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Abstract

In the near term, Moore’s law will continue to provide an in-
creasing number of transistors and therefore an increasing num-
ber of on-chip cores. Limited pin bandwidth prevents the integra-
tion of a large number of memory controllers on-chip. With many
cores, and few memory controllers, where to locate the memory
controllers in the on-chip interconnection fabric becomes an im-
portant and as yet unexplored question. In this paper, we show
how the location of the memory controllers can reduce contention
(hot spots) in the on-chip fabric, as well as lower the variance in
reference latency which provides for predictable performance of
memory-intensive applications regardless of the processing core
on which a thread is scheduled. We explore the design space of on-
chip fabrics to find optimal memory controller placement relative
to different topologies (i.e. mesh and torus), routing algorithms,
and workloads.

Categories and Subject Descriptors:C.1.2 [Computer Systems
Organization]: Interconnection architectures; B.4.2 [Input/ Out-
put Devices]: Channels and Controllers

General Terms: Performance, Design

Keywords: interconnetion networks, memory controllers, chip
multiprocessors, routing algorithms

1. Introduction

Increasing levels of silicon integration are motivating system
on chip (SoC) and chip multiprocessor (CMP) designs with large
processor counts and integrated memory controllers. Proof-of-
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concept designs from both Tilera [22, 26] and Intel [12, 25] in-
tegrate as many as 80 cores on a single piece of silicon. System
architects are faced with the trade-off of many lightweight cores
(with simple, in-order issue) versus fewer heavyweight cores (with
aggressive speculation, multiple issue, etc); however, both design
points require abundant DRAM bandwidth to feed the memory hi-
erarchy.

The most significant design impediment to scaling, is limited
pin bandwidth to memory devices. Memory bandwidth has im-
proved with recent high-speed differential signaling [9], FB-DIMM
technology [8] and on-board memory buffers to serve as pin ex-
panders converting from narrow serial channels to a wide address/
data/control bus used by the memory part. Nonetheless, packaging
constraints limited primarily by the number of available pins re-
strict the number of memory controllers to a small fraction relative
to the number of processing cores. The reality ofmanycores with
fewmemory controllers raises the important question ofwherethe
memory controllers should be located within the on-chip network.

The Tilera Tile64 Architecture [26] is implemented as an 8×8
two-dimensional mesh oftiles (Figure 1a). Packets are routed
using dimension-order routing and wormhole flow control. The
Tilera on-chip network uses five independent physical networks to
isolate traffic1, where each full-duplex link is 32-bits wide in each
direction. Each of the physical networks has a 5-ported router in
each tile that flows packets in the north, south, east, and west di-
rections of the 2D mesh, as well as ingress and egress traffic from
the processor. In aggregate, the five networks provide 1.28 Tb/s
of bandwidth per tile, or 2.56 Tb/s of minimum bisection band-
width for the 8×8 mesh. Each physical network corresponds to
a different communication model, either shared memory or direct
communication via user-level messaging.

The Intel 80-core design [25] is organized as a 10×8 two-
dimensional mesh (Figure 1b) of tiles, where each tile embod-
ies a processing core which interfaces to a 5-ported router. The
switch operates at 4GHz and routes packets using wormhole flow
control between tiles. Two virtual channels are used to avoid pro-

1Four of the five networks use dimension-ordered routing. The
static networkuses a circuit-switch-like mechanism to establish
a channel from source to destination and then efficiently streams
data without requiring route computation at each hop.



tocol deadlock. Each input queue is only 16 flits deep (each flit
is 39-bits), since it only has to cover the latency× bandwidth
product between tiles. Each full-duplex router link can move a
39-bit flit (32-bits of data and 7-bits of sideband) on every 4GHz
clock, providing 16GB/s per direction. The processor has 16GB/s
of ingress/egress bandwidth into/from the router, for a total non-
blocking bandwidth of 80GB/s per tile. A round-robin arbitration
across the router input ports is used for fair access to the output
ports.

The designs from Intel [25] and Tilera [26] both use a mesh
topology for the on-chip network and have the memory controllers
positioned near the top and bottom of the fabric (Figure 1). As the
number of processor cores grow, it is not practical to assume each
tile will have a memory controller directly attached2. As a result, a
many-core CMP withn processors andm memory ports will have`

n
m

´
possible permutations forwherethe memory controllers could

be located within the on-chip fabric. These different memory con-
troller configurations can have a dramatic impact on the latency
and bandwidth characteristics of the on-chip network, especially
for a mesh topology which is not edge symmetric like a torus, for
example. Furthermore, by reducing thevariancein packet latency
as well as channel load, the on-chip network is less sensitive to
the processor core on which a thread is scheduled. Through care-
ful placement of the memory controllers we can improve perfor-
mance and provide predictable latency-bandwidth characteristics
regardless of where a thread executes on the CMP.

1.1 Contributions

Modern flip-chip packaging allows sufficient escape paths from
anywhere on the chip, which leaves open the question ofwhereto
place each memory controller within the on-chip network so that
we minimize both latency and link contention. The memory con-
trollers themselves do not have to be part of the on-chip network,

2Due to limited number of pins, it is not practical since each FB-
DIMM interface, for example, requires 10 northbound differential
signals, and 14 southbound differential signals.

Figure 1. Two recent many-core CMPs that
use a two-dimensional mesh of tiles.

rather, the ingress/egress ports to/from the memory are. Addition-
ally, the number of on-chip network ports to/from memory does
not need to be equal to the number of memory controllers. The
combination ofwherethe memory controllers are located and rout-
ing algorithm will significantly influence how much traffic each
link will carry. In this paper, we make several contributions to
on-chip interconnection networks:

• Most prior research has focused on intra-chip (processor-to-
processor) communication. This is the first work to evaluate
the impactlocationof memory controller and the influence
of processor-to-memory traffic for on-chip networks.

• We proposeclass-based deterministic routing(CDR)3 to load-
balance the processor-to-memory traffic in a 2D on-chip mesh
topology. Other routing algorithms such as O1turn [19] can-
not effectively load balance processor-to-memory traffic.

• We explicitly enumerate all possible permutations of mem-
ory controllers in both mesh and torus topologies that are
common in two-dimensional on-chip networks, and use ex-
tensive simulation to find the configuration that minimizes
the maximum channel load. We show that exhaustive sim-
ulation is possible for modest-sized on-chip networks (k <
7), however, larger networks such as an 8×8 mesh, require a
heuristic-guided search to deal with the computational com-
plexity that arises from a large search space.

• We explore the design space of on-chip networks to show
how memory controller location and routing algorithm can
improve the latency and bandwidth characteristics as well as
reducevarianceof the network for both synthetic and full
system workloads. Our solution provides more predictable
performance regardless of which processor core is used to
execute a memory-intensive thread.

The remainder of this paper is organized as follows. Section
2 provides further background and motivation for optimal place-
ment of memory controllers. In Section 3, we briefly describe our
methodology and present results for initially pruning the design
space in Section 4. We then describe the our more detailed sim-
ulation methodologies and discuss the impact of placement and
routing on the latency and bandwidth characteristics of the on-
chip network in Section 5. In Section 6 we discuss other prior
work. Finally, Section 7 summarizes our contributions.

2. Motivation

Typical multi-core processor designs, common in most modern
servers, use a conventional crossbar design [2] that provides a 1:1
ratio of memory controllers and processor cores. Compared to an
aggressive out-of-order processor with substantial hardware dedi-
cated to handling multiple outstanding cache misses per core, the
simpler processing cores of a many-core architecture willdemand
less memory bandwidth. Architectures that increase memory-level
parallelism, by allowing more outstanding cache misses from each
core, increase link contention in the on-chip fabric.

Figure 2 shows some point specific designs that we evaluate
for 16 memory controller ports embedded in an 8×8 array of tiles

3pronounced “cedar”



Figure 2. Different memory controller config-
urations.

(shaded squares represent a memory port co-located with a pro-
cessor tile). The number of memory ingress/egress ports, ortaps
does not have to be the same as the number of physical memory
channels. As shown in Figure 1a, the Tilera chip has 16 tiles with
memory taps, and only four memory controllers. This organiza-
tion makes it very important touniformly spread the processor-
to-memory traffic across all the available memory ports. Although
[26] does not specifically discuss how the references are distributed,
we use the address bits immediately above the cache line address
to choose the memory port for a given address. Our baseline de-
sign (Figure 2a) was chosen because it was representative of how
both Intel and Tilera chose to implement their memory interface.

We assume that a mesh or torus on-chip network with radixk
will have 2k memory ports. These2k memory ports will be mul-
tiplexed to a smaller number of memory controllers as dictated by
the available pin bandwidth of the design4. Guided by intuition,
we then chose several other configurations we thought might per-
form better (Figures 2c-f). However for scientific rigor, we did not

4The Tilera design multiplexes 4 memory ports to 1 memory con-
troller.

limit our search of the design space to a small handful of config-
urations. Instead, we enumerated all possible configurations and
simulated each one with 10,000 trials of random permutation traf-
fic.

Intuitively, the row2_5 configuration will have a lower aver-
age hop count for each processor to access all of the memory con-
trollers. To the first order, this will improve average performance
over therow0_7 . However, the goal of this work is to find con-
figurations that provide good performance and fair access to each
memory controller. To that end, we examine the variation in la-
tency experienced by processors to access each memory controller.
A lower variance indicates that a memory controller configuration
provides both fair and predictable access from all processors.

3. Simulation Methodology

We use several simulation environments, corresponding to dif-
ferent levels of abstraction and detail, to explore this broad design
space. The first is a simple, and fast,link contentionsimulator
which traces the path a packet takes through the network and incre-
ments a count on each link that it traverses. This count represents
the channel load, orcontention, that would be observed by the link
if the processors were simultaneously active. The second environ-
ment is a detailed, network simulator [5] used to explore topology
and routing sensitivity to different memory controller placement
alternatives. It provides flit-level granularity and detailed simula-
tion for syntheticworkloads. Lastly, we have a detailed full sys-
tem simulator that allows real workloads to be applied to what we
learned from the previous two environments.

By providing multiple simulation approaches at differing levels
of abstraction, we are able to validate and gain a better understand-
ing of issues that may exist in one simulation environment, but not
others. For example, after studying thedistributionof memory ref-
erences (Figure 4) in the TPC-H benchmark, it was apparent that
some memory controllers were accessed much more frequently
than others – with some memory controllers having up to 4× the
load of others. To mimic thishot spottraffic pattern, we applied
this traffic pattern as input to the network simulator by choosing
the destination memory controller according to the distribution ob-
served by the full system simulator. In this way, we were able to
validate simulation models at differing levels of abstraction.

4. Pruning the Design Space

We use a link contention simulator, a genetic algorithm and
a random simulation to prune the large design space of memory
controller placement. Once a small subset of memory controller
placements has been selected, we will describe, in detail the eval-
uation methods and results that provide further insight into this
problem (Section 5).

4.1 Link contention simulator

To gain a better understanding of how placement affects con-
tention, or specifically, themaximum channel load, within the on-
chip network we develop a simple simulator that traces the path of
each packet. Themaximum channel loadis the load (in packets)
on the channel carrying the largest fraction of traffic [5]. The net-
work is modeled as a group of nodes interconnected with unidirec-
tional channels. As a packet traverses each unidirectional channel,



we increment a counter associated with that channel, and com-
pare the count to the currentmax_channel_loadvalue. We keep
track of the maximum channel load as aproxy for the delivered
bandwidth, since the accepted bandwidth will ultimately be lim-
ited by the channel with the highest contention, or channel load.
All processor-to-memory references are modeled by having each
processor choose a random memory controller in which to send a
request. Once the request packet reaches the destination memory
controller, the reply packet is sent back – again, tracing the path
of the packet as it heads back to the requesting processor tile. We
perform 10,000 trials averaging the maximum channel load across
all the trials. This average value is used as a figure of merit for
evaluating different memory configurations.

We use the contention simulator to enumerate all possible place-
ment options, and then simulate 10,000 trials for each configura-
tion. We do this for both mesh and torus topologies. For symmet-
ric topologies, such as the torus, there is a lot of symmetry that can
be exploited, however, our simulator does not take this symmetry
into account. So, it is possible for multiple configurations to be
viewed asbest(i.e. perform identically). An on-chip network with
n tiles andm memory controllers will havèn

m

´
possible memory

configurations that must be compared against each other in order
to choose the best .

For small on-chip networks, say 4×4 mesh, with 8 memory
ports, we have a total of̀16

8

´
, or 12,870 different placements to

evaluate. A 5×5 mesh with 10 memory ports has 3,268,760 dif-
ferent possibilities, and a 6×6 mesh has over one billion possi-
ble placements. Thus an 8×8 mesh with 16 memory ports has
4.9×1014 different configurations – making exhaustive search of
the design space intractable for any network larger than 6×6. To
deal with this complexity we use two approaches: genetic algo-
rithms, and random simulation.

4.1.1 Genetic algorithm
Genetic algorithms [7] (GAs) take a heuristic-based approach

to optimization. GAs are inspired by DNA’s ability to encode
complicated organisms into simple (if lengthy) sequences. Each
sequence represents a potential solution to the problem under op-
timization. In our case, we represent our solutions as a bit vector;
set bits in the vector represent locations of memory controllers in
our topology. In the course of execution, solutions are combined to
produce new solutions (analogous to chromosomal crossover), and
new solutions are randomly perturbed (i.e., mutated) with some
probability to prevent convergence on local minima. Each new
solution is evaluated, and assigned a fitness.

The nature of crossover, mutation, and fitness evaluation oper-
ations is specific to the problem to be solved. The fitness of each
solution is the reciprocal of the maximum channel load for that
configuration. Our crossover algorithm selects two parent solu-
tions from a large population, with probability proportional to the
potential parents’ fitness, then randomly selects bits from the par-
ents to form a new solution. The mutation operation simply swaps
adjacent bits in the vector. In order to maximize the effectiveness
of our heuristic, we never evaluate a particular bit vector more
than once. Instead, we repeatedly apply mutation to redundant so-
lutions until a new solution is discovered. Our genetic simulator
executes a fixed number of generations or returns a solution when
stagnation occurs in the population5.

5Stagnation is defined as no improvement in observed fitness over
some interval.

4.1.2 Random simulation
We extended our link contention simulator to perform a ran-

dom walk of the design space. We begin by randomly selecting a
valid memory controller configuration, and keep track of which
configuration has the least contention. Again, as our figure of
merit, we usemaximum channel loadas a proxy for accepted band-
width. The configuration with the lowest maximum channel load
will have less congestion and as a result, the best delivered band-
width. When we find a configuration that is better than all other
previously explored, we annotate the configuration and clear the
effort counter. Aneffort parameter to the simulator determines
how many configurations we search before terminating the sim-
ulation and declaring a solution. Through experimentation, we
found that an effort level of 7,000 provided a reasonable trade-off
between search quality and time to solution, which was usually
less than a few hours.

4.2 Results

At a high level, our link contention simulator is used to provide
a first-order comparison of different memory controller configura-
tions and exhaustively search for an optimal solution in relatively
small on-chip networks (e.g.k ≤ 6). When exhaustive search be-
comes intractable (k > 6) we use heuristic-guided search to find
near-optimal solutions.

We began by exhaustively simulating 4×4, 5×5, and 6×6 mesh
and torus on-chip networks. From the exhaustive simulation, a
clear pattern emerged – configurations that spread the processor-
to-memory traffic across the diagonal of the mesh performed no-
tably better than others. Intuitively, this makes sense, since the
link contention simulator uses dimension-ordered routing (X then
Y) to route packets. If the memory controllers were all in the same
row (as in Figure 2a) then the reply packets would get very con-
gested. Table 1 shows the simulation results for an 8×8 array of
tiles organized as shown in Figure 2. These configurations were
chosen by extrapolating analogous patterns from smaller network
sizes such as6 × 6 which could be exhaustively searched. The
diamond anddiagonal X configurations perform 33% better
than the baselinerow0_7 (i.e. Tilera memory configuration).

Memory Controller Max. Channel Load
Configuration Mesh Torus

row0_7 Figure 2a 13.50 9.25
col0_7 Figure 2b 13.50 9.25
row2_5 Figure 2c 13.49 9.22
diagonal X Figure 2d 8.93 7.72
diamond Figure 2e 8.90 7.72
checkerboard Figure 2f 10.24 7.69

Table 1. Summary of link contention for mem-
ory configurations shown in Figure 2.

For larger networks, we had to rely on heuristic-guided search
to find near-optimal solutions. The best solution we found via ran-
dom search had a maximum channel load of 9.35, within 5% of
thediamond anddiagonal X configurations. The genetic al-
gorithm with a population size of 500 configurations for 100 gen-
erations, yielded a near optimal solution with a maximum chan-
nel load of 9.21, within 4% of thediamond and diagonal



# mem ctrls mesh torus

1 32 32

2 20.59 18.96

3 17.68 14.3

4 15.29 11.95

5 13.9 10.89

6 12.87 10.07

7 12.01 9.3

8 11.49 8.83

9 10.92 8.48

10 10.45 8.14

12 9.7 7.77

14 9.67 7.63

16 9.35 7.41 0x401528a145028810x5088241091422284

20 9.2 7.09

24 9.05 6.85

28 8.76 6.72

32 8.71 6.58
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Figure 3. Maximum channel load versus num-
ber of memory controllers for an 8 ×8 array of
tiles.

X memory configurations.The solutions generated from the ge-
netic algorithm followed the trend of memory controllers clustered
along the diagonals of the mesh.

Sincediamond has better physical layout properties thandiagonal
X and the same performance, we will focus our discussion on it.
Specifically, thediamond does not locate multiple memory con-
trollers in the center of the chip, increasing escape complexity.
By locating the memory controllers in an optimal manner, we can
reduce the average latency and reduce the amount of energy ex-
pended per bit transported. Spreading the memory ports in a uni-
form manner such as thediamond will spread the thermals across
a wider area. Thediagonal pattern would increase accesses in
the center of the chip would could increase thermals there.

In addition to searching for the optimal configuration, we use
the randomized search to sweep through the design space to deter-
mine the impact of havingmanyprocessor cores andfewmemory
controllers. As we vary the number of memory controllers, we
search for the best memory configuration, and note the maximum
channel load for that configuration (Figure 3). For an 8×8 array,
at least 12 memory controllers are required to adequately spread
the processor-to-memory traffic across enough links to avoid hot
spots, as shown in Figure 3. Even if every tile had a memory
controller attached resulting in a perfectly uniform random traffic
distribution, a mesh would still have a maximum channel load that
was 3× the average channel load. Clearly, not all the congestion is
due to the many-to-few traffic patterns in the processor-to-memory
links; some contention is due to routing.

5. Detailed Evaluation

After first narrowing the design space to a smaller number of
configurations, we perform more detailed simulation to gain fur-
ther insight into the issues surrounding memory controller place-
ment. We use a cycle-accurate network simulator [5] with syn-
thetic traffic to evaluate the impact of alternative memory con-
troller placement within the on-chip fabric and explore different
routing algorithms.

5.1 Routing algorithms

We evaluate the following memory controller placements de-
scribed in the previous section which includerow0_7 , diamond ,
androw2_5 using synthetic traffic patterns. We start by evaluat-
ing an 8×8 mesh with well-understood dimension-order routing
(DOR) algorithms, including: XY, YX, and XY-YX randomized
routing.

• XY routing: DOR where all packets are first routed in the X
dimension followed by the Y dimension.

• YX routing: DOR where all packets are first routed in the Y
dimension followed by the X dimension.

• XY-YX routing (O1Turn [19]): at the source, the routing
path to the destination is randomly selected, using either XY
or YX routing. This routing algorithm has been shown to be
near-optimal for 2D mesh network [19].

From the link contention simulator, we determined that not all
contention could be alleviated by smart memory controller place-
ment. To further reduce contention we propose a new determin-
istic routing algorithm,class-based deterministic routing(CDR),
which is compared against other routing algorithms.

• Class-based Deterministic Routing (CDR): takes advantage
of both XY and YX routing but the path is determined by
the message class: memory request packets use XY routing
while memory reply packets take YX routing.6

For both XY and YX routing, no additional virtual channels (VCs)
are needed to break routing deadlock, but additional VCs are need
to break protocol deadlock [4]. For XY-YX routing, additional
VCs are needed to not only break protocol but also routing dead-
lock. However, for CDR routing, the VCs used to break routing
deadlock can also be used to break protocol deadlock – reducing
the number of VCs needed compared to XY-YX routing.

5.2 Setup

To maximize the effective memory bandwidth, the traffic of-
fered to each memory controller should be as close to uniform as
possible. However, some applications may exhibit non-uniform
traffic because of shared locks, for example. Thus, we evaluate
alternative memory controller placement using both uniform ran-
dom traffic, where each processor generates packets destined to a
randomly selected memory controller, andhot spottraffic based on
the distribution (as a percentage of total memory accesses) shown
in Figure 4 with benchmarks and setup described in Section 5.4.
Four out of five workloads, distribute accesses fairly uniformly
across 16 memory controllers which validates the use of the uni-
form random traffic pattern; TPC-H’s distribution generateshot
spottraffic.

In the synthetic traffic evaluation, we use both open-loop sim-
ulation and closed-loop simulation [5]. Open-loop simulation in-
volves traditionally used metric of measuring latency vs. offered
load to obtain network characteristics such as zero-load latency
and the throughput. We also use closed-loop simulation where we

6The CDR can also be implemented with the requests being routed
using YX while replies are routed using XY.
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Table 2. Synthetic traffic simulation parame-
ters

Parameters Values

processors 64
memory controllers 16
router latency 1 cycle
inter-router wire latency 1 cycle
buffers 32 flit entry per input port

divided among the VCs
packet size 1 flit for request

4 flit for reply
virtual channels 2 for XY, YX, CDR

4 for XY-YX

measure the response of the network to compare overall perfor-
mance. For open-loop simulation, packets were injected using a
Bernoulli process. The simulator was warmed up under load with-
out taking measurements until steady-state was reached. Then a
sample of injected packets were taken during a measurement in-
terval. Parameters used in the simulations can be found in Table
2.

To understand the impact of memory traffic, we separate the
memory traffic into three different simulations in the open-loop
evaluation using synthetic traffic patterns.

• Request traffic only (REQ) – processors only injected traffic
destined for the memory controllers.

• Reply traffic only (REP) – only the memory controllers in-
ject traffic into the network.

• Request and reply traffic (REQ+REP) – both request and
reply traffic are injected into the network.

5.3 Detailed Simulation Results
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Figure 6. Channel load on a 2D mesh topol-
ogy memory traffic with row0_7 memory con-
troller placement, illustrating the channel
load on the (a) x-dimension and the (b) y-
dimension.

Using the results from Section 4, we discuss our detailed sim-
ulation results using synthetic traffic patterns forrow0_7 and
diamond memory controller placements. As Table 1 shows,diamond
and diagonal X perform about 33% better than the baseline
row0_7 placement. Due to better layout properties, we focus on
thediamond as the optimal design over thediagonal .

5.3.1 row0_7 Placement
The latency versus offered load curve is shown Figure 5 for

the row0_7 memory controller placement with uniform random
(UR) traffic. For request traffic only, XY routing is sufficient and
reaches maximum throughput of 0.257. However, YX routing per-
forms poorly as it only achieves approximately half the through-
put of XY routing. The use of randomization in routing (XY-YX)
does not increase the performance and the achieved throughput
is between XY and YX routing (Figure 5a). Since therow0_7
placement distributes the memory controllers uniformly within the
same row with, XY routing load-balances the traffic to find the ap-
propriate Y-dimension before sending the traffic to its destination.
However, YX routing sends all the traffic initially to the two X
dimensions where the memory controllers are located – causing
significant congestion on the channels in the X direction for rows
0 and 7 which contain the memory controllers.

The impact of memory controller placement and routing algo-
rithm on memory traffic can be estimated by measuring the chan-
nel load (γ) since the network throughput (θ) is inversely propor-
tional to the worst-case (maximum) channel load [5]. The maxi-
mum channel load for an oblivious routing algorithm such as XY
can be found by taking advantage of linearity of channel load-
ing [23]. A block diagram of ak×k 2D mesh is shown in Figure 6
with γXi (γYi ) corresponding to the channel load of row (column)
i. For request only traffic, with uniform random traffic distribution
and XY routing,

max(γXi) =
k

2
× λ

2

max(γY i) = k(k − 1)× λ

16
(1)

whereλ is the injection rate of each processor. Themax(γXi)
occurs in the middle or bisection of the network wherek/2 nodes
7Since there are only 16 memory controllers and 64 processors,
the maximum injection rate at each processor is 16/64 = 0.25.



0

5

10

15

20

25

0 0.1 0.2 0.3

Offered load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)

XY

YX

XY-YX

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Offered load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)

XY

YX

XY-YX

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Offered Load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)

XY

YX

XY-YX

CDR

(a) row0_7 req only (b)row0_7 reply only (c)row0_7 req+reply

0

5

10

15

20

25

0 0.1 0.2 0.3

Offered Load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)

XY

YX

XY-YX

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Offered load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)
XY

YX

XY-YX

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Offered load (flits/cycle)

L
at

en
cy

 (
cy

cl
es

)

XY

YX

XY-YX

CDR

(d) diamond req only (e)diamond reply only (f)diamond req+reply

Figure 5. Latency vs. offered load using uniform random traffic for (a,b,c) row0_7 placement and
(d,e,f) diamond placement with with (a,d) request only traffic (b,e) reply only traffic and (c,f) both
request and reply traffic combined.

send1/2 (or λ/2) of their traffic to memory controllers located
on the opposite side of the chip. Themax(γYi) occurs at the top
near the memory controllers as shown in Figure 6b withk/(k−1)
nodes sending traffic to the memory controller contributing to this
channel. Since we assume uniform distribution among the 16
memory controllers, the actual load contributed from each pro-
cessor will beλ/16. Thus, the throughput with XY routing is
determinedmax(γXi, γY i).

θXY =
16

k(k − 1)λ
(2)

With YX routing, the load on the channels will be

max(γXi) = k
k

2
× λ

4

max(γY i) = (k − 1)
λ

2
(3)

For i 6= 0 or k−1, γXi = 0 since all memory traffic is initially
routed in the Y direction. Thus, the throughput with YX routing is
determined byγX .

θY X =
8

k × kλ
(4)

Based on Eq( 2) and Eq( 4), XY provides2k/(k − 1) increase in
throughput compared to YX routing and withk = 8, XY results
in ≈2.3 increase in throughput compared to YX as illustrated in
Figure 5a.

With randomized XY-YX routing, XY routing is used for ap-
proximately 50% of the packets and the rest of the packets use YX

routing. Thus, the channel load for XY-YX routing can be found
as the following:

γY (XY − Y X) =
1

2
γY (XY ) +

1

2
γY (Y X)

γX(XY − Y X) =
1

2
γX(XY ) +

1

2
γX(Y X)

The actual channel load for XY-YX can be calculated by using
Eqn 1 and Eqn 3 and XY-YX routing does not provide any per-
formance benefits but achieves throughput that is between XY and
YX routing as illustrated in Figure 5a.

For REP only traffic, the opposite is true in terms of the impact
of routing. The use of XY routing creates a similar problem as
the YX routing with REQ only traffic. Thus, YX routing provides
better load-balancing for REP traffic, – i.e. transmits the packets
to the appropriate row (or X dimension) and then, traverses the X
dimension. Similar to REQ traffic, XY-YX does poorly.

When both the request and the reply traffic are combined (Fig-
ure 5c), both XY and YX routing perform similarly as the reply
traffic creates a bottleneck for XY routing and request traffic cre-
ates a bottleneck for YX routing. However, the proposed CDR
algorithm significantly outperforms other routing as it provides a
nearly2× increase in throughput. Both CDR and XY-YX routing
take advantage of path diversity as some packets are routed XY
and others are routed YX. However, by taking advantage of the
characteristics of memory traffic (where1/2 the packets will be re-
quest and the remaining1/2 is reply traffic), and the load-balanced
traffic pattern, our deterministic routing based on the message type
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Figure 7. Batch experiment comparison with memory controllers placed at (a,c) row0_7 and (b,d)
diamond using (a,b) uniform random traffic and (c,d) hot spot traffic. The x-axis label varies the
routing algorithm as well as the r parameter.

(CDR) load-balances all of channels to provide high throughput
while adding randomization (XY-YX) achieves performance sim-
ilar to XY or YX routing.

5.3.2 diamond Placement
With thediamond placement of the memory controllers, the

different routing algorithms have very little impact on the overall
performance as shown in Figures 5(d-f). Unlikerow0_7 place-
ment which creates a congestion row in the topology, thediamond
placement distributes the memory controllers across all rows and
columns. Thus, even with CDR, there is very little benefit in terms
of latency or throughput (Figure 5f).

5.3.3 Closed-loop evaluation
We evaluate the impact of routing algorithms and memory con-

troller placement through closed-loop evaluation using a batch ex-
periment to model the memory coherence traffic of a shared mem-
ory multiprocessor [13]. Each processor executes a fixed number
of remote memory operations (N ) (e.g., requests to the memory
controller) during the simulation and we measure the time required
for all operations to complete. Each processor is allowed to have
r outstanding requests before the processor needs to halt injection
of packets into the network and wait until replies are received from
the memory controller. This setup models the impact of MSHRs
and increasing amount of memory level parallelism in a multipro-
cessor system; we evaluate the on-chip network using values of
4 and 16 forr and 1000 forN . Simulations showed that larger
values forN do not change the trend in the comparisons.

Using CDR, we see that the underlying limitations of the mem-
ory controller placement are overcome; CDR results in signifi-
cant improvements for therow0_7 configuration as it balances
the load to reduce the execution time by up to 45% withr = 4
and up to 56% withr = 16 (Figure 7a). With higherr, the net-
work becomes more congested and thus, proper load-balancing
through the use of CDR enables significant performance advan-
tage. With thediamond placement and uniform random traffic
(Figure 7b), the benefit of CDR is reduced but it still provides up
to 9% improvement in performance. With thehot spottraffic, the
benefit of CDR is reduced as it provides up to 22% improvement
with the row0_7 placement and up to 8% improvement with the
diamond placement.

For the batch simulations, we also plot the distribution of com-
pletion time for each of the processors in Figure 8. With the
row0_7 placement, CDR provides not only higher performance
in terms of lower completion time but also results is a much tighter

Table 3. Benchmark Descriptions
Benchmark Description

TPC-H TPC’s Decision Support System
Benchmark, IBM DB2 v6.1 running
query 12 w/ 512MB database,
1GB of memory

SPECjbb Standard java server workload utilizing
24 warehouses, executing 200 requests

TPC-W TPC’s Web e-Commerce Benchmark,
DB Tier Browsing mix, 40 web
transactions

SPECweb Zeus Web Server 3.3.7 servicing 300
HTTP requests

distribution of completion – leading to a tighter variance. Tighter
variance implies more fairness to access the memory controllers
from all processors. Balancing the load through XY-YX and CDR
with thediamond placement also results in a tighter distribution
when compared to XY or YX routing.

5.4 Full System Simulation

To gain additional insight, full system simulation [1,15] is used
in conjunction with the above methods. Results are presented
for the following commercial workloads: TPC-H, TPC-W [24],
SPECweb99 and SPECjbb2000 [20]. Benchmark descriptions can
be found in Table 3 with simulation configuration parameters listed
in Table 4. In the link-contention and network-only simulators,
only processor-to-memory and memory-to-processor traffic is con-
sidered. Full-system simulation includes additional traffic, e.g.
cache-to-cache transfers that can interact with the memory-bound
requests.

In order to evaluate large systems (8×8), we configure our sim-
ulation environment to support server consolidation workloads [6].
Each server workload runs inside of a virtual machine with a pri-
vate address space; threads of the same virtual machine are sched-
uled in a 4×4 quadrant to maintain affinity. Memory requests from
each virtual machine access all memory controllers on chip.

Full system simulation is used to validate results from the syn-
thetic traffic simulations as well as provide inputs to the event
driven network simulator. This simulation setup was also used
to generate thehot spottraffic used in the Section 5.3.3.
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Figure 8. Distribution of completion time for the batch workload. (a-d) row0_7 placement and (e-h)
diamond placement with alternative routing algorithm – (a,e) XY routing, (b,f) YX routing, (c,g) XY-YX
routing and (d,h) CDR.

Table 4. Full System Simulation Configura-
tion

Parameters Values

Processors 64 in-order cores
L1 I& D caches 16KB (2 way set associative)

1 cycle latency
L2 (Private) 64 KB (4 way set associative)

6 cycle latency
L3 (Shared) 8 MB (16 way set associative)
Memory Latency 150 cycles
Network Parameters See Table 2

Near-optimal placement can provide predictable and fair access
to the memory controllers through the on-chip network. With the
closed-loop batch experiment results presented above, it is clear
that placement can impact the performance distribution for syn-
thetic workloads. In Figure 9, we show the average latency each
processor observes to access the memory controllers versus the
standard deviation across all processors with XY routing. Down
and to the left are the results with the lowest average latency and
smallest standard deviation. Each workload is simulated with a
diamond and arow0_7 configuration; we simulate four homo-
geneous server consolidation mixes and one heterogeneous mix of
TPC-H and TPC-W. With thediamond configuration, each pro-
cessor not only experiences lower latency, but there is less varia-
tion in the latencies observed by each processor. Choosing a good
placement improves network latency to memory controllers by an
average of 10% across the various workloads.
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Figure 9. Standard Deviation vs Network La-
tency for Requests to Memory Controllers

A lower standard deviation across the observed latencies be-
tween processors and memory controllers indicates that with a
diamond configuration and simple routing, access to memory
is both predictable and fair regardless of which processor core
a thread is scheduled to execute on. The tight cluster of results
for thediamond configuration indicates that an architect can size
buffers and hardware structures to tolerate the average latency plus
a small delta; these structures do not need to be sized to accom-
modate a long tail distribution of memory latencies as would be
necessary with a poor placement.

5.5 Results Summary

To explore the design space, we use simulation techniques at



multiple levels of abstraction starting with a fast link contention
simulator that exhaustively simulates all possible permutations of
memory controller placement, choosing the memory configuration
that minimizes the maximum (worst-case) channel load. These
simulations narrowed down the field of candidates to those shown
in Figure 2, withdiamond placement performing the best us-
ing dimension-ordered routing because it was able to spread traf-
fic across all rows and columns. We showed that thediamond
placement has 33% less link contention compared to the baseline
row0_7 placement used by Tilera [26]. We used two well-known
simulation approaches: genetic algorithms [7] and randomized
simulation to show our solutions for an 8×8 mesh could not be
improved upon when exhaustive search proved to be computation-
ally intractable.

We show that existing routing algorithms, including dimension-
ordered routing (DOR) with either XY and YX as well as random-
ized XY-YX (O1Turn [19]) are not sufficient to load balance the
processor-to-memory traffic on a 2D mesh. We show through de-
tailed simulation that even a naive memory controller placement
could be improved upon using better routing algorithm to avoid hot
spots that would otherwise arise in the processor-to-memory traf-
fic. Our proposedclass-based deterministic routing(CDR) routes
requestpackets using XY dimension-ordered routing, andreply
packets route using YX dimension-ordered routing. We show that
implementing the baselinerow0_7 placement with CDR routing
can improve performance by up to 56% for uniform random (UR)
traffic, and 22% improvement withhot spotmemory traffic. With
diamond placement, we see a more modest 8% improvement
from the CDR routing algorithm because thediamond placement
nicely spreads the offered load among the rows and columns of
the mesh leaving less room for improvement from the routing al-
gorithm.

Our full system simulation results show that thediamond
placement has significantly lowervariancethan therow0_7 place-
ment, as shown in Figure 9. This lower variance provides more
predictable latency-bandwidth characteristics in the on-chip net-
work regardless of which processor core the application is using.
We also observe a 10-15% improvement in network latency with
thediamond placement.

In this work we propose two complimentary solutions to ad-
dress latency and bandwidth problems for on-chip access to mem-
ory ports. The first solution improves performance by relocating
memory ports. Implementing this solution comes at no extra cost
or power consumption for the architect. However, if relocation
is not feasible, then an alternative solution of implementing CDR
would improve latency and throughput for processor-to-memory
and memory-to-processor traffic. CDR is a low cost routing algo-
rithm. Due to its deterministic nature, only two virtual channels
are need to break protocol deadlock (same as XY and YX rout-
ing). Combining these two techniques results in the best overall
performance.

6. Related Work

In this work, we advocate for intelligent memory controller
placement and routing of processor-memory traffic in on-chip net-
works. Both intelligent placement (such as thediamond ) and
CDR improve on-chip network load balancing which effectively
increases fairness to the memory ports. In this section, we explore
related work in the areas of quality of service and fairness as well

on-chip placements solutions.
Recent work in quality of service (QoS) focuses on spreading

accesses to uniformly utilize the memory controllers; efficiently
distributing memory references will reduce interconnect pressure
near the memory controllers as well. Recent on-chip network in-
novations [14] have explored techniques to provide quality of ser-
vice within the on-chip network. These work provides quality of
service for traffic with a single hot spot but does not address the
impact on network performance when the placement of hot spot(s)
can be chosen at design time. Our work shows that certain latency
and bandwidth bottlenecks in the network can be avoided to a cer-
tain extent through near-optimal placement of memory controllers
assuming memory controllers are likely to represent the hot spots
in a large scale on-chip network going forward. Our work consid-
ers the impact that network hot spots have on each other due to
proximity and through the use of TPC-H hot spot traffic with three
memory controller hot spots.

Proposals to provide quality of service at the memory con-
trollers [16–18] to date have not considered the impact of memory
controller placement or how the on-chip network delivers those
requests but rather focus on fair arbitration between different re-
quests once they arrive at the memory controller. This work on
fair memory controllers compliments our work on optimizing the
on-chip network for memory traffic.

Significant research in the system-on-chip and application spe-
cific design communities addresses the challenge of how best to
map tasks to physical cores on-chip [10, 21]. Application specific
designs are unique from general purpose ones in that communi-
cation patterns are known a priori and can be specifically targeted
based on communication graphs. In the application-specific do-
main, research has been done to find the optimal mapping of tasks
to cores and the optimal static routes between cores to achieve
bandwidth and latency requirements. Due to the embedded na-
ture of many application-specific designs, these algorithms often
use energy minimization as their primary objective function. Work
by Hung et al. [11] uses a genetic algorithm to minimize thermal
hot spots through optimized IP placement. General purpose CMPs
see less predictable traffic patterns; we model two traffic patterns
derived from real workload behavior.

Significant research has focused on the impact of different mem-
ory technologies and their respective trade-offs in providing ade-
quate off-chip latency and bandwidth [3, 8]. Our work takes an
alternative view of the system by considering the on-chip inter-
connect bandwidth and latency to the memory controllers.

In this work, we propose CDR, a simple deterministic routing
algorithm that load balances processor-memory traffic. Similarly,
an adaptive routing algorithm could be used to balance load; how-
ever, the use of adaptive routing in on-chip networks will signif-
icantly increase the complexity (i.e., increase in number of VCs,
router pipeline latency, etc) such that the overall benefit will be
minimal. Prior work [19] showed that if the pipeline delay of
adaptive routing is considered, O1Turn routing algorithm outper-
formed adaptive routing. Furthermore, adaptive routing can only
be used for response packets – deterministic routes are necessary
to preserve order of the read/write request packets to the memory
controllers.

7. Conclusion

Aggressive many-core designs based on tiled microarchitec-



tures will have dozens or hundreds of processing cores, but pack-
aging constraints (i.e. the number of pins available) will limit the
number of memory controllers to a small fraction of the process-
ing cores. This paper explores how thelocation of the memory
controllers within the on-chip fabric play a central role in the per-
formance of memory-intensive applications.

Intelligent placement can reduce maximum channel load by
33% with adiamond configuration, compared to the baseline
row0_7 configuration. We further improve upon this result by
introducing class-based deterministic(CDR) routing algorithm,
which routes request and reply traffic differently to avoid hot spots
introduced by the memory controllers. The CDR algorithm im-
proves performance by 56% for uniform random traffic compared
to the baselinerow0_7 placement and 8% with thediamond
placement. Full system simulation further validates that thediamond
placement reduces interconnect latency by an average of 10% for
real workloads.

The small number of memory ports and memory controllers
relative to the number of on-chip cores opens up a rich design
space to optimize latency and bandwidth characteristics of the on-
chip network. We demonstrate significant potential improvements
in performance and predictability through an exploration of this
design space.
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