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Life-long learning
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Life-long learning
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-~ Y1000 =1
Unlike standard supervised learning:

Y1000000 = 0

@ n — oo examples arrive sequentially, cannot even store them all
@ most examples are unlabeled

@ no iid assumption, p(z,y) can change over time
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This is how children learn, too
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New paradigm: online semi-supervised learning

Main contribution: merging learning settings
@ Online: learn non-iid sequentially, but fully labeled

@ Semi-supervised: learn from iid batch, (mostly) unlabeled

@ At time t, adversary picks x; € X, y; € Y not necessarily iid, shows x;
@ Learner has classifier f; : X — R, predicts fi(x)

© With small probability, adversary reveals 1;; otherwise it abstains
(unlabeled)

@ Learner updates to f;+1 based on x; and v, (if given). Repeat.
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New paradigm: online semi-supervised learning

Main contribution: merging learning settings
@ Online: learn non-iid sequentially, but fully labeled

@ Semi-supervised: learn from iid batch, (mostly) unlabeled

@ At time t, adversary picks x; € X, y; € Y not necessarily iid, shows x;
@ Learner has classifier f; : X — R, predicts f;(z)

© With small probability, adversary reveals 1;; otherwise it abstains
(unlabeled)

@ Learner updates to f;+1 based on x; and v, (if given). Repeat.

Many batch SSL algorithms exist; we focus on manifold regularization
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Review: batch manifold regularization

A form of graph-based semi-supervised learning [Belkin et al. JMLRO06]:
o Graphonzy...x,
o Edge weights wg; encode similarity between x4, x4, e.g., kNN
@ Assumption: similar examples have similar labels

Manifold regularization minimizes risk:

1 T A1 2 A2 & 2
J() =3 D 8we(f(we)m) + SNl + 55 D (Fls) = fla0)*ws
t=1 s,t=1

c(f(z),y) convex loss function, e.g., the hinge loss.
Solution f* = argming J(f).

Generalizes graph mincut and label
propagation.
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From batch to online

batch risk = average instantaneous risks

J(5) = 7 Zima () J
Batch risk
T T
I = el ) + G+ 55 30 (e = T
t=1 s,t=1

Instantaneous risk

T = Lo 0) + S I+ da D2 () — Fla) P

=1

(includes graph edges between z; and all previous examples)
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Online convex programming

Instead of minimizing convex J(f), reduce convex Ji(f) at each step ¢.

Jrer=ft—m 8{;;]”)

ft
Remarkable no regret guarantee against adversary:
@ Note: accuracy can be arbitrarily bad if adversary flips target often

@ If so, no batch learner in hindsight can do well either
1 X
regret = T ; Je(fe) = J(f)

[Zinkevich ICMLO3] No regret: lim supy_, % Zthl Ji(fe) = J(f*) <0.

If no adversary (iid), the average classifier f=1T Zle ft is good:
J(f) = J(f").

Andrew B. Goldberg (UW-Madison) Online Manifold Regularization 7/ 14



Sparse approximation 1: buffering

The algorithm is impractical
@ Space O(T): stores all previous examples
e Time O(T?): each new example compared to all previous ones

@ In reality, T' — o0

Approximation: Keep a size 7 buffer
@ Approximate representers: f; = ZE;Y}_T agt)K(xi, )
@ Approximate instantaneous risk

t

TP = Tael )+ S dat S () — F )P

1=t—T

@ Dynamic graph on examples in the buffer
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Sparse approximation 2: random projection tree
[Dasgupta and Freund, STOCO8]
@ Discretize data manifold by online clustering.
@ When a cluster accumulates enough examples, split along random
hyperplane.
o Extends k-d tree.
@ Approximation uses a graph over clusters (represented by Gaussians)

Andrew B. Goldberg (UW-Madison) Online Manifold Regularization 9 /14



Experimental Results

Compare batch manifold regularization (MR) with several online variants
(i.e., full graph, buffering, random projection tree)

@ Runtime
@ Risk (to assess no regret guarantee)

o Generalization error using average classifier (assumes iid)
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Experiment: runtime

Buffering and RPtree scale linearly, enabling life-long learning.
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Experiment: risk

Online MR risk Ju;,-(T) = %Zthl Ji(ft) approaches batch risk J(f*) as
T increases.
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Experiment: generalization error of f if iid

A variation of buffering as good as batch MR
(preferentially keep labeled examples in buffer).
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Conclusions

@ Online semi-supervised learning framework
@ Sparse approximations: buffering and RPtree

e Future work: new bounds, new algorithms (e.g., S3VM)
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Conclusions

@ Online semi-supervised learning framework
@ Sparse approximations: buffering and RPtree

e Future work: new bounds, new algorithms (e.g., S3VM)

Thank you! Any questions?
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Experiment: adversarial concept drift

e Slowly rotating spirals, both p(z) and p(y|x) changing.
@ Batch f* vs. online MR buffering fr

@ Test set drawn from the current p(z,y) at time 7.

0.7+ - Batch MR
= = Online MR (buffer)|
0.61
o
®
= 0.5f
e
3]
§04
2
N
S 0.3f
[
c
I3
O 0.2F
L l ..... ¢ { _____ }li

1000 2000 3000 4000 5000 6000 7000

@@@@@@



Kernelized algorithm

t—1
)= ol K ()
=1

o hnit: t=1,f1=0

@ Repeat
Q receive x, predict fi(xy) = Zz 1 a(t)K(xZ,:rt)
@ occasionally receive y;
© update f; to fi11 by adjusting coefficients:

o = (W= mA)al” = 2ma(fulws) — fula)wie, i<t
t

o = 2 Y (fules) — )i — ) (), )
i=1

Q store g, lett=t+1



Sparse approximation 1: buffer update

@ At each step, start with the current 7 representers:
t—1
t
fi= Y olK(xi,) + 0K ()
i=t—T1

Gradient descent on 7+ 1 terms:

Reduce to T representers fiy1 =3/, aEtH)K(a;i, -) by

: r_ 2
ni, Nf" = fisall

Kernel matching pursuit



Sparse approximation 2: random projection tree
We use the clusters N/ (p;, ;) as representers:

Zﬁ Nz:

“Cluster graph” edge weight between a cluster p; and example z; is

_ ||z — @4|?
Wyt = Ex~N(ui,Zi) exXp T 992

_dio 1L 11
= (2m) 2[5 2[5 2 [X)
1 T~
exp <—2 (uiTZi_lui + x?ZElxt — ,uTEu)>
A further approximation is
o lmi—=t]? /202

Wit =

Update f (i.e., #) and the RPtree, discard x;.



