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Graph-Based Learning

* This is rating inference [Pang+Lee035]
* WWe use graph-based semi-supervised learning

* Main assumption encoded in graph:
Similar documents should have similar ratings

[Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the ACL.]
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How it really works
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Our Approach

* Get initial predictions using SVM
* I[mprove predictions using graph-based SSL

- Nodes = reviews
- Edges = assumed relations between reviews
- Find the optimal f over the graph
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Measuring Loss over the Graph

Similar reviews should get similar ratings

. Similarity w .

fa g
Loss over this edge = w ( f, - fg )2

Task: Minimize loss L ( f ) over whole graph
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Semi-Supervised Learning Graph
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Semi-Supervised Learning Graph
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Semi-Supervised Learning Graph

Loss L( f)=
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Semi-Supervised Learning Graph
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Semi-Supervised Learning Graph
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_ _ Minimization is now
Semi-Supervised : non-trivial
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Finding a Closed-Form Solution
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Finding a Closed

L(fYZEZ<f}—ﬁ);;zzﬁ4ﬁff1WY+'

icU i€L
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Can rewrite L ( f) in matrix notation as:

(f—y)"C(f—y)+nf'Af
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Finding a Closed-Form Solution

Can rewrite L ( f) in matrix notation as:

(f—y) C(f—y)+nf'Af
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- Vector of given labels y, :
Vector of f for labeled reviews Solution

valuesfor —_ predicted labels y,

all reviews ¢ iabeled . |
( or unla ele reviews i tisn as:

T T

(f—y) C(f—y)+nf'Af
1 Labeled Unlajtieled
Vi b
M
C — 1
o 1

’ M ( ) .
All other matrix 1

Vi entries are 0 1
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Finding a Closed-Form Solution

Graph Laplacian matrix

Can rewrite L () in rnamrnvmnV
(f—y) C(f—y)+nf'Af

— Constant parameter
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Graph Laplacian Matrix

Assume n labeled and unlabeled documents
W = n x n weight matrix
D = n x ndiagonal degree matrix, where

Diz:z Wij
=1

Graph Laplacian matrix is
A=D—-W
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Finding a Closed-Form Solution

* L(f)in matrix notation:

(f—y) C(f—y)+nf'Af

e Set gradient to zero and solve for f:

fZ(C—I—nA)_ICy
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Experiments

* Task: Predict 1 to 4 star ratings for reviews

- 4-author data used by [Pang+Lee(09]

- Predicted y, values with SVM"9" regression using
{0,1} word vectors

- Positive-sentence percentage (PSP) similarity
[Pang+Lee09]

- Tuned parameters with cross validation
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Conclusions

* Adapted graph-based semi-supervised learning
to sentiment analysis domain

* Designed a graph for rating inference

 Showed benefit of SSL using movie review data

Thank you! Any questions?
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