

 - 10 -

2 ISA

The RISC-E architecture is based on a RISC-type MIPS instruction set, with some
extended instructions to aid in the use of the peripherals attached to the processor.

The RISC-E architecture includes 28 general purpose registers (registers R1-R28).
Register R30 is used as a stack pointer, but if no stack operations are performed, it too
could be considered a general purpose register. Register R31 is used by jal (jump
and link) instructions to store return IP values, and is by convention used for jr (jump
register or jump return) instructions, though it, too, is available for general purpose use.

Use of register R29 is limited to the following special purposes:

1) Writes to R29 will write characters (ASCII, lower eight bits only) to the VGA
controller as character output, if there is sufficient space in the VGA pixel
buffer. Use of the brvid instruction allows a programmer to poll availability
of this buffer.

2) Reads from R29 will read characters from the keyboard input controller, if a
new key has been depressed. If no key has been depressed, an unspecified
value will be read from register R29 (see brchar instruction).

The following registers represent the primary operands for the instruction set following:

Key
ddddd – 5 bit destination register
aaaaa – 5 bit source register A
bbbbb – 5 bit source register B
ooooo – variable length offset (dependent on instruction type)
AAAAA – 18 bit address
xxxxx – don’t care field

 - 11 -

2.1 Arithmetic instructions
Arithmetic instructions perform basic mathematic operations on registered operands
and store the result into a register. Opcodes for arithmetic instructions begin with 0h.

add

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0000 0000 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � aaaaa + bbbbb
add $d $a $b

Adds the values in $a and $b together and stores in $d. Works on two’s compliment
values and does not consider overflow.

sub

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0000 0001 ddddd aaaaa bbbbb xxxxxxxxx

ddddd ��aaaaa - bbbbb
sub $d $a $b

Subtracts the value in $b from the value in $a and stores the result in register $d.
Works on two’s compliment values and does not consider overflow.

Data flow for add and sub instructions.

 - 12 -

inc
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0000 0010 ddddd ddddd xxxxx xxxxxxxxx

ddddd � ddddd + 1
inc $d

Increments the value in register $d by one and stores the result in register $d.

dec

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0000 0011 ddddd ddddd xxxxx xxxxxxxxx

ddddd � ddddd – 1
dec $d

Decrements the value in register $d by one and stores the result in $d.

Data flow for inc and dec.

 - 13 -

mult
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0011 0000 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � aaaaa * bbbbb
mult $d $a $b

Multiplies the lower 16 bits of registers $a and $b and stores the 32 bit result in register
$d. Works on two’s compliment values.

Data flow for mult.

2.2 Logical Instructions
Logical instructions perform basic logical operations on register operands and store
their results in a destination register.

and

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0001 0000 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � aaaaa � bbbbb
and $d $a $b

Performs a bitwise logical AND operation on registers $a and $b and stores the result to
register $d. Stores 1 to a given bit if and only if both corresponding bits in $a and $b
are 1, 0 otherwise.

 - 14 -

or
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0001 0001 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � aaaaa | bbbbb
or $d $a $b

Performs a bitwise logical or operation on registers $a and $b and stores the result to
register $d. Stores 0 to a given bit if and only if both corresponding bits in $a and $b
are 0, 1 otherwise.

xor

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0001 0010 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � aaaaa ^ bbbbb
xor $d $a $b

Performs a bitwise logical xor operation on registers $a and $b and stores the result to
register $d. Stores 1 to a given bit if and only if both corresponding bits in $a and $b
are different, 0 if they are the same.

Data flow for and, or, and xor.

 - 15 -

not
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0001 0011 ddddd aaaaa xxxxx xxxxxxxxx

ddddd � ~aaaaa
not $d $a

Performs a bitwise logical not operation on register $a and stores the result to register
$d. Stores a 1 if the corresponding bit in $a is a 0, and a 0 if the corresponding bit is a
1.

Figure : Picture of data flow for not.

2.3 Shift Instructions
Shift instructions move the source register by a value specified in the second source
register.

sra

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0010 0000 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � { (a[31])^(B%32) , a[31:(B%32)] }
sra $d $a $b

Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the
result in register $d. sra sign extends the value of $a.

 - 16 -

srl
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0010 0001 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � { 0^(B%32) , a[31:(B%32)] }
srl $d $a $b

Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the
result in register $d. srl does not sign extend the value of $a.

sl

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0010 0010 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � { a[31-(B%32):0], 0^(B%32) }
sl $d $a $b

Shifts register $a to the left by the value in the lower 5 bits of register $b and stores the
result in register $d.

rol

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0010 0011 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � { a[(B%32)+1,0] , a[31:(B%32)] }
rol $d $a $b

Shifts register $a to the left by the value in the lower five bits of register $b and fills the
lower bits of register $a with the bits of register $a that were shifted out and stores the
result in register $d.

 - 17 -

ror
Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0010 0100 ddddd aaaaa bbbbb xxxxxxxxx

ddddd � { a[31:(B%32)], a[(B%32)+1,0] }
ror $d $a $b

Shifts register $a to the right by the value in the lower five bits of register $b and fills the
upper bits of register $a with the bits of register $a that were shifted out and stores the
result in register $d.

Data flow for sra, srl, sl, rol, and ror.

2.4 No-Operation
No operation performs the addition of register $0 to register $0 and stores the result in
register $0.

nop

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

0100 0000 00000 00000 00000 xxxxxxxxx

nop

No operation performs the addition of register $0 to register $0 and stores the result in
register $0.

 - 18 -

Data flow for nop.

2.5 Immediate Instructions
Immediate instructions load values specified in offset fields into the register operand.

lli

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

18 : 16

Imm
15 : 8

Imm
7 : 0

0101 0000 ddddd xxx iiiiiiii iiiiiiii

ddddd � { ddddd[31:16] , i16 }
lli $d iiiih

Load lower immediate concatenates the upper 16 bits of register $d with the 16 bits of
the immediate offset and stores the result in register $d.

lui

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

18 : 16

Imm
15 : 8

Imm
7 : 0

0101 0001 ddddd xxx iiiiiiii iiiiiiii

ddddd � { i16, ddddd[15:0] }
lui $d iiiih

Load upper immediate concatenates the lower 16 bits of register $d with the 16 bits of
the immediate offset and stores the result in register $d.

 - 19 -

Data flow for lli and lui.

2.6 Memory Instructions
Memory instructions manipulate memory locations by writing to or reading from them.

lw

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

13 : 9

Offset
8 : 0

1000 0000 ddddd aaaaa xxxxx ooooooooo

ddddd � MEM[aaaaa + ooooooooo]
lw $d $a o

Load word reads the memory location specified by the value of register $a plus the
offset and stores the result in register $d. Load word creates a unique hazard in the
processor, as the MIU runs only fast enough to perform one memory access per clock
cycle. Therefore, when a load word is encountered, the pipeline stalls for a cycle to
perform the memory read.

 - 20 -

Data flow for lw.

sw
Opcode
31 : 28

Mode
27 : 24

23 : 19

SrcA
18 : 14

SrcB
13 : 9

Offset
8 : 0

1001 0000 xxxxx aaaaa bbbbb ooooooooo

MEM[aaaaa + ooooooooo] � bbbbb
sw $b $a o

Store words places the value of register $b in the memory location specified by the
value of register $a plus the offset. Store word also creates a hazard in the processor,
similar to that of load word. When a store word is encountered, the pipeline stalls for a
cycle to perform the memory write.

 - 21 -

Data flow for sw.

svga
Opcode
31 : 28

Mode
27 : 24

23 : 19

18 : 14

SrcB
13 : 9

8 : 0

1001 0001 xxxxx xxxxx bbbbb xxxxxxxxx

VGAMEMBUFFNEXT � b
svga $b

The Store to VGA instruction loads the value in register $b into the VGA buffer queue
assuming that the buffer isn’t full (see brpix instruction). The lower 8 bits of register
$b are the color, 3 red bits, 2 green bits, and 3 blue bits. The next 20 bits are used to
specify the location of the bit to be manipulated (See VGA Unit).

 - 22 -

Data flow for svga.

2.7 Stack Instructions
Stack instructions load and store values into the address specified by register $30 and
increment or decrement register $30 as needed.

push

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

SrcB
13 : 9

8 : 0

1010 0000 xxxxx 11110 bbbbb xxxxxxxxx

STACK � b, $30 � $30 – 1
push $b

Push stores the value in register $b to the location in memory specified by register $30.
Then register $30 is decremented to move the stack pointer.

 - 23 -

Data flow for push.

pop

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

SrcA
18 : 14

13 : 9

8 : 0

1011 0000 ddddd 11110 xxxxxx xxxxxxxxx

$d � STACK
pop $d

Pop loads register $d with the value at the address specified by register $30. Then
register $30 is incremented.

Data flow for pop.

 - 24 -

2.8 Jump Instructions
Jump instructions change the flow of execution by loading the PC (program counter)
with a new value specified by a register or an immediate value.

jr

Opcode
31 : 28

Mode
27 : 24

23 : 19

SrcA
18 : 14

13 : 9

8 : 0

0111 0000 xxxxx aaaaa xxxxx xxxxxxxxx

PC � aaaaa
jr $a

Jump register stores the value in register $a into the PC and begins a new program
flow. Jumps must flush the pipeline of any instructions that have begun execution
erroneously.

Data flow for jr.

jal

Opcode
31 : 28

Mode
27 : 24

Destination
23 : 19

Addr
18 : 14

Addr
13 : 9

Addr
8 : 0

0111 0001 11111 xAAAA AAAAA AAAAAAAAA

PC � AAAAAAAAAAAAAAAAAA
jal AAAAAh

Jump and link loads the PC with the value specified by the offset A. A can be specified
as a label or as a numerical offset. Jumps must flush the pipeline of any instructions
that have begun execution erroneously.

 - 25 -

Data flow for jal.

2.9 Branch Intsructions
Branch instructions change the exectuion flow by loading the PC with the current value
of the PC plus the offset field.

brgt

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

SrcA
18 : 14

SrcB
13 : 9

Offset
8 : 0

0110 0001 ooooo aaaaa bbbbb ooooooooo

PC � PC + 1 + o
brgt $a $b o

Branch greater than sets the PC to the value of the PC plus the offset if register $a is
greater than register $b.

brlt

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

SrcA
18 : 14

SrcB
13 : 9

Offset
8 : 0

0110 0010 ooooo aaaaa bbbbb ooooooooo

PC � PC + 1 + o
brlt $a $b o

Branch less than sets the PC to the value of the PC plus the offset if register $a is less
than register $b.

 - 26 -

breq

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

SrcA
18 : 14

SrcB
13 : 9

Offset
8 : 0

0110 0101 ooooo aaaaa bbbbb ooooooooo

PC � PC + 1 + o
breq $a $b o

Branch equal sets the PC to the value of the PC plus the offset if register $a is equal to
register $b.

br

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

18 : 14

13 : 9

Offset
8 : 0

0110 0000 ooooo xxxxx xxxxx ooooooooo

PC � PC + 1 + o
br o

Branch sets the PC to the value of the PC plus the offset unconditionally.

brchar

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

18 : 14

13 : 9

Offset
8 : 0

0110 0011 ooooo xxxxx xxxxx ooooooooo

PC � PC + 1 + o
brchar o

Branch character sets the PC to the value of the PC plus the offset if a character is
ready to be read from the keyboard.

brvid

Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

18 : 14

13 : 9

Offset
8 : 0

0110 0100 ooooo xxxxx xxxxx ooooooooo

PC � PC + 1 + o
brvid o

Branch video sets the PC to the value of the PC plus the offset if the VGA character
buffer is ready to be written to.

 - 27 -

brpix
Opcode
31 : 28

Mode
27 : 24

Offset
23 : 19

18 : 14

13 : 9

Offset
8 : 0

0110 0110 ooooo xxxxx xxxxx ooooooooo

PC � PC + 1 + o
brpix o

Branch pixel sets the PC to the value of the PC plus the offset if the VGA pixel buffer is
ready to be written to.

Data flow for branches.

2.10 Data Dependencies
There are several forms of data dependencies that occur in this ISA. For instance

add $1 $3 $5
add $1 $1 $5

would create a data dependency because the first add instruction would not write to the
register file before the second instruction needed the value in register $1. In order to
solve this problem, there is a data forwarding line from the MEM stage to the EX stage
which provides the ALU with the value before its written to the register file:

 - 71 -

4 Software
4.1 Development Software
Several complete programs were produced to aid in the development of RISC-E
hardware and software.

4.1.1 Sim
Sim is a command-line simulator for the RISC-E (RISC – Extended) instruction set. It
was written with two purposes in mind:

1) Enable software development for the RISC-E architecture before the architecture
is implemented in hardware.

2) Provide a means of testing for the RISC-E architecture by providing a method to
debug test programs before execution on the RISC-E processor.

The use of sim has allowed parallel development of hardware and software, effectively
reducing the time required to generate meaningful programs in the RISC-E instruction
set. Test programs and demonstration programs were developed and debugged
without concern for potential hardware malfunctions.

Sim was written in C/C++ for Win32 machines. Therefore, use of an MS-DOS prompt
(a command-line) is required for effective use of sim. However, use of batch files (files
with a .bat extension in Windows) allows effective invocation of sim from the Windows
GUI.

Accompanying sim is the bmpgen program, a bitmap generation utility for displaying
pixel changes. The simulator itself does not implement pixel-change information—it
instead prints a message to stdout or a specified output file that characterizes each
individual pixel change. The bmpgen program can convert the sim output to a
meaningful Windows bitmap image (with a .bmp extension), which can in turn be
displayed by any graphics program, such as Windows Paint. For further information on
bmpgen and its syntax, see the appropriate section of this manual.

Effective use of sim and bmpgen enables programmers to emulate actually running a
program on the RISC-E processor, but also provides helpful debugging and tracing
tools to speed the development process.

 - 72 -

4.1.1.1 Syntax of sim
Correct syntactical usage of sim is essential to using the program effectively. The
correct syntax is:

sim <input file> [output file] [switches]

Note that arguments enclosed in < > are required, but arguments enclosed in [] are not,
and order of arguments is checked. Thus:

sim myfile.asm myfile.out
and

sim test1.asm –v +r +m

Are valid invocations of sim, but

sim –v test1.asm

is not, as a switch is listed before the input file (test1.asm).

Specifying an output file for sim has the same effect as redirecting sim’s output to a file
using the > operator in MS-DOS. Thus:

sim stdlib.asm –v +r > stdlib.out
and

sim stdlib.asm stdlib.out –v +r

are equivalent executions of sim.

A complete list of switches for sim:
Switch Description
+h Display syntax message.
+r Dump register file to output stream after execution.
+m Dump non-zero memory locations to output stream after

execution
-v Verbose mode off—Does not echo code to output stream.
+i Instruction Memory Fill—Fills instruction memory with

0xFFFFFFFF to simulate presence of instructions at those
memory addresses.

+vgasilent Does not print pixel manipulation information to output
stream. Useful for diagnosing infinite loops.

+fast Disables long loop waits for I/O (see instruction set and I/O
Section below). Recommended only for pixel manipulation-
intensive programs.

Invoking sim without arguments or with improper arguments will also display the above-
mentioned list of arguments and switches.

 - 73 -

4.1.1.2 Programming with sim
The simulator was designed to emulate a RISC-E architecture’s environment as
accurately as possible. Therefore, capabilities and limitations that exist in hardware
also exist in sim, with some exceptions.

The rules of language syntax for sim are those one might expect for an assembler—
illegal opcodes and registers, undefined labels, and inappropriate offsets will be flagged
as errors. E.g.:

The response to an illegal opcodes

In the example above, the first four instructions are valid—the opcodes are defined and
the arguments are correctly specified. However, the RISC-E architecture does not
include a ‘div’ instruction, hence sim’s response of “Unknown opcode.” Similar
responses exist for other errors, such as those listed above. Note that errors in syntax
abort the simulation—to continue would be to return ambiguous results.

The memory system in sim also faithfully represents the RISC-E architecture—the
acceptable addressable range is 0x00000 to 0x3FFFF (an 18-bit range, the logical
range of a RISC-E system). Memory accesses out of the acceptable range are
handled by the simulator in the same manner of actual hardware—the upper 14
bits are simply truncated. Thus, a read from address 0x1247FFFF will read from
memory location 0x3FFFF.

It is important to note that sim does not assemble or locate code. Therefore, reads
from “instruction memory” will not return valid instructions, and nor will writes to
“instruction memory” in any way affect execution. The +i option exists to fill “instruction
memory” with 0xFFFFFFFF, if it is desirable to flag it in this way. In this manner, sim is
not faithful to the RISC-E architecture—instruction and data memory are effectively
separate in the sim environment, but not in the true RISC-E system.

 - 74 -

4.1.1.3 Instructions in sim <instruction> [arguments]
The following is a brief listing of recognized instructions in sim:
(For a more comprehensive listing, see the RISC-E Programmer’s Manual)
Instruction Arguments Description (RTL if applicable)
add regd rega regb Addition: D � A + B
sub regd rega regb Subtraction: D � A – B
inc regd Increment: D � D + 1
dec regd Decrement: D � D – 1
mul regd rega regb Multiply: D � A * B

Note: Multiplies lower 16-bits of A and B
to produce a 32-bit result.

and regd rega regb Logical AND: D � A & B
or regd rega regb Logical OR: D � A | B
not regd rega Logical NOT: D � ~A
xor regd rega regb Logical XOR: D � A ^ B
lw regd regaddr

imm_dec9
Mem: D � memory[regaddr +
imm_dec9]

sw rega regaddr
imm_dec9

Mem: memory[regaddr + imm_dec9] �
A

svga rega Pixel manipulation, see I/O Sub-Section
push rega Stack: TOS � A, R30 � R30 – 1
pop regd Stack: D � TOS+1, R30 � R30 + 1
sl regd rega regb Logical Left Shift: Reg B contains shift

amount.
srl regd rega regb Logical Right Shift: Reg B contains shift

amount.
sra regd rega regb Arithmetic Right Shift: Reg B contains

shift amount.
ror regd rega regb Rotate Right: Reg B contains rotate

amount.
rol regd rega regb Rotate Left: Reg B contains rotate

amount.
lui regd imm_hex16 Load Upper Immediate:

D � {UH_D , imm_hex16}
lli regd imm_hex16 Load Lower Immediate:

D � {UH_D , imm_hex16}
breq rega regb label Branch to label if A = B
brgt rega regb label Branch to label if A > B
brlt rega regb label Branch to label if A < B
brchar label Keyboard polling branch, see I/O Sub-

Section
brpix label Pixel polling branch, see I/O Sub-Section
brvid label Character polling branch, see I/O Sub-

Section
br label Unconditional branch
nop No-operation

 - 75 -

jr regaddr Jump to value specified by register
jal label Jump to label (unconditional)
Recognized instructions and their functions

Abbreviation Definition
rega, A rega is a source register, A is its content
regb, B regb is a source register, B is its content
regd, D regd is the destination register, D is its content (sometimes

also used as a source)
regaddr regaddr is a source register containing an address
imm_dec9 A decimal user-specified immediate value, bounded by:

-2^8 < imm_dec9 < 2^8 –1 (2’s complement)
imm_hex16 A hexadecimal user-specified immediate value. This may be

replaced by a positive decimal value if it falls within the range
0x0000 to 0xFFFF. Otherwise, it must be specified as
D3D2D1D0h where Di is a valid hex digit. Omitting the
terminal h may yield undesired results, as sim will attempt
to cast this number as a decimal value.

UH_D The upper 16 bits of D (D is specified above)
TOS Top-Of-Stack, or memory[R30]
label A user-defined label. See Labels below.
A list of abbreviations and their meanings

4.1.1.4 Registers and Arguments
Registers may be specified by any of three methods:

R<number> r<number> $<number>

The range of <number> above is 0 – 31, specified in decimal.

There are four special-purpose registers in the RISC-E architecture. They are accessed
normally as a general purpose register, but also serve the following purposes:
Register Remarks
R0 Register is always value 0x00000000.
R29 Register is dedicated to I/O. See I/O Sub-Section
R30 Stack Pointer, also usable as a general-purpose register if not

employing a stack.
R31 Return-address register. jal instructions place the return

address in this register—ideally the system will eventually
execute jr R31 to return.

Special purpose registers

Most instructions require one or more arguments. Argument type varies by instruction.
The user should consult the tables above for argument requirements of a particular

 - 76 -

instruction. Multiple arguments may be delimited by whitespace (excluding the newline
character) or commas. The following are all acceptable instructions:
 add R1 r2 r3
 xor $6, $7, $8
 breq r1 $0, XLABEL

4.1.1.5 Labels
Labels are defined by any line starting with a colon (:), followed by up to seven
alphanumeric characters. Labels are referenced by their name only—do not include
the colon when referencing a label. Labels are case-sensitive in sim. Thus:

:ULAB1
br ULAB1

Is an infinite loop, but
 :ULAB1
 br :ULAb1
generates an error.

Labels have the following restrictions:

• Labels may not exceed seven characters in length (excluding the colon)
• The colon is only used only to declare a label, not to reference it.
• A label may not begin with any valid hexadecimal character (eg 0-9, A-F, or a-f)

and may not start with R, r, or $.
• For assembler compatibility, labels may not appear on the same line as

comments.

4.1.1.6 Comments and Whitespace
To aid in code readability, comments may be inserted in a source file to highlight key
sections or explain complex algorithms. All comments recognized by sim begin with a
double forward-slash, //. The semantics of the //-type comment are identical to that of
popular programming languages, such as C or Java. These comments may be placed
anywhere in the source file, with the following exceptions:

• Lines consisting of only comments and whitespace must begin with //, and may
not begin with whitespace.

• For assembler compatibility, labels may not appear on the same line as
comments.

Note: While C-style // comments are supported by sim, block-comments of the /* */
type are not supported.

Whitespace (both horizontal and vertical) may be used arbitrarily by the programmer to
improve code readability without affecting execution of sim.

4.1.1.7 Reserved word stop
STOP (case insensitive) is a reserved word in sim. It exists to ensure 100%
compatibility with the RISC-E assembler, which requires stop at the end of a source
file. Should a program in execution encounter stop, execution will cease normally.

 - 77 -

STOP should only be placed at the end of source file—placing stop in the middle or
beginning of a file will cause a miscalculation of all branch/jump addresses that cross
the stop reserved word.

4.1.1.8 I/O (Input / Output)
The RISC-E system utilizes a VGA output device and a (PS/2) keyboard input device.
The programmer may access these devices to perform I/O in the course of program
execution. There are three methods of I/O in the RISC-E architecture: keyboard input,
character output, and pixel output. The simulator will directly support both keyboard
input and character output, and will support pixel output with the use of the
accompanying bmpgen program.

Keyboard input:
To read a character from the keyboard, the programmer need only read a value from
register R29. R29 is a dedicated I/O register—the lower eight bits of this register
represent the last key depressed on the keyboard (in ASCII). If no ASCII code exists for
a key, and its code is not otherwise defined in the table below, then the code visible in
R29 will be 00h on a true RISC-E system. In sim, its code will be determined by the C
getch() function call. In this way, sim is not true to the RISC-E architecture, and thus
the user should only attempt to use sim when expecting defined inputs.
Key R29 Code Key R29 Code
� 38h RETURN 0Ah
� 32h ENTER 0Ah
� 34h
� 36h

Nonstandard key codes

It is important to note that R29 may be read at any time, though its value may not
always be meaningful. If the user has not depressed any key, then the value of R29
should not be considered valuable input. Thus, the programmer must first poll the
keyboard interface using the brchar instruction to determine if a key has been
pressed. (brchar is taken if the value in R29 has not yet been read.)

To simulate this behavior, sim actually implements a counter that is initially random and
decrements with each successive brchar instruction. When this counter reaches zero,
sim will initiate a key request calling C’s getch() function. The getch() function returns
the pressed character (without echoing to the screen) and that value is then stored in
R29, presumably to be read in subsequent execution.

As mentioned above, use of getch() limits sim’s ability to correctly emulate the RISC-E
keyboard interface. However, for most user inputs sim’s performance matches that of
hardware. Alphanumerics, whitespace, and most symbols will function identically in
RISC-E and in sim.

 - 78 -

Character Output:
Writing a character to the screen in the RISC-E system is equally as simple as reading
from the keyboard. Again, register R29 is used to interface with the I/O system. Writes
to R29 will initiate character output, if the VGA controller is ready to accept a new
character. The value written into R29 will be truncated to its lower eight bits, which will
be interpreted as an ASCII character by the VGA controller. For polling purposes,
branch instruction brvid will be taken when the VGA controller standing by for a new
character.

As in the case of character input, it is highly recommended that the programmer make
careful use of the brvid instruction to ensure that R29 is written only when the VGA
controller is ready. Failing to poll correctly in hardware will result in the character write
request to be ignored. Failing to do so in sim will generate a warning printed to the
designated output file (usually stdout):

Response to a non-polled R29 write

Character output in sim employs the C function putc(). As a result, sim also is unable
to exactly match the character-output behavior of the RISC-E system, as putc() will print
some symbols that are not recognized in the RISC-E architecture. Additionally, the
VGA controller can also accept commands via the R29 interface that cannot be
implemented in sim (for details, consult the VGA Controller documentation). Finally,
MS-DOS command-lines will scroll output as more and more characters are printed to
the screen, but there will is no such scrolling action in the RISC-E character output
system—instead the user must erase the screen by writing backspace characters
followed by space characters. The backspace/space requirement is modeled correctly
in sim.

 - 79 -

Pixel output:
The RISC-E architecture also allows the user to perform individual pixel manipulations.
As in the case of character output and keyboard input, a polling instruction exists to
facilitate timing of pixel manipulation requests. This instruction is brpix—it is used
identically to that of brvid and brchar. Branch brpix is taken if the VGA controller is
ready to accept a pixel manipulation.

Unlike character I/O, RISC-E affords a separate instruction to pixel manipulation, the
svga instruction. Note that svga denotes “send to VGA,” and does not reference the
common acronym SVGA. The svga instruction takes one register as its argument—the
pixel manipulation data is entirely encapsulated in that register. To reference how to
format pixel data, refer to the RISC-E Programmer’s Manual or the VGA Controller
documentation.

Pixel manipulation is not completely supported by sim, but the bmpgen program can be
used to render sim’s pixel-manipulation output into a viewable format (see 4.1.1.9
bmpgen). However, sim will recognize when a successful pixel manipulation has
occurred, and will print a message to its specified output stream:

Response to four pixel outputs

For programs that are pixel-manipulation intensive, it is recommended that the
+vgasilent and +fast command-line options be employed. When sim is invoked
with these switches, no pixel manipulation information will be printed to the specified
output stream, and the polling requirements of the simulated output device will be
relaxed substantially. Execution time for these programs will be dramatically reduced.

 - 80 -

4.1.1.9 bmpgen for Viewing Pixel Output
It is possible to view pixel manipulations generated by a program once execution has
terminated by using the bmpgen program. bmpgen will convert the pixel manipulation
data generated by sim into a viewable (bitmap, *.bmp) format.

The output bitmap always has width 256 and height 256 (pixels). Pixel manipulations
outside of these dimensions are not visible using bmpgen. The background color of this
bitmap is black—therefore writing black-colored pixels will not be visible after using
bmpgen. The colors that are generated by bmpgen are in general not the same colors
that will appear on a RISC-E system—bmpgen is intended to show pixel patterns, not
true pixel colors. However, the colors white (FFh or 255 decimal) and black (00h or 0
decimal) are accurately modeled in bmpgen.

To syntax of bmpgen is:

bmpgen <input file> <output file>
eg

bmpgen pixels.out pixels.bmp

Both the <input file> and <output file> arguments are required. The result of
the execution (in <output file>) is a bitmap image. The <input file> format is
ASCII text, though it is expected that this file will be an output file from an invocation of
sim. The bmpgen program will examine this file and look for pixel-manipulation
statements like those shown in the example above. It will then modify the output bitmap
accordingly. Therefore, only the most recent update to a pixel will be visible.

Note: The +vgasilent switch should not be used when generating an input file for
bmpgen. However, the use of +fast is highly recommended.

 - 81 -

The following is a complete example of how to use bmpgen:

 - 82 -

4.1.1.10 Files

sim.exe The executable form of sim
bmpgen.exe The executable form of bmpgen
header A required data file for bmpgen

sim.cpp Source code for sim
instrs.inc Source code for sim
stdlib.asm A collection of useful functions
dobitmap.bat An MS-DOS batch shell for streamlining use of sim+bmpgen

