Principles of Geometry HO Section 1.2

The tool we'll use to measure angles is called a **protractor**. To use a protractor, place the center notch of the protractor at the **vertex** of the angle, align the protractor so that the 0° mark lies on top of one of the sides of the angle. The location of the angle's other side on the protractor corresponds to its degree measure.

Using a protractor, what is the measure (to the nearest degree) of the angle shown above?

In the figure above, $\angle ABD \cong \angle DBC$. If $m \angle ABD = 5x - 1$ and $m \angle ABC = 9x + 11$, find x and $m \angle ABC$.

Construction #1: Construct a line segment congruent to a given line segment.

Given:	line segment AB and line ℓ containing point P .	
Construct:	line segment \overline{PQ} on ℓ such that $\overline{AB} \cong \overline{PQ}$.	
(remember, we're not allowed to use a ruler to measure the line segment!)		

 $A \qquad B \qquad P$

Technique:

- Use points of compass to "record" length of segment \overline{AB}
- Place pivot of compass at *P*, draw arc intersecting ℓ
- Label intersection point *Q*.

Construction #2: Construct the midpoint of a given line segment congruent.

Given:	line segment AB
Construct:	point M on \overline{AB} such that $AM = MB$.

Α

∘ ₿ \geq

Technique:

0

- Open compass greater than one-half the length of AB
- Draw two arcs, one with pivot at *A*, the other with pivot at *B*, so that the arcs intersect one another at two points *P* and *Q*, one above and one below the segment.
- Use straightedge to draw segment PQ.
- Label point M, the intersection point of \overline{AB} and \overline{PQ} .