The tool we’ll use to measure angles is called a protractor. To use a protractor, place the center notch of the protractor at the vertex of the angle, align the protractor so that the 0° mark lies on top of one of the sides of the angle. The location of the angle’s other side on the protractor corresponds to its degree measure.

Using a protractor, what is the measure (to the nearest degree) of the angle shown above?

In the figure above, \(\angle ABD \cong \angle DBC \). If \(m\angle ABD = 5x - 1 \) and \(m\angle ABC = 9x + 11 \), find \(x \) and \(m\angle ABC \).
Construction #1: Construct a line segment congruent to a given line segment.

Given: line segment \overline{AB} and line ℓ containing point P.
Construct: line segment \overline{PQ} on ℓ such that $\overline{AB} \cong \overline{PQ}$.

(remember, we’re not allowed to use a ruler to measure the line segment!)

Technique:
- Use points of compass to “record” length of segment \overline{AB}
- Place pivot of compass at P, draw arc intersecting ℓ
- Label intersection point Q.

Construction #2: Construct the midpoint of a given line segment congruent.

Given: line segment \overline{AB}
Construct: point M on \overline{AB} such that $AM = MB$.

Technique:
- Open compass greater than one-half the length of \overline{AB}
- Draw two arcs, one with pivot at A, the other with pivot at B, so that the arcs intersect one another at two points P and Q, one above and one below the segment.
- Use straightedge to draw segment \overline{PQ}.
- Label point M, the intersection point of \overline{AB} and \overline{PQ}.