Chaos in FixedPoint Iteration

Introduction to Numerical Methods cs412-1
2-10-2006

Overview

- Introduction to Chaos
- Life in the Complex plane
- Application of Newton-Raphson
- Bifurcation
- Bibliography

Introduction to Chaos

■ "A butterfly flaps it's wings in one part of the world and creates a tornado in another."

- Can we predict how steam will rise from a cup of coffee?
- How can we predict the behavior of an iteration method?

Background

- Chaos- apparently random behavior with purely deterministic causes
- Became more popular in the 80's with flashy fractal images generated by computers

Newton-Raphson

- Designed for real numbers (works with complex numbers when x_{0} contains complex component)
- Eg. $\mathrm{x}^{3}+1=0$

```
roots:
    x= -1
    x=0.5 +/- 0.866025i
```


Newton-Raphson cont.

- Note the points are equally spaced on a unit circle (with radius=1)
\square Symmetric
- In a plane with real numbers, a good choice of x_{0} will get closer to the true root with every iteration.

■ Picking any point and iterating using Newton-Raphson for $f(x)=x^{3}+1$ will fall shows "basins of attraction"
\square Easiest to see this visually
\square Each basin (root) is given it's own color
\square The darker the color, the quicker the point chosen will iterate to the root

Newton-Raphson cont.

Newton-Raphson cont.

- Where any 2 colors meet, a 3 rd color separates them.
- This pattern continues with self similarity ad infinitum
- Eg. $\mathrm{x}^{4}-1=0$

Newton-Raphson cont.

■ In general, for $\mathrm{x}^{\mathrm{n}}+/-1=0$ has n roots

- Each root lies equally spaced on the unit circle
- Graphically, any two colors are separated by all other colors.

Logistic Equations

- Population change from year n to $n+1$

$$
x_{n+1}=k x_{n}\left(1-x_{n}\right)
$$

$\square \boldsymbol{k} \boldsymbol{x}_{\boldsymbol{n}}$ indicates reproductive tendency proportional to the present population
\square 1-x is the inhibiting term and takes into account the need to coexist and share resources

represent k as $4 a$ and plot a on the horizontal axis

Bifurcation Summary

- Summary of results from the graph
\square As a approaches 0.75 (k approaches 3), the rate of convergence decreases
\square At $a=0.75(k=3)$, the graph bifurcates and splits cycles between 2 fixed points.
At $\mathbf{a}=\mathbf{0 . 8 6 2 3 7} \ldots$, the graph has 4 fixed points
\square This process continues as a increases
- The next four points are replaced by 8 and 8 by $16 \ldots$
- The horizontal distance between the split points (points of bifurcation) grows shorter and shorter.
\square At $a=0.892$ the bifurcation becomes so fast that the iterates race all over a segment instead of alternating between a few fixed points.
- The behavior is chaotic in the sense that it's absolutely impossible to predict where the next iterate will appear
\square At $a=0.96 \ldots$, the graph has 3 fixed points

Bibliography

■ Gleick, James, Chaos: Making a New Science, Viking, 1987.

- "Emergence in Chaos: There is order in Chaos" http://www.cut-theknot.org/blue/chaos.shtml
■ "Newton-Raphson method pictures" http://www.tardis.ed.ac.uk/~lard/fc/newton/index. html

