Principles of Geometry HO Section 1.2

The tool we'll use to measure angles is called a protractor. To use a protractor, place the center notch of the protractor at the vertex of the angle, align the protractor so that the 0° mark lies on top of one of the sides of the angle. The location of the angle's other side on the protractor corresponds to its degree measure.

Using a protractor, what is the measure (to the nearest degree) of the angle shown above?

In the figure above, $\angle A B D \cong \angle D B C$. If $m \angle A B D=5 x-1$ and $m \angle A B C=9 x+11$, find x and $m \angle A B C$.

Construction \#1: Construct a line segment congruent to a given line segment.

Given: line segment $A B$ and line ℓ containing point P.
Construct: line segment $\overline{P Q}$ on ℓ such that $\overline{A B} \cong \overline{P Q}$.
(remember, we're not allowed to use a ruler to measure the line segment!)
A
B

Technique:

- Use points of compass to "record" length of segment $\overline{A B}$
- Place pivot of compass at P, draw arc intersecting ℓ
- Label intersection point Q.

Construction \#2: Construct the midpoint of a given line segment congruent.
Given: line segment $\overline{A B}$
Construct: \quad point M on $\overline{A B}$ such that $A M=M B$.

A

B

Technique:

- Open compass greater than one-half the length of $\overline{A B}$
- Draw two arcs, one with pivot at A, the other with pivot at B, so that the arcs intersect one another at two points P and Q, one above and one below the segment.
- Use straightedge to draw segment $\overline{P Q}$.
- Label point M, the intersection point of $\overline{A B}$ and $\overline{P Q}$.

