0] 5 5 rhey iostat0]— 5 5
pa— =} (I B—lsvga(260] 5 &
B data[31:0] k- key[7:0] %3
=
memread read i WEVEE— WEVDA
MEMORY CONTROLLER Keyboard Controller ¥GA Control
mem_data_in[31:0]
memwrite werite clata_out[31:0] —— pre— wga(7:0]—| vgal[7:0] ramdac(2: 0] —
To Keyboard R VER et

Data flow for inc and dec.

-12-

mult

Opcode Mode Destination SrcA SrcB
31:28 27 1 24 23:19 18 : 14 13:9 8:0
0011 0000 ddddd aaaaa bbbbb XXXXXXXXX

ddddd < aaaaa * bbbbb
mult $d Sa S$Sb

Multiplies the lower 16 bits of registers $a and $b and stores the 32 bit result in register
$d. Works on two’s compliment values.

estatus —]
mmmmmm — F—stalis
mwstatus —| Forwarding / Hazerd Detection Unt | sycaselft:q)
status — [—srehsell4:3)
petie povt+haff
peode[3:0] boffts1[13.0] o
Em
’
5
Sroaatd(40] 7 o _ad
srchade(4:0] | b_ad B
£l pp ridstasel[10]
v {4:0] el vy _aet B alu_out 11 (31:0] mem_dsta_in[31:0]
o detaf31:0]
mem_dete_n{31-0] CEEEHY) 70
f I s gel7:0) a_out 141[31:0]
F30CLD] 301 01y g | g
keyl7:0] —— key hey [rhey
3
fetehistal destal exstal
i
g4 Toleft SRAM TorgnesKam
s S— |
mermackrsel FELE EI
AT T % o3
pelt 70 o memaceri17.0) T g C T
alu_out t+1[17:0] S-S —rkey ostat{0]—— il
a3 P B—{svgel2a] 3 =
EEECE NI 7] 38
wevga— wsvga
o
" MEMORY CONTROLLER Keyboard Controller VGA Control
imeim_sete_in31 0]
e dota_pu31:0] P o veel7 bl g7y remdsc(20)—
wwga— wga ostat 24—

Data flow for mult.

2.2 Logical Instructions
Logical instructions perform basic logical operations on register operands and store
their results in a destination register.

and
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23:19 18 : 14 13:9 8:0
0001 0000 ddddd aaaaa bbbbb XXXXXXXXX

ddddd < aaaaa e bbbbb
and $d $a $b

Performs a bitwise logical AND operation on registers $a and $b and stores the result to

register $d. Stores 1 to a given bit if and only if both corresponding bits in $a and $b
are 1, 0 otherwise.

-13 -

or

Opcode Mode Destination SrcA SrcB
31:28 27 1 24 23:19 18 : 14 13:9 8:0
0001 0001 ddddd aaaaa bbbbb XXXXXXXXX

ddddd < aaaaa | bbbbb

or $d $a S$b

Performs a bitwise logical or operation on registers $a and $b and stores the result to
register $d. Stores 0 to a given bit if and only if both corresponding bits in $a and $b
are 0, 1 otherwise.

XOor
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23:19 18: 14 13:9 8:0
0001 0010 ddddd aaaaa bbbbb XXXXXXXXX

ddddd < aaaaa " bbbbb
xor $d $a Sb

Performs a bitwise logical xor operation on registers $a and $b and stores the result to
register $d. Stores 1 to a given bit if and only if both corresponding bits in $a and $b
are different, 0 if they are the same.

dstatus —]
mmmmmm — —stais
murstatus —| Forwarding / Hazard Detection Uit | arcace1:0]
status —]
[—srobsele3)
periied pe+shatt
bafftetl120]

let(31:0]

FD [
E
sreaaddr{d: 0]~ a_ad
srebadd(4:0]—— b_ad A
S RF fridatasel1:0].
wader(4,0] g B [siu_out te1[31:0] | [—mem_seta_n[31:0]
D s+
mem_data_in[31:0]-] o
Wit —{ e s |12 01 f—aiu_out_t+1[31:0]
10— 30610 g | g
key[7:01—— key rhey [—rkey
5
L] A i
fetchistal destal exstall einstal
lili
18:14] Tori
[23:19] = [Sreaacan0]
memaddrsel =
peli 70| memacurti 7o) £
alu_out_t+1[17:0] addr[17:0] — rkey fostat{0]—— &l
2 B—{svoal26:0] &
p—Jwtamol § kestro] 3
wavga—| wevga
o —resd
mmmmmm o MEMORY CONTROLLER Keyboard Controller VGA Control
| mem_vata_ingat:0)
memwite ——wrte date_out{3:0]= Khoara o) vgalT0]— ve[7:0] vamdac(20]
iostat[21]]
— wvga
To Keyboard R i

Data flow for and, or, and xor.

-14 -

not

Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23 :19 18:14 13:9 8:0
0001 0011 ddddd aaaaa XXXXX XXXXXXXXX

ddddd < ~aaaaa
not Sd $Sa

Performs a bitwise logical not operation on register $a and stores the result to register
$d. Stores a 1 if the corresponding bit in $a is a 0, and a 0 if the corresponding bit is a
1.

pricemgm| |—etus ey
mwstatus — Forwarding /Hazard Detestion Unit | —srcase(1:0] — pipeine stage 1
status — —srebsere al sipsline stege 2
—— ripsline stage &
—— pipelne stage 4
—— bineline stege 5
pesti2 pe++hoft

poodel30]
bottet[130] a
o I
s
sreaadct[4:0] —a_ad
srchadd4:0] ——_ad A
£ RE titasert]
w140 e 3t 5 au_out_t+1[31:0] mem_gata_n[31:0]:
miem_clata_in[31:0]- data[31:0] [7:0] e [
o we /gal7:0] alu_out_t+1(31:0]
TR0 13001 0] g v
ey ey ey
5
reichatal destall exstall meinstal
i
1814
[26:18] | |- sreeadarla.0]
memaddrsel £ £
polt 70| memaddr(17:0] 2z~ —
PN e n]j e P0 |eizop — ey fostao]
5 5—sv
o 3 extr ol—
wevga—{wavoa
ad ——read
mmmmm EMORY CONTROLLER Keyboard Centroller
" " [mem_data_in[31:0] iae[2:0]
memwite —wrie a_out31 0] Kooerd(1-0l i e e
ToKeyboard wwvga— Wyga fostat(21]—

Figure : Picture of data flow for not.

2.3 Shift Instructions
Shift instructions move the source register by a value specified in the second source
register.

sra
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23:19 18: 14 13:9 8:0
0010 0000 ddddd aaaaa bbbbb XXXXXXXXX

ddddd « { (a[31])"(B%32) , a[31:(B%32)] }
sra $d $a S$b

Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the
result in register $d. sra sign extends the value of $a.

-15-

srl

Opcode Mode Destination SrcA SrcB
31:28 27 1 24 23:19 18 : 14 13:9 8:0
0010 0001 ddddd aaaaa bbbbb XXXXXXXXX

ddddd « { 0N(B%32) , a[31:(B%32)] }

srl $d Sa $b

Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the
result in register $d. sr1 does not sign extend the value of $a.

sl
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23:19 18: 14 13:9 8:0
0010 0010 ddddd aaaaa bbbbb XXXXXXXXX

ddddd « { a[31-(B%32):0], 0"(B%32) }

sl $d $Sa S$b

Shifts register $a to the left by the value in the lower 5 bits of register $b and stores the
result in register $d.

rol
Opcode Mode Destination SrcA SrcB
31:28 27 : 24 23:19 18: 14 13:9 8:0
0010 0011 ddddd aaaaa bbbbb XXXXXXXXX

ddddd « { a[(B%32)+1,0] , a[31:(B%32)] }
rol $d $a $b

Shifts register $a to the left by the value in the lower five bits of register $b and fills the
lower bits of register $a with the bits of register $a that were shifted out and stores the
result in register $d.

- 16 -

ror

Opcode Mode Destination SrcA SrcB
31:28 27 1 24 23:19 18 : 14 13:9 8:0
0010 0100 ddddd aaaaa bbbbb XXXXXXXXX

ddddd « { a[31:(B%32)], a[(B%32)+1,0] }
ror $d $a $b

Shifts register $a to the right by the value in the lower five bits of register $b and fills the
upper bits of register $a with the bits of register $a that were shifted out and stores the
result in register $d.

H
sromaddr4:0] 7 a_ax

boft113:0]

destatut —]
mtas —tals
murstaius —| Forwarding f Hazard Detection Unt [<rcasel1:0]
status —|
—srchseleal
pe+te2 g1 +haft

Data flow for sra, srl, s1, rol, and ror.

2.4 No-Operation

cetel31:0]

Srobad0] £ b
H RF rHdatasel[1:0]
waddr(4:0] g 8 L au_out_ts131:0 mem_deta_in[31:0]
mem_data_in31:0} CECEiE R 70 o
ke we g [vgal7:0] al_out_t+131:0]
Y30 0300y g L
ey 701t ey rhey [rkey
13
L] v
et destal exstal et
i
Hestan To left sRAM Torl
I2319] srcasddr[4:0] | ‘
memadrsel B §‘ 2
pelt7:0] | memadart 7.0] TEDS £
oy sawpro 2 2 — ey ostatfo]—— 5
55 i B—{svpa2e0) 5 &
B——jdatal3t0] F E ol § 3
wevga—{wsvga
d—rean
mermrea 1o EORY CONTROLLER Keyboard Controller vGh Cantrol
mem_deta_inf31:0]
memiite ——write data_ow[31:0] = JP— vgal 70— vgal7:0] ramdac(2.0]
. ostal(2 1]
To Keyboara B

No operation performs the addition of register $0 to register $0 and stores the result in

register $0.
nop
Opcode Mode Destination SrcA SrcB
31:28 27 . 24 23:19 18 :14 13:9 8:0
0100 0000 00000 00000 00000 XXXXXXXXX
nop

No operation performs the addition of register $0 to register $0 and stores the result in

register $0.

-17 -

cestatus —]
smstilis —| —stae
mwstalus —] Forwerding rHezard Detection Unit | secasefr:0)
status — —crcnsere:3)
potite2 ped +haff
peode(30] botf[13:0) m o
)
’
s
aaaaa Acr{4:0]— a_ad
srcbadst{4:0] —— h_ad -
" R ridstasel 0}
wadd(20] o B alu_owt +41[31:0] mem_leta_in{31:0]
o “ cate(31:0]
mem_sata_in[31:0} T 70 Ut
F o al7:0] al_out_41[31:0)
Y30CHT 000 gy | g
heyt7:Ol—— key rhey [—rkey
fetchsial destall exstal metall
i
v To left SRAM To right SRAM
i —— | | ‘ |
memacicreel g 8 £ & 8 £ £
228 % 7% 23
pcli7:0] memaddt[1 7:0] T 7 B : £ B
alu_out t+1117:0] 7Ol £ & —{ ey ostatlO]— 53
25 i B—{sal260) 5 o
a—jwaziel E E @70l 8 E
wsvga—{ wevga
d ——read
e "“*! MEMORY CONTROLLER eybosra Controlier VGA Cantrol
mem_dsta_n[31:0]
mmmmm ite —fwite data_out[31:0] oot vaol7 01— vaal7 0] vamdacl2.0)—
To Keyboard Rt b e

Data flow for nop.

2.5 Immediate Instructions
Immediate instructions load values specified in offset fields into the register operand.

111

Opcode Mode Destination Imm Imm
31:28 27 . 24 23:19 18 :16 15:8 7:0

0101 0000 dddadd XXX iifiii iiiiiii

ddddd « { ddddd[31:16] , i16 }
111 $d iiiih

Load lower immediate concatenates the upper 16 bits of register $d with the 16 bits of
the immediate offset and stores the result in register $d.

lui

Opcode Mode Destination Imm Imm
31:28 27 : 24 23:19 18:16 15:8 7:0

0101 0001 ddddd XXX iifiiii iifiiii

ddddd « { i16, ddddd[15:0] }
lui $d iiiih

Load upper immediate concatenates the lower 16 bits of register $d with the 16 bits of
the immediate offset and stores the result in register $d.

- 18 -

cestatus —]
smstilis —| —stae
mwstatus —| Forwerding fHazerd Detection Unt | syzaseqrn]
Statls m—
—crcnsere:3)
Pt pc+1 +hoft
opcode(30] Control
D boftt+1[13:0]
o Dix 13:0] m "
i
s
aaaaa Acr{4:0]— a_ad
stekaddrld: 0] g b_ac -
7" R ridstasel1 0]
wadd[4:0] | vy _at B al_out_t+1[31:0] mem_date_in{31:0]:
2
mem_data_in[31:0] CECER] o al7:0] wor! oetaiztiol
we —{we al_out_41[31:0)
Y30CHT 000 gy | g
heyt7:Ol—— key rhey [—rkey
dedal ‘J mefstal
fetchstall exstall
N
E:1a). To left SRAM To right SRAM
i —— | | ‘ |
memacicreel g 8 £ & 8 £ £
s a5 =
pcli7:0] memaddt[1 7:0] T 7 B : £ B
alu_out_t+1117:0] 7Ol £ & —{ ey ostatlO]— 53
25 i B—{sal260) 5 o
a—jwaziel E E @70l 8 E
a g WEHR—|WSER
emrea o MEMORY CONTROLLER Keyhoard Controller VGA Control
mem_dsta_n[31:0]
mmmmm ite —fwite data_out[31:0] oot vaol7 01— vaal7 0] vamdacl2.0)—
| ostal(2 1]f—
To Keyboard Rt b

Data flow for 11i and 1ui.

2.6 Memory Instructions
Memory instructions manipulate memory locations by writing to or reading from them.

1w

Opcode Mode Destination SrcA Offset
31:28 27 . 24 23:19 18 :14 13:9 8:0

1000 0000 ddddd aaaaa XXXXX 000000000

ddddd < MEM[aaaaa + 000000000]
lw $d $a o

Load word reads the memory location specified by the value of register $a plus the
offset and stores the result in register $d. Load word creates a unique hazard in the
processor, as the MIU runs only fast enough to perform one memory access per clock
cycle. Therefore, when a load word is encountered, the pipeline stalls for a cycle to
perform the memory read.

-19-

SW

aestatue —]
mtitlis —| —stalls
mwstatus —| Forwarding / Hazerd Detection Uit | eycasel 0]
statts —|
— srohsel43]
perits2

Pt

hoft

pcode(3: 0]
hofft+1[13:0])
FiD
I
s
aaaaa i [4:0] — &_sel o
srchadd]4:0]—— b_ad A
% R ridtasell1:0}
W] —| ve_ect B : alu_out_t+1[31:0] mem_data_in[31:0]
5 " ota[31:0]
mem_data_in[31:0]- data]31:0] lu_outt_t+1— I
we — we ol AW alu_out_+1[31:0]
mem_off_se[31:0]— -
r30cti:0} r30etrilt D‘WVEE vga mem_data_in[31:0]—] iostatg20]
Key(70] they (ke =
T~ key stchssie 0]
fetehstal destal exstal et
i
v Toleft SRAM To right SRAM
e - || |
memairsel g8 £z 225§
P 7:0 | memaddit17:0] T TS 13
alu_out_t+1[17:0]. adfiro] £ = —{ ey ostat[o] £ 5
=5 ol afspne) 3 g
a—aefzt] A7) % E
wevga—{wvga
d—resa
EEEEEE = MEMORY CONTROLLER Keyboard Controller vGA Control
mem_data_in[31:0]
mmmmm L date_ou 310 T - P p—— rendae{z0]—
| fostat(z:1]—
ToMeyboa |5

Data flow for 1w.

Opcode
31:28

Mode
27 : 24

23:19

SrcA
18:14

SrcB
13:9

Offset
8:0

1001

0000

XXXXX

daaaa

bbbbb

000000000

MEM[aaaaa + 000000000] < bbbbb

sw Sb $Sa o

Store words places the value of register $b in the memory location specified by the

value of register $a plus the offset. Store word also creates a hazard in the processor,
similar to that of load word. When a store word is encountered, the pipeline stalls for a
cycle to perform the memory write.

-20 -

svga

mem_data_in{31:0}

fetehstal

i

116:14]
123:19) = = Sresdd]

mem

5
sreanddr(d:0] —F _a

mmmmmm — —stails
mivstatus — Forwerding / Hezerd DetectionUnit | oroase-p
Status —]
[—srcbsela:3]
portte2 pe+tabatt

bafft[13:0]

mace[2:0]
n

pe[17:0] memacic(17:0]
alu_out_t+1[17:0]

Data flow for sw.

L L]
[exctr[2:0]
ol . o
Srebsdl4:0] —— b_ad
T re —
w40 e ot © : st 1(30] mer_seta_i(31:0]
EEEGR o Jata(31:0]
= a_out +1[31:0]
Ao
PO 301 0y g |
Vey(7:0]] key ey [e
3
destall exstall emstall
To left SRAM 1o rone sRAM
ol [4:0]
acrsel FEE 2 g8 £ %
gy B0
itz £ g s o . I
—] 5 L B—svol P
B CETEE I | hey(70) o Ei
mmmmmm o —read wsvga—{wevoa
MEMORY CONTROLLER Keyboard Controller Vo Contrl
mem_ciat_in[31 0]
" date_ouli31:0] Kboardl1 n|—| val7:0]— vasl7:0] ramdaol20]—
rvga—] wiga st 11—

Opcode
31:28

Mode
27 : 24

23:19

18:14

SrcB
13:9

8:0

1001

0001

XXXXX

XXXXX

bbbbb

XXXXXXXXX

VGAMEMBUFFNEXT < b

svga S$b

The Store to VGA instruction loads the value in register $b into the VGA buffer queue
assuming that the buffer isn’t full (see brpix instruction). The lower 8 bits of register
$b are the color, 3 red bits, 2 green bits, and 3 blue bits. The next 20 bits are used to
specify the location of the bit to be manipulated (See VGA Unit).

221 -

mem_data_in{31:0}

mwstatus —| Forwarding / He
us —]

5
Sroaatd(4:0]—7 a_a
srohadel£0] s o

b
WA 0] e _
D

EECEET]
we — e

F30C1D]——(30GH1:0] g |

v
keyl7:0] —— key rhey 1= rhe;
13

boffte[13:0]

i) il
"
} alu_out_t+1[31:0]

— Hey
zore Defection Uit | speaset:0) —— pipeline stage 1
[—srchsell4:3] pipeline stage 2
—— pipeline stage 3
—— pipeline stage 4
—— pipeline stage 5
pertte pe+1+hoft

ridetasel[1 0]
mem_data_in[31:0]
fe+

alu_ot_1+1[31:0]

fetohstal

i

11614]
12318 |- sreaancris 0
memacirsel

pel1 701 memaccr17:0]
Y R

2.7 Stack Instructions

exstal

]

jostal31:0]

_phy:
w_phys

addr_phys[18:0]
ata_piys[10]

m
iz

MEMORY CONTROLLER

memwrite — write deta_ou31:0]

mem_dista_in[31:0]

—rhey fostat{0]
key(7:0——
Keyboard Controller

B—{svoal26l] 5 o

wavga—| wsvoa

Vel 7:0]— vaal7-0] ramdacl:

et
g s focta2

A—

Data flow for svga.

Stack instructions load and store values into the address specified by register $30 and
increment or decrement register $30 as needed.

push

Opcode
31:28

Mode
27 : 24

Destination
23 :19

SrcA
18:14

SrcB
13:9

8:0

1010

0000

XXXXX

11110

bbbbb

XXXXXXXXX

STACK « b, $30 « $30 — 1

push $b

Push stores the value in register $b to the location in memory specified by register $30.
Then register $30 is decremented to move the stack pointer.

-2

pop

posrosell1:0]

st —] oy
enstittis —] |—stals
pe+t+hofil mwSlalus —]. Forwarding (Hazard Detection Unk srcaselll 0] —— pipsine stage 1
e — P ppeine stoge 2
A7) —— pipeline stage
pestall pipeline stage 3
—— pipeline stoge ¢
—— Fipeine stege
poste2 po+d +hotf
borfr130)
D s il o
medel3]
ot 3 ez
B sresselt:0]
srosaddh(40]— o o
srehadanl4:0)—- oo 2
S| RF [ridataser o
Wad{4.0] = w a0l B a_ou_+1(31:0] | [—mem_data_in[31:0
mem_data_in[31:0} coerem b o T ————rest Jeta(31:0]
we— e vaa [im{31:0]: AN F—au_out_t+1(31:0]
r30ct] — mem_off_se[31:0]; -
0 0I——r306tr1 0 e L vz mem Tiaté_in[31:0] ez
Key(7:0] =] key @y —rkey 1"
o) & ke srebsel#:0]
fetchstall destall exstall memstal
i
et Toleft SRAM To ight SRAM
{23151 - sreasdira) | |
memaddrsel ggLs g8 £ g
gz ceh 3
PEIT01 =) memacei7:0] 7 g2l rg 2y
alu_out_t[17:0] ad(170] £ £ —{rkey osta0] 505
3 e s—{svezea) & o
—Jaemo § kexl7:0) E]
a a wevga—|wsvga
memes "™ MEMORY CONTROLLER Keyboard Controller VGA Control
mem_ciata_in[31:0]
memarte —{wrie deto_ou310] T - wgal7: 0] ves70) ramdaclz0]j—
wrga—] wvas stz 11—
To Keyboard < =

Data flow for push.

Opcode
31:28

Mode
27 : 24

Destination
23:19

SrcA
18:14

13:9

8:0

1011

0000

dddad

11110

XXXXXX

XXXXXXXXX

$d — STACK
pop $d

Pop loads register $d with the value at the address specified by register $30. Then
register $30 is incremented.

aixstatu: —]
snstatus —| [—stals
mwstatus — Forwarding (Hazard Detestion Unk [crcasel1:0]
status
—srobsei4:3]
pest2 pe+t oot
boffte[13:0] a

mace{30]
o3 etz

Hey
—— ripeine stage 1
pipeine stage 2
pineline stage 5
pipeline stage 4

—— pineline stage 5

s
Stcand (40— a_ad
srobaddr[4:0]——{b_ad A
G pE tdotasel 0]
WA 40—t st 8 alu_out_t#1[31:0] mem_deta_in(31
mem_data_n(31:0] =Ei) [—] e dataf3:0]
e —we vga {2701 ol A ali_out 1 (31:0]
mem_off_se[31:0]; -
FR0CAT 01— 300 g | g e Hata ot 4.
key[7:0] rkey [~ rkey o
i L] srchsel4:0]
tetchtal destal exctall estal
i
e To left SRAM Toright SRAM
125191 |- sreasderi4.0) |
memadhsel gLt R
R zg a3
po{17:0] memacidr|17:0] T E -z 22 B
alu_put_t+1[17:0} sanzo 2 E ey fostat(o] 5 g
¥ E—{svgel50] 5 =
—wtpto] 3§ keyt7-ol R |
wavga—]wsvga
memvead ——read
MEMORY CONTROLLER Keyboard Controller VGA Control
mem_data_in[31:0]
memwite —wrie dat_out31 0] Kool vel7:0]— vael7:0] vamdscl20]—
ostal{21]—
—{wvom
To Keyboard e o

Data flow for pop.

-23-

2.8 Jump Instructions
Jump instructions change the flow of execution by loading the PC (program counter)
with a new value specified by a register or an immediate value.

Jjr
Opcode Mode SrcA
31:28 27 : 24 23 :19 18:14 13:9 8:0
0111 0000 XXXXX aaaaa XXXXX XXXXXXXXX
PC < aaaaa
jr Sa

Jump register stores the value in register $a into the PC and begins a new program
flow. Jumps must flush the pipeline of any instructions that have begun execution
erroneously.

snstatus —| [—stals
mwstatus — Forwarding (Hazard Detestion Unk [crcasel1:0]
— —srobsei4:3]

postt pe++hoft

poode(30] boitte 1120
. L] a M
s
sreaadct[4:0]—a_ad A
Srcbedd (4]
e . tdotasel10]
WA 0] el _sl B alu_out_1+1[31:0] -mem_data_in[31:0]
me_dta n{31:0]] o1 - [t 1:01
L e . alu_out_t+1[31:0]
PR O 30CH1:0] g
{70 ey ey e
5
retchatal destall exstall einstal
i
n8:14] T
PE[WU;“EMEW'SE‘ acidr[17:0] K % % é‘ §
memmacidr] 2 = £z
Y) L e e 55

R - extr ol— PRt 5 g

—] wevga—{wavoa
mmmmmm it ——— read MEMORY CONTROLLER Keyboard Controller VGA Control

mem_data_in[31:0]
memwrite —write data_outi31 0] —= Hooard[1:0] vgel7-0]—] weel7:0] Famidac{20]—
ToKeyboard R i

PC — AAAAAAAAAAAAAAAAAA
jal AAAAAh

Jump and link loads the PC with the value specified by the offset A. A can be specified
as a label or as a numerical offset. Jumps must flush the pipeline of any instructions
that have begun execution erroneously.

-4 -

2.9 Branch Intsructions

a
oooooooooooooo

mem_data_in{31:0]

Data flow for jal.

Branch instructions change the exectuion flow by loading the PC with the current value

of the PC plus the offset field.

brgt
Opcode Mode Offset SrcA SrcB Offset
31:28 27 . 24 23:19 18 :14 13:9 8:0
0110 0001 00000 aaaaa bbbbb 000000000

PC—PC+1+0

brgt $a Sb o

Branch greater than sets the PC to the value of the PC plus the offset if register $a is

greater than register $b.

brlt
Opcode Mode Offset SrcA SrcB Offset
31:28 27 . 24 23:19 18 :14 13:9 8:0
0110 0010 00000 aaaaa bbbbb 000000000

PC—PC+1+o0

brlt $a S$b o

Branch less than sets the PC to the value of the PC plus the offset if register $a is less

than register $b.

-25-

breqg

Opcode Mode Offset SrcA SrcB Offset
31:28 27 : 24 23:19 18:14 13:9 8:0
0110 0101 00000 aaaaa bbbbb 000000000

PC—PC+1+0
breg $a $b o

Branch equal sets the PC to the value of the PC plus the offset if register $a is equal to
register $b.

br
Opcode Mode Offset Offset
31:28 27 : 24 23 :19 18:14 13:9 8:0
0110 0000 00000 XXXXX XXXXX 000000000

PC—PC+1+0

br o

Branch sets the PC to the value of the PC plus the offset unconditionally.

brchar
Opcode Mode Offset Offset
31:28 27 : 24 23:19 18 :14 13:9 8:0
0110 0011 00000 XXXXX XXXXX 000000000

PC—PC+1+0

brchar o

Branch character sets the PC to the value of the PC plus the offset if a character is
ready to be read from the keyboard.

brvid
Opcode Mode Offset Offset
31:28 27 : 24 23:19 18 :14 13:9 8:0
0110 0100 00000 XXXXX XXXXX 000000000

PC—PC+1+0

brvid o

Branch video sets the PC to the value of the PC plus the offset if the VGA character

buffer is ready to be written to.

brpix

Opcode Mode Offset Offset
31:28 27 : 24 23 :19 18:14 13:9 8:0
0110 0110 00000 XXXXX XXXXX 000000000

PC—PC+1+0

brpix o

Branch pixel sets the PC to the value of the PC plus the offset if the VGA pixel buffer is
ready to be written to.

5
sroasdeh{40]— a_act

WA [40] el w_sd
0

miwstatus — Farwatding / Hazate
s —|

mem_data_in[31:0} T

o Detection Lt

model
o r120)
l .
’ au_out_+1[31:0]

m

=4

rfdataselft:0}
[—mem_data_in[31:0]:
)

F—slu_out t+1[31:0]

fetchistall

]

114
[23:19] | |- Srcaader(a:0]

2.10 Data Dependencies

There are several forms of data dependencies that occur in this ISA. For instance

Jiete(31:0]

Toleft SRAM Toright SRal
T TEs
aira 2 2 —ne ostal0] 55
55 o—{avaaisl 5 5
data[31:0] % -1 key(7.0]] 23
wevga—wevan
et ol Keybosrd controtler
MEMORY COHTROLLER Keyboard Controll VYGA Control
mem_siata_in[31:0]
data_out[31:0]—— Kooard1:0] wvoal7:0]— vga[7:0] ramdac(2 0]}
wvga—]| wvas stat(21])
To Keyboard < =

Data flow for branches.

add $1 $3 $5
add $1 $1 S5

would create a data dependency because the first add instruction would not write to the
register file before the second instruction needed the value in register $1. In order to
solve this problem, there is a data forwarding line from the MEM stage to the EX stage
which provides the ALU with the value before its written to the register file:

add $1 $3 35 |F

DKl

H

add %1 %1 &5

F|olbx

]

-7 -

4 Software

4.1 Development Software

Several complete programs were produced to aid in the development of RISC-E
hardware and software.

41.1 Sim
Simis a command-line simulator for the RISC-E (RISC — Extended) instruction set. It
was written with two purposes in mind:
1) Enable software development for the RISC-E architecture before the architecture
is implemented in hardware.
2) Provide a means of testing for the RISC-E architecture by providing a method to
debug test programs before execution on the RISC-E processor.
The use of sim has allowed parallel development of hardware and software, effectively
reducing the time required to generate meaningful programs in the RISC-E instruction
set. Test programs and demonstration programs were developed and debugged
without concern for potential hardware malfunctions.

Sim was written in C/C++ for Win32 machines. Therefore, use of an MS-DOS prompt

(a command-line) is required for effective use of sim. However, use of batch files (files
with a .bat extension in Windows) allows effective invocation of sim from the Windows
GUL.

Accompanying sim is the bmpgen program, a bitmap generation utility for displaying
pixel changes. The simulator itself does not implement pixel-change information—it
instead prints a message to stdout or a specified output file that characterizes each
individual pixel change. The bmpgen program can convert the sim output to a
meaningful Windows bitmap image (with a .bmp extension), which can in turn be
displayed by any graphics program, such as Windows Paint. For further information on
bmpgen and its syntax, see the appropriate section of this manual.

Effective use of sim and bmpgen enables programmers to emulate actually running a

program on the RISC-E processor, but also provides helpful debugging and tracing
tools to speed the development process.

-71 -

4.1.1.1 Syntax of sim
Correct syntactical usage of sim is essential to using the program effectively. The
correct syntax is:

sim <input file> [output file] [switches]

Note that arguments enclosed in < > are required, but arguments enclosed in [] are not,
and order of arguments is checked. Thus:

sim myfile.asm myfile.out
and
sim testl.asm -v +r +m
Are valid invocations of sim, but
sim -v testl.asm

is not, as a switch is listed before the input file (test1.asm).

Specifying an output file for sim has the same effect as redirecting sim’s output to a file
using the > operator in MS-DOS. Thus:

sim stdlib.asm -v +r > stdlib.out
and
sim stdlib.asm stdlib.out -v +r

are equivalent executions of sim.

A complete list of switches for sim:

Switch Description

+h Display syntax message.

+r Dump register file to output stream after execution.

+m Dump non-zero memory locations to output stream after
execution

Y Verbose mode off—Does not echo code to output stream.

+1 Instruction Memory Fill—Fills instruction memory with

OxFFFFFFFF to simulate presence of instructions at those
memory addresses.

+vgasilent Does not print pixel manipulation information to output
stream. Useful for diagnosing infinite loops.
+fast Disables long loop waits for I/O (see instruction set and 1/O

Section below). Recommended only for pixel manipulation-
intensive programs.

Invoking sim without arguments or with improper arguments will also display the above-
mentioned list of arguments and switches.

-72 -

4.1.1.2 Programming with sim

The simulator was designed to emulate a RISC-E architecture’s environment as
accurately as possible. Therefore, capabilities and limitations that exist in hardware
also exist in sim, with some exceptions.

The rules of language syntax for sim are those one might expect for an assembler—
illegal opcodes and registers, undefined labels, and inappropriate offsets will be flagged
as errors. E.g.:

% |Command Prompt

sMorkingssim»sim illegal.asm

s My code begins here

inc Ri #7 This instruction is QK
ec R2 #/ This instruction is OK
W R1L R2 8

add RS R1i R2

A The next instruction’s opcode is bad
div BRI R1 R2

»*xx Error encountered, line 8:
——>Unknown opcode

C:sWorkingssim»

[

The response to an illegal opcodes

In the example above, the first four instructions are valid—the opcodes are defined and
the arguments are correctly specified. However, the RISC-E architecture does not
include a ‘div’ instruction, hence sim’s response of “Unknown opcode.” Similar
responses exist for other errors, such as those listed above. Note that errors in syntax
abort the simulation—to continue would be to return ambiguous results.

The memory system in sim also faithfully represents the RISC-E architecture—the
acceptable addressable range is 0x00000 to 0x3FFFF (an 18-bit range, the logical
range of a RISC-E system). Memory accesses out of the acceptable range are
handled by the simulator in the same manner of actual hardware—the upper 14
bits are simply truncated. Thus, a read from address 0x1247FFFF will read from
memory location Ox3FFFF.

It is important to note that sim does not assemble or locate code. Therefore, reads
from “instruction memory” will not return valid instructions, and nor will writes to
“‘instruction memory” in any way affect execution. The +1i option exists to fill “instruction
memory” with OXFFFFFFFF, if it is desirable to flag it in this way. In this manner, simis
not faithful to the RISC-E architecture—instruction and data memory are effectively
separate in the sim environment, but not in the true RISC-E system.

-73 -

4.1.1.3 Instructions in sim

<instruction> [arguments]

The following is a brief listing of recognized instructions in sim:
(For a more comprehensive listing, see the RISC-E Programmer’s Manual)

Instruction | Arguments Description (RTL if applicable)

add regd rega regb Addition:D — A +B

sub regd rega regb Subtraction: D — A—B

inc regd Increment: D < D + 1

dec regd Decrement: D <~ D -1

mul regd rega regb Multiply: D — A * B
Note: Multiplies lower 16-bits of A and B
to produce a 32-bit result.

and regd rega regb Logical AND: D — A &B

or regd rega regb Logical OR:D — A | B

not regd rega Logical NOT: D «— ~A

xXor regd rega regb Logical XOR:D — A"B

1w regd regaddr Mem: D <« memory[regaddr +

imm_dec9 imm_dec9]
sw rega regaddr Mem: memory[regaddr + imm_dec9] «
imm_dec9 A

svga rega Pixel manipulation, see 1/O Sub-Section

push rega Stack: TOS < A, R30 — R30 — 1

pop regd Stack: D — TOS+1, R30 «— R30 + 1

sl regd rega regb Logical Left Shift: Reg B contains shift
amount.

srl regd rega regb Logical Right Shift: Reg B contains shift
amount.

sra regd rega regb Arithmetic Right Shift: Reg B contains
shift amount.

ror regd rega regb Rotate Right: Reg B contains rotate
amount.

rol regd rega regb Rotate Left: Reg B contains rotate
amount.

lui regd imm_hex16 Load Upper Immediate:
D «— {UH_D , imm_hex16}

111 regd imm_hex16 Load Lower Immediate:
D «— {UH D, imm_hex16}

breqg rega regb label Branch to label if A =B

brgt rega regb label Branch to label if A > B

brlt rega regb label Branch to label if A < B

brchar label Keyboard polling branch, see 1/O Sub-
Section

brpix label Pixel polling branch, see 1/O Sub-Section

brvid label Character polling branch, see I/O Sub-
Section

br label Unconditional branch

nop No-operation

-74 -

jr regaddr Jump to value specified by register

jal label Jump to label (unconditional)

Recognized instructions and their functions

Abbreviation Definition

rega, A rega is a source register, A is its content

regb, B regb is a source register, B is its content

regd, D regd is the destination register, D is its content (sometimes
also used as a source)

regaddr regaddr is a source register containing an address

imm_dec9 A decimal user-specified immediate value, bounded by:
-2"8 <imm_dec9 < 2"8 —1 (2's complement)

imm_hex16 A hexadecimal user-specified immediate value. This may be

replaced by a positive decimal value if it falls within the range
0x0000 to OxFFFF. Otherwise, it must be specified as
DsD2D1Doh where Di is a valid hex digit. Omitting the
terminal h may yield undesired results, as sim will attempt
to cast this number as a decimal value.

UH_D The upper 16 bits of D (D is specified above)
TOS Top-Of-Stack, or memory[R30]
label A user-defined label. See Labels below.

A list of abbreviations and their meanings

4.1.1.4 Reqisters and Arguments
Registers may be specified by any of three methods:

R<number> r<number> S<number>
The range of <number> above is 0 — 31, specified in decimal.

There are four special-purpose registers in the RISC-E architecture. They are accessed
normally as a general purpose register, but also serve the following purposes:

Register Remarks

RO Register is always value 0x00000000.

R29 Register is dedicated to I/O. See /O Sub-Section

R30 Stack Pointer, also usable as a general-purpose register if not
employing a stack.

R31 Return-address register. jal instructions place the return
address in this register—ideally the system will eventually
execute jr R31 to return.

Special purpose registers

Most instructions require one or more arguments. Argument type varies by instruction.
The user should consult the tables above for argument requirements of a particular

-75 -

instruction. Multiple arguments may be delimited by whitespace (excluding the newline
character) or commas. The following are all acceptable instructions:

add R1 r2 r3

xor $6, $7, S8

breqg rl S0, XLABEL

4.1.1.5 Labels
Labels are defined by any line starting with a colon (:), followed by up to seven
alphanumeric characters. Labels are referenced by their name only—do not include
the colon when referencing a label. Labels are case-sensitive in sim. Thus:
:ULAB1
br ULABI1
Is an infinite loop, but
:ULAB1
br :ULAbl
generates an error.

Labels have the following restrictions:
e Labels may not exceed seven characters in length (excluding the colon)
e The colon is only used only to declare a label, not to reference it.
e A label may not begin with any valid hexadecimal character (eg 0-9, A-F, or a-f)
and may not start with R, r, or $.
e For assembler compatibility, labels may not appear on the same line as
comments.

4.1.1.6 Comments and Whitespace
To aid in code readability, comments may be inserted in a source file to highlight key
sections or explain complex algorithms. All comments recognized by sim begin with a
double forward-slash, //. The semantics of the //-type comment are identical to that of
popular programming languages, such as C or Java. These comments may be placed
anywhere in the source file, with the following exceptions:
¢ Lines consisting of only comments and whitespace must begin with //, and may
not begin with whitespace.
e For assembler compatibility, labels may not appear on the same line as
comments.

Note: While C-style // comments are supported by sim, block-comments of the /* */
type are not supported.

Whitespace (both horizontal and vertical) may be used arbitrarily by the programmer to
improve code readability without affecting execution of sim.

4.1.1.7 Reserved word stop

STOP (case insensitive) is a reserved word in sim. It exists to ensure 100%
compatibility with the RISC-E assembler, which requires stop at the end of a source
file. Should a program in execution encounter st op, execution will cease normally.

-76 -

sToP should only be placed at the end of source file—placing stop in the middle or
beginning of a file will cause a miscalculation of all branch/jump addresses that cross
the stop reserved word.

4.1.1.8 1/O (Input / Output)

The RISC-E system utilizes a VGA output device and a (PS/2) keyboard input device.
The programmer may access these devices to perform 1/O in the course of program
execution. There are three methods of I/O in the RISC-E architecture: keyboard input,
character output, and pixel output. The simulator will directly support both keyboard
input and character output, and will support pixel output with the use of the
accompanying bmpgen program.

Keyboard input:

To read a character from the keyboard, the programmer need only read a value from
register R29. R29 is a dedicated I/O register—the lower eight bits of this register
represent the last key depressed on the keyboard (in ASCII). If no ASCII code exists for
a key, and its code is not otherwise defined in the table below, then the code visible in
R29 will be 00h on a true RISC-E system. In sim, its code will be determined by the C
getch() function call. In this way, simis not true to the RISC-E architecture, and thus
the user should only attempt to use sim when expecting defined inputs.

Key R29 Code Key R29 Code
1 38h RETURN 0Ah

! 32h ENTER 0Ah

— 34h

— 36h

Nonstandard key codes

It is important to note that R29 may be read at any time, though its value may not
always be meaningful. If the user has not depressed any key, then the value of R29
should not be considered valuable input. Thus, the programmer must first poll the
keyboard interface using the brchar instruction to determine if a key has been
pressed. (brchar is taken if the value in R29 has not yet been read.)

To simulate this behavior, sim actually implements a counter that is initially random and
decrements with each successive brchar instruction. When this counter reaches zero,
sim will initiate a key request calling C’s getch() function. The getch() function returns
the pressed character (without echoing to the screen) and that value is then stored in
R29, presumably to be read in subsequent execution.

As mentioned above, use of getch() limits sim’s ability to correctly emulate the RISC-E
keyboard interface. However, for most user inputs sim’s performance matches that of
hardware. Alphanumerics, whitespace, and most symbols will function identically in
RISC-E and in sim.

-77 -

Character Output:

Writing a character to the screen in the RISC-E system is equally as simple as reading
from the keyboard. Again, register R29 is used to interface with the 1/O system. Writes
to R29 will initiate character output, if the VGA controller is ready to accept a new
character. The value written into R29 will be truncated to its lower eight bits, which will
be interpreted as an ASCII character by the VGA controller. For polling purposes,
branch instruction brvid will be taken when the VGA controller standing by for a new
character.

As in the case of character input, it is highly recommended that the programmer make
careful use of the brvid instruction to ensure that R29 is written only when the VGA
controller is ready. Failing to poll correctly in hardware will result in the character write
request to be ignored. Failing to do so in sim will generate a warning printed to the
designated output file (usually stdout):

% | Command Prompt

C:xMWorkingssim>sim nopoll_asm —vu 3

x¥xRead in 537 lines without syntax errors.
»xxFxecution beginz at IP = 8

—>Reqg 29 written while UGA controller unready. IP = 808@00ED

=*xxllser hit CIRL+C. Last IP = 80080178
C:“UWorking~sim>_

[

Response to a non-polled R29 write

Character output in sim employs the C function putc(). As a result, sim also is unable
to exactly match the character-output behavior of the RISC-E system, as putc() will print
some symbols that are not recognized in the RISC-E architecture. Additionally, the
VGA controller can also accept commands via the R29 interface that cannot be
implemented in sim (for details, consult the VGA Controller documentation). Finally,
MS-DOS command-lines will scroll output as more and more characters are printed to
the screen, but there will is no such scrolling action in the RISC-E character output
system—instead the user must erase the screen by writing backspace characters
followed by space characters. The backspace/space requirement is modeled correctly
IN sim.

-78 -

Pixel output:

The RISC-E architecture also allows the user to perform individual pixel manipulations.
As in the case of character output and keyboard input, a polling instruction exists to
facilitate timing of pixel manipulation requests. This instruction is brpix—it is used
identically to that of brvid and brchar. Branch brpix is taken if the VGA controller is
ready to accept a pixel manipulation.

Unlike character I/0O, RISC-E affords a separate instruction to pixel manipulation, the
svga instruction. Note that svga denotes “send to VGA,” and does not reference the
common acronym SVGA. The svga instruction takes one register as its argument—the
pixel manipulation data is entirely encapsulated in that register. To reference how to

format pixel data, refer to the RISC-E Programmer’s Manual or the VGA Controller
documentation.

Pixel manipulation is not completely supported by sim, but the bmpgen program can be
used to render sim’s pixel-manipulation output into a viewable format (see 4.1.1.9
bmpgen). However, sim will recognize when a successful pixel manipulation has
occurred, and will print a message to its specified output stream:

% |Command Prompt

C:“UWorking~sim>sim pixel.asm —wv 3

=*xxBead in 537 lines without syntax errors.

s#xExecution begins at IP = 8

——>Pixel printed: X=0 ¥=A COLOR=08
——>Pixel printed: X=8 Y= COLOR=8
—>Pixel printed: X=8 Y= COLOR=18
——>Pixel printed: X=16 ¥=16 COLOR=18

=xxCtop reached,. IF = BOAAE182
C:“Uorking~sim>_

Response to four pixel outputs

For programs that are pixel-manipulation intensive, it is recommended that the
+vgasilent and +fast command-line options be employed. When sim is invoked
with these switches, no pixel manipulation information will be printed to the specified
output stream, and the polling requirements of the simulated output device will be
relaxed substantially. Execution time for these programs will be dramatically reduced.

-79 -

4.1.1.9 bmpgen for Viewing Pixel Output

It is possible to view pixel manipulations generated by a program once execution has
terminated by using the bmpgen program. bmpgen will convert the pixel manipulation
data generated by sim into a viewable (bitmap, *.bmp) format.

The output bitmap always has width 256 and height 256 (pixels). Pixel manipulations
outside of these dimensions are not visible using bmpgen. The background color of this
bitmap is black—therefore writing black-colored pixels will not be visible after using
bmpgen. The colors that are generated by bmpgen are in general not the same colors
that will appear on a RISC-E system—bmpgen is intended to show pixel patterns, not
true pixel colors. However, the colors white (FFh or 255 decimal) and black (00h or O
decimal) are accurately modeled in bmpgen.

To syntax of bmpgen is:

bmpgen <input file> <output file>

€g
bmpgen pixels.out pixels.bmp

Both the <input file> and <output file> arguments are required. The result of
the execution (in <output file>)is a bitmap image. The <input file> formatis
ASCII text, though it is expected that this file will be an output file from an invocation of
sim. The bmpgen program will examine this file and look for pixel-manipulation
statements like those shown in the example above. It will then modify the output bitmap
accordingly. Therefore, only the most recent update to a pixel will be visible.

Note: The +vgasilent switch should not be used when generating an input file for
bmpgen. However, the use of +fast is highly recommended.

-80 -

The following is a complete example of how to use bmpgen:

| Command Prompt

C:sorkingssim»

C:sWorkingssimdsim picture.asm picture.out —v +fast-—_
Using output file: picture.out

C:sWorkingssim2picture .bmp

inwoke Paint to wiew
the bitmap

inwoke sim with output
file specified

C:sWorkingssim*bmpgen picture.out picture.bmp
Detected 65537 pixel writes.

run bmpogen on oubput
file to produce bitmap

| picture - Paint

FI|E Edit Wiew Image Colars Help

\'r
Y
LA

olO]/|¢]s|~ %Ifs

llllllllllllll
el (R MR

|F|:|r Help, click Help Topics on the Help Menu.

-81-

4.1.1.10 Files

sim.exe The executable form of sim

bmpgen.exe The executable form of bmpgen

header A required data file for bmpgen

sim.cpp Source code for sim

instrs.inc Source code for sim

stdlib.asm A collection of useful functions

dobitmap.bat An MS-DOS batch shell for streamlining use of sim+bmpgen

-82-

