CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

Softwar e-based and Har dwar e-based Branch Prediction
Strategies and Performance Evaluation

Gang Luo dang@cs.widc.edu
Hongfei Guo (guo@cs.wisc.edu)

Abstract

In a highly parallel computer system, performanegsés due to conditional branch instructions can be
minimized by branch prediction to fetch and issudbsgquent instructions before the actual branch

outcome is known. This paper discusses severabaatbased static and hardware-based dynamic branch
prediction strategies and uses the modified rel8a3ef the SimpleScalar simulation tool set toleate

their performance. According to our test resule Hardware-based dynamic branch prediction stegegi

always achieve high prediction accuracy than tlisvaoe-based static branch prediction strategies.

1. Introduction

It is well known that in a highly parallel computgrstem, branch instructions can break the smdothdf
instruction fetching, decoding and execution. Tit@sults in delay, because the instruction issuingtm
often wait until the actual branch outcome is knolwa make things worse, the deeper the pipelirénghie

greater performance loss is.

To reduce delay, one can try to predict the dicgcthat a branch instruction will take and begitctieng,
decoding and issuing instructions before the bratettision is made. However, a wrong branch pridfict
may lead to more delay because the wrongly fetéchstluctions occupy the useful functional unit&eli
the ALU, reservation stations, and memory bus. Thads to the need for highly accurate branch

prediction strategies.

Branch prediction strategies can be divided int@ thasic categories: software-based static branch

prediction strategy and hardware-based dynamicchrprediction strategy.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

The most widely used software-based static branetligtion strategies are:

1. Taken: Predict that all branches will be taken.

2. Not-taken: Predict that all branches won't besta

3. Back-taken: Predict that all backward branchiisbs taken; predict that all forward branches won
be taken.

4. Predict that all branches with certain operatodes will be taken; Predict that the others wae't

taken.

The most widely used hardware-based dynamic braredtiction strategies are:
1. One-bit: One-bit branch prediction buffer.

2. Two-bit: Two-bit branch prediction counter.

3. GAg.
4. PAg.
5. PAp.

6. Branch instruction table.

Since different data sets will let the programs ehalifferent dynamic branch behaviors, so usually
hardware-based dynamic branch prediction stratelgge® better prediction accuracy compared to the

software-based static ones.

In this paper, we discuss several representatifteraa@-based static and hardware-based dynamichran
prediction strategies. Due to the wide variationhbiranching behavior between different application
programs, there exists no good analytical modelef@luating the performance of the branch predictio
strategies. So we utilize the SimpleScalar Tool\B&stion 3.0, which is a widely used simulationltset

developed at the computer sciences department ioeldity of Wisconsin-Madison, and some benchmark

programs to do performance evaluation.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

Since the meaning of the software-based staticchrprediction strategies are quite obvious, we oekyd
to present the meanings of the different hardwasetd branch prediction strategies in detail. Then,

section 4, we analyze the performance of the diffebranch prediction strategies.

2. Hardwar e-based Dynamic Branch Prediction Strategies

2.1. One-bhit Branch Prediction Buffer

This is the simplest dynamic branch prediction steThe branch prediction buffer is a small memory
indexed by the lower portion of the address oflitench instruction. It contains a bit that says tveethe
branch was recently taken or not, which is the fanthe next branch instruction. If the hint tuing to be

wrong, the prediction bit is inverted and storediba

This schema has a performance shortcoming: Evenlifanch is almost always taken, we will likely

predict incorrectly twice, rather than once, whes not taken.

To remedy this, the two-bit prediction schema izpmsed.

2.2. Two-bit Branch Prediction Counter

The two-bit schema is a specialization of the rsbitema. Since the two-bit predictors do almostelbas
the n-bit predictors, we just rely on two-bit brargredictors rather than the more general n-bisomae
two-bit predictor is essentially a two-bit countehnich takes values between 0 and 3: when the coisite
greater than or equal to one half of its maximunue2, the branch is predicted as taken; othenitsg,
predicted not-taken. The counter is incremented taken branch and decremented on a not-takentbranc

The finite-state machine for this schema is shawfigure 1.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

Taken

Not takel
Predict taken Predict taken
Taken
Not takel
Not takel

Predict not taken Predict not taken

Taken w

Not taket

Figure 1. The states in a two-bit branch predictioanter.

The two-bit predictor schema uses only the recehiabior of a branch to predict the future behawabr
that branch. Since sometimes in the program, tlamdbr behavior of different instructions are related
together, it is possible to improve the predictamturacy if we also look at the recent behaviootber

branches rather than just the branch we are ttgipgedict, which leads to GAg.

2.3. GAg

In the GAg schema, the global history of the mesent m branches is recorded in an m-bit shiftstegi
named global branch history register, where eathelobrds whether the branch was taken or not taken
We have another global branch history pattern takféch has 2 entries, each corresponding to the 2-bit

counter for a global branch history. The predictidra branch is based on the history pattern ofhtbet

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

recent m branches. That is, the value of the glbtaich history register is used to query the dlbbanch
history pattern table to find the correspondingit2ebunter. When the counter is greater than okt
one half of its maximum value 2, the branch is joted as taken; otherwise, it is predicted nottaléter
the conditional branch is resolved, the outconshifed left into the global branch history registend the

2-bit counter is incremented on a taken branchdmwdemented on a not-taken branch.

2.4. PAg

In stead of using one global branch history regifteall the branches as in the GAg, we can habeaach
history register for each branch. That is, we havéranch history register table. The address of a
conditional branch is used for hashing into thisigaEach entry in this table is a branch hist@yister
with m bits, recording whether the most recent ambhes corresponding to this entry are taken or\Wet
have another global branch history pattern tablehvis the same with PAg. The prediction of a braisc
based on the history pattern of the last k outconfiexecuting the branch. Whenever a conditionahbin

is encountered, we find the corresponding entryhi branch history register table and get the branc
history register. The branch history register iscduso address the global branch history patterte tab
make the prediction. After the conditional branshrésolved, the outcome is shifted left into thanish
history register in the least significant bit p@sitand is also used to update the 2-bit counténeérglobal

branch history pattern table entry.

2.5. PAp

In stead of having one global branch history pattable for all the branches, we can have a braistbry
pattern table for each branch. That is, for eaeimddn, there is a branch history register and acbrhistory
pattern table. Whenever a conditional branch i@entered, we find the corresponding entry in trenbh

history register table, which is used to indexlthench history pattern table for that branch td fine 2-bit

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

counter and make the prediction. After the condaldoranch is resolved, the outcome is shifteditet
the branch history register in the least signifidaih position and is also used to update the Z:timnter in

the branch history pattern table entry.

2.6. Branch Instruction Table

Maintain a table of the most recently used cond#lobranch instructions that are not taken. If a
conditional branch instruction is in the table,gice that it will not be taken; otherwise predibat it will

be taken. Purge table entries if they are takethuge LRU replacement to add new entries.

3. Implementation based on SimpleScalar Tool Set 3.0

3.1. SimpleScalar 3.0 branch prediction simulator

The SimpleScalar 3.0 branch prediction simulatopléments a number of state-of-art branch prediction
mechanisms. As regards to static branch predigimtegies, it supports branch always taken, aaddbr
always not taken. For dynamic branch predictioatsgies, it implements simple directly mapped biatod

predictor and two level adaptive branch prediactdrich again includes GAg, GAp, PAg, and PAp.

SimpleScalar 3.0 branch predictor assigns a braacet buffer associated with each dynamic branch
predictor. It records the latest taken branchekthair target addresses. The branch predictionlabor
works in the following way:

1. Create the branch predictor instance accordirtiget command line parameters;

2. Fetch an instruction;

3. Ifthe instruction is not a branch, go to 2;

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

4. Call the procedure bpred_lookup() to get predi®C;

5. Call the procedure bpred_update() to updateébthach predictor states, which include the BTB, the
level 1 table, and the level 2 table, accordmg¢he comparison result between the predicted RC an
the actual PC to be executed.

6. If (!the end of program is reached) g@o

7. Print out the branch predictor statistics.

3.2. Our work based on SimpleScalar 3.0 branch prediction simulator

In order to get a more comprehensive simulationltese add two branch prediction strategies inte th
simulator. One is a static branch predictor: Baakiaways taken, forward always not taken; the oiha
one-bit branch prediction counter. Without chaggihe working flow of the simulator, we implemented
these two strategies in the branch prediction modubpred.c. Also, SimpleScalar 3.0 tries to suppo
setting the branch predictor configuration with toenmand line parameters, but it fails to do soedww.

In our implementation, this bug is fixed. Accordingve modified the module options.c.

Following, we illustrate the working flow of eachamch predictor one by one:

3.2.1 Static branch predictor

a. Always taken branch predictor

Algorithm: Always gives the branch target addressuatput.

current branch

address \

target address

Taken p| target address
branch predictor

Figure 2. Always taken branch predictor

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

b. Always not taken branch predictor

Algorithm: Always give the next instruction addressoutput.

current branch

address \
NotTaken

> next instructiol
branch predictor addres

target address

Figure 3. Always not taken branch predictor

c. Backward taken & forward not taken branch preedlic
Algorithm:
if (current branch address > target address)
return target address;
else

return next instruction address;

current branch i
addres \ \% target address

1
1
! current address predicted
i > addres
! target address next instruction

/:/P ~— e structio

addres

target address

Figure 4. Backward taken & forward not takennotapredictor

CS 752 Project Report

Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

3.2.2 Branch Prediction Counter

It includes the one-bit branch prediction counted the two-bit branch prediction counter.

Algorithm:

1. Use the current branch address as the imdféxd the counter entry distributed in a hashaatiien

get the predicted direction;
2. Look up in the BTB to see if there is an entythis branch;
3. if (predict taken) {
if (find target address in BTB)

return target address;

Figure 5. Branch prediction counter

else
return 1, /Ipredict taken, don't know target address yet
}
else
return O; /lpredict not taken
One-bit counter
(two-bit counter)
HASH HASH table
current branch) | @<~~~
address o| 1| ... 1|10
look up Predicted
BTB directior
predicted .
addressl target addressl target predicted
2t01 instruction
address2 target address2 > MUX > address
______ o |
instruction
address | =777 compare [~
Address., targetaddress, | - T
addres argetaddress | update
B 9 ¥ 4 new
instruction
address

update

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

3.2.3 Two-level Adaptive Branch predictor

It includes the GAg, GAp, PAg, and PAp branch peeats, whose type is decided by setting the command
line configuration parameters.
Algorithm:
1. Use the current branch address as the indemddtfe entry in level 1 table;
2. Use the entry content we get as the index td fire level 2 table entry, then get the predicted
direction;

3. Lookup in the BTB to see if there is an entnytfas branch;
4. if (predict taken) {

if (find target address in BTB)

return target address;
else

return 1; /lpredict taken, bond know target address yet

else

return O; /lpredict not taken

. 10.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

__

i Level-2 Table i
| 0 |
i Level-1 Table 5 l
i 1 |
| 1 3 |
| 0|1 1] o0 ° i
T L O 0 3 :
e T 0 !
i | , B :
current branch : index 1 | 1 | 0 | | 0 | 1 0 !
address . 111 110 0 !
: U O :
i s i
| ". 0 |
| : |
i ',l index 2 3 0 i
! i 3 :
i i 2 |
\ 1
: i ’
: ddressl target addressl "‘ 4 !
i adaress arg ' / predicted l
l i i directior l
| address?2 target address2 . predicted i
| i target / |
A s | / !
: ¥ —» 2to1l :
: - - MUX i
i Address.; target address; i
i address target address i
i BTB next i
| instruction :
i address |
update 4

predicted

instruction

address

compare

new instructior
address

Figure 6. Two-level adaptive branch predictor

11,

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

4. Simulation and Performance Evaluation

4.1. Methodology and Simulation M odel

The simulation in our study is conducted using madified version of the SimpleScalar tool set vanmsi
3.0, which is developed in the computer sciencggmdment of University of Wisconsin-Madison. This

simulation tool set offers both detailed and higinfprmance simulation of modern microprocessors.

Totally, three software-based static branch préaticstrategies and five hardware-based dynamicchbran
prediction strategies are simulated. Data are ceite on the branch prediction accuracy for eacthef
eight branch prediction strategies with five diffiet Spec95 integer benchmark programs: Gcee, Cospres
Li, M88k, and Perl. The integer benchmarks tentidee many conditional branches and irregular branch

behavior. Therefore, the mettle of the branch mtedican be well tested using these integer bendtana

The numbers of dynamic instructions simulated twese benchmarks range from 3.6 million to 960

million. The distribution of the dynamic instruati® and the dynamic conditional branches in these

benchmarks are shown in Table 1.

The configuration and scheme of each simulationehwdour study are listed in Table 1.

The branch target buffer has 512 entries, and disst association for each entry. In order to nthke

simulation results comparable, we assigned the spaee cost to each dynamic branch predictor.

.12,

CS752 Project Report Softwar e-based and Har dwar e- based Branch Prediction Strategies and Performance Evaluation
1200
1000
m
c
9
T 800 -
£
°
g , .
> mtotal instructions
@ 600 A ,)
QE) m branch instructions
Py
&
5 400
2
@
£
200
: \ m B
gcc compress li m88k perl
benchmark
Figure 7. Distribution of dynamic instructions amench instructions
Mod Level 1 Table Level 2 Table
ode # of Entries Width of SR # of Entrieg Entry Corten
One-bit - - 2048 1-bit counter
Bimode - - 2048 2-bit counter
GAg 1 11 2048 2-bit counter|
PAg 4 11 2048 2-bit counter
PAp-1 4 7 2048 2-bit counter
PAp-2 8 3 2048 2-bit counter
BTB 512 Associ. 4 -- --

Table 1. Configurations of simulated branch prexti

. 13.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

4.2. Experimental Resultsand Analysis

We ran the five Spec95 benchmarks on our modifexdion of SimpleScalar. Table 2 lists the perceegag

of correct branch predictions from different predis.

Gcee Compress Li M88k Perl

Taken 66.66% 82.22% 64.77% 82.52% 62.96%

Not Taken 53.40% 35.43% 69.71% 36.00% 71.64%
Back Taken 47.02% 72.09% 51.22% 47.22% 57.59%
One bit 85.86% 95.04% 89.21% 93.01% 93.63%

Two bit 89.98% 97.06% 92.11% 95.33% 95.34%

GAg 89.05% 96.81% 95.36% 94.27% 95.96%
PAg 83.91% 95.59% 91.49% 90.24% 94.54%
PAp-1 87.25% 96.42% 93.23% 93.90% 95.30%

PAp-2 90.17% 97.18% 94.52% 95.42% 95.82%

Table 2. Percentages of Correct Branch Predicfians Different Predictors.

4.2.1. Performance Analysis of Software-based Static Branch Predictors

The performance of three software-based staticchramedictors is shown in figure 8. On average, the
Taken branch predictor gets the highest branchigifed accuracy, while the Not-taken and Back-taken
branch predictors achieve equally worse performafités can be explained in the following way. The
Back-taken branch predictor is mainly pointed & tbr loop statement and the while loop statemient.
doesn’t work well for other branch statements. Alsothe programs, the branch statements are more
inclined to be taken rather than not to be takem.tBe Taken branch prediction strategy usuallyksor

better than the other two software-based staticdbrgrediction strategies.

.14

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

4.2.2. Performance Analysis of Har dwar e-based Dynamic Branch Predictors

The performance of the five hardware-based dyndmrdach predictors is shown in figure 9. On average,
all the five different hardware-based dynamic bhastrategies achieve prediction accuracy bettem tha
90%. Among all of them, the PAp-2 branch prediaod the Two-bit branch predictor are the best two.
This can be explained in the following way. Sinice One-bit branch predictor has an intrinsic sluoniog
as described in section 2.1, the Two-bit branctdipter always works better than the One-bit branch
predictor. For the PAp branch predictor, thera ta/o-bit counter for each global branch historitgra of
each branch instruction, with our configuration redgstory pattern could get enough training to ecéi
the highest prediction accuracy. For the Two-b#noh predictor, there is a two-bit counter for each

instruction. The number of the two-bit counterkaigie enough to ensure the high prediction accuracy

As regards to the 2-level adaptive branch predictat the same space cost, PAp achieves the highest
prediction accuracy with the shorter register;ptediction accuracy decreased when we made the shif
register wide. We can explain this as follows. A¢ tsame space cost, with a longer shift registeces
there are too many branch history patterns comp@rdélde number of instructions executed, each lranc
history pattern can’t get enough training to reaaggh performance. Therefore, PAp with a shorteft shi
register achieves higher prediction accuracy. WRilgp with a longer shift register achieves evers les

prediction accuracy than GAg does.
For the PAg branch predictor, the branch histoofeall the branch instructions share the same ¢l

bit counter tables, which leads to confusion. Tfogee it can’t achieve as high performance as tiig G

branch predictor.

. 15.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

4.2.3. Performance Analysis of Software-based Static Branch Predictorsvs.

Har dware-based Dynamic Branch Predictors

Comparing figure 8 and figure 9, we can see thathtairdware-based dynamic branch predictors achieve
much higher prediction accuracy that the softwaasel static branch predictors do. This can be exqua

in the following way. Since different data sets|w#t the programs have different dynamic branch
behaviors, so the branch behaviors of the progami be simply predicted statically quite well.eevfor

the same data set, since the same branch instrueifiobe executed several times during the executif

the program and exhibits different dynamic branattgns for the different times in the same runnitegy
branch behaviors can't be simply predicted stdticalhat is, its branch behaviors are changed
dynamically. So, the hardware-based dynamic brareldictors always work better than the software-

based static branch predictors do.

. 16.

CS 752 Project Report Software-based and Hardware- based Branch Prediction Strategies and Performance Evaluation

0.9

0.8 -

0.7

0.6 -

0.5 T\ —e—taken

—m— not taken

0.4 \/ v back taken

0.3

0.2

percentage of correct branch prediction

0.1

O T T
gcc compress li m88k perl

benchmark

Figure 8. Software-based Static Branch Predicdiocuracy

.17,

CS 752 Project Report Software-based and Hardware- based Branch Prediction Strategies and Performance Evaluation

1

= 0.95 4
o
2 o
: //
(0]
S :
< / —e—one bit
2 09 .
8 N —=—two bit
P GAg
% PAg
5 0.85 —e—PAp-1
> —e—PAp-2
IS
c
(]
o
(]
2 0.8

0.75

gcc compress li m88k perl

benchmark

Figure 9. Hardware-based Dynamic Branch Predicdiccuracy.

. 18.

CS 752 Project Report Software-based and Hardwar e- based Branch Prediction Srategies and Performance Evaluation

5. Conclusion and Future Work

Branches in the programs are highly predictablé,ay@arong branch prediction may lead to more delay
because the wrongly fetched instructions occupyusbeful functional units. So we need some specific
strategies to achieve high prediction accuracyhim paper, we implement several representativisvacd-
based static and hardware-based dynamic branchicpoedstrategies and use the simulation tool set
SimpleScalar Version 3.0 to evaluate their perfaroea According to our test result, the hardwareehas
dynamic branch prediction strategies always achigigh prediction accuracy than the software-based

static branch prediction strategies.

At present, all the branch prediction strategies quite simple. If some Al algorithms can be corebin
into them, then we can expect even higher predicticcuracy. That is, we can use the Al algorithms t
adjust the parameters of the branch predictiortegfi@s (such as the size of the branch historystegi
table, the size of the branch history pattern tedohel the length of the branch history registehewe can

ensure the most proper training time to achieventhbest performance.

References

1. David A. Patterson, and John L. Hennessy. Coenplitchitecture a Quantitative Approach, second
Edition, Morgan Kaufmann Publishers Inc., 1996.

2. Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptiaining Branch Prediction. Proceedings of the
24" Annual International Symposium on MicroarchiteetuXov. 1991.

3. J.E.Smith. A Study of Branch Prediction StragsgProceedings of th&' ternational Symposium on
Computer Architecture, May 1981.

4. K.C.Yeager. The MIPS R10000 Superscalar Micropssor. IEEE Micro, April 1996.

5. Doug Burger and Todd M. Austin. The SimpleScdlaol Set, Version 2.0. Technical Report 1342,

Computer Sciences Department, University of WisteMadison, WI, June 1997.

. 19.

