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2  ISA 
 
The RISC-E architecture is based on a RISC-type MIPS instruction set, with some 
extended instructions to aid in the use of the peripherals attached to the processor. 
 
The RISC-E architecture includes 28 general purpose registers (registers R1-R28).  
Register R30 is used as a stack pointer, but if no stack operations are performed, it too 
could be considered a general purpose register.  Register R31 is used by jal (jump 
and link) instructions to store return IP values, and is by convention used for jr (jump 
register or jump return) instructions, though it, too, is available for general purpose use.   
 
Use of register R29 is limited to the following special purposes: 

1) Writes to R29 will write characters (ASCII, lower eight bits only) to the VGA 
controller as character output, if there is sufficient space in the VGA pixel 
buffer.  Use of the brvid instruction allows a programmer to poll availability 
of this buffer. 

2) Reads from R29 will read characters from the keyboard input controller, if a 
new key has been depressed.  If no key has been depressed, an unspecified 
value will be read from register R29 (see brchar instruction). 

  
The following registers represent the primary operands for the instruction set following:   
 
Key 
ddddd – 5 bit destination register 
aaaaa – 5 bit source register A 
bbbbb – 5 bit source register B 
ooooo – variable length offset (dependent on instruction type) 
AAAAA – 18 bit address 
xxxxx – don’t care field
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2.1 Arithmetic instructions 
Arithmetic instructions perform basic mathematic operations on registered operands 
and store the result into a register.  Opcodes for arithmetic instructions begin with 0h. 
 
add 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0000 0000 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � aaaaa + bbbbb 
add $d $a $b 
 
Adds the values in $a and $b together and stores in $d.  Works on two’s compliment 
values and does not consider overflow. 
 
 
sub 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0000 0001 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd ��aaaaa - bbbbb 
sub $d $a $b 
 
Subtracts the value in $b from the value in $a and stores the result in register $d.  
Works on two’s compliment values and does not consider overflow. 
 
 

 
Data flow for add and sub instructions. 
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inc 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0000 0010 ddddd ddddd xxxxx xxxxxxxxx 
 
ddddd � ddddd + 1 
inc $d 
 
Increments the value in register $d by one and stores the result in register $d. 
 
 
dec 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0000 0011 ddddd ddddd xxxxx xxxxxxxxx 
 
ddddd � ddddd – 1 
dec $d 
 
Decrements the value in register $d by one and stores the result in $d. 
 
 

 
Data flow for inc and dec. 
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mult 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0011 0000 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � aaaaa * bbbbb 
mult $d $a $b 
 
Multiplies the lower 16 bits of registers $a and $b and stores the 32 bit result in register 
$d.  Works on two’s compliment values. 
 

 
Data flow for mult. 

 
 
2.2 Logical Instructions 
Logical instructions perform basic logical operations on register operands and store 
their results in a destination register. 
 
and 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0001 0000 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � aaaaa � bbbbb 
and $d $a $b 
 
Performs a bitwise logical AND operation on registers $a and $b and stores the result to 
register $d.  Stores 1 to a given bit if and only if both corresponding bits in $a and $b 
are 1, 0 otherwise. 
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or 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0001 0001 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � aaaaa | bbbbb 
or $d $a $b 
 
Performs a bitwise logical or operation on registers $a and $b and stores the result to 
register $d.  Stores 0 to a given bit if and only if both corresponding bits in $a and $b 
are 0, 1 otherwise. 
 
 
 
xor 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0001 0010 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � aaaaa ^ bbbbb 
xor $d $a $b 
 
Performs a bitwise logical xor operation on registers $a and $b and stores the result to 
register $d.  Stores 1 to a given bit if and only if both corresponding bits in $a and $b 
are different, 0 if they are the same. 
 

 
Data flow for and, or, and xor. 
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not 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0001 0011 ddddd aaaaa xxxxx xxxxxxxxx 
 
ddddd � ~aaaaa 
not $d $a 
 
Performs a bitwise logical not operation on register $a and stores the result to register 
$d.  Stores a 1 if the corresponding bit in $a is a 0, and a 0 if the corresponding bit is a 
1. 
 

 
Figure  : Picture of data flow for not. 

 
 

2.3 Shift Instructions 
Shift instructions move the source register by a value specified in the second source 
register.   
 
sra 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0010 0000 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � { (a[31])^(B%32) , a[31:(B%32)] } 
sra $d $a $b 
 
Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the 
result in register $d.  sra sign extends the value of $a. 
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srl 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0010 0001 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � { 0^(B%32) , a[31:(B%32)] } 
srl $d $a $b 
 
Shifts register $a to the right by the value in the lower 5 bits of register $b and stores the 
result in register $d.  srl does not sign extend the value of $a. 
 
 
 
sl 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0010 0010 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � { a[31-(B%32):0], 0^(B%32) } 
sl $d $a $b 
 
Shifts register $a to the left by the value in the lower 5 bits of register $b and stores the 
result in register $d.   
 
 
 
rol 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0010 0011 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � { a[(B%32)+1,0] , a[31:(B%32)] } 
rol $d $a $b 
 
Shifts register $a to the left by the value in the lower five bits of register $b and fills the 
lower bits of register $a with the bits of register $a that were shifted out and stores the 
result in register $d. 
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ror 
Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0010 0100 ddddd aaaaa bbbbb xxxxxxxxx 
 
ddddd � { a[31:(B%32)], a[(B%32)+1,0]  } 
ror $d $a $b 
 
Shifts register $a to the right by the value in the lower five bits of register $b and fills the 
upper bits of register $a with the bits of register $a that were shifted out and stores the 
result in register $d. 
 

 
Data flow for sra, srl, sl, rol, and ror. 

 
 

2.4 No-Operation 
No operation performs the addition of register $0 to register $0 and stores the result in 
register $0. 
 
nop 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

0100 0000 00000 00000 00000 xxxxxxxxx 
 
nop 
 
No operation performs the addition of register $0 to register $0 and stores the result in 
register $0. 
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Data flow for nop. 

 
 

2.5  Immediate Instructions 
Immediate instructions load values specified in offset fields into the register operand. 
 
lli 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

 
18 : 16 

Imm 
15 : 8 

Imm 
7 : 0 

0101 0000 ddddd xxx iiiiiiii iiiiiiii 
 
ddddd � { ddddd[31:16] , i16 } 
lli $d iiiih 
 
Load lower immediate concatenates the upper 16 bits of register $d with the 16 bits of 
the immediate offset and stores the result in register $d. 
 
 
lui 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

 
18 : 16 

Imm 
15 : 8 

Imm 
7 : 0 

0101 0001 ddddd xxx iiiiiiii iiiiiiii 
 
ddddd � { i16, ddddd[15:0] } 
lui $d iiiih 
 
Load upper immediate concatenates the lower 16 bits of register $d with the 16 bits of 
the immediate offset and stores the result in register $d. 
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Data flow for lli and lui. 

 
 

2.6  Memory Instructions 
Memory instructions manipulate memory locations by writing to or reading from them. 
 
lw 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

 
13 : 9 

Offset 
8 : 0 

1000 0000 ddddd aaaaa xxxxx ooooooooo 
 
ddddd � MEM[aaaaa + ooooooooo] 
lw $d $a o 
 
Load word reads the memory location specified by the value of register $a plus the 
offset and stores the result in register $d.  Load word creates a unique hazard in the 
processor, as the MIU runs only fast enough to perform one memory access per clock 
cycle.  Therefore, when a load word is encountered, the pipeline stalls for a cycle to 
perform the memory read. 
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Data flow for lw. 

 
 

sw 
Opcode 
31 : 28 

Mode 
27 : 24 

 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

Offset 
8 : 0 

1001 0000 xxxxx aaaaa bbbbb ooooooooo 
 
MEM[aaaaa + ooooooooo] � bbbbb 
sw $b $a o 
 
Store words places the value of register $b in the memory location specified by the 
value of register $a plus the offset.  Store word also creates a hazard in the processor, 
similar to that of load word.  When a store word is encountered, the pipeline stalls for a 
cycle to perform the memory write. 
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Data flow for sw. 

 
 
 

svga 
Opcode 
31 : 28 

Mode 
27 : 24 

 
23 : 19 

 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

1001 0001 xxxxx xxxxx bbbbb xxxxxxxxx 
 
VGAMEMBUFFNEXT � b 
svga $b 
 
The Store to VGA instruction loads the value in register $b into the VGA buffer queue 
assuming that the buffer isn’t full (see brpix instruction).  The lower 8 bits of register 
$b are the color, 3 red bits, 2 green bits, and 3 blue bits.  The next 20 bits are used to 
specify the location of the bit to be manipulated (See VGA Unit). 
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Data flow for svga. 

 
 

2.7 Stack Instructions 
Stack instructions load and store values into the address specified by register $30 and 
increment or decrement register $30 as needed. 
 
push 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

 
8 : 0 

1010 0000 xxxxx 11110 bbbbb xxxxxxxxx 
 
STACK � b, $30 � $30 – 1 
push $b 
 
Push stores the value in register $b to the location in memory specified by register $30.  
Then register $30 is decremented to move the stack pointer. 
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Data flow for push. 

 
 
pop 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

SrcA 
18 : 14 

 
13 : 9 

 
8 : 0 

1011 0000 ddddd 11110 xxxxxx xxxxxxxxx 
 
$d � STACK 
pop $d 
 
Pop loads register $d with the value at the address specified by register $30.  Then 
register $30 is incremented.   
 

 
Data flow for pop. 
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2.8 Jump Instructions 
Jump instructions change the flow of execution by loading the PC (program counter) 
with a new value specified by a register or an immediate value. 
 
jr 

Opcode 
31 : 28 

Mode 
27 : 24 

 
23 : 19 

SrcA 
18 : 14 

 
13 : 9 

 
8 : 0 

0111 0000 xxxxx aaaaa xxxxx xxxxxxxxx 
 
PC � aaaaa 
jr $a 
 
Jump register stores the value in register $a into the PC and begins a new program 
flow.  Jumps must flush the pipeline of any instructions that have begun execution 
erroneously. 
 

 
Data flow for jr. 

 
 
jal 

Opcode 
31 : 28 

Mode 
27 : 24 

Destination 
23 : 19 

Addr 
18 : 14 

Addr 
13 : 9 

Addr 
8 : 0 

0111 0001 11111 xAAAA AAAAA AAAAAAAAA 
 
PC � AAAAAAAAAAAAAAAAAA 
jal AAAAAh 
 
Jump and link loads the PC with the value specified by the offset A.  A can be specified 
as a label or as a numerical offset.  Jumps must flush the pipeline of any instructions 
that have begun execution erroneously.  
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Data flow for jal. 

 
 
2.9 Branch Intsructions 
Branch instructions change the exectuion flow by loading the PC with the current value 
of the PC plus the offset field. 
 
brgt 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

Offset 
8 : 0 

0110 0001 ooooo aaaaa bbbbb ooooooooo 
 
PC � PC + 1 + o 
brgt $a $b o 
 
Branch greater than sets the PC to the value of the PC plus the offset if register $a is 
greater than register $b. 
 
brlt 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

Offset 
8 : 0 

0110 0010 ooooo aaaaa bbbbb ooooooooo 
 
PC � PC + 1 + o 
brlt $a $b o 
 
Branch less than sets the PC to the value of the PC plus the offset if register $a is less 
than register $b. 
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breq 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

SrcA 
18 : 14 

SrcB 
13 : 9 

Offset 
8 : 0 

0110 0101 ooooo aaaaa bbbbb ooooooooo 
 
PC � PC + 1 + o 
breq $a $b o 
 
Branch equal sets the PC to the value of the PC plus the offset if register $a is equal to 
register $b. 
 
 
br 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

 
18 : 14 

 
13 : 9 

Offset 
8 : 0 

0110 0000 ooooo xxxxx xxxxx ooooooooo 
 
PC � PC + 1 + o 
br o 
 
Branch sets the PC to the value of the PC plus the offset unconditionally. 
 
brchar 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

 
18 : 14 

 
13 : 9 

Offset 
8 : 0 

0110 0011 ooooo xxxxx xxxxx ooooooooo 
 
PC � PC + 1 + o 
brchar o 
 
Branch character sets the PC to the value of the PC plus the offset if a character is 
ready to be read from the keyboard. 
 
brvid 

Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

 
18 : 14 

 
13 : 9 

Offset 
8 : 0 

0110 0100 ooooo xxxxx xxxxx ooooooooo 
 
PC � PC + 1 + o 
brvid o 
 
Branch video sets the PC to the value of the PC plus the offset if the VGA character 
buffer is ready to be written to. 
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brpix 
Opcode 
31 : 28 

Mode 
27 : 24 

Offset 
23 : 19 

 
18 : 14 

 
13 : 9 

Offset 
8 : 0 

0110 0110 ooooo xxxxx xxxxx ooooooooo 
 
PC � PC + 1 + o 
brpix o 
 
Branch pixel sets the PC to the value of the PC plus the offset if the VGA pixel buffer is 
ready to be written to. 
 

 
Data flow for branches. 

 
2.10  Data Dependencies 
There are several forms of data dependencies that occur in this ISA.  For instance 
 

add $1 $3 $5 
add $1 $1 $5 

 
would create a data dependency because the first add instruction would not write to the 
register file before the second instruction needed the value in register $1.  In order to 
solve this problem, there is a data forwarding line from the MEM stage to the EX stage 
which provides the ALU with the value before its written to the register file: 
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4 Software 
4.1 Development Software 
Several complete programs were produced to aid in the development of RISC-E 
hardware and software. 
 
4.1.1 Sim 
Sim is a command-line simulator for the RISC-E (RISC – Extended) instruction set.  It 
was written with two purposes in mind: 

1) Enable software development for the RISC-E architecture before the architecture 
is implemented in hardware. 

2) Provide a means of testing for the RISC-E architecture by providing a method to 
debug test programs before execution on the RISC-E processor. 

The use of sim has allowed parallel development of hardware and software, effectively 
reducing the time required to generate meaningful programs in the RISC-E instruction 
set.  Test programs and demonstration programs were developed and debugged 
without concern for potential hardware malfunctions. 
 
Sim was written in C/C++ for Win32 machines.  Therefore, use of an MS-DOS prompt 
(a command-line) is required for effective use of sim.  However, use of batch files (files 
with a .bat extension in Windows) allows effective invocation of sim from the Windows 
GUI. 
 
Accompanying sim is the bmpgen program, a bitmap generation utility for displaying 
pixel changes.  The simulator itself does not implement pixel-change information—it 
instead prints a message to stdout or a specified output file that characterizes each 
individual pixel change.  The bmpgen program can convert the sim output to a 
meaningful Windows bitmap image (with a .bmp extension), which can in turn be 
displayed by any graphics program, such as Windows Paint.  For further information on 
bmpgen and its syntax, see the appropriate section of this manual. 
 
Effective use of sim and bmpgen enables programmers to emulate actually running a 
program on the RISC-E processor, but also provides helpful debugging and tracing 
tools to speed the development process. 
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4.1.1.1 Syntax of sim 
Correct syntactical usage of sim is essential to using the program effectively.  The 
correct syntax is: 

sim <input file> [output file] [switches] 
 
Note that arguments enclosed in < > are required, but arguments enclosed in [ ] are not, 
and order of arguments is checked.  Thus: 
 

sim myfile.asm myfile.out 
and 

sim test1.asm –v +r +m 
 

Are valid invocations of sim, but 
 

sim –v test1.asm 
 
is not, as a switch is listed before the input file (test1.asm). 
 
Specifying an output file for sim has the same effect as redirecting sim’s output to a file 
using the > operator in MS-DOS.  Thus: 
 

sim stdlib.asm –v +r > stdlib.out 
and 

sim stdlib.asm stdlib.out –v +r 
 

are equivalent executions of sim. 
 
A complete list of switches for sim: 
Switch Description 
+h Display syntax message. 
+r Dump register file to output stream after execution. 
+m Dump non-zero memory locations to output stream after 

execution 
-v Verbose mode off—Does not echo code to output stream. 
+i Instruction Memory Fill—Fills instruction memory with 

0xFFFFFFFF to simulate presence of instructions at those 
memory addresses. 

+vgasilent Does not print pixel manipulation information to output 
stream. Useful for diagnosing infinite loops. 

+fast Disables long loop waits for I/O (see instruction set and I/O 
Section below).  Recommended only for pixel manipulation-
intensive programs. 

 
Invoking sim without arguments or with improper arguments will also display the above-
mentioned list of arguments and switches. 
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4.1.1.2 Programming with sim 
The simulator was designed to emulate a RISC-E architecture’s environment as 
accurately as possible.  Therefore, capabilities and limitations that exist in hardware 
also exist in sim, with some exceptions. 
 
The rules of language syntax for sim are those one might expect for an assembler—
illegal opcodes and registers, undefined labels, and inappropriate offsets will be flagged 
as errors. E.g.: 

 
The response to an illegal opcodes 

In the example above, the first four instructions are valid—the opcodes are defined and 
the arguments are correctly specified.  However, the RISC-E architecture does not 
include a ‘div’ instruction, hence sim’s response of “Unknown opcode.”  Similar 
responses exist for other errors, such as those listed above.  Note that errors in syntax 
abort the simulation—to continue would be to return ambiguous results. 
 
The memory system in sim also faithfully represents the RISC-E architecture—the 
acceptable addressable range is 0x00000 to 0x3FFFF (an 18-bit range, the logical 
range of a RISC-E system).  Memory accesses out of the acceptable range are 
handled by the simulator in the same manner of actual hardware—the upper 14 
bits are simply truncated.  Thus, a read from address 0x1247FFFF will read from 
memory location 0x3FFFF.  
 
It is important to note that sim does not assemble or locate code.  Therefore, reads 
from “instruction memory” will not return valid instructions, and nor will writes to 
“instruction memory” in any way affect execution.  The +i option exists to fill “instruction 
memory” with 0xFFFFFFFF, if it is desirable to flag it in this way.  In this manner, sim is 
not faithful to the RISC-E architecture—instruction and data memory are effectively 
separate in the sim environment, but not in the true RISC-E system. 
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4.1.1.3 Instructions in sim   <instruction> [arguments] 
The following is a brief listing of recognized instructions in sim:  
(For a more comprehensive listing, see the RISC-E Programmer’s Manual) 
Instruction Arguments Description (RTL if applicable) 
add regd rega regb Addition: D � A + B 
sub regd rega regb Subtraction: D � A – B 
inc regd Increment: D � D + 1 
dec regd Decrement: D � D – 1 
mul regd rega regb Multiply: D � A * B 

Note: Multiplies lower 16-bits of A and B 
to produce a 32-bit result. 

and regd rega regb Logical AND: D � A & B 
or regd rega regb Logical OR: D � A | B 
not regd rega  Logical NOT: D � ~A 
xor regd rega regb Logical XOR: D � A ^ B 
lw regd regaddr 

imm_dec9 
Mem: D � memory[regaddr + 
imm_dec9] 

sw rega regaddr 
imm_dec9 

Mem: memory[regaddr + imm_dec9] � 
A 

svga rega Pixel manipulation, see I/O Sub-Section 
push rega Stack: TOS � A, R30 � R30 – 1 
pop regd Stack: D � TOS+1, R30 � R30 + 1 
sl regd rega regb Logical Left Shift: Reg B contains shift 

amount. 
srl regd rega regb Logical Right Shift: Reg B contains shift 

amount. 
sra regd rega regb Arithmetic Right Shift: Reg B contains 

shift amount. 
ror regd rega regb Rotate Right: Reg B contains rotate 

amount. 
rol regd rega regb Rotate Left: Reg B contains rotate 

amount. 
lui regd imm_hex16 Load Upper Immediate:  

D � {UH_D , imm_hex16} 
lli regd imm_hex16 Load Lower Immediate:  

D � {UH_D , imm_hex16} 
breq rega regb label Branch to label if A = B 
brgt rega regb label Branch to label if A > B 
brlt rega regb label Branch to label if A < B 
brchar label Keyboard polling branch, see I/O Sub-

Section 
brpix label Pixel polling branch, see I/O Sub-Section 
brvid label Character polling branch, see I/O Sub-

Section 
br label Unconditional branch 
nop  No-operation 
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jr regaddr Jump to value specified by register 
jal label Jump to label (unconditional) 
Recognized instructions and their functions 

 
Abbreviation Definition 
rega, A rega is a source register, A is its content 
regb, B regb is a source register, B is its content 
regd, D regd is the destination register, D is its content (sometimes 

also used as a source) 
regaddr regaddr is a source register containing an address 
imm_dec9 A decimal user-specified immediate value, bounded by: 

-2^8 < imm_dec9 < 2^8 –1  (2’s complement) 
imm_hex16 A hexadecimal user-specified immediate value.  This may be 

replaced by a positive decimal value if it falls within the range 
0x0000 to 0xFFFF.  Otherwise, it must be specified as 
D3D2D1D0h where Di is a valid hex digit.  Omitting the 
terminal h may yield undesired results, as sim will attempt 
to cast this number as a decimal value. 

UH_D The upper 16 bits of D (D is specified above) 
TOS Top-Of-Stack, or memory[R30] 
label A user-defined label. See Labels below.  
A list of abbreviations and their meanings 

4.1.1.4 Registers and Arguments 
Registers may be specified by any of three methods: 
 

R<number>  r<number>  $<number> 
 
The range of <number> above is 0 – 31, specified in decimal.   
 
There are four special-purpose registers in the RISC-E architecture.  They are accessed 
normally as a general purpose register, but also serve the following purposes: 
Register Remarks 
R0 Register is always value 0x00000000. 
R29 Register is dedicated to I/O. See I/O Sub-Section 
R30 Stack Pointer, also usable as a general-purpose register if not 

employing a stack. 
R31 Return-address register.  jal instructions place the return 

address in this register—ideally the system will eventually 
execute jr R31 to return. 

Special purpose registers 

Most instructions require one or more arguments.  Argument type varies by instruction.  
The user should consult the tables above for argument requirements of a particular 
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instruction.  Multiple arguments may be delimited by whitespace (excluding the newline 
character) or commas.  The following are all acceptable instructions: 
  add R1 r2 r3 
  xor $6,  $7,  $8 
  breq  r1   $0, XLABEL 
 
4.1.1.5 Labels 
Labels are defined by any line starting with a colon ( : ), followed by up to seven 
alphanumeric characters.  Labels are referenced by their name only—do not include 
the colon when referencing a label. Labels are case-sensitive in sim. Thus: 

:ULAB1 
br ULAB1 

Is an infinite loop, but 
  :ULAB1 
  br :ULAb1 
generates an error. 
 
Labels have the following restrictions: 

• Labels may not exceed seven characters in length (excluding the colon) 
• The colon is only used only to declare a label, not to reference it. 
• A label may not begin with any valid hexadecimal character (eg 0-9, A-F, or a-f) 

and may not start with R, r, or $. 
• For assembler compatibility, labels may not appear on the same line as 

comments. 
 
4.1.1.6 Comments and Whitespace 
To aid in code readability, comments may be inserted in a source file to highlight key 
sections or explain complex algorithms.  All comments recognized by sim begin with a 
double forward-slash, //.  The semantics of the //-type comment are identical to that of 
popular programming languages, such as C or Java.  These comments may be placed 
anywhere in the source file, with the following exceptions: 

• Lines consisting of only comments and whitespace must begin with //, and may 
not begin with whitespace. 

• For assembler compatibility, labels may not appear on the same line as 
comments. 

 
Note:  While C-style // comments are supported by sim, block-comments of the /* */ 
type are not supported. 
 
Whitespace (both horizontal and vertical) may be used arbitrarily by the programmer to 
improve code readability without affecting execution of sim. 
 
4.1.1.7 Reserved word stop 
STOP (case insensitive) is a reserved word in sim.  It exists to ensure 100% 
compatibility with the RISC-E assembler, which requires stop at the end of a source 
file.  Should a program in execution encounter stop, execution will cease normally.  
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STOP should only be placed at the end of source file—placing stop in the middle or 
beginning of a file will cause a miscalculation of all branch/jump addresses that cross 
the stop reserved word. 
 
4.1.1.8 I/O (Input / Output) 
The RISC-E system utilizes a VGA output device and a (PS/2) keyboard input device.  
The programmer may access these devices to perform I/O in the course of program 
execution.  There are three methods of I/O in the RISC-E architecture: keyboard input, 
character output, and pixel output.  The simulator will directly support both keyboard 
input and character output, and will support pixel output with the use of the 
accompanying bmpgen program. 
 
Keyboard input: 
To read a character from the keyboard, the programmer need only read a value from 
register R29.  R29 is a dedicated I/O register—the lower eight bits of this register 
represent the last key depressed on the keyboard (in ASCII).  If no ASCII code exists for 
a key, and its code is not otherwise defined in the table below, then the code visible in 
R29 will be 00h on a true RISC-E system.  In sim, its code will be determined by the C 
getch() function call.  In this way, sim is not true to the RISC-E architecture, and thus 
the user should only attempt to use sim when expecting defined inputs. 
Key R29 Code  Key R29 Code 
� 38h  RETURN 0Ah 
� 32h  ENTER 0Ah 
� 34h    
� 36h    

Nonstandard key codes 

It is important to note that R29 may be read at any time, though its value may not 
always be meaningful.  If the user has not depressed any key, then the value of R29 
should not be considered valuable input.  Thus, the programmer must first poll the 
keyboard interface using the brchar instruction to determine if a key has been 
pressed. (brchar is taken if the value in R29 has not yet been read.) 
 
To simulate this behavior, sim actually implements a counter that is initially random and 
decrements with each successive brchar instruction.  When this counter reaches zero, 
sim will initiate a key request calling C’s getch() function.  The getch() function returns 
the pressed character (without echoing to the screen) and that value is then stored in 
R29, presumably to be read in subsequent execution.  
 
As mentioned above, use of getch() limits sim’s ability to correctly emulate the RISC-E 
keyboard interface.  However, for most user inputs sim’s performance matches that of 
hardware.  Alphanumerics, whitespace, and most symbols will function identically in 
RISC-E and in sim. 
 



 

 - 78 - 

Character Output: 
Writing a character to the screen in the RISC-E system is equally as simple as reading 
from the keyboard.  Again, register R29 is used to interface with the I/O system.  Writes 
to R29 will initiate character output, if the VGA controller is ready to accept a new 
character.  The value written into R29 will be truncated to its lower eight bits, which will 
be interpreted as an ASCII character by the VGA controller.  For polling purposes, 
branch instruction brvid will be taken when the VGA controller standing by for a new 
character.   
 
As in the case of character input, it is highly recommended that the programmer make 
careful use of the brvid instruction to ensure that R29 is written only when the VGA 
controller is ready.  Failing to poll correctly in hardware will result in the character write 
request to be ignored.  Failing to do so in sim will generate a warning printed to the 
designated output file (usually stdout): 

 
Response to a non-polled R29 write 

Character output in sim employs the C function putc().  As a result, sim also is unable 
to exactly match the character-output behavior of the RISC-E system, as putc() will print 
some symbols that are not recognized in the RISC-E architecture.  Additionally, the 
VGA controller can also accept commands via the R29 interface that cannot be 
implemented in sim (for details, consult the VGA Controller documentation).  Finally, 
MS-DOS command-lines will scroll output as more and more characters are printed to 
the screen, but there will is no such scrolling action in the RISC-E character output 
system—instead the user must erase the screen by writing backspace characters 
followed by space characters.  The backspace/space requirement is modeled correctly 
in sim. 
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Pixel output: 
The RISC-E architecture also allows the user to perform individual pixel manipulations.  
As in the case of character output and keyboard input, a polling instruction exists to 
facilitate timing of pixel manipulation requests.  This instruction is brpix—it is used 
identically to that of brvid and brchar.  Branch brpix is taken if the VGA controller is 
ready to accept a pixel manipulation. 
 
Unlike character I/O, RISC-E affords a separate instruction to pixel manipulation, the 
svga instruction.  Note that svga denotes “send to VGA,” and does not reference the 
common acronym SVGA.  The svga instruction takes one register as its argument—the 
pixel manipulation data is entirely encapsulated in that register.  To reference how to 
format pixel data, refer to the RISC-E Programmer’s Manual or the VGA Controller 
documentation. 
 
Pixel manipulation is not completely supported by sim, but the bmpgen program can be 
used to render sim’s pixel-manipulation output into a viewable format (see 4.1.1.9 
bmpgen).  However, sim will recognize when a successful pixel manipulation has 
occurred, and will print a message to its specified output stream: 

 
Response to four pixel outputs 

 
For programs that are pixel-manipulation intensive, it is recommended that the 
+vgasilent and +fast command-line options be employed.  When sim is invoked 
with these switches,  no pixel manipulation information will be printed to the specified 
output stream, and the polling requirements of the simulated output device will be 
relaxed substantially.  Execution time for these programs will be dramatically reduced. 
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4.1.1.9 bmpgen for Viewing Pixel Output 
It is possible to view pixel manipulations generated by a program once execution has 
terminated by using the bmpgen program.  bmpgen will convert the pixel manipulation 
data generated by sim into a viewable (bitmap, *.bmp) format.   
 
The output bitmap always has width 256 and height 256 (pixels).  Pixel manipulations 
outside of these dimensions are not visible using bmpgen.  The background color of this 
bitmap is black—therefore writing black-colored pixels will not be visible after using 
bmpgen.  The colors that are generated by bmpgen are in general not the same colors 
that will appear on a RISC-E system—bmpgen is intended to show pixel patterns, not 
true pixel colors.  However, the colors white (FFh or 255 decimal) and black (00h or 0 
decimal) are accurately modeled in bmpgen. 
 
To syntax of bmpgen is: 
 

bmpgen <input file> <output file> 
eg 

bmpgen pixels.out pixels.bmp 
 

Both the <input file> and <output file> arguments are required.  The result of 
the execution (in <output file>) is a bitmap image.  The <input file> format is 
ASCII text, though it is expected that this file will be an output file from an invocation of 
sim.  The bmpgen program will examine this file and look for pixel-manipulation 
statements like those shown in the example above.  It will then modify the output bitmap 
accordingly.  Therefore, only the most recent update to a pixel will be visible. 
 
Note: The +vgasilent switch should not be used when generating an input file for 
bmpgen.  However, the use of +fast is highly recommended. 
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The following is a complete example of how to use bmpgen: 
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4.1.1.10 Files 
 
sim.exe   The executable form of sim 
bmpgen.exe  The executable form of bmpgen 
header   A required data file for bmpgen 
 
sim.cpp   Source code for sim 
instrs.inc  Source code for sim 
stdlib.asm  A collection of useful functions 
dobitmap.bat  An MS-DOS batch shell for streamlining use of sim+bmpgen 
 


