Multi-Scale Surface Descriptors

Gregory Cipriano, Student Member, IEEE, George N. Phillips Jr., and Michael Gleicher, Member, IEEE

Abstract—Local shape descriptors compactly characterize regions of a surface, and have been applied to tasks in visualization,
shape matching, and analysis. Classically, curvature has be used as a shape descriptor; however, this differential property character-
izes only an infinitesimal neighborhood. In this paper, we provide shape descriptors for surface meshes designed to be multi-scale,
that is, capable of characterizing regions of varying size. These descriptors capture statistically the shape of a neighborhood around a
central point by fitting a quadratic surface. They therefore mimic differential curvature, are efficient to compute, and encode anisotropy.
We show how simple variants of mesh operations can be used to compute the descriptors without resorting to expensive parameteri-
zations, and additionally provide a statistical approximation for reduced computational cost. We show how these descriptors apply to
a number of uses in visualization, analysis, and matching of surfaces, particularly to tasks in protein surface analysis.

Index Terms—Curvature, descriptors, npr, stylized rendering, shape matching.

1 INTRODUCTION

Local shape descriptors distill the shape of a region of a surface into
a short vector of numbers, each corresponding to a property of the
region. These descriptors have broad application when working with
shapes: for example, they are used in visualizing and analyzing sci-
entific data, shape matching, and in stylized rendering. While various
local shape descriptors and methods for computing them exist, their
inability to summarize the shape of larger regions limits their utility.

Our goal is a local surface shape descriptor that is applicable at
different scales to summarize the shapes of differently sized neigh-
borhoods. This allows it to be applied to smaller regions to capture
small-scale detail, or to larger neighborhoods to summarize their over-
all shape. Regions of the surface may have one shape at a small scale,
but a different shape at a larger scale (e.g. a small bump within a large
bowl). This paper introduces an approach called multi-scale surface
descriptors that meets this goal. We present a local shape descriptor
that can be applied at multiple scales, along with techniques for com-
puting them efficiently on a triangle mesh.

The shape of any finite region may contain arbitrary amounts of
detail, therefore a shape descriptor can only provide a summary. For an
infinitesimal region, the amount of detail is limited, so the shape can be
completely described by its curvature. Curvature provides a compact
local descriptor: three or four numbers are sufficient to characterize
the shape for an infinitesimally small region. For finite-sized regions,
however, the mathematics of curvature do not apply.

We provide a descriptor that captures the most significant features
of the shape of a local surface region. The descriptor considers a lo-
cal neighborhood around a central point with a roughly circular area
specified by radial distance. It measures the degree and type of non-
planarity of the region, for example encoding whether something is a
steep bump or a shallow bowl. It also captures the degree and direc-
tion of anisotropy, identifying troughs and ridges. A key insight of our
approach is that while these quantities are not sufficient to capture all
details of the shape of a finite region, they do capture the most sig-
nificant aspects of shape. We introduce robust and practical methods
for computing these larger-scale surface descriptors, and show their
usefulness in a number of applications.

One of our key motivating applications is the matching of molecular
surface regions to identify potentially similar chemical functionality.
An important aspect of this functionality is surface shape complemen-

o Authors are with the Department of Computer Sciences, University of
Wisconsin, Madison, E-mail: gregc@cs.wisc.edu,
phillips@biochem.wisc.edu, gleicher@cs.wisc.edu.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tveg @computer.org .

tarity: a binding partner for a protein will often have locally comple-
mentary shape to its region of binding. Much as a key fits only its
matching lock, complementarity implies that binding is highly stere-
ospecific. Therefore, by characterizing the shape of a known binding
pocket, and then using this information to identify similar regions in
other proteins, we may find new targets for a given partner.

This application, which we discuss in more detail in §5.2, high-
lights many of the requirements for practical, effective local shape de-
scriptors and the methods to compute them: they must operate over
large enough neighborhoods to be chemically significant; they must
be efficient, as we need to compute the descriptors for all points on
each molecule in a database; they must be robust against poorly tes-
selated surfaces; and they must correspond to domain scientists’ intu-
ition about shape and neighborhood. We provide the first shape de-
scriptors that we feel are able to meet these needs.

1.1 Contribution

The contribution of this paper is an approach to local shape descriptors
that provides a method for characterizing neighborhoods at multiple
scales on the surface of a mesh. Our approach is the first to address all
of the following goals for such descriptors:

o [t scales to describe larger neighborhoods. Curvature captures
only infinitesimal regions and prior approaches to curvature com-
putation focus on minimizing the size of regions to better ap-
proximate the differential case. In §3 we present methods that
summarize a non-trivial region statistically.

e [t corresponds to intuitions about curvature. Like curvature, our
descriptor captures the degree and type of non-planarity of a re-
gion, and the degree and direction of anisotropy.

o [t allows for control of scale in a simple way. Neighborhoods are
specified by their center and a radius, so regions are controlled by
physically relevant quantities of the surface. In contrast, methods
such as mesh pre-filtering require a less direct specification of
neighborhood size in terms of frequency (which can be difficult
to explain to domain scientists), and filtering causes points to
move, precluding localized assessment.

e [t compensates for issues in tessellation. The methods of §3.1
account for discretization, allowing our descriptor to be robust to
poorly tesselated surfaces.

e [t affords efficient computation. Throughout §3 we present meth-
ods for computing the descriptors efficiently. In particular, our
approach avoids expensive parameterizations and our approxi-
mations can provide good performance without resorting to ex-
pensive mesh operations such as exact geodesic computations.

e [t works in applications. In §5 we describe how our descriptor is
effective in applications. By providing a larger-scale summariza-
tion of surface regions, it allows for simpler algorithms to make
effective use of descriptors across a number of applications.



(a) A vertex, in red (b) A surrounding neighborhood

(c) With height-field plane (d) Best-fit quadratic

Fig. 1. A demonstration of the steps involved in generating a descriptor for a single neighborhood. Our method starts with a vertex on the surface
(a). It then generates a set of patches surrounding that vertex. One is shown in (b), with color given according to each vertex’s weight (greener
vertices have high weight, and redder have low weight). A plane is constructed using a weighted average of the normals of that patch (c), onto
which all points are projected. Finally, a quadratic surface is found to approximate that height field (d).

Our approach is closely related to prior work on using planar pa-
rameterizations and polynomial fitting for curvature estimation, which
will be discussed in §2.1. However, unlike these methods that focus on
the challenge of being robust with as small a region of surface as possi-
ble, our approach is designed to work with larger surface regions. This
requires us to provide effective methods for finding the correct regions
(6§3.1) as well as to provide techniques for statistically summarizing
the shape over these regions (§3.3, §3.3.1).

2 RELATED WORK
2.1 Curvature

Many papers deal with the task of computing curvature for points on
the surface: see [7] for an overview. Petitjean [25] surveys methods
for estimating local surface quadratics, several of which inform our
work. We draw inspiration for our point- and normal-weighting tech-
niques from [24], who use a technique they describe as “normal vector
voting” to compute curvature in the presence of noise.

Curvature estimation may break down in certain cases, as shown
in [10]. Rusinkiewicz [28] shows how to avoid similar issues in per-
vertex curvature computation by estimating the second fundamental
tensor per-face, and incorporating that into a description of the 1-ring
curvature about a point. In some cases, only a minimal description of
the surface may be required, such as its radius of curvature. This can
be found by fitting spheres to points on the surface [4]. Though more
involved, ellipsoid fitting can indicate anisotropy [21].

Most discrete curvature fitting methods, such as Angle Deficit and
Angle Excess, are very fast, but do not provide principle directions,
and so cannot give anisotropy information [7, 32].

2.2 Applications

Local shape descriptors are useful for a number of applications. Many
have been developed, in numerous forms, for the task of shape match-
ing, and share a subset of our goals. Kortgen, et al. [19] and Gatzke,
et al. [8] both use the statistics over the neighborhood surrounding a
point to perform robust matching. Unlike ours, the former does not di-
rectly utilize the surface. The latter, while more similar to ours, differs
in that they build up their descriptor using differential curvature esti-
mates, rather than estimating curvature on the patch as a whole. Spin-
images [16] represent such a neighborhood as a 2D texture, which
can be quickly built, and can be used to perform rotationally-invariant
matching. While fast, these are best suited for local feature compari-
son.

Gal [6] models the surface using local shape descriptors to con-
struct partial matches, while [3] uses point signatures to detect rigid
structures on a set of faces, which are then compared to one another.
Goldman, et al. [11] describe a local quadratic shape descriptor that
they use for molecular similarity searching. Though these methods
each have similarities to ours, none satisfy all of our goals.

Many graphics and visualization techniques use curvature, and
therefore may benefit from our improved descriptor. Gumhold [14]
describes an algorithm to optimize the placement of lights in a scene,
in order to emphasize high-curvature regions. Lee, et al. [20] have

Fig. 2. On the left is the result of performing a search along edges for
those points that are less than a particular distance from a single ver-
tex. Though, intuitively, this should form a circular patch because of
the mesh’s tessellation, the patch has a non-circular shape. By adding
virtual edges to 2-neighbors, we achieve a better result, at minimal in-
cremental cost.

S0 0gpgesdH o0 R S AR

o o S~
taa Py T

Sy LI O BV P g P! b ooy LY -
© 0 gaeasnnanacs " I O o s o ’

Traag gyt [> o o o

2 o freceecrrdd?00 . . R~ = ———— ==K

| L e £ 2 T T WS MU

| T
g e e

B et e e 0,

\\.\\ 73 et B e e M N,

\::\‘\x /; /M._.h..;‘t\\ \

G ://7/.’: N ;:f?\\
NN A

-, 3 -//’;.'\\\\\ ///z;‘,\\

24 NN SRR

gl vl MR I o ﬁ

Fig. 3. Here, directions of least curvature are found for a radially sym-
metric cosine wave. On the left, we show the result from computing
distance along edges of the mesh. On the right, we add edges between
2-neighbors to better avoid tessellation issues. Note that the resulting
directions are not symmetric on the left, but are on the right.

used curvature, along with globally discrepant lighting, to similarly
emphasize the placement of specularities on the surface.

Toler-Franklin, et al. [34] describe how lighting derived from large-
scale curvature can approximate local ambient occlusion, to better em-
phasize large concave features. Real-time rendering techniques also
consider curvature: [35] show how extracting curvature information
from image space can produce compelling lighting and shading in real-
time, while [18] extracts curvature from volumetric data to enhance
their visualizations.

Stylized rendering techniques benefit from the use of curvature as
well. Principle curvatures can be used to depict the flow of curvature
over the surface [9], and to then place textures along those flows, em-
phasizing important shape cues [13, 27, 2]. Line drawing techniques
also utilize curvature [17, 5].

Curvature can directly inform another task, surface partitioning, by
using high-water curvature as partition boundaries [22], or by placing
seams in high-curvature regions to better hide them [31]. Mortara, et
al. [23] uses the intersection of the surface and bubbles at multiple
scales to estimate curvature for surface segmentation.



Fig. 4. Shape description, represented at multiple scales, with peak-like regions in green and bowl-like regions in red. From left to right, the radius
of the region, indicated by d, is increased. Inset, a single patch is shown for each scale, representing the neighborhood used for a single vertex.

3 MuULTI-SCALE DESCRIPTORS

Given a triangle mesh and a neighborhood defined by a center point %
(a vertex in the mesh) and size d, our approach computes a local de-
scriptor of this region as a statistical characterization of its shape. See
Figure 1 for a depiction of this process. The radius, d, gives control
over the scale of the neighborhood and has units of length with the
same scale as the surface itself. The choice of radius depends on the
application domain. For example, when considering molecular sur-
faces we choose d to be a size of biological relevance.
Our approach has the following steps:

1. The set of points, N (i), in the neighborhood around ¢ are deter-
mined and a weight computed for each to compensate for issues
in tessellation. In §3.1 we describe how the points can be deter-
mined efficiently and how the weights are chosen.

2. N(4) is represented as a height field on the surface tangent plane
at ¢. This representation, motivated by methods in curvature es-
timation, simplifies the computation of the statistics in the next
step. In §3.2 we describe how the tangent plane is determined
and explain the height field representation.

3. The height field is characterized statistically to yield the descrip-
tor. We provide two methods for this summarization. In §3.3
we describe an approach using robust least-squares fitting that
directly applies the intuitions of curvature. In §3.4 we provide a
method that is based on simpler intuitions of shape. In §4.2.1 we
compare both approaches.

The result of these steps is: one number that describes the type and
degree of non-planarity of the neighborhood, one number assessing the
degree of anisotropy, and a vector giving the direction of anisotropy,
assuming that there is sufficient anisotropy to determine the direction.

3.1 Neighborhood Construction

To characterize a given vertex, our method first finds the neighborhood
of all vertices that are within a distance d from that vertex along the
surface of the mesh, called a d-disc. Descriptors at multiple scales are
constructed, then, by choosing a set of d values for a given surface.
Small values characterize local regions, while larger values take more
of the surface into account. In the latter case, small surface variations
are deemphasized. Figure 4 shows the effect of varying patch sizes
over the mesh.

To create uniformly-shaped patches on the surface, the geodesic
distance should be used between points, as geodesics follow the short-
est path on the surface. Computing geodesic distance on a mesh, how-
ever, is difficult because this path does not necessarily follow edges on
the mesh. Even with efficient algorithms, such as [33], exact geodesic
computation is prohibitively time-consuming and, as we describe be-
low, unnecessary.

A common approximation to geodesic distance is simply to follow
the edges between vertices. The distance between any two vertices,
then, is the shortest patch along the edges connecting those vertices.
This so-called Dijkstra path is an approximation to the true geodesic

distance. Though fast to compute, Dijkstra distance can be an arbi-
trarily poor approximation to geodesic distance. This problem is sig-
nificant in practice, as the use of Dijkstra distance in determining the
neighborhood gives irregularly shaped regions, as shown in Figure 2,
and is unacceptable for descriptor computation. The problem is not
pathological, but rather, occurs frequently on real meshes.

We introduce a modification to Dijkstra distance that improves its
distance estimates. Our insight is that a large discrepancy in the dis-
tance computed between two vertices results from a large difference
between the geodesic path and the edgewise path. Further, the major-
ity of these cases arise in an edgewise path of length 2 (e.g., two hops).
To close the gap, we simply add virtual edges between each point and
all of its 2-neighbors, and perform a Dijkstra computation on the orig-
inal mesh with these added neighbors. In theory, these “corner cutting
paths” may still have lengths that are arbitrarily poor approximations
of the geodesic distances, but we have not encountered such patholog-
ical cases in practice. Figures 2 and 3 show the results of this simple
modification. We compare this method with true geodesics in §4.2.2.

Values for d can be chosen in one of two ways. For surfaces with
an inherent scale, such as proteins, d may be set according to the size
of known features, to describe, for instance, atom- or residue-sized
neighborhoods on the surface; for molecular examples in this paper,
we set d to 4 and 8 Angstroms, respectively. For surfaces that have no
inherent scale, we can simply let the user choose their own, or use a
heuristic, such as a multiple of the median edge length, to automati-
cally pick a reasonable size.

3.1.1

Before using the constructed neighborhood, N (7), our algorithm first
adjusts the weights of its individual vertices:

Weighting

e Points are weighted according to the area of the surface nearest
to them. This reduces the effect of any variability of the size of
triangles on a surface.

e Points closer to the edge of the patch are weighted to contribute
less to the overall shape description than those closer to the cen-
ter. This compensates for the fact that, for any given angular
wedge, outer regions will contain more surface area than inner
regions.

Given these two factors, our equation for the weight of a vertex
p € N(i)is:
A(p)

Wi(p) = D,p) +¢ (D

where A(p) refers to the area of the faces surrounding p and D(%, p)
refers to the shortest distance from p to 5. Note that dividing by D (%, p)
ensures that concentric rings in the neighborhood have equal weight.
Normalizing these weights produces the final values:

Wi(p)

Wi(p) = ZUEN(i) Wi (v)

@



3.2 Height Field

As described in [7], a common method for estimating curvature on the
surface of a mesh is to construct a height-field function, parameterized
by two variables, v and v:

F(“’v U) = (u,v,f(u, U)) 3

There are several reasons one might want to do this. First, projec-
tion to a height field acts as a change of coordinate system. In this case,
the height field approximates a tangent plane, and is therefore a more
natural basis for computing differential curvature, as well as our cur-
vature. Second, by projecting a set of points onto a height-field, a 3D
problem is reduced to a 2D problem, reducing its degrees of freedom,
and therefore, its complexity.

The coordinates for each point on the patch are found by projecting
that point onto a plane. The choice of plane will affect how good the
overall parameterization will be. As we will describe below in §3.2.1,
one measure of ‘goodness’ is to minimize the difference between the
normals on the surface, and the normal of the plane of projection. So
our method finds the plane normal N;(p) as the weighted average of
all surrounding vertex normals:

Z V[7(\U) - normal(v) 4

vEN (i)

Nh(p) =

This vector is normalized to produce the final height-field normal,

—

Np(p). It should be noted that while [1] give a more accurate method
for averaging normals than our linear approximation, we have not seen
a case in practice that would benefit from their method.

As a final step, we ensure that the central vertex in a patch is placed
at the origin (so up = vg = 0). This is accomplished by subtracting the
projected u, v for that vertex from the v and v of all other vertices.

3.2.1 Avoiding Issues with Height Fields

Several problems can arise from the use of height functions: first,
projection does not preserve relative distances in the (u,v) parame-
ter space. Second is the issue of foldover: F'(u,v) may have multiple,
conflicting values at a given u and v. This is generally the result of
including triangles that face away from the plane of projection.

We have experimented with various parameterization techniques,
including exponential maps [30], to directly address both of these is-
sues. Though this is a viable alternative, our techniques do not require
a parameterization of the surface. Also, because we are using an or-
thonormal projection, relative 3D distance is preserved. Thus we are
still able to achieve a reliable fit and projection isn’t a large issue.
Local parameterizations, on the other hand, besides being slower to
compute than height-field projections, may break down with distance;
since we fit relatively large patches, this presents a problem.

The second problem, foldover, is more of a concern, but it can be
mitigated by simply throwing away those vertices whose normals point
away from the plane of projection. While this doesn’t completely re-
move foldover, remaining conflicting vertices have very low weight,
so they do not tend to affect the result, as described in §4.2.5. Usage
of robust statistics to lower the weight of outliers, as described below
in §3.3.1, further improves matters.

3.3 Fitting with Quadratics

After representing the surface region as a height field, our approach
must compute a descriptor that summarizes its shape statistically. Be-
cause the region may consist of a large number of points, the height
field may have an arbitrarily complex shape. To summarize this shape,
we first approximate it by a simpler shape that is easier to character-
ize. We fit a quadratic function to the height field. We choose quadratic
functions because they are the simplest form that can sufficiently ex-
press the shape variability we need to encode.

Note that if the region were infinitesimal, its shape would exactly fit
the quadratic form, and the coefficients of this quadratic would yield
the curvature at the center point of the region. This is the basis of sev-
eral curvature estimation approaches [7]. However, rather than trying

to find a minimal set of points to constrain the quadratic, we instead
use a large collection of points over the neighborhood and find the
best-fit quadratic.

The form of equation to fit is:

2 = flui,v) = Au? 4+ Buv; + Cvi + Du; + Ev; 5)

Each point of the height field (u;, v, ;) provides a linear constraint
on the 5 degrees of freedom of the quadratic. Note that we do not
include a constant term, which forces our function through the central
vertex in a patch.

The simplest fitting method is to solve the set of linear constraints

—

according to a weighted least-squares metric, with the weights W;(v)
from §3.1.1. Because there is a small number of variables, our imple-
mentation solves these linear least-squares problems by forming the
normal equations (multiplying the matrix by its transpose), and solv-
ing the resulting linear system using the Cholesky factorization. The
use of linear least squares for polynomial fitting is discussed in [26].
Once parameters have been found for the quadratic, the principle
directions and magnitude of curvature of the quadratic patch can be
estimated by finding the eigenvectors and eigenvalues, respectively, of
the second fundamental form:
} - (0)

|

For our descriptor, we use these principle curvatures of the
quadratic. Specifically, we include the eigenvector corresponding to
the smallest eigenvalue (i.e., with shallowest curvature), along with
the degree of anisotropy, which is derived from the ratio of the largest
absolute eigenvalue to the smallest.

vl
Quolw

3.3.1 Robust Statistics

When there are many points, even the best fit quadratic surface may be
a poor approximation. In particular, the least squares metric used for
fitting is sensitive to outliers: a small number of badly fit points can
skew the results. In local descriptor computations, outliers can come
from surface foldovers, sharp discontinuities, as well as noise on the
surface itself.

We find that by applying robust statistical techniques [15] to our ini-
tial fit, we can lessen the impact of outliers. Using M-estimation, with
the original quadratic fit as a prior, regions that have folded under are
quickly identified as outliers. Their weights are then lowered, reduc-
ing their contribution, and a new surface is fit. This can be iteratively
applied to reweight points, driving the least-squares solution toward
a better fit with those points that remain. In practice, we find that a
single iteration of this re-weighting is required to provide sufficient
robustness.

3.4 Moment-Based Surface Description

A different description of the shape of the local region is based on
a simpler intuition that less directly corresponds with curvature. In
§4.2.3, we contrast the two descriptors and show that their results are
similar.

Consider the height field patch from the region as a rigid object,
with the points having mass proportional to their weights. If the center
of mass of the object is above the plane, the center point is likely to
be at the bottom of a bowlike shape (or the top of a peak if the mass
center is below). The distance between the center and the plane gives
an assessment of how peak/bowl-like the shape is. Similarly, we can
consider the statistical trend of the mass distribution. If the moment of
inertia is strongly directional, then the region is anisotropic.

These simple intuitions lead to a very efficient statistical character-
ization of the height field. The centroid of the neighborhood is found
quickly by averaging, and its height value gives the assessment of non-
planarity. By treating the height field as an image (with the height
mapping to intensity), image statistic methods can be used to deter-
mine the distribution. Image moment computations [12] determine
the degree and direction of anisotropy.



3.4.1

Image moments can be used to statistically deconstruct an image to
find, for instance, its area, center of mass, and orientation. It is this
last property, described using the second central moment, that we use
to interpret anisotropy in a height field.

The second central moment is used to find the direction of highest
intensity in an image, which can be used to uncover its orientation. For
our method, consider the projected distance (or height) of a point on
the plane as ‘intensity’. Intuitively, ridges in the height field will have
the highest such intensity. Ridges, by definition, have lowest curva-
ture along their major axis. By finding this direction, we then find an
approximation to the direction of least curvature of the neighborhood.

These major and minor axes of intensity can be found by first con-
structing the central moments [12] up to order two:

2D Moment Computation

Mpq = Z ub vl F(us, v;) @)
i

1420 Moo /Moo — w’

no2 = Moa/Moo — v°

pit = Mii/Moo — av 8)

Axes of intensity are then found by taking solving for the eigenvec-
tors and eigenvalues of the covariance matrix:

pit } ' )

cov[F(u,v)] = { L s

Hi1

One minor wrinkle: as described, this technique works only for

ridges. To properly characterize neighborhoods that represent val-

leys, we simply invert the heights, replacing F'(u, v) with —F (u, v)
in equation (7).

4 RESULTS

In this section, we discuss the performance and correctness of our de-
scriptors. For all results below, the symbol ‘£’ represents a range of
one standard deviation from a given value.

In this paper, we have implemented our multi-scale surface descrip-
tors in a visualization testbed that runs under Windows on PCs. All
figures in this paper are generated from within this testbed. For all
molecular examples in this paper, we use MSMS [29] to generate an
initial molecular surface as a triangle mesh.

4.1 Performance

To assess performance of our method, we built a corpus of 30 meshes,
ranging in size from 2,600 to 170,000 vertices. Descriptors were com-
puted over the surface of each mesh. On our test set, the time needed
to construct these descriptors using quadratics ranged from 3 seconds
to 4 minutes per mesh on an Intel Core 2 Duo, E§8500 with 3GB of
RAM. Runtime was generally a function of the largest neighborhood
size, as a larger neighborhood has more vertices to consider, as well as
the size of the mesh itself, as a set of descriptors is built for each ver-
tex. In our testing, construction of vertex neighborhoods takes about
the same amount of time as fitting the quadratics over those neighbor-
hoods. We found moment computation to run three times faster than
quadratic fitting. Combining these timings, moments can be calcu-
lated, on average, 50% faster than quadratics.

Our system provides the ability to cache the results of computing
our descriptors onto disk for future use, so in cases when meshes must
be visited many times, such as in the matching scenario we describe in
§5.2, we do not have to repeatedly reconstruct them.

4.2 Evaluation

Tradeoffs were made in the construction of our descriptor to achieve
high performance. In the following sections we assess the impact of
these tradeoffs, both in terms of accuracy, as well as in terms of our
sensitivity to both noise and to differences in surface tessellation.

4.2.1

We describe a set of moment-based descriptors which further reduce
computational requirements. These may not necessarily agree with
quadratic descriptors. In these cases, we consider the quadratic de-
scriptors to be the the ‘correct’ result. To assess the degree to which
moments get the wrong answer, we ran both algorithms against the
same corpus of meshes. On each mesh, we found the average angular
difference over each mesh between the principle direction produced
by moments and the direction produced by quadratics. For all meshes,
this value averaged 16° 4= 12°. The curvature values produced agreed
with each other with an R? value ranging from .81 to .95. This sug-
gests that moments, by and large, produce similar results to quadratics,
a result reinforced by visual inspection. We found that the majority of
the cases where moments fail to agree with quadratic fitting occurred
in two problem areas: edges, where quadratics were better able to fit
in the absence of data, and regions with significant foldover. We are
investigating methods to compensate for these scenarios.

We also compared our method to Rusinkiewicz’s local curvature es-
timation [28]. To do so, we constructed descriptors with small neigh-
borhoods (equivalent, approximately, to 2-rings). We found that the
principle directions found by quadratic descriptors deviated, on aver-
age, 14° £ 11°. Our curvature values agreed with the mean of theirs
with an average R? value of .83. It is difficult, however, to compare
our methods directly as their method aims to deal with instantaneous
neighborhoods directly, while ours cannot.

Descriptor Equivalence

4.2.2 Geodesics vs. 2-Ring Approximation

We described in §3.1 a simple method for improving Dijkstra searches
by adding virtual edges between 2-ring neighbors. This method, while
more tolerant of issues with tessellation, is still an approximation to
true geodesic distance. To quantify the improvements our method pro-
duces, and to determine how close our approximation comes, we com-
pare geodesic neighborhoods of varying size, generated using the ac-
curate method in [33], on the surface of our corpus to both our method,
as well as to standard Dijkstra distance.

We find that for all protein surfaces in our corpus, for a patch radius
of 8 Angstroms, our 2-ring approximation finds between 97 — 100%
of the vertices in a geodesic patch of the same radius, with an aver-
age distance for the missing vertices of .1 Angstroms from the patch
boundary. Standard Dijkstra finds 84 — 90%, with an average distance
within .5 Angstroms of the boundary.

We also tested against a torus model, containing a “grain” in its
tessellation. Because, unlike proteins, this model does not have an
intrinsic scale, we assign one according to its median edge length,
‘e’ = .8. For patches of size d = 10 % e,;, ~ .6, our approxi-
mation finds 92 — 95% of the vertices, with an average distance of .02.
Standard Dijkstra finds only 76 — 80%, with average distance of .05.

4.2.3 Noise Sensitivity

To gauge the ability of our surface descriptor to tolerate noise, we used
the same models as above, and then perturbed each vertex a random
distance, up to .5 Angstroms, along its normal. Figure 5 shows one
example protein, before and after this process. For all other models,
vertices were perturbed up to .75 * en,. Curvatures were assessed for
each vertex on the original model, then compared against the same
vertex on the perturbed model.

For small patch sizes of around 2 Angstréms (or 2 * e, ), we found
that this difference between respective vertices, on average, accounted
for 19% =-26% error in the reported curvature, versus the actual curva-
ture. For patches 4 times larger, this dropped to 2% =+ 6%. In contrast,
local curvature had 25% + 36% error. This is in accord with our visual
observations that descriptors formed from larger neighborhoods seem
more resilient to noise.

4.2.4 Tessellation Sensitivity

To test our method’s sensitivity to varying tessellation, we used models
with uniform tessellation and known curvature. Tessellation “noise”
was introduced by repeatedly selecting a triangle from the mesh, in-
serting a new vertex in the center of this triangle, and projecting this



(a) Our method (b) With surface noise added

(c) Local curvature (d) With surface noise

Fig. 5. A depiction of the results from a test of our descriptors’ sensitivity to surface noise. (a) Shows our results on the surface of a protein, with
lighter colors denoting areas of higher positive curvature. (b) Shows the same surface after noise is introduced. This test is repeated in (c) and (d)
using local curvature estimation. Note the similarities between the results in (a) and (b), indicating a resilience to noisy surfaces, unlike (c) and (d).

(a) A sphere

(b) Randomly tesselated

Fig. 6. This figure illustrates one of our test cases for tessellation sensi-
tivity. (a) Shows a sphere, with 5,120 faces. (b) Shows the same sphere
after 5,000 rounds of subdivision, with replacement. Also shown is a
sample neighborhood on each sphere. Note the uneven distribution of
sample points arising from subdivision.

new vertex onto the surface of the model (for this reason, models with
known analytic forms were used). This process creates meshes with
high variability in the tessellation, and many examples of bad tessella-
tions, such as high valence vertices and sliver triangles.

Two models were used in testing, a unit sphere and a unit torus;
the sphere model began with 2,562 vertices, to which 5,000 more are
added during subdivision. Figure 6 shows the sphere before and after
subdivision. The torus begins with 4,800 vertices, and again 5,000
are added. One minor wrinkle in our testing: because the tesselated
meshes had a much smaller e,, relative to the non-tesselated meshes,
we set the tesselated model’s scale equal the original.

Tests were conducted in a similar manner as in §4.2.3: each vertex
in the original mesh was compared against the same vertex in the tes-
selated mesh. In the sphere, average error ranged from .02% =+ .01%
for small patches to .07% =+ .1% in large patches. In the torus, error
ranged from .2% + .1% to 1% £ .3%, respectively.

4.2.5 Foldover

As discussed in §3.2.1, we discard vertices that face away from the
plane to avoid having foldover bias our results. In our protein cor-
pus, we have found that, on average, 23% =+ 12% of the vertices
of the largest patches (8 Angstroms) are discarded. Though this
sounds wasteful, on average the closest discarded vertex is 2.75 £ .73
Angstroms from the center of the patch, which means that, on average,
only the largest descriptors have any foldover, and those have enough
samples to be meaningful. Other meshes in our test set performed
similarly, or better.

5 APPLICATIONS

We have found a number of applications that benefit from our multi-
scale, anisotropic descriptors. In the following sections, we describe

(c) Lit using small descriptors

(d) Lit using large descriptors

Fig. 7. Depicted here are four lighting schemes applied to a ribonucle-
ase molecule (PDB ID 1MQO7). (a) Is lit using ambient occlusion, which
darkens interior points. This is a global effect, which helps to emphasize
the large active cleft. (b) Uses local curvature, darkening concave re-
gions. Note that very small features are emphasized, but the cleft is hard
to make out. (c) Uses our descriptor, with an atom-sized (4 Angstrém)
neighborhood radius. (d) With a residue-sized (8 Angstrém) radius.

several of these applications. This list is not intended to be compre-
hensive, but rather a sampling of the possible uses for our method.

5.1 Multi-scale Lighting

Rusinkiewicz, et al., [34] describe a method for multi-scale lighting
which uses curvature information at large scales. They show that by
darkening regions of the mesh that are concave at these scales, they
produce results similar to those of local ambient occlusion.

Our system does not use curvature directly, but rather uses a de-
scriptor built from large neighborhoods to identify concave regions.
These are similarly darkened. Figure 7 demonstrates our results, and
compares it against simply lighting using local curvature. Note that,
especially with larger descriptors, lighting with a multi-scale descrip-
tor produces similar results to ambient occlusion. Because, however,
we only capture local phenomena, we are unable to correctly shade
flat areas that are deep within a groove. Nevertheless, we achieve in-
teresting lighting results, which can, for instance, darken features of a
particular size for better emphasis.

5.2 Multi-scale/Anisotropic Matching

Next, we look at the task of surface matching: given a point on the sur-
face, find similar points, either on the same model, or on other models.



Fig. 8. Matching two ribonuclease proteins (PDB IDs 1MO7 and 215S). Both have similar functional sites, occupying the center groove. (a) Shows
large-scale curvature matching for the picked site (blue and white circle in the center of each top image). In (b), degree-of-anistropy is used instead.
In (c), both metrics are combined, yielding a more accurate match in the bottom image to the picked point in the top image. Finally, (d) shows, for
comparison, the results from matching using Rusinkiewicz’s local curvature estimation technique [34].

We are interested in this task as a component of matching functional
sites between proteins. Figure 8 demonstrates a preliminary result,
produced by simply matching the curvature and degree of anisotropy
for a source point against those of all other points.

Each vertex is assigned a feature vector with 8 values, formed from
the curvature and anisotropy of four differently-sized patches centered
at that vertex. The match between two vertices is then given by the
normalized dot product of the feature vector for each vertex.

5.3 Segmentation

We now look at the task of surface segmentation, which operates on
the curvature of a surface to produce regions of similar curvature. An
early surface segmentation technique, called the watershed method
[22], segmented the surface according to curvature. Segments are
demarcated by ridges of high curvature, such that all vertices within
a segment have lesser or equal curvature than the boundary vertices.
Segments can flow into neighbors if their height is lower than a thresh-
old parameter. This parameter, defined by the difference between the
curvature at the highest-curvature vertex in the segment and the lowest,
has a large effect on the number of segments produced.

The watershed method, while fast and simple, is sensitive to noise in
curvature. Tuning for the ‘minimum height’ of a segment can help by
merging some small patches caused by noise. Unfortunately, this may
also cause larger segments to merge, too, making precise segmentation
difficult. In Figure 9, we show that by simply changing the segmen-
tation to use larger patches, which in turn exhibit smoother variations
in curvature, we see a significantly improved segmentation, without a
need for excessive tuning.

5.4 Stylized Rendering

Finally, we demonstrate the effects of large-scale curvature on hatch-
ing. Hatching simulates the brush strokes an artist might make to con-
vey the shape of a surface. Girshick, et al. [9] note that these strokes
very often are made along the lines of principle curvature on a surface,
and that their length and distribution is directly related to the degree to
which a surface is curved.

Flat regions, containing little detail, need only a few strokes, or
possibly none at all, to convey their shape. Highly curved regions,
meanwhile, need far more to properly convey.

We show that depending on application, it may not be desirable
to emphasize all small features, especially bumps and wiggles. To
do so may require adding numerous additional strokes, cluttering up
the image, reducing understandability and increasing rendering times.
On the surface of a protein, for instance, atom-scale features abound.
Representing all of these using hatching strokes makes for a less com-
prehensible image (see Figure 10).

Fig. 9. A demonstration of the usage of large-scale descriptors within
the watershed algorithm [22]. On the left, the result of segmenting the
surface using local curvature values. On the right, shape is estimated
using our descriptor, and the same algorithm run. Note the improvement
in patch boundaries, and the lack of small, isolated segments. The same
overflow threshold of .9 is used in both cases.

6 DISCUSSION

Our prototype shows that multi-scale surface descriptors can pro-
vide intuitive shape characterization of regions in a triangulated mesh.
These descriptors resemble curvature, but capture the shape of larger
neighborhoods. They are practical to compute on modest hardware,
are robust to poor tessellation, and are useful in a range of applica-
tions, including surface segmentation, shading and matching.

While our method works well for our desired applications, it does
have a few limitations. First, unless the neighborhood being charac-
terized is quadratic, which for our large patches is almost never true,
our descriptor is a crude approximation of that neighborhood. This is
a fundamental issue with our method, one which makes it unsuitable
for applications which require analytical precision. We might partially
address this by including the quality-of-fit, or residual error, in the
descriptor itself. This, at least, could allow applications to factor in
quality when using our descriptors. We do not yet know how much
this would help.

Our method, as it produces values comparable to mean curvature,
does not discriminate between saddle and planar regions. This is a
shortcoming, and though our descriptors meet the requirements of our
applications without such discrimination, we would like to address this
in future work.

In the future, we would also like to expand each mentioned appli-
cation to utilize multiple scales in concert. As our initial experiments
indicate that the values found for a given point at various scales are
highly correlated, we believe that we can incorporate a large number
of scales into a compact, robust descriptor.



Fig. 10. A demonstration of hatching using multi-scale descriptors, with lines drawn along directions of principle curvature. On the left, a Hydrolase
molecule (PDB ID 6RNT). In the center, local curvature is used to place lines, using the method described in [28]. On the right, curvature is
estimated using a much larger patch (with a radius of 8 Angstréms). Note that the stroke lines are more uniformly oriented, with fewer ‘stray’ lines.

Finally, we would like to improve the performance of our descrip-

tors.

To that end we are investigating techniques for using decimation

to further reduce the number of descriptors required to fully describe
a mesh. We are also looking into methods for directly aggregating
descriptors, to achieve the same goals.

ACKNOWLEDGMENTS

We thank the Center for Eukaryotic Structural Genomics for access to
new structural results. Cipriano was supported by NIH training grant
NLM-5T15LM007359.

REFERENCES

(1]
(2]

[3]
(4]

[3]
(6]
(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Buss and J. Fillmore. Spherical averages and applications to spherical
splines and interpolation. ACM Trans. Graph., 20(2):95-126, 2001.

Y. Cai and F. Dong. Surface hatching for medical volume data. In Com-
puter Graphics, Imaging and Vision: New Trends, 2005. International
Conference on, pages 232-238, 2005.

C. Chua and R. Jarvis. Point signatures: A new representation for 3D
object recognition. International Journal of Computer Vision, 1997.

R. G. Coleman, M. A. Burr, D. L. Souvaine, and A. C. Cheng. An intu-
itive approach to measuring protein surface curvature. Proteins: Struc-
ture, Function, and Bioinformatics, 61(4):1068-1074, 2005.

D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive
contours for conveying shape. ACM Trans. Graph., 22(3):848-855, 2003.
R. Gal and D. Cohen-Or. Salient geometric features for partial shape
matching and similarity. ACM Trans. Graph., 25(1):130-150, 2006.

T. Gatzke and C. Grimm. Estimating curvature on triangular meshes.
International Journal of Shape Modeling, 12(1):1-29, June 2006.

T. Gatzke, C. Grimm, M. Garland, and S. Zelinka. Curvature maps for
local shape comparison. In Shape Modeling and Applications, 2005 In-
ternational Conference, pages 244-253, 2005.

A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line direction mat-
ters: an argument for the use of principal directions in 3D line drawings.
In Proceedings of the 1st international symposium on Non-photorealistic
animation and rendering, pages 43-52, Annecy, France, 2000. ACM.

J. Goldfeather and V. Interrante. A novel cubic-order algorithm for ap-
proximating principal direction vectors. ACM Trans. Graph., 2004.

B. Goldman and W. T. Wipke. Quadratic shape descriptors. 1. rapid su-
perposition of dissimilar molecules using geometrically invariant surface
descriptors. Journal of Chemical Information and Computer Sciences,
40(3):644-658, May 2000.

R. Gonzalez and R. Woods. Digital Image Processing. Prentice-Hall,
2002.

G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for 3D shape
representation. Visualization and Computer Graphics, IEEE Transactions
on, 9(4):512-524, 2003.

S. Gumhold. Maximum entropy light source placement. In Proceed-
ings of the conference on Visualization '02, pages 275-282, Boston, Mas-
sachusetts, 2002. IEEE Computer Society.

P. Huber. Robust Statistics. Wiley-Interscience, Feb. 1981.

A. Johnson. Spin-images: a representation for 3-D surface matching.
Carnegie Mellon University, The Robotics Institute, 1997.

E. Kalogerakis, D. Nowrouzezahrai, P. Simari, J. Mccrae, A. Hertzmann,
and K. Singh. Data-driven curvature for real-time line drawing of dy-
namic scenes. ACM Trans. Graph., 28(1):1-13, 2009.

[18]

[19]

[20]
[21]

[22]

[23]

(24]

[25]
(26]
(27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-Based
transfer functions for direct volume rendering: Methods and applications.
In Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 67.
IEEE Computer Society, 2003.

M. Kortgen, G. Park, M. Novotni, and R. Klein. 3D shape matching with
3D shape contexts. In the 7th Central European Seminar on Computer
Graphics, Apr. 2003.

C. Lee, X. Hao, and A. Varshney. Geometry-dependent lighting. Visual-
ization and Computer Graphics, IEEE Transactions on, 2006.

Q. LiandJ. Griffiths. Least squares ellipsoid specific fitting. In Geometric
Modeling and Processing, 2004. Proceedings, pages 335-340, 2004.

A. Mangan and R. Whitaker. Partitioning 3D surface meshes using water-
shed segmentation. Visualization and Computer Graphics, IEEE Trans-
actions on, 5(4):308-321, 1999.

M. Mortara, G. Patan, M. Spagnuolo, B. Falcidieno, and J. Rossignac.
Blowing bubbles for Multi-Scale analysis and decomposition of triangle
meshes. Algorithmica, 38(1):227-248, 2003.

D. Page, Y. Sun, A. Koschan, J. Paik, and M. Abidi. Normal vector
voting: crease detection and curvature estimation on large, noisy meshes.
Graph. Models, 64(3/4):199-229, 2002.

S. Petitjean. A survey of methods for recovering quadrics in triangle
meshes. ACM Computing Surveys, 2:161, 2002.

V. Pratt. Direct least-squares fitting of algebraic surfaces. SIGGRAPH
Comput. Graph., 21(4):145-152, 1987.

E. Praun, M. Webb, and A. Finkelstein. Real-time hatching. IN PRO-
CEEDINGS OF SIGGRAPH 2001, pages 579—584, 2001.

S. Rusinkiewicz. Estimating curvatures and their derivatives on trian-
gle meshes. In Proceedings of the 3D Data Processing, Visualization,
and Transmission, 2nd International Symposium, pages 486-493. IEEE
Computer Society, 2004.

M. Sanner, A. Olson, and J. Spehner. Fast and robust computation of
molecular surfaces. In Proceedings of the eleventh annual symposium on
Computational geometry, pages 406407, Vancouver, British Columbia,
Canada, 1995. ACM.

R. Schmidt, C. Grimm, and B. Wyvill. Interactive decal compositing with
discrete exponential maps. ACM Transactions on Graphics, 25(3):603—
613, 2006.

A. Sheffer and J. C. Hart. Seamster: inconspicuous low-distortion texture
seam layout. In Proceedings of the conference on Visualization *02, pages
291-298, Boston, Massachusetts, 2002. IEEE Computer Society.

E. Stokely and S. Wu. Surface parametrization and curvature measure-
ment of arbitrary 3-D objects: five practical methods. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 14(8):833-840, 1992.
V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe.
Fast exact and approximate geodesics on meshes. ACM Trans. Graph.,
24(3):553-560, 2005.

C. Toler-Franklin, A. Finkelstein, and S. Rusinkiewicz. Illustration of
complex real-world objects using images with normals. In Proceedings
of the 5th international symposium on Non-photorealistic animation and
rendering, pages 111-119, San Diego, California, 2007. ACM.

R. Vergne, P. Barla, X. Granier, and C. Schlick. Apparent relief: a shape
descriptor for stylized shading. In Proceedings of the 6th international
symposium on Non-photorealistic animation and rendering, pages 23-29,
Annecy, France, 2008. ACM.



