The convergence of the secant method is superlinear

The purpose of this document is to show the following theorem:
Theorem 1.1 Let $\left\{x_{k}\right\}_{k}^{\infty}$ be the sequence produced by the secant method. Assume the sequence converges to a root of $f(x)=0$, i.e., $x_{k} \rightarrow x_{\infty}, f\left(x_{\infty}\right)=0$. Moreover, assume the root x_{∞} is regular: $f^{\prime}\left(x_{\infty}\right) \neq 0$. Denote the error in the k th step by $E_{k}=x_{k}-x_{\infty}$. Under these assumptions, we have

$$
\begin{equation*}
E_{k+1} \approx C E_{k}^{(1+\sqrt{5}) / 2} \approx C E_{k}^{1.618}, \quad \text { for some constant } C \tag{1}
\end{equation*}
$$

The theorem is implied by three lemmas.
Lemma 1.2 Under the assumptions and notations of the theorem:

$$
\begin{equation*}
E_{k+1} \approx \frac{1}{2} \frac{f^{\prime \prime}\left(x_{\infty}\right)}{f^{\prime}\left(x_{\infty}\right)} E_{k-1} E_{k} \tag{2}
\end{equation*}
$$

Proof. Using the definition of x_{k+1}, we find

$$
\begin{equation*}
E_{k+1}=x_{k+1}-x_{\infty}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x_{\infty} \tag{3}
\end{equation*}
$$

We can replace x_{x+1} by $x_{k}+E_{k}$ and x_{k} by $x_{k-1}+E_{k-1}$, so that

$$
\begin{equation*}
E_{k+1}=x_{\infty}+E_{k}-f\left(x_{\infty}+E_{k}\right) \frac{x_{\infty}+E_{k}-x_{\infty}-E_{k-1}}{f\left(x_{\infty}+E_{k}\right)-f\left(x_{\infty}+E_{k-1}\right)}-x_{\infty} \tag{4}
\end{equation*}
$$

To simplify this expression, we apply the Taylor expansion of $f\left(x_{\infty}+E_{k}\right)$ and $f\left(x_{\infty}+E_{k-1}\right)$ about x_{∞} :

$$
\begin{align*}
f\left(x_{\infty}+E_{k}\right) & =f\left(x_{\infty}\right)+f^{\prime}\left(x_{\infty}\right) E_{k}+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right) E_{k}^{2}+O\left(E_{k}^{3}\right) \tag{5}\\
f\left(x_{\infty}+E_{k-1}\right) & =f\left(x_{\infty}\right)+f^{\prime}\left(x_{\infty}\right) E_{k-1}+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right) E_{k-1}^{2}+O\left(E_{k-1}^{3}\right) \tag{6}
\end{align*}
$$

Subtracting $f\left(x_{\infty}+E_{k-1}\right)$ from $f\left(x_{\infty}+E_{k}\right)$:

$$
\begin{equation*}
f\left(x_{\infty}+E_{k}\right)-f\left(x_{\infty}+E_{k-1}\right)=f^{\prime}\left(x_{\infty}\right)\left(E_{k}-E_{k-1}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}^{2}-E_{k-1}^{2}\right)+O\left(E_{k}^{3}\right)-O\left(E_{k-1}^{3}\right) \tag{7}
\end{equation*}
$$

Since $O\left(E_{k}^{3}\right)-O\left(E_{k-1}^{3}\right)$ is of a smaller order than E_{k} and E_{k-1} we omit this term. Using $E_{k}^{2}-E_{k-1}^{2}=$ $\left(E_{k}-E_{k-1}\right)\left(E_{k}+E_{k-1}\right)$, we organize the above expression as

$$
\begin{equation*}
f\left(x_{\infty}+E_{k}\right)-f\left(x_{\infty}+E_{k-1}\right) \approx\left(E_{k}-E_{k-1}\right)\left(f^{\prime}\left(x_{\infty}\right)+f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)\right) \tag{8}
\end{equation*}
$$

The left of (8) appears at the right of (4), so we derive the following expression

$$
\begin{equation*}
E_{k+1} \approx E_{k}-f\left(x_{\infty}+E_{k}\right) \frac{E_{k}-E_{k-1}}{\left(E_{k}-E_{k-1}\right)\left(f^{\prime}\left(x_{\infty}\right)+f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)\right)} \tag{9}
\end{equation*}
$$

Using a Taylor expansion for $f\left(x_{\infty}+E_{k}\right)$ about $x_{\infty}\left(\right.$ recall $\left.f\left(x_{\infty}\right)=0\right)$ we have

$$
\begin{equation*}
E_{k+1} \approx E_{k}-E_{k} \frac{f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right) E_{k}}{f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)} \tag{10}
\end{equation*}
$$

Now we put everything on the same denominator:

$$
\begin{equation*}
E_{k+1} \approx E_{k} \frac{f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)-f^{\prime}\left(x_{\infty}\right)-\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right) E_{k}}{f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)} \tag{11}
\end{equation*}
$$

which can be simplified as

$$
\begin{equation*}
E_{k+1} \approx E_{k} \frac{\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right) E_{k-1}}{f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)} \tag{12}
\end{equation*}
$$

Because $E_{k} \rightarrow 0$ as $k \rightarrow \infty, \frac{1}{2} f^{\prime \prime}\left(x_{\infty}\right)\left(E_{k}+E_{k-1}\right)$ is negligible compared to $f^{\prime}\left(x_{\infty}\right)$, so we omit the second term in the denominator, to find the estimate

$$
\begin{equation*}
E_{k+1} \approx \frac{1}{2} \frac{f^{\prime \prime}\left(x_{\infty}\right)}{f^{\prime}\left(x_{\infty}\right)} E_{k} E_{k-1} \tag{13}
\end{equation*}
$$

Q.E.D.

Lemma 2.1 There exists a positive real number r such that:

$$
\begin{equation*}
E_{k+1} \approx C E_{k-1} E_{k} \quad \Rightarrow \quad E_{k}^{1+1 / r} \approx K E_{k}^{r}, \quad \text { for some constants } C \text { and } K \tag{14}
\end{equation*}
$$

Proof. Assuming the convergence rate is r, there exists some constant A, so we can write

$$
\begin{equation*}
E_{k+1} \approx A E_{k}^{r} \quad \text { and } \quad E_{k} \approx A E_{k-1}^{r} \text { or }\left(\frac{1}{A} E_{k}\right)^{1 / r} \approx E_{k-1} \tag{15}
\end{equation*}
$$

Now we can replace the expressions for E_{k} and E_{k-1} in the left hand side of (14):

$$
\begin{equation*}
E_{k+1} \approx C\left(\frac{1}{A}\right)^{1 / r} E_{k}^{1 / r} E_{k} \approx B E_{k}^{1+1 / r} \tag{16}
\end{equation*}
$$

Together with the assumption that $E_{k+1} \approx A E_{k}^{r}$, we obtain $E_{k}^{1+1 / r} \approx \frac{A}{B} E_{k}^{r}$. So, we set $K=\frac{A}{B}$ and the lemma is proven.

Lemma 2.2 For the r of Lemma 2.1, we have

$$
\begin{equation*}
E_{k}^{1+1 / r} \approx C E_{k}^{r} \quad \Rightarrow \quad r=\frac{1+\sqrt{5}}{2} \tag{17}
\end{equation*}
$$

Proof. r satisfies the following equation

$$
\begin{equation*}
1+\frac{1}{r}=r \Rightarrow r+1=r^{2} \Rightarrow r^{2}-r-1=0 \tag{18}
\end{equation*}
$$

The roots of $r^{2}-r-1=0$ are $r=\frac{1 \pm \sqrt{5}}{2}$. We take the positive value for r. Q.E.D.

The constant $r=\frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio.

References

[1] Floyd Hanson. MCS 471 Class Notes: Secant Method Error and Convergence Rate. Available at http://www.math.uic.edu/~hanson/mcs471/classnotes.html.

