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ABSTRACT
Classification is a core task in knowledge discovery and data
mining, and there has been substantial research effort in
developing sophisticated classification models. In a parallel
thread, recent work from the NLP community suggests that
for tasks such as natural language disambiguation even a
simple algorithm can outperform a sophisticated one, if it is
provided with large quantities of high quality training data.
In those applications, training data occurs naturally in text
corpora, and high quality training data sets running into
billions of words have been reportedly used.

We explore how we can apply the lessons from the NLP
community to KDD tasks. Specifically, we investigate how
to identify data sources that can yield training data at low
cost and study whether the quantity of the automatically
extracted training data can compensate for its lower qual-
ity. We carry out this investigation for the specific task
of inferring whether a search query has commercial intent.
We mine toolbar and click logs to extract queries from sites
that are predominantly commercial (e.g., Amazon) and non-
commercial (e.g., Wikipedia). We compare the accuracy
obtained using such training data against manually labeled
training data. Our results show that we can have large ac-
curacy gains using automatically extracted training data at
much lower cost.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications -
data mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Classification lies at the core of many knowledge discov-

ery and data mining (KDD) applications whose success de-
pends critically on the quality of the classifier. There has
been substantial research in developing sophisticated classi-
fication models and algorithms with the goal of improving
classification accuracy, and currently there is a rich body of
such classifiers.

On the other hand, there is work coming out of the NLP
community that suggests that for tasks such as natural lan-
guage disambiguation a simple algorithm can outperform a
sophisticated algorithm if it is provided with more training
data [4, 10, 13]. In the application settings considered in
these papers, the training data occurs naturally in text cor-
pora, and high quality training data sets running into billions
of words have been used.

This paper explores how we can apply the lessons from
the NLP community in KDD settings. In particular, we
address the question of how to obtain massive labeled data
sets cheaply. Contrary to the NLP setting, such almost-for-
free data is not readily available, and it is often noisy. We
investigate whether we can still get high accuracy when there
is no one good source for training data, and the extracted
data contains inconsistencies.

To keep the discussion concrete, we consider the specific
task of inferring whether a query posed to a search engine
has commercial intent (i.e., the user plans to buy a tangible
product). Because of large variations in the search queries,
success in this task requires large amounts of training data—
queries labeled as commercial or non-commercial. However,
manual labeling of queries is time-consuming and expensive.
As the queries change with the passage of time, new labeling
is constantly required. Consequently, there is never enough
training data. Moreover, there is often inconsistency in the
labels assigned even by experts [1].

In our study, we extract training data by mining toolbar
and click logs. We collect queries posed to commerce-focused
portals (Amazon, Craigslist) as the source of positive ex-
amples. We also mine negative examples from click logs
by obtaining queries that frequently lead to non-commercial
portals (Wikipedia). Several issues arise immediately:

• It is difficult to find portals that are purely commer-
cial or non-commercial. For instance, there are pages
about Barbie in Wikipedia, and Amazon sells books



and movies called “World War I”. In general, how do
we ensure the quality of the labels assigned to the ex-
tracted data?

• Should we use queries from Amazon, or Craigslist, or
both? In general, given a large number of possible
data sources, which are the best sources to use for the
classification task at hand?

• Should we use all the examples we can mine from a
data source, or are there some that are better than
others?

We address these issues and show how to leverage good
but imperfect sources to quickly and cheaply generate mas-
sive amounts of training data as frequently as needed. In
the end, we show that this data yields high accuracy classi-
fication results. Our findings are applicable to any domain
where it is possible to find data sources that are related to
the target class. For example, consider the task of deciding
if a query has “local” intent (i.e., it reflects the intent to pur-
chase goods from a local store). We could then use a site
such as YellowPages.com as a source of local queries.

As we have already argued, for most classification tasks
obtaining large amounts of manually labeled training data is
expensive and often simply infeasible. The problem of train-
ing data sparsity has been studied in the machine learning
community, where two research directions have been pur-
sued: i) designing complex feature representations to rem-
edy feature sparseness, and ii) leveraging unlabeled data to
compensate for the limited amounts of labeled data [17].
The latter approaches are often collectively referred to as
semi-supervised learning (SSL).

We wish to draw a distinction between SSL and our ap-
proach of automatically extracting large amounts of labeled
data. SSL starts with as much manually labeled data as it
is feasible to obtain. SSL then tries to leverage unlabeled
data, which is assumed to be available in abundance for free,
to learn a better classification model. While SSL algorithms
may predict labels for the unlabeled data either during or af-
ter the learning process, the quality of these predicted labels
depends strongly on the amount of initially labeled data. If
little to no reliable labeled data is initially available, an SSL
approach may not succeed, even if it has access to large
amounts of unlabeled data. In contrast, the goal of our ap-
proach is to select the right data sources from which labeled
data can be extracted quickly and in a straightforward man-
ner. In fact, the labels are known inherently from the sources
which guarantees obtaining large amounts of labeled data
with ease. Thus, our approach does not require any manu-
ally labeled data but instead aims at selecting the sources
from which to obtain labeled data. In the empirical evalua-
tion in Section 5 we compare our approach against an SSL
approach, namely a self-training algorithm.

The rest of the paper is organized as follows. In Section 2,
we describe our methodology for collecting automatically
labeled data: selecting data sources, extracting data, and
identifying those data points that are useful for training. In
Section 3 we describe the problem of commercial intent iden-
tification for search engine queries. In Section 4, we show
how we employed the methodology presented in Section 2 to
automatically extract labeled data for the commercial intent
identification task. Section 5 presents an empirical evalua-
tion of the approach, including a comparison against clas-

sifiers trained on manually labeled data. Section 6 reviews
related work, and Section 7 gives concluding remarks.

2. IDENTIFYING SOURCES OF TRAINING
DATA

In this section, we discuss desirable properties of potential
sources of training data, followed by a method for selecting
which data from those sources should be extracted and au-
tomatically labeled.

We propose that the sources of training data should satisfy
the following properties:

• Popularity : The sources should be popular because
only then can they yield large amounts of data.

• Orthogonality : The sources should provide training
data about different regions of the training space.

• Separation: The sources should provide either positive
or negative examples of the target class, but not both.

We now describe how we can use these properties as a guide
for selecting good sources of training data.

Popularity. The popularity property essentially states that
among different possible sources we should select those that
contain the largest amount of data. For example, if we are
interested in extracting tagged images for image classifica-
tion, we should extract images from sites like Flickr1, one of
the popular destinations on the web for posting and tagging
images. For the commercial intent classification task, we
may want to extract queries posed to popular commercial
portals such as Amazon.

For many classification tasks, it is possible to resort to
publicly available statistics in order to choose sources that
satisfy the popularity requirement. Internet survey com-
panies such as Hitwise2 provide Web traffic reports, which
can be used for selecting popular sources. In Section 4 we
describe how we selected the popular sources for the com-
mercial intent classification task.

Orthogonality. The orthogonality property essentially states
that the sources we select should be diverse so that they
provide different types of training data. For example, for
the commercial intent classification task, we want to have
examples related to different types of products that a user
may query about. One data source may be good in pro-
viding training examples of queries for electronics products,
while another one may be good for queries on used furniture.
Again, we can use external sources for identifying orthogo-
nal sources. Web directories, or Internet survey companies
such as Hitwise categorize Web sites according to the ser-
vices they provide. We can make use of this categorization
in order to select sources that span different categories.

Separation. The separation property states that the train-
ing examples must unambiguously reflect the intended mean-
ing of their source. For example, the query “World War I”
can be commercial if it is posed to the Amazon portal, where
it refers to a book. However, it is clearly not commercial in
any other context. We now propose a technique to enforce

1http://www.flickr.com
2http://www.hitwise.com



the separation property, which relies on the fact that the
feature space of two distinct classes is different.

Our focus is on classification problems where the target
class is relatively rare. In other words, the positive class rep-
resents a concept for which we are given a definition (e.g.,
commercial intent), while the negative class includes every-
thing else. Thus, our technique for enforcing separation is
based on conservatively refining the set of positive examples,
while using as many negative examples as possible.

The first step of the technique is to obtain candidate pos-
itive examples from the positive sources and negative exam-
ples from the negative sources. For instance, queries from
Amazon and Wikipedia can serve as positive and negative
examples, respectively, for commerce intent classification
task. In order to make refinement easier, the second step
is to separate the candidate positive examples into groups
if possible (e.g., by clustering or using available metadata),
and compute the frequency distribution of features for each
group. The last step is to compare the distributions of each
group against the distribution of the negative examples, and
keep only those groups whose distribution is highly divergent
with respect to the negative distribution. Groups of exam-
ples too similar to the negative class are discarded. Note
that for some applications or some data sources, it may not
be sensible to subdivide the candidate positive examples into
groups. In this case, we can compare the distribution of the
entire set of positive examples to the distribution of the neg-
ative examples.

The above refinement process involves comparing feature
frequency distributions between sets of examples. The fre-
quency distribution of features, p(w|S), in a set S (e.g., a
group of candidate positive examples or all negative exam-
ples) is defined as the fraction of times that the feature ap-
pears in that set:

p(w|S) =
number of occurrences of w in set S

total count of features in set S
.

We measure similarity between distributions using Jensen-
Shannon (JS) divergence. This symmetrized and smoothed
version of the Kullback-Leibler (KL) divergence [6] provides
a good estimate of the true divergence, as it takes into ac-
count the non-overlapping features of the two distributions
under consideration. The KL-divergence between two dis-
tributions P and Q is computed as:

KL(P ||Q) = ΣwP (w) log
P (w)

Q(w)
,

and the corresponding The Jensen-Shannon divergence is
defined as:

JS(P, Q) =
1

2
(KL(P ||M) + KL(Q||M)),

where M is the “average distribution” computed as M =
1
2
(P + Q). In Section 4, we provide an example to illustrate

the refinement process based on JS divergence.

3. COMMERCIAL INTENT
IDENTIFICATION TASK

For the investigation of the central thesis of the paper, we
choose to study the task of identifying search queries with
commercial intent. From a technical point of view, this task
is interesting for the following reasons:

• It is inherently a difficult task. In fact, it is not obvious
to even precisely specify which queries have commer-
cial intent. We can at best give examples, and learn
the rough definition inductively. Based on a prelim-
inary analysis of example queries, we arrived at the
informal definition of commercial intent listed below.

• Only a small fraction of queries (between 5 and 10%)
are deemed to be commercial. Thus, sampling the log
of search queries and employing human annotators to
label commercial queries is particularly time-wasting
and expensive as the annotators end up spending most
of their time labeling non-commercial queries.

• Unlike some tasks where one might be able to identify
an obvious, perfect source for obtaining labeled data
(e.g., the text or Web corpora for NLP algorithms [4,
10, 13]), there is no such source for this task. It thus
requires us to understand how to use sources that are
an imperfect approximation of the true labeled data.
At the same time, the Web is home to many commer-
cial portals that can yield a large number of queries.
However, care should be taken to ensure that we obtain
high quality training data.

Additionally, this task has important practical value. A
large fraction of online commercial transactions are initiated
with a query to a generic search engine. Thus, in order to
customize the user experience around shopping, it is fun-
damental for the search engines to detect the commercial
intent of their users.

Informal Definition of Commercial Intent

For the purposes of this paper, we say that a query has
commercial intent if most of the users who type the query
have the intention to buy a tangible product. Examples
of tangible products include items such as books, furni-
ture, clothing, jewelry, household goods, vehicles, etc. Ser-
vices are not included.For example, “medical insurance” and
“cleaning services almaden” are queries that are not consid-
ered commercial.

Intention to buy means that the user intends to perform a
commercial transaction in which she will acquire the prod-
uct. It includes cases in which a user researches the product
before buying it. For example, “digital camera reviews” and
“digital camera price comparison” reflect intention to buy.
Intention to buy also means that money will be spent on the
product and thus excludes products that can be obtained for
free. For example, “free ringtones”does not have commercial
intent because the user wants to get the product for free.

It is apparent that this definition is very broad and rather
ambiguous, which adds to the complexity of the task.
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Figure 1: URLs recorded in the toolbar logs. (a) Query “zune” posed on Amazon site results in a URL that
has query “zune” as a keyword. (b) When the same query is posed after choosing a category, we extract both
the category (in this case, “Electronics”) and the query.

4. LABEL GENERATION FOR
COMMERCIAL INTENT

In this section, we show how we applied the label gener-
ation process to the commercial intent identification task.
We show the sources that we chose; we justify why they
satisfy the properties that we propose in Section 2; and we
present the methods that we used to extract commercial
queries from toolbar logs and non-commercial queries from
click logs.

Choosing Data Sources

We used the Hitwise Web traffic report as the basis for
identifying data sources for the commercial intent identifi-
cation task. Based on this report, we chose Amazon and
Craigslist as sources of commercial queries, and Wikipedia
as a source of non-commercial queries. We can use the
Hitwise report to justify why these sources satisfy the de-
sired properties. First, they are popular. According to Hit-
wise’s September 2007 survey, Amazon has 29% of the entire
Web traffic in the “Department Stores” category; Craigslist
has 52% of the traffic in the “Classified Ads” category; and
Wikipedia has 27% of the traffic in the “Reference” cate-
gory. Second, Amazon and Craigslist have considerable de-
gree of orthogonality because the kinds of products offered
by “Classified Ads” and “Department Stores” are quite dif-
ferent. For example, Amazon provides a wide array of elec-
tronic products, while Craigslist does not have so many of
them. Craigslist does have many offers about cars, how-
ever, which Amazon lacks. Finally, Craigslist and Amazon
are likely to be separable from Wikipedia since the former
focuses on commercial content, while the latter focuses on
informational and mostly non-commercial content.

Extracting Commercial Queries

We extracted the commercial queries from the toolbar log
of a popular Web browser. We chose to use the toolbar log

for two reasons. First, the queries that users pose at a portal
are influenced by the type of content the site serves. Thus,
if a user accesses a commercial portal and types a query in
the search box, then she is likely to have commercial intent.
We will shortly show how we used the toolbar logs to obtain
the queries that are typed directly on the search box of com-
mercial portals such as Amazon and Craigslist. Second, we
can use the toolbar logs to obtain additional metadata asso-
ciated with the queries. In particular, we extracted queries
together with category assignments (i.e., the sales depart-
ments related to the queries). The categories were used to
divide the queries into groups and apply the technique pre-
sented in Section 2. They were also used to discard groups
that were not fully aligned with the definition of commercial
intent (e.g, the category “Tickets” in Craigslist).

To illustrate our use of the toolbar logs, consider a user
who types the query “zune” on the search box of Amazon
(Figure 1a). Once the query is submitted, the following
URL is generated:

http://amazon.com/...field-keywords=zune

It is easy to see that the query can be directly parsed out
from the URL. Thus, given access to the URLs that record
the activity of the users on the Amazon site, we can extract
all the queries that are typed in the search box. All search
engine companies provide browser toolbars and save toolbar
logs that record such URLs.

It is also possible to use the toolbar logs to obtain the
categories associated with the queries, which can be used
to separate the queries into groups. Continuing with the
“zune” example, suppose that the user selects the category
“Electronics” before typing “zune” (Figure 1b). Then, the
following URL is generated:

http://amazon.com/...electronics&field-keywords=zune

Again, both the category and the query can be extracted
from the URL.



Amazon
Category JS

Photo 0.580
Computers 0.579
Automotive 0.531

Tools 0.524
Electronics 0.518

· ·
· ·
· ·

VHS 0.347
Music 0.340
DVD 0.314

All Departments 0.307
Books 0.288

Craigslist
Category JS

Motorcycles/Scooters 0.563
Auto Parts 0.558

Photo and Video 0.553
Music Instruments 0.551

Tools 0.549
· ·
· ·
· ·

General 0.491
Wanted 0.489

Collectibles 0.472
CDs/DVDs/VHS 0.441

Books 0.420

Table 1: JS divergence with respect to Wikipedia for Amazon and Craigslist.

Extracting Non-commercial Queries

For the non-commercial queries from Wikipedia, we did
not use the toolbar logs; the typical entry point to Wikipedia
is a general search engine rather than the search box on
the Wikipedia home page. Because of this, we employed
the click logs of a search engine to mine non-commercial
queries. In particular, we selected all the queries for which
a substantial fraction of the clicks led to a Wikipedia entry
(specifically, we set this fraction to one-fourth of all clicks
for the query).

Enforcing Separation

To enforce the separation property, we selected the cate-
gories from Amazon and Craigslist with the highest JS diver-
gence with respect to Wikipedia. In Table 1, we show the
categories with the highest and lowest JS divergences for
Amazon and Craigslist versus Wikipedia. Notice that cat-
egories “Books”, “DVDs”, and “VHS” have low divergence
in both commercial sources, which is consistent with our
intuition that the queries for these categories (mostly spe-
cific book or film titles) are ambiguous, as their vocabu-
lary can be easily confused with the vocabulary of general
non-commercial queries. In contrast, the high divergence
categories contain words that refer to brand names, mod-
els, etc., which are typically not part of the vocabulary of
non-commercial queries.

Note that for Craigslist, there is a sharp decrease in di-
vergence from“CDs/DVDs/VHS”to“Collectibles”. We used
this observation to prune out the lowest divergence queries,
namely“Books”and“CDs/DVDs/VHS”. A similar argument
was used in the Amazon dataset to prune out all the cat-
egories related to books, music, and movies. In the next
section, we empirically show that removing the queries from
these categories leads to a significant improvement in the
performance of the resulting classifier.

5. EMPIRICAL EVALUATION
In this section, we test the hypothesis that automatically

extracted labeled data can be used to build high accuracy
classifiers. We show the cost-effectiveness of our approach
by comparing the performance of classifiers trained with
automatically extracted data to the performance of classi-
fiers trained with manually labeled data. We also compare

against the case in which a semi-supervised learning tech-
nique (in particular, self-training [15]) is used to leverage
unlabeled data. The other goal of the evaluation is to val-
idate the importance of enforcing the properties proposed
in Section 2. To do so, we study the effect of training sets
extracted from different data sources (some satisfying the
properties, others not) on the performance of the resulting
classifiers.

5.1 Experimental Setup

Classifier

All experiments use a logistic regression classifier trained
using a set of N labeled training examples D = {(xi, yi)}N

i=1,
where xi is a feature vector with corresponding label yi.
For the commercial intent query classification task, xi is
a fixed-length feature vector computed from a text query.
We considered only binary features that represent the pres-
ence/absence of unigrams and bigrams in the text of the
query (including special begin/end bigrams). The value
yi ∈ {−1, +1} is a class label encoding membership (+1) or
non-membership (−1) of xi in the commercial intent class.
The logistic regression classifier computes the probability of
data point x belonging to class +1 as:

p(y = +1|x,w) =
1

1 + exp(−wT x + b)
.

We find the optimal w, b using the Orthant-Wise Limited-
Memory Quasi-Newton method, which enables handling large
feature spaces and a large number of training points [2].

Performance Metric

We define precision and recall as follows. Let C be the set
of queries that have true commercial intent (as decided by
manual labeling). Also, for a particular threshold θ ∈ [0, 1]
on the probability output by the logistic regression classi-
fier, let Zθ define the set of queries that have probability of
having commercial intent greater than θ. Then, we define
precision and recall at threshold level θ as:

precision @ θ =
|Zθ ∩ C|
|Zθ|
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Figure 2: Comparison of performance of classifiers
trained using manually labeled and automatically
extracted queries, adding a source at a time.

recall @ θ =
|Zθ ∩ C|
|C|

For many applications of practical importance (such as
showing relevant content for commercial intent queries), the
goal is to maximize precision for a fixed recall level. Thus,
in the following we set the recall to 0.5, which is reasonable
for such applications, and we report precision for the value
of θ such that the recall @ θ is 0.5. We also report the
area under the curve (AUC) using a Reimann integral of
the entire precision-recall curve.

Test Set

The test set consists of 5,000 queries randomly sampled
from a search engine query log. In order to assign labels to
these queries, we used the Amazon Mechanical Turk Plat-
form.3 Mechanical Turk is a tool that enables requesters to
pose tasks (known as Human Intelligence Tasks or “HITs”)
to be answered by a community of workers. Since the quality
of the labels depends heavily on the design of the HITs, we
placed particular emphasis on the HIT design. In particular
we asked three questions wherein the “Turker” was asked to
weigh plausible commercial and non-commercial intentions
for each query and decide the one she thinks is dominant.
Each query was shown to five “Turkers,” and the final label
was assigned to the query using majority voting.

5.2 Automatic vs. Manual Labels
The goal of the experiments in this section is to show the

cost-effectiveness of using automatically extracted training
data, as opposed to manually labeled data. To understand
the performance of the classifiers trained with manually la-
beled data, we constructed training sets by randomly sam-
pling a query log. The labels were obtained using the same
process explained above for labeling the queries in the test
set, which involves using the Mechanical Turk Platform. We
considered training sets of sizes 1K, 5K, 10K, 15K, and 20K.
We created six training sets for each size, randomly sampling

3https://www.mturk.com/mturk/welcome.
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Figure 3: Comparison of classifier performance in
terms of data set size.

from a pool of 25K queries, and trained six classifiers for each
size of the training set. In the testing phase, we report per-
formance using the mean value and error bars corresponding
to one standard deviation.

For the automatically extracted data, we constructed train-
ing sets using the procedure of Section 4. We used train-
ing sets with queries from Amazon and Wikipedia (roughly
1.5M from each), and training sets that contain queries from
Amazon, Craigslist and Wikipedia (1.5M for Amazon and
Craigslist, and 3M for Wikipedia). Again, we created six
training sets in each case by randomly sampling from queries
extracted from the corresponding sources, and we report the
mean over the six runs and error bars corresponding to one
standard deviation.

Figure 2 shows the performance of the logistic regression
classifiers trained with the different types of data. We con-
sider manually labeled training data of different sizes and
plot the precision corresponding to a 50% recall in each
case. We use horizontal lines to show the performance of
the classifiers trained with automatically extracted data.
Note that we have used unusually large amounts of man-
ually labeled data to get a feel for the asymptotic region.
Such large manual data sets are generally too expensive and
time-consuming to construct.

The precision at 50% recall of the classifier trained with
Amazon and Wikipedia queries is 0.58. This outperforms
the classifiers trained with up to 8.5K manual labels. When
we add an additional source of commercial queries (i.e., we
use both Amazon and Craigslist), the precision of the classi-
fier trained with automatically generated labels jumps from
0.58 to 0.73. The classifier trained with manually labeled
data now needs more than 20K labels to catch up. The
same results are obtained in terms of AUC, which is 0.55
for the classifier trained with Amazon, 0.64 for the classifier
trained with Amazon and Craigslist, and 0.63 for the classi-
fier trained with 20K manual labels. It is interesting to note
what happens for the classifiers trained with the amounts
of manually labeled data typically used in practice (1K-5K
range). In this case,the performance gap with respect to
the classifiers trained with automatically extracted data is
significantly large.
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trained using automatically extracted queries and
using semi-supervised learning with manually la-
beled queries.

At this stage, it is natural to wonder whether it is possible
to boost the performance of the classifiers trained with auto-
matically extracted data by adding some manually labeled
data to the training sets. The answer is yes, but only to a
small extent. In particular, we ran an experiment where we
consider training sets that consist of a mix of manually la-
beled queries (from 1K to 25K) and automatically extracted
labels. The results are shown in Figure 3. It can be seen
that adding manual labels helps to boost the performance
of the classifier only when large amounts of labeled data are
used; and that even for the largest amount of extra man-
ual labels, the gains are small. In particular, the precision
increases from 0.73 to 0.74, which is within the margin of
error (the standard deviation is 0.013).

Another natural question is whether it would be possible
to boost the performance of the manually labeled training
sets by employing semi-supervised learning techniques. To
address this question, we considered the case in which we
start with classifiers trained with manually labeled data and
then apply self-training, a semi-supervised learning tech-
nique, to exploit unlabeled queries from a query log. In
our self-training experiment, we started with the manually
labeled queries, and at every round of training, we added
the most reliably predicted unlabeled examples to the train-
ing set with their putative labels. In particular, for every
round of training, we obtained predictions for 5,000 unla-
beled queries sampled randomly from the query log of a ma-
jor search engine. We sorted the probabilities and labeled
the top 5% and bottom 10% of the sorted queries as pos-
itive and negative examples, respectively. We investigated
other schemes, such as hard thresholding of the probabilities,
and found the scheme used here to work best. The results
are given in Figure 4. We can see that self-training pro-
vides only a marginal improvement in precision, and that
a large amount of manually labeled data is still necessary
to catch up with the classifiers based on automatically ex-
tracted data.
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Figure 5: Precision-recall curves for the classifiers
trained with queries from all categories and with
queries only from selected categories.

5.3 Validating Source Properties
In this section, we present experiments aimed at validat-

ing the importance of enforcing the properties proposed in
Section 2. To validate the separation property, we consider
the effect of pruning the low-divergence categories as ex-
plained in Section 4. In particular, we consider two clas-
sifiers trained with the same number of queries and from
the same sources (Amazon, Craigslist, and Wikipedia). The
difference between the two training sets is that one contains
queries sampled only from the categories that we selected in
order to satisfy the separation property; the other contains
queries sampled from all categories, including the low diver-
gence ones. In Figure 5, we show the precision-recall curve
for both classifiers. It can be observed that our proposed
strategy of removing the low divergence categories leads to
considerable improvement in precision, especially around re-
call of 50%.

We also evaluate the importance of the orthogonality prop-
erty. The reason why we chose Amazon and Craigslist in our
study was based on the fact that they belong to orthogonal
categories in the Hitwise report: “Department Stores” and
“Classified Ads.” In order to validate the orthogonality prop-
erty, we consider what happens when more than one source
from the same category is used. In particular, Amazon is
the site with the highest traffic for the “Department Stores”
category. The second and third most popular sites in the
same category are Walmart and Target. We now consider
what happens when we use Amazon and one of the other
two department stores as sources. We can observe in Fig-
ure 6 that adding queries from Walmart or Target does not
improve performance with respect to the classifier trained
using only queries from Amazon. On the other hand, we can
see that when queries from the orthogonal source Craigslist
are added, precision improves substantially.

6. RELATED WORK
In using automatically extracted training data, we face

the problem of potentially noisy data (for example, a query
about a commercial product that shares a name with a non-
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Figure 6: Precision at 50% recall for various combi-
nation of sources for commercial queries.

commercial object). Previous work on inferring the relia-
bility of training data has relied on measuring similarities
between data points. Some approaches assign probabilis-
tic weights to data points based on, for instance, Gaussian
mixture models [14] or feedback from a neural network [16].
In [12], the purity of neighborhood graphs (constructed us-
ing data features) is used to remove noisy data points. In
contrast, we exploit metadata (categories) and background
knowledge to reduce the number of undesirable queries.

Most work on query intent identification has used small
amounts of labeled data. For example, 6,000 manually la-
beled queries are used in [3] to learn to classify a query
as having informational, navigational, or transactional in-
tent, and only 1,408 labeled queries are used in [7] to train
a commercial intent detection classifier. To offset the prob-
lems with small training sets, there has been work on using
semi-supervised learning. For instance, both [5] and [11]
apply semi-supervised learning for the task of web query
classification. While [5] uses query logs as unlabeled data,
[11] uses the query-click graph. While semi-supervised tech-
niques assume the presence of an initial high-quality seed
set of manual labels, our approach, in contrast does not re-
quire any manual labeling. Instead, our approach focuses
on identifying data sources that can be leveraged to obtain
large-scale labeled data for the classification task at hand.

Related, but not directly relevant, is the line of work on
mining search engine query logs to obtain training data for
learning ranking models [1, 8, 9]. Their task is different and
the source of the training data is closely tied to the task
at hand. In particular, the click logs collected through the
usage of the ranker is utilized to provide implicit feedback
to the ranker. In our case the data sources we considered
are not directly tied to the classification task.

7. CONCLUDING REMARKS
We showed how to leverage good, but imperfect, Web

sources to quickly and cheaply generate massive training
sets as frequently as needed, in a manner that yields high

accuracy classifiers. These techniques may obviate the need
for expensive, time-consuming manual training sets for some
tasks.

In this paper, we used the task of commercial intent iden-
tification to validate our proposal for extracting massive
amounts of training data. It is natural to think of other
tasks that can benefit from a similar approach. Examples
of such tasks include identification of geographical queries
where positive queries can arise from popular mapping sites,
while negative queries can be the log queries that never (or
with very small probability) lead to clicks on mapping sites.

There are several directions for future work. These in-
clude exploring other types of sources of labeled data, new
techniques for handling noise in the sources, and algorithms
to automatically select the thresholds to prune out low-
divergence classes.
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