Homework 3
 Introduction to Numerical Methods

Problem 1

Let A be a square matrix of order n, and let it satisfy

$$
a_{i j}=0 \text { for } \mathrm{i}>\mathrm{j}
$$

Such a matrix is called upper triangular.
Part A Show that the sum and products of such matrices are also upper triangular. Is the inverse upper triangular?

Part B A square matrix A is called lower triangular if its transpose A^{T} is upper triangular. Use this definition, results of part A, and properties of matrix transposition to show that the sum and product of lower triangular matrices are also lower triangular.

Problem 2

Given the following system of equations

$$
\begin{aligned}
& 2 x_{1}-6 x_{2}-x_{3}=-38 \\
& -3 x_{1}-x_{2}+7 x_{3}=-34 \\
& -8 x_{1}+x_{2}-2 x_{3}=-20
\end{aligned}
$$

Part A Compute the determinant.
Part B Solve using Cramer's rule.
Part C Solve using Naïve Gauss.
Part D Solve using Gauss elimination with partial pivoting.
Part E Calculate A inverse using $L U$ decomposition.
Part \mathbf{F} Solve using $L U$ decomposition. Also solve the system for an alternative right-hand-side vector $b^{T}=[-76-68-40]$.

Note: Show all steps of the computation for each part.

Problem 3

Part A What is the operation count for a matrix-matrix product, AB? You should set up the problem using summation notation as discussed in class and then solve to obtain the final counts. Specify the counts for addition/subtraction and multiplication/division.
Part B Repeat part A, assuming that A is tridiagonal.
Part C Repeat part A, assuming that both A and B are tridiagonal.
Part D Calculate the total number of cycles it would take to execute Part A-C on a computer that has an ALU that takes 1 cycle for addition/subtraction and 10 cycles for multiplication/division.

Problem 4

When A is a symmetric, positive definite matrix, it can be factored in the form

$$
A=L L^{T}
$$

For some lower triangular matrix L that has nonzero diagonal elements, usually taken to be positive. This is called the Cholesky Factorization. Recall that a symmetric matrix A is said to be positive definite if for any $x \neq 0, x^{T} A x>0$.

Part A

For

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 5
\end{array}\right]
$$

let

$$
L=\left[\begin{array}{ll}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]
$$

Find L such that $L L^{T}=A$.

Part B

Repeat this process for

$$
A=\left[\begin{array}{ccc}
2.25 & -3 & 4.5 \\
-3 & 5 & -10 \\
4.5 & -10 & 34
\end{array}\right]
$$

finding a lower triangular matrix L for which $L L^{T}=A$.

Problem 5

Calculate the cond(A) for

$$
A=\left[\begin{array}{ll}
1 & c \\
c & 1
\end{array}\right],|c| \neq 1
$$

When does A become ill-conditioned? What does this say about the linear system $A x=b$? How is cond (A) related to $\operatorname{det}(A)$?

