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Abstract

Many application systems make use of various forms of asynchrgnoqushted replicas to
improve scalability, availability and performance. If an applicauses replicas that are not
in sync with source data, it is clearly willing to accepuits that are not completely current,
but typically with some limits on how stale the data can be. Todal, requirements are not
explicitly declared anywhere; they can only be inferred frompttogperties of the replicas
used. Because requirements are not explicit, the system canexttwleén they are not met
and take appropriate action. Instead, data currency requirememtspéiogtly expressed in
the application logic through the choice of data sources. This very masembles the
situation in the early days of database systems when progn@amhad to choose what
indexes to use and how to join records.

This dissertation is about extending DBMS support for weaker censistWe envision
a scenario where applications are allowed to explicitly esspreelaxed currency and
consistency (C&C) requirements in SQL; an administrator cancéipkexpress the desired
local data C&C level in the cache schema; and query progepsovides transactional
guarantees for the C&C requirements of a query. Our @sgapvides a comprehensive
solution to this problem by addressing the following four issygscifying “good enough”
in SQL; building a constraint-based fine-grained “good enough” ds¢abaching model;
enforcing “good enough” in query processing; and conducting a haistiem performance

evaluation.
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The first part of this dissertation proposes to allow queries pbceky express relaxed
C&C constraints. We extend SQL with a new currency clause, sug¢estative syntax and
develop a formal model that rigorously defines the semanticgbhg@roviding correctness
standards for the use of replicated or cached data.

The second part of the dissertation develops a data quality-awssegréined cache
model and studies cache design in terms of four fundamental propentesence,
consistency, completenemsdcurrency Such a model provides an abstract view of the cache
to the query processing layer, and opens the door for adaptive cache management.

The third part of this dissertation presents query processingpagefor enforcing C&C
constraints. We describe an implementation approach that builds on tiEackid
framework for partially materialized views. The optimizer at® most consistency
constraints and generates a dynamic plan that includes curclecks and inexpensive
checks for dynamic consistency constraints that cannot be valdiated plan compilation.
Our solution not only supports transparent caching but also provides tramsadine
grained data currency and consistency guarantees.

The last part of this dissertation reports a systematic peafore evaluation. We
establish a simplified but realistic model of a full-fledged database ¢psistem in order to
examine the influence of different workload assumptions, and diffquestyy processing and
cache maintenance choices. This study reveals system ctenmtecs under those

assumptions and design choices, offering insights into performance tradeoffs.
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Chapter 1

Introduction

Many application systems today make use of various forms ofclasymously updated
replicas to improve scalability, availability and performance.u8&the term replica broadly
to include any saved data derived from some underlying sour@s tabbardless of where
and how the data is stored. This covers traditional replicated mhidasda cached by various
caching mechanisms. “Asynchronously updated” simply means thateffiea is not
updated as part of a database transaction modifying its soures; tdd@ state of the replica
does not necessarily reflect the current state of the database.

If an application uses replicas that are not in sync with theceadmta, it is clearly
willing to accept results that are not completely current, pit&ly with some limits on
how stale the data can be. For instance, a typical e-comméscsush as eBay makes
frequent use of replicated and cached data. When browsing auctionategary, the data
(e.g., item prices, number of bids) may be a little out of date.eMery most users
understand and accept this, as long as the page they see wheficthey an individual
auction is completely current. As a concrete example, consideioltbeving query that

returns a summary of books with the specified title:



SELECT *

FROM  Books B, Reviews R

WHERE B.isbn = R.isbn AND B.title = “Databases”

Different applications may have different freshness requiremémtsthis query.
Application A needs an up-to-date query result. Application B preféosyaesponse time
but doesn’t care if the reviews are a bit stale. Applicatiotio€s not mind if the result is
stale but it requires the entire result to be snapshot consistenteflect a state of the
database at a certain point of time. Application D is satisfitldl a weaker version of this
guarantee, requiring only that all rows retrieved for a given befdéct the same snapshot,
with different books possibly from different snapshots.

Application designers normally understand when it is acceptahiset@opies and what
levels of data staleness and inconsistency are within the apphis requirements.
Currently, such requirements are only implicitly expressed through theeobiodlata sources
for queries. For example, if a query Q1 does not require complgidly-date data, we may
design the application to submit it to a database server Gttnast replicated data instead of
submitting it to database server B that maintains the up-to-thte @nother query Q2
accesses the same tables but requires up-to-date data so iteiap@ubmits it to database
server B. The routing decisions are hardwired into the applicatidncannot be changed
without changing the application.

Because requirements are not explicit, the system cannot ddtectthey are not met
and take appropriate action. For example, the system could retuvarrang to the

application or use another data source.
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This very much resembles the situation in the early days of datatystems when
programmers had to choose what indexes to use and how to join rddosdeas remedied
by raising the level of abstraction, expressing queries in 8Ql making the database
system responsible for finding the best way to evaluate a querybalieve the time has
come to raise the level of abstraction for the use of répticand cached data by allowing
applications to state their data currency and consistency regutemxplicitly and having
the system take responsibility for producing results that meet thoseecrequis.

This dissertation focuses on extending DBMS support for relaxed eamsistWe
envision a scenario where applications are allowed to expleiplyess relaxed currency and
consistency (C&C) requirements in SQL; an administrator cancéipexpress the desired
local data C&C level in the cache schema; query processingdpso transactional
guarantees for the C&C constraints of a query; and the cache maXbgent decisions on
scarce resource allocation. Our research provides a comprehesigivensto this problem
by addressing the following four issues: specifying “good ehbug SQL; building a
constraint-based fine-grained “good enough” database caching modedcirnf“good
enough” in query processing; and conducting a holistic system performanceiemalua

The first part of this dissertation [GLRGO04] proposes to allow igseto explicitly
express relaxed C&C constraints. We extend SQL with a newray clause and suggest a
tentative syntax. We also develop a formal model that rigoroudlpedethe semantics,
thereby providing correctness standards for the use of replicated or cached data

The second part of the dissertation [GLR05a, GLRO5b] provides agrfaneed data

guality-aware cache model. We build a solid foundation for cacheipkest by formally
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defining four fundamental properties of cached data: presence, coogjstempleteness
and currency. We introduce a novel cache model that supports a spagifaf partitioning
cached data, and translate a rich class of integrity camstr@xpressed in extended SQL
DDL syntax) into properties required to hold over different partitiofe identify an
important property of cached views, called safety, and show howy satis in efficient
cache maintenance. Further, we formally define cache schemdasharacterize when they
are safe, offering guidelines for cache schema design.

The third part of this dissertation [GLRG04, LGGZ04] develops queocgssing
methods for enforcing C&C constraints. First, for a simple case whdneveaein the cache
is consistent and complete, we implement a prototype in MTCachemidtier database
cache built on the Microsoft SQL Server codebase. The optimimaks the consistency
constraints during plan compilation and generates a dynamic plamdthades currency
checks. A SwitchUnion plan operator checks the currency of each &piadar before use
and switches between local and remote sub-plans accordingly. \&gratet the C&C
constraints of a query and replica update policies into the cost-lopgery optimizer. This
approach supports transparent caching, and makes optimal use othkeD&MS, while
guaranteeing that applications always get data with sufficient quaditiidir purpose.

We then extend the framework for a more general case whekeepetrack of cache
properties at the granularity of partitions of a view [GLRO64&R05b]. The optimizer
checks most consistency constraints during plan compilation and genardiynamic plan
that includes currency checks and inexpensive checks for dymamststency constraints

that cannot be validated during plan compilation.
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The last part of this dissertation reports a systematic pesface evaluation. We begin
by establishing a performance evaluation framework based on al mmbde database
management system. Our model captures the main elements cdbasgaenvironment,
including bothusers(i.e., terminals, the sources of transactions) @mgsical resourceor
storing and processing the data (i.e., disks and CPUSs), in additiondioattaeteristics of the
workload and the database. Then we extend the single-site modelcacha-master
configuration, capturing the interaction between the cache and tstermim addition, we
refine the single-site model to reflect the charactesisioé cache organization and
maintenance.

Based on this framework, we examine the influence of differenkloamnt assumptions,
and different query processing and cache maintenance choicesstldysreveals system
characteristics under those assumptions and design choices, offesmgpts into
performance tradeoffs.

Although this dissertation focuses on a database caching environingephilosophy of
our solutions can be applied to a broad range of usage scenarios whegstéme can
provide additional functionality if applications explicitly state their C&C resmuents.

Traditional replicated databases: Consider a database containing replicated data
propagated from another database using normal (asynchronous) repli¢ée system can
easily keep track of how current the data is, but today tifi@atnnation is not exploited. If an
application states its currency requirements, the system coelct detl take action when the
application’s requirements are not met. Possible actions includendpdlge violation,

returning the data but with an error code, or aborting the request.
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Mid-tier database caching:This scenario was motivated by current work on transparent
mid-tier database caching as described in [LGZ04, ABK+03, BAK+B3ppose we have a
back-end database server that is overloaded. To reduce the qukrwéoeeplicate part of
the database to other database servers that act as cachesa \4utre DBMS receives a
query, it attempts to answer it from the local data and ifithabt possible it forwards the
guery transparently to the back-end server. In this scenarcitcial to know the C&C
constraints so that the cache DBMS can decide whether local data can be used or not.

Caching of query results:Suppose we have a component that caches SQL query results
(e.g., application level caching) so that those results can bedréuthe same query is
submitted later. The cache can easily keep track of thenst of its cached results and if a
result does not satisfy a query’s currency requirements, tn@mgjyarecompute it. In this
way, an application can always be assured that its currency requireneemistar

The rest of the dissertation is organized as follows. Chapter semigse the SQL
extension, which allows an individual query to specify fine-graine€CG&quirements. We
develop a data quality-centric database caching model in Chagteav&ding flexible local
data quality control for cache administration in terms of granuland cache properties. In
Chapter 4, we introduce the framework to enforce C&C constraibl§ ®ache, a prototype
transparent mid-tier database cache built on Microsoft SQL Seodebase, for the simple
case where each view in the cache is consistent. We reimevestriction, and generalize
the algorithms to support fine-grained C&C checking in Chapter 5. @hépstablishes a
model of a full-fledged database caching system and reportsmarfoe evaluation results.

We discuss related work in Chapter 7 and conclude in Chapter 8.



Chapter 2

Specifying Data Quality Constraints in SQL

Different applications might have different data quality resaients. We define a model for
relaxed currency and consistency (C&C) constraints, allowingdividual query to express
its fine-grained data quality requirements. Section 2.1 describes tthospecify C&C
constraints through a simple extension of SQL syntax. We start with corsstaaireéad-only
transactions; first for single-block queries, and then generaliaingitti-block queries. Then
we introduce an additional constraint for read-write transactioesbdld a formal model in
Section 2.2, which not only defines the semantics of the set of @&€traints specified by
the proposed SQL extension, but also covers general C&C constraithistelby provides

correctness standards for general use of replicated and cached data.

2.1 Specifying Currency and Consistency Constraints

In this section we introduce our model for currency and consistamstraints by means of
examples. We propose expressing C&C constraints in SQL by awmeancy clause and
suggest a tentative syntax. The semantics of C&C constramtieacribed informally in this

section; the following one contains formal definitions.
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Before proceeding, we need to clarify what we mean by ténes currency and
consistency. Suppose we have a database with two tables, Books amdsiRas might be
used by a small online book store.

Replicated data or the result of a query computed from reglicdata may not be
entirely up-to-date. Currency (staleness) simply refers to dwovent or up-to-date we can
guarantee a set of rows (a table, a view or a query resuli¢.t Suppose that we have a
replicated table BookCopy that is refreshed once every hour. lscénario, the currency of
BookCopy is simply the elapsed time since this copy becanee(séa, when the first update
was committed to Books after BookCopy’s last refresh) to thengbtime of the latest
update transaction on the back-end database.

Suppose we have another replicated table, ReviewCopy, whidhoigedreshed once
every hour. The state of BookCopy corresponds to some snapshot of thgingdiatabase
and similarly for ReviewCopy. However, the states of the tvpdic&s do not necessarily
correspond to the same snapshot. If they do, we say that they ardlyradnsistent or that
they belong to the same consistency group. Whether or not the twoaseple mutually

consistent depends entirely on how they are updated.

2.1.1 Single-Block Queries

To express C&C constraints we propose a new currency claus®foq&eries. The new
clause occurs after a Select-From-Where (SFW) block and follovgsithe scoping rules as

the WHERE clause. Specifically, the new clause can refettabées defined in the current



Ql: SELECT *
FROM Books B, Reviews R
WHERE B.isbn = R.isbn and B.title = “Databases"

E1: CURRENCY BOUND 10 min ON (B, R)
E2: CURRENCY BOUND 10 min ON (B), 30 min ON (R)
E3: CURRENCY BOUND 10 min ON (B) BY B.isbn,
30 min ON (R) BY R.isbn
E4: CURRENCY BOUND 10 min ON (B, R) BY B.isbn

Figure 2.1 Single-block example C&C constraints

or in outer SFW blocks. We use query Q1 to illustrate differemidasf the currency clause
and their semantics, as shown in Figure 2.1. The query is a join of Books and Reviews.

Currency clause E1 expresses two constraints: a) the inputs t@nmatre than 10 min
out of date and b) the the two input tables must be consistent, tinairighe same database
shapshot. We say that B and R belong to the same consistency class.

Suppose that we have cached replicas of Books and Reviews, and compyierthe
from the replicas. To satisfy the C&C constraint, the resuliinbtl using the replicas must
be equivalent to the result that would be obtained if the query werputed against some
mutually consistent snapshots of Books and Reviews, that are noleddet@ min (when
execution of the query begins).

E2 relaxes the bound on R to 30 min and no longer requires that tae babmutually
consistent by placing them in different consistency classes.e@kiest way to construct a
currency clause is to first specify a bound for each input and then form consptenpy by

deciding which inputs must be mutually consistent.
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E1l and E2 require that every Books row be from the same snapshatraladysfor
Reviews, which may be stricter than necessary. Sometingeadteptable if rows or groups
of rows from the same table are from different snapshots. E3 antigirate how we can
express different variants of this requirement.

We assume that isbn is a unique key of Books. E3 allows each fine Bboks table to
originate from different snapshots (because B.isbn is unique). The phrase “(R9tby Ras
the following meaning: if the rows in Reviews are grouped on igiwas within the same
group must originate from the same snapshot. Note that a BooksidotheaReviews rows
it joins with may be from different snapshots (because Books avievikeare in different
consistency classes).

In contrast, E4 requires that each Books row be consistentheitReviews rows that it
joins with. However, different Books rows may be from different snapshots.

In summary, a C&C constraint in a query consists of a setpiédrwhere each triple
specifies

1) acurrency bound,

2) aset of tables forming a consistency class, and

3) a set of columns defining how to group the rows of the consistency icits

consistency groups.

The query-centric approach we have taken for dealing with asymaisly maintained
copies is a fundamental departure framaintenance-centricprior work on replica
management (see Chapter 7), which concentrates on maintenamoesdoli guaranteeing

different kinds of constraints over cached objects. While thiseeavbrk can be leveraged
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by a system in determining what constraints hold across a secbéd objects, the user’'s
C&C requirements in the query ultimately determine what copiesaeceptable, and the
system must guarantee that these requirements are metassary by fetching master
versions of objects. This is the focus of this thesis.

An important consequence of our approach is a significant differeneeoiikloads,
because C&C constraints influence when and how caches need to belupdeéssitating

new cache management policies and mechanisms. However, thisibsyend the scope of

this thesis.
Q2: Q3.
SELECT * SELECT *
FROM Sales S, FROM Books B, Reviews R
( WHERE B.isbn = R.isbn
SELECT * AND B.isbn IN
FROM  Books B, Reviews R (
WHERE B.isbn = R.isbn SELECT isbn

CURRENCY BOUND
5 min ON (B, R)
)T
WHERE S.isbn = T.isbn
AND year= ‘2003’
CURRENCY BOUND
10 min ON (S, T)

FROM Sales S
WHERE year=2003’
CURRENCY BOUND
10 min ON (S, B)
)

CURRENCY BOUND
10 min ON (B, R)

Figure 2.2 Multi-block example C&C Constraints
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2.1.2 Multi-Block Queries

An SQL query may, of course, consist of multiple SFW blocks. C&C rmin&t are not
restricted to the outermost block of a query — any SFW block caneh@&C constraint. If
a query contains multiple constraints, all constraints must be satisfied.

We first consider subqueries in the FROM clause. Suppose we hadeliaonal table
Sales with one row for each book sale and consider the query Q2 in Eiguidote that
such queries can arise in a variety of ways. For instance, thmabrquery may have
referenced a view and the query in the FROM clause is the result of expandingvthe vie

Whatever input data the query is computed from, the inputs must betlsatcboth
constraints are satisfied. The outer currency clause staéesStmust be from the same
snapshot as T. But T is computed from B and R, which implies ttaa8d R must all be
from the same snapshot. If they are from the same snapshot, theyl aqually stale.
Clearly, to satisfy both constraints, they must be no more thamn5out of date. In
summary, the least restrictive constraint that the inputs must sati§fyrig“ON (S, B, R)".

Next we consider subqueries in clauses other than the FROM dranseich subqueries
we must also decide whether the inputs defined in the subqueryméedconsistent with
any of the inputs in an outer block. We modify our join query Q1 loyngda subquery that
selects only books with at least one sale during 2003, see Q3 in Figure 2.2.

When constructing the currency clause for the subquery, we must delcetber S
(Sales) needs to be consistent with B and/or R (in the outer blo&)mnust be consistent

with B, we simply add B to the consistency class of S, see @ZuBe the outer currency
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clause requires that R be consistent with B, it follows th&,Band S must all be consistent,
that is, they all form a single consistency class.

If S need not be consistent with any tables in the outer block,imgysomit the

reference to B and change the inner currency clause to “10 min on S”.

2.1.3 Timeline Consistency

Until now we have considered each query in isolation. Given a seqoérpesries in a
session, what constraints on the relationships between inputs to rdiftpreries are of
interest? Even though not explicitly stated, current databasensygirovide an important
guarantee on sequences of queries within the same session: diras forward. If a user
reads a row R twice but row R is updated and the change conhmnitteetween the reads,
then the second read will see the updated version of R.

This rather natural behavior follows from the fact that quarsesthe latest committed
database state. However, if queries are allowed to use outeofagdicas and have different
currency bounds, there is no automatic guarantee that perceivedmiwes forward.
Suppose queriesi;@nd then @ are executed against replicasaé®d 3, respectively. Sis
not automatically more current than or equal totlse ordering has to be explicitly enforced.

We take the approach that forward movement of time is not enfbgcddfault and has
to be explicitly specified by bracketing the query sequende thiegin timeordered’ and
“end timeordered'. This guarantees that later queries use data thatessitas fresh as the

data used by queries earlier in the sequence.
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This feature is most useful when two or more of the queries ieqaesce have
overlapping input data. In this case, we may get very counterintogsedts if a later query
were to use older data than an earlier one. Note that usgrqiohaven see their own
changes unless timeline consistency is specified, becauss guaty may use a replica that

has not yet been updated.

2.2 Formal Semantics of Currency and Consistency Consints

In this section, we build a formal model that defines the sensaotigeneral currency and
consistency constraints. We classify currency and consistequayements into four types:
per-object, per-group, inter-groupand inter-statement Our approach to currency and
consistency constraints in a query specification reflects two principles:

1) C&C constraints of query results should not depend on data objects notnused i
constructing the result; this is achieved through the use of tlended query
(Section 2.2.2).

2) It must be possible to require consistency for any subsets dhthaised in a query;
we achieve this, naturally, by leveraging the query mechatusdentify the subsets

(Section 2.2.3.3).

2.2.1 A Model of Databases with Copies

A databasds modeled as a collection database objectsrganized into one or more tables.

Conceptually, the granularity of an object may be a view, a taldelumn, a row or even a
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single cell in a row. To be specific, in this thesis an objeatr®w. Let identity of objects in
a table be established by a (possibly composite) key K. Whenlkvaldaut a key at the
database level, we implicitly include the scope of that key. Egbjgct has anasterand
zero or morecopies The collection of all master objects is called tnester database We
denote the database state after n committed update transa€iiohg by H, = (T, ° Th-1 °
... > T1(Ho)), where H is the initial database state, aritlis the usual notation for functional
composition. Each database stateidHcalled asnapshotof the database. Assuming each
committed transaction is assigned a unique timestamp, we swmsetise [ and H,
interchangeably.

A cacheis a collection of (local) materialized views, each consistihg collection of
copies (of row-level objects). Although an object can have at mostapein any given
view, multiple copies of the same object may co-exist in diffecached views. We only
consider local materialized views defined by selection quen@sselect a subset of data
from a table or a view of the master database.

Transactions only modify the master database, and we assunte2Btrics enforced.
Further, for simplicity we assume that writers only read ftbenmaster database. Copies of
modified objects are synchronized with the master by the DBKS the writer commits
through (system-initiatedjopy-transactionsbut not necessarily in an atomic action as part
of the commit.

Next, we extend the database model to allow for the specificaficcurrency and
consistency constraints. We emphasize that the extensions deswibedare conceptual;

how a DBMS supports these is a separate issue.
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Self-ldentification: master() applied to an object (master or copy) returns the master
version of that object.

Transaction Timestamps The functionxtime(T) returns the transaction timestamp of
transaction T. We overload the function xtime to apply to objectstr&heaction timestamp
associated with a master objectx@me(O, H,), is equal to xtime(A), where A is the latest
transaction in 1..T,that modified O. For a copy C, the transaction timestatmpe(C, H,)
is copied from the master object when the copy is synchronized.

Copy Staleness Given a database snapshat, ld copy C is stale if master(C) was
modified in H, after xtime(C, H). The time at which O becomes stale, calledsthée point
stalg(C, H,), is equal to xtime(A), where A is the first transactionlTinT, that modifies
master(C) after xtime(C, §1 Thecurrency of C in H, is measured by how long it has been
stale, i.e.currency(C, H,) = xtime(T,) —stale(C, H).

A read-only transaction's read requests includeency and consistency constrairasd
any copy of the requested object that satisfies the constreamsbe returned to the
transaction. We assume that as transactions commit, the DBWBsthem an integer id —

a timestamp — in increasing order.

2.2.2 The Extended Query Set

Intuitively, the C&C requirements of query results should not depend tanotgects not
used in constructing the result. For a given query Q, we construettanded query set

Q%, which consists of a set of extended versions of Q, teexkethded queriesdenoted by
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Q™. For a simple query (single block, without referring to any vie®§)' contains only

one query. For more general queries, the construction proceeds btknat- starting from
the outmost one, and finding one query for each sub-block or view, ensuring thauthefre
Q*" includes all objects used in constructing the result of Q (includingcsbjused in
WHERE clauses, grouping, etc.). We refer to the resut®8f a set of derived tables, as the
relevant setfor Q. We first describe the construction for simple cgerand then for

generalized cases.

2.2.2.1 Simple queries

For a simple query, i.e., a single-block query that does not retarnyteiews, the extended
query is the original query without aggregates, but with the pegjemtit attributes that are
referred to in the query. Given a query Q in the following format:

SELECT <select-list> FROM <from-list>

WHERE <where-constraints>

[GROUP BY <group-by-key>]
[HAVING <having-constraints>]

Where the from-list contains only base tables. The constructioneoéxtended query

Q*"is described by algorithm ConstructExtendedQuery shown in Figure 2.3.

2.2.2.2 Queries with Nested Queries

Consider a query Q with n levels of nested queries, numbered fronesiutmnnermost, of

which nested query;Q = 1..n, with Q = Q, is defined recursively as follows:
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SELECT <select-listi>

FROM  <from-list>
WHERE <where-constraints;> AND (OR)

pi(attr,, ..., attr,_, Qi)

[GROUP BY <group-by-key;>]
[HAVING <having-constraints;>]

Where p(i=1,...,n-1) is a predicate defined on a set of attributes fromstabl&de from-
list and the result of nested query.:Q and p is true. We proceed from outmost to
innermost, block-by-block, to find the extended query for each nested oeryach nested
query Q, i=1..n, we first apply ConstructExtendedQuery. {fSQhot correlated, we are done.
Otherwise, we only want to keep in the result of the extended gqowsythat are correlated
to its outer blocks. This is achieved by replacing any attriuteat are from an outer block
Q (j<i) by Q¥ A and adding @ to the from-list. Note that for simplicity, we us¢”there
to refer to the result table of query™® For convenience, we call this modified algorithm
ConstructExtendedQueryGeneral.

This construction method can be extended to a more general ¢ese, there might be
multiple nested queries at the same level. In order to includgydbsible aggregates
introduced by each nested query, we union the set of @ the extended query set
Q* and call the result theomplete extended query, sé¢noted by,

Figure 2.4 shows an example. Query Q asks for all the books thHasarthan $25 and
have more than 10 reviews. For the outmost quef§’ @ the same as Q except for the
select-list, which also includes columns referred in the wHarese. Since the nested query
Q.is correlated to the outer query, we put §7Qhe result table of (¢, and replace B.isbn

with Q,;*isbn.



Algorithm ConstructExtendedQuery
Inputs:  query Q
Outputs: Q®*

begin

any aggregate functions.
AND (group-by-key) IN (
SELECT group-by-key

step 5:exit;
end ConstructExtendedQuery

(Q without the select clause)

stepl: Copy SELECT, FROM and WHERE clauses from Q;

step 2:Add to the select-list all attributes mentioned somewhere in Q;
(including those appearing in any aggregate function) and the
key for each table in the from-list. Delete from the select-list

step 3:If there is no HAVING clause, go to step 5.
step 4:Add to the WHERE clause the following constraint:

)

Figure 2.3 Algorithm for constructing extended que ry

Q: SELECT isbhn, title
FROM  Books B
WHERE B.price < $25 AND

10 < ( SELECT COUNT (*)
FROM Reviews R
WHERE R.isbn = B.isbn)
Qlext:
SELECT isbn, title, price
FROM Books B
WHERE B.price < $25 AND
10 < ( SELECT  COUNT (*)
FROM Reviews R
WHERE R.isbn = B.isbn)

Qzext:
SELECT *
FROM Reviews R, Q;*®

WHERE R.isbn = Q;**.isbn

Figure 2.4 Extended query example

19
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2.2.2.3 Queries with Views in the From Clause

Consider a query Q of the same format as in the last secéibwjth another relaxation: we
allow views in the FROM clause. In this case, the extended gsergristructed in two
phases. In the first phase, treat the views as base tablegramtdict the extended query for

each nested query using ConstructExtendedQueryGeneral. In phase cnstruct the

ext

extended query s&,, — for each view Y— the " view at level i — using two steps. Step

1: add to \{’'s WHERE clause a nested query as follows

AND EXISTS ( SELECT  *
FROM Q™

WHERE QieXt. Vij.key = Vij.key )
Where we implicitly assume that there is a mapping betweekethef Vj; and the keys

of the base tables of;jVThe idea is to select only those rows i tat contribute to the

ext

query result ofQ™. Step 2: we simply regard the modified view as a regular qaexy,
apply ConstructExtendedQueryGeneral to construct its extended quey, g& The union

of the extended query set from phase 1 and that from phase 2 igg¢hdegkquery set for

guery Q. The complete extended query set for Q is the union of that from each phase.

2.2.3 Specifying Currency and Consistency

We classify currency and consistency requirements into four:tpeesobject, per-group,

inter-group, andinter-statementPer-object freshness requirements, which weatatlency
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constraints specify the maximal acceptable deviation for an object fronrméster copy.
Group consistency constraintspecify the relationship among a group of objects, for
example the answers to a qudnter-group consistency constrairgpecify the relationships
among object groups, for example answer sets to multiple (sub-) gj@&=8sion consistency
constraintsare essentially inter-group consistency constraints, but covapgrof objects
arising from multiple SQL statements within a session; we do not discuss ttiker.fu

Constraints of all four types can be expressed using standard ferocaustructed from

object variables and constants, comparison operators, quantifiers and Boolean\asinecti

Xact 1 Xact 2 Xtime of the
updates updates lastest Xact on
xtime(A, t;) master(A) master(A) Xtime(B, t4) master database
b t ts t |
/' k— distance(A, B, t4) — Time
stale(A, t4) «———  currency(A, t5) —_—

Figure 2.5 Basic concepts

2.2.3.1 Currency Constraints for Single Object

For a query Q, a user can specify currency requirementanfoc@y C in the complete
extended query s>t by comparing C with its counterpart in the master copy ef th

extall in terms of either the value of C or the timestamp assdoidta C. In our

results ofQ
implementation, we measure the currency of copy C in snapghot kow long it has been

stale, i.e., currency(C, H= xtime(T,) — stale(C, H).
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For simplicity, we do not allow deletion on the master database.ré&siriction is lifted
by a “ghost technique” introduced in Section 3.2.5.

Note that an attribute in the select-list might be definedrbpggregation function. For
instance, if “SUM (O_TOTAL) AS TOTAL” appears in the seldist, a user can specify
requirements on this aggregate attribute TOTAL. However, such datata does not have
a master copy; hence its currency is not well-defined. Wedg this by a “virtual master

copy” technique introduced in Section 3.2.6.

2.2.3.2 Group Consistency for Cached Objects

The functionreturn (O, s) returns the value of O in database state s. We saybibat O in
Scache IS SNapshot consistenwith respect to a database snapshgtfHeturn (O, Sachd =
return (O, H,) and xtime(O, H) = xtime(master (O), .

Given how copies are updated through copy transactions, we observe tleaerpr
object in a cache, there is at least one database snapshot €theitonwhich it was
synchronized) with respect to which it is snapshot consistent. Howfferent objects in a
cache could be consistent with respect to different snapshotsskbset K of the cache, if a
snapshot Klexists such that each object in K is snapshot consistent wtctet® H, then
we say K issnapshot consistentvith respect to K If K is the entire cache, we say that the

cache isnapshot consistent
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We define the distance between two objects (which could be masteopies) A and B
in a snapshot Has follows. Let xtime(B, K = T, and let xtime(A, H) < xtime(B, H).
Then:

distancgA, B, Hy) = currency(A, H)

Since B is current (identical to its master) at timg the distance between A and B
reflects how close A and B are to being shapshot consistentresgipiect to snapshot,H
Figure 2.5 illustrates the basic concepts.

Let t be the distance between A and B. We say that A and R-aomsistentwith
consistency bound t. We also extend the notion-obnsistency for a set of objects K, by
defining the bound t to be the maximum distance between any pair of objects in K.

Consider a set of cached objects K and a database snapsHd ks A-consistent with
consistency bound t = 0, and O is the object with the largest vikiene@(O, H,) in K, it is
easy to show that K is snapshot-consistent with respect to theasgatanapshot at xtime(O,

H,). In general, as t increases, the deviation from snapshot consistency alsesicrea

2.2.3.3 Group Consistency for Queries

ext

Given a query Q, the relevant set for Q (the result of thenéatkversio®™") includes all

objects that affect the result of Q. We can apply the concepicohsistency to this set, and
thereby impose a consistency constraint on Q.
In practice, however, we may not care whether the entire relseaisA-consistent, and

simply wish to require that certain subsets of the relevdres&-consistent. We leverage
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the power of SQL queries to achieve this, as follows. Given d@ewe allow the use of an
auxiliary set of queries P over the relevant set of Q to iijetite subset that must ke
consistentWe illustrate the approach by discussing two common cases.

1) Consistency requirements on input tables of query QWe may want to state that
one or more input tables must be from a single database snapshoan\We this

using a query p that simply selects all attributes associatbdthose tables from
Q*‘and requiringA-consistency with respect to the result of p.

2) Consistency with respect to horizontal partitions of the raglt of query Q: Again,
we use an auxiliary query p ov@™. We can use SQL's GROUP BY clause to

divide the result of p horizontally into partitions, and requireonsistency with

respect to one or more partitions (selected using the HAVING clause).

2.2.3.4 Inter-Group Consistency

We have discussed two natural ways in which groups of relatedtolggse, namely as
subsets of a cache, or as part of the result of a querysdimgtimes necessary to impose
consistency requirements across multiple groups of objects. Examples include:
1) Multiple groups of cached objects, such as all cached Order remoddall cached
Catalog records.
2) Groups of objects from different blocks of a query. (Note that ealcuery has an

extended version!)
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3) Groups of objects drawn from multiple statements (e.g., differentegyievithin a
session.

Regardless of the context in which groups arise, let G1, G2, ... heGihe sets of
relevant data objects for groups 1 to n.

A user can specify two types of consistency requirements over this collection:

A-consistency:Naturally, we can require that the objects in the union or irtgoseof
one or more groups ke consistent with bound t.

Time-line consistency: Intuitively, we might want to say that “time always moves

forward” across a certain ordering of groups. That is, for anysuch that < j <n, any

objects All Gi, B O Gj, xtime(A, H,) < xtime(B, H,)), where H is the database snapshot

after executing all statements corresponding to the groups G1, G2, ..., Gn.

2.2.3.5 Session Consistency Constraints

We extend the previous concept to a group of statements. Given a groudereddagueries

Q1 ..., Q, similar to the single query case, we allow a user to &t af auxiliary queries
P, over Q**, the relevant set of ;Qand specify4-consistencyor time-line consistency

requirements over any subset 0f(P;..P,). While A-consistency constraints bound the
divergence of the result unit set from one snapshot, time-line cotstraquire time to

move forward within the group with regards to the specified result unit sets.
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Chapter 3

Data Quality-Centric Caching Model

SQL extensions that allow individual queries to explicitly speddya quality requirements
in terms of currency and consistency were proposed in Chapter 2chidpter develops a
data quality-aware, fine-grained cache model and studies caclyn dgesterms of four
fundamental propertiepresence, consistency, completenasd currency Such a model
provides an abstract view of the cache to the query processyeg, lanabling the
implementation of the latter to be independent of the former. Regardif the cache
management mechanisms or policies used, as long as cacheigsopertobserved, query
processing can deliver correct results. Further, the flexiblehamism provided by this cache

model opens the door for adaptive cache management.

3.1 Introduction

3.1.1 Background

We model cached data as materialized views over a mastbasataQueries can specify
their data quality requirements in terms of currency and coneistdt is the caching

DBMS'’s responsibility to ensure that it produces query resultsstiesfy the stated quality
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requirements. In order to do that, the caching DBMS needs to kespdfdocal data
quality. The question is, at what granularity? At one end of therspeds database level
consistency. That is, the whole cache has to be consistent. Thimeppequires the least
bookkeeping, but is the least flexible: suppose a query requires am tobfee less than 1
second stale, if we want to answer that query locally, we takeep the whole cache no
more than 1 second stale.

A slightly refined granularity is view level. That is, albbws of a cached view are
consistent, i.e., from the same database snapshot. We explain #spanding maintenance
and query processing mechanisms for this granularity level in Chapter 4.

Although more flexible than the database level granularity, Vel granularity still
severely restricts the cache maintenance policies thabeased. A pull policy, where the
cache explicitly refreshes data by issuing queries tedhbece database, offers the option of
using query results as the units for maintaining consistency and aatblee properties. In
particular, issuing the same parameterized query with diffggarameter values returns
different partitions of a cached view, offering a much moreilfle unit of cache
maintenance (view partitions) than using entire views. This isfabes of this chapter.
Figure 3.1 shows our running example, where Q1 is a parameteuzeyd, followed by

different parameter settings.
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Authors (authorld, name, gender, city, state)
Books (isbn, authorld, publisherld, title, type)

Q1: SELECT *
FROM Authors A
WHERE authorld in (1,2,3)
CURRENCY BOUND 10 min on (A) BY $key

E1.1: $key =@
E1.2: $key = authorld
E1.3: $key = city

Q2: SELECT *
FROM Authors A, Books B
WHERE authorld in (1,2,3) AND A.authorld = B.authorld
CURRENCY BOUND 10 min ON (A, B) BY authorld

Q3: SELECT * FROM Authors A WHERE city = “Madison”
CURRENCY BOUND 10 min ON (A) BY authorld

Figure 3.1 Running examples

3.1.2 Motivation

We now motivate four properties of cached data that determine evhietban be used to
answer a query. In the model proposed in Chapter 2, a query’'s C&C cusstra stated in

a currency clause. For example, in Q2, the currency clause ispettitee “quality”
constraints on the query results: 1) “ON (A, B)” means thafathors and Books rows
returned must beonsistenti.e., from the same database snapshot. 2) “BOUND 10 min”

means that these rows mustdagrentto within 10 minutes, that is, at most 10 minutes out
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of date. 3) “BY authorld” means that all result rows with slene authorld value must be
consistent. To answer the query from cached data, the cache musitgedhat the result
satisfies these requirements and two more: 4) the Authors and Byekdor authors 1, 2,
and 3 must beresentin the cache and 5) they must bemplete that is, no rows are
missing.

E1.1 requires that all three authors with id 1, 2 and 3 be present aa¢he, and that
they be mutually consistent. Suppose we have in the cache a papyabf the Authors
table, AuthorCopy, which contains some frequently accessed authorshesgy with
authorld 1-10. We could require the cache to guarantee that all authAuthorCopy be
mutually consistent, in order to ensure that we can use the roastfmrs with id 1, 2 and 3
to answer E1.1, if they are present. However, query E1.1 can be adsvsarg the cache as
long as authors 1, 2 and 3 are mutually consistent, regardless dlewb#ter author rows
are consistent with these rows. On the other hand, if the cache ggawd consistency
guarantees, i.e., different authors could have been copied from a diSesgghot of the
master database, the query cannot be answered using the wachieadl requested authors
are present. In contrast, query E1.2, in which the BY clause eqlyres rows for a given
author to be consistent, can be answered from the cache in this case.

Query Q3 illustrates the completeness property. It askslfautors from Madison, but
the rows for different authors do not have to be mutually consistent. Suppdssep track
of which authors are in the cache by their authorlds. Even if tteedaappens to contain all

the authors from Madison, we cannot safely use the cached data th@lesche guarantees
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o¢ o]l © Q1(H.)
o o< @ Q2(Hi)[e1 o Q1(H2)
o o4 032/ Q2(H)

us | °7 / Q3(Hy) °
=<) 2 {09 QaHy)

Figure 3.2 Cache property example

that it has all the authors from Madison. Intuitively, the cacheagtees that its content is
complete w.r.t. the set of objects in the master database that satisfy prgisieate.

Regardless of the cache management mechanisms or policiesassetg as cache
properties are observed, query processing can deliver corralts r@hus, cache property
descriptions serve as an abstraction layer between query pngcassi cache management,
enabling the implementation of the former to be independent of the latter.

The rest of the chapter is organized as follows. Section 3.2 busldisdafoundation for
cache description by formally defining presence, consistermypleteness and currency.
Section 3.3 introduces a novel cache model that supports a specifiaf Wwastitioning the
cache and translating a rich class of integrity constré@xisressed in extended SQL DDL
syntax) into properties required to hold over different partitions.idetify an important
property of cached views, callesafety and show how safety aids in efficient cache
maintenance in Section 3.4. Finally, we formally define cachenszheand characterize

when they are safe, offering guidelines for cache schema design in Section 3.5.
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3.2 Formal Definition of Cache properties

3.2.1 Presence

The simplest type of query asks for an object identified by its key (ely. HQw to tell if an
object is in the cache?

Intuitively, we require every object in the cache to be copied flamesvalid snapshot.
Let return (O, s) return the value of object O in database state s. Winatagopy C in a
cache state s&ne iS Snapshot consistentw.r.t. a snapshot Hof the master database if
return(C, Sachd = return(master(C), ¥ and xtime(C, H) = xtime(master(C), k). We also

sayCopiedFrom(C, H,) holds.

Definition: (Presencé An object O is present in cachggeiff there is a copy C ing&heS.t.

master(C) = O, and for some master database snaps@aptedFrom(C, k) holds. [

3.2.2 Consistency

When a query asks for more than one object, it can specify mutuasteniey requirements
on them, as shown in E1.1.

For a subset U of the cache, we say that U is mutually snapsigstent (consistent for
short) w.r.t. a snapshot,tof the master database iff CopiedFrom(Q) Holds for every
object O in U. We also say CopiedFrom(l}) Holds.

Besides specifying a consistency group by object keys (e.gorédiin E1.2), a query

can also specify a consistency group by a selection, as in E1.3. 8@tipasgthors with id 1,
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2 and 3 are from Madison. The master database might contain othersaubm Madison.
The cache still can be used to answer this query as long dseal authors are mutually
consistent and no more than 10 minutes stale. Given a query Q and a database S8 s, let

denote the result of evaluating Q on s.

Definition: (Consistency For a subset U of the cachgds if there is a snapshot,tdf the
master database s.t. CopiedFrom(lJ) kblds, and for some query Q,[1Q(H,), then U is

shapshot consiste(dr consistent) w.r.t. Q andH_

U consists of copies from snapshqt &hd Q is a selection query. Thus the containment
of U in Q(H,) is well defined. Note that object metadata, e.g., timestaanpsnot used in
this comparison.

If a collection of objects is consistent, then any of its subsets is alsotenhdt®rmally,

Lemma 3.1 If a subset U of the cachg.seis consistent w.r.t. a query Q and a snapshot H

then subset P(U) defined by any selection query P is consistent w.r.t. P°Q.and H
Proof of Lemma 3.1:

Since U is consistent w.r.t. Q and, e have:
u U QHy (1)
CopiedFrom(U, KH) (2)
Since (1), for any selection query P,
PW) L PQH) 3)

Since P is a selection query, P(U-j U. Together with (2), we have
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CopiedFrom(P(U), k) (4)

From (3) and (4), we know that P(U) is snapshot consistent w.r.t. P°Q.and H

3.2.3 Completeness

As illustrated in Q3, a query might ask for a set of objects defined by agediow do we

know thatall the required objects are in the cache?

Definition: (Completenesy A subset U of the cache.seis complete w.r.t. a query Q and a

shapshot Kof the master database iff CopiedF(tinH;,) holds and U = Q(k). [

Lemma 3.2 If a subset U of the cachea.seis complete w.r.t. a query Q and a snapshpt H

then subset P(U) defined by any selection query P is complete w.r.t. P°Q.and H
Proof of Lemma 3.2:

From the given, we have
CopiedFrom(U, H) Q)
U =Q(H) 2)
From (2), for any selection query P,
P(U) = P°Q(H) 3)
Since P(U)D U, from (1), we have
CopiedFrom(P(U), k) 4)

From (3) and (4), we know P(U) is complete w.r.t. P°Q apd H
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The above constraint is rather restrictive. Assuming that objezys’ are not modified, it
is possible to allow subsequent updates of some objects in U toldsefin the cache,
while still allowing certain queries (which require completendsit do not care about the

modifications and can therefore ignore consistency) to use cached objects in U.

Definition: (Associated Objecty We say that a subset U of the cachgnds associated
with a query Q if for each object C in U, there exists a drmapd, of the master database

such that CopiedFrom(C,,Hholds and C is in Q). [

Definition: (Key-completenesy For a subset U of the cacheg,k we say U is key-

complete w.r.t. Q and a snapshet Hf U is associated with Q afke,Q(Hn) U Iiey(U). [

Intuitively, U includes (as identified by the keys) all the otgebat appear in the result
of Q applied to the master databasge However, the objects in the cache might have been
copied from different earlier snapshots of the master databassubséquent changes to
these objects might not be reflected in the cache.

Figure 3.2 illustrates cache properties, where an edge from @bjiecC denotes that C
is copied from O. Assuming all objects are modified pn Bil is consistent but not complete
w.rt. Q1 and H, U2 is complete w.r.t. Q2 and;Hand U3 is key-complete w.r.t. Q3 and

both H and H.

Lemma 3.3: If a subset U of the cachg,SeiS complete w.r.t. a query Q and a database

snapshot K then U is both key-complete and consistent w.r.t. Q gnd H
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[

T, updates(A’, B")
xtime(Al, Hy)
xtime(B, Hy)

Proof of Lemma 3.3:

H>

k———

Hs; T3 updates(C’)
currency(H 1, Q, Hy)
currency({A1,B}, Q, H )

Figure 3.3 Currency example (1)

Directly from the definitions.[]

3.2.4 Currency

Ha Time

We have definegtale pointandcurrencyfor a single object. Now we extend the concepts to

a set of objects. Suppose that at 1pm, there are only two authrar$/tdison in the master

database, and we copy them to the cache, forming set U. At 2pew author moves to

Madison. At 3pm, how stale is U w.r.t. predicate “city = Madisomitaitively, the answer

should be 1 hour, since U gets stale the moment the new author @ tadttee master

database. However, we cannot use object currency to determirsenti@sboth objects in U

are still current. For this reason we use the snapshot where U is copied froafieasrece.

We overload stale() to apply to a database snapshot.H. a query QstalgHn, Q, H,)

is equal to xtime(A), where A is the first transaction tienges the result of Q afteplh

H,. Similarly, we overload the currency() functiocurrency(Hn, Q, H) = xtime(H, —

stale(Hn, Q, H,).
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T, updates (A’, B) currency({A2,B}, Q, H 4)

xtime(A2, H
H, xtime((B, HS) «<— currency(H 2, Q, Hy)  — -
H> Hs; T3 updates(C’) H, Time'

T, updates(A’, B’
1xti$ne(A1(, Ha) b owencyaLn g

currency({A1,B}, Q, H )

Figure 3.4 Currency example (2)

Definition: (Currency for complete sej} If a subset U of the cachg,§eis complete w.r.t. a
guery Q and a snapshot,Hthen the currency of U w.r.t. a snapshot ¢ the master

database is: currency(U, Qg)H: currency(k, Q, H,).

From the definition, the currency of U depends on the snapshouddd in the
calculation. This problem can be solved using a “ghost row” technigei&§esion 3.2.5 for

details.

Figure 3.3 illustrates the currency of two complete sets, whkrand A2 are two copies of
A’ and Bisacopyof B, QH={A,B},i=1, 2 QH)={A,B,C},i=3, 4. {Al, B}

and {A2, B} are complete w.r.t. Q and Hi..

Non-Shrinking Assumption: For any query Q, any database snapsheatnd H, where £j,

eryQ(Hi) U eryQ(Hj). U]

Currency Property 3.1 Under the assumption above, for any subset U of the caghe S
any query Q, and any master database snapshatsiHy, if U is complete w.r.t. Q and both

Hi and H, then for any n, currency(HQ, H,) = currency(kl Q, H,). [J
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Proof of Currency Property 3.1:

(By contradiction)

Since the case i5j is trivial, without loss of generalityuass i<j. Assume (Jis the
first transaction that modifies Q(Hi) after. WWe claim that k>j. For the proof by
contradiction, assume<k

From the non-shrinking assumption, Tk either 1) modifies an object i),y O1
or 2) adds a new object, say O2 to the result of Q. Further, do#n® O2 are in
Q(H)).

In case 1), sincesf, xtime(O1, H)>xtime(O1, H), which contradicts the given that
U is consistent w.r.t. both;ldnd H.

In case 2), O2 is not in Q(K which also contradicts the given that U is complete
w.r.t. both Hand H.

Thus k>j, hence currency(HQ, H,) = currency(H Q, H,). [

How to measure the currency of a key-complete set? Figure haressthe same
assumptions as Figure 3.3, except feraimd xtime(B), where {Al, B}and {A2, B} are key-
complete w.r.t. Q and +and H, while the latter is also complete w.r.t. Q ang H is
desirable that 1) currency({A1,B}, Q,4His deterministic; and 2) since Al is older than A2,
{A1, B}should be older than {A2, B}.

We address these problems by firstly identifying a unique eeéedd snapshot, and

secondly incorporating the currency of the objects into the currency definition.
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Definition: (Max key-complete snapshgtFor any subset U of the cachgdeand a query
Q, the max key-complete snapshot of U w.r.t. Q and a database snapshobx

snapshofU, Q, H,) is equal to K if there exists k, s.t., for anyk, eryQ(Hi) 0 |‘|keyu :
and one of the following conditions holds: 1) k:n;ﬂkeyu [ |_| keyQ(Hk+1). Otherwise
itis@. [

Directly from the definition of key-completeness and the non-shrinkssgraption, we

have the following lemma.

Lemma 3.4:If there exists a database snapshgt $it. U is key-complete w.r.t. Q and,H

then for any n, max-snapshot(U, Q,) i not @.[]

Lemma 3.4 guarantees that the following definition is well defiioech key-complete

set.

Definition: (Currency for key-complete se} For a subset U of the cachgds if U is key-
complete w.r.t. a query Q and some database snapshot, then the curréhoy.iaf a

snapshot Kof the master database is defined as follows. lethnax-snapshot(U, Q,

and Y = max (currency (C,H)),

chou

Then currency(U, Q, Bl = max (Y, currency(H, Q, H)). L[

Figure 3.4 shows the currency of a key-complete set {Al, B} acdnaplete set {A2,
B}.

The currency of a key-complete set has some nice properties that intditively
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Currency Property 3.2: For any subset U of the cachgdy and a query Q, if U is key-
complete w.rt. Q and some database snapshot, then for any n, curreQcyfl) is

deterministic. [
Proof of Currency Property 3.2:
Directly from the definition and Lemma 3.4.[]

Currency Property 3.3: Given any query Q, and two subsets Ul and U2 of the caghe S

if max-snapshot(U1, Q, M= max-snapshot(U2, Q,.H~ 9, let

Y. = max(currency(O,H )),

Ooy;

where i=1, 2. If ¥>Y,, then currency(U1, Q, H> currency(U2, Q, K. 0
Proof of Currency Property 3.3:

Directly from the definition. 0
Currency Property 3.4: currency-complete is a special case of currency-key-complete.
Proof of Currency Property 3.4:

Given any subset U of the cachgdi that is complete w.r.t. a query Q and some
database snapshot,HFor any am, let H, = max-snapshot(U, Q, i From the
definition of max key-complete snapshot we knowwng There are two cases:

Case 1: U is complete w.r.tgH
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Let Ty be the first transaction inHhat changes the result of Q afteg. Hrom the
non-shrinking assumption, again, we have two cases:
Case 1.1: [ touches at least one object, say O1, in U. SingcasTthe first
transaction that touches U,
Y = max (currency (O,H)) = currency (O,,H ) (1)
oy
Since the stale points for O1 and Q)ldre both xtime({), currency(H, Q, H,) =
currency(O1, H). Thus
currency(U, Q, H) = max (Y, currency(g Q, H.))

= currency(lgl Q, H,) = currency(O1, K.

Case 1.2: Jadds new objects into the result of Q.

In this case the stale point of any object O in U is laten thiame(Ty), so
currency(H, Q, H,) > currency(O, K).

currency(U, Q, K = max (Y, currency(gl Q, H.))

= currencyHQ, H,).

Case 2: U is not complete w.r.tg.H
Let T be the first transaction in,Hhat modifies at least an object, say O1 in U after
Hm, then

currency(l, Q, H,) = currency(O1, B 2)

Y = max (currency (O, H ,)) = currency (O,, H ,,) (3)

onu
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In addition we havedq, otherwise from the non-shrinking assumption, U would be
complete w.r.t. | Thus
Y> currency(H, Q, H) 4)
Putting (2), (3) and (4) together,
currency(U, Q, H) = max (Y, currency(g Q, H.))

= currency(lgl Q, Hy)) = currency(O1, B. [

3.2.5 Dealing with Deletion

Currency properties 2.1 to 2.4 don’t hold without the non-shrinking assumptiée. Ta
Property 2.1 for example. On day 1 there are two customers C1, C2Mipnvhich we
copied to the cache, U = {C1, C2}. On day 2, customer C3 moved to WI tenhpcsad
moved out of WI on day 5. Then on day 4, the currency of U is 2 ddgs ldtavever, on
day 6, it goes back to 0!

The reason is that when an object is deleted, we lose its x@#ooed. Consequently,
given a set of object&, one cannot uniquely identify the first snapsKoappears in. To
remedy that, we introduce the conceptghiost object Conceptually, when an object is
deleted from a region in the master copy, we don’t really el@einstead, we mark it as a
ghost object and treat it the same way as a hormal objectwkhkisep the xtime timestamp
of deleted objects. Ghost objects and their timestamps are preghdgathe cache just as
normal objects. With this technique, deletion is modeled as a spaottdication. Thus the

non-shrinking assumption is guaranteed even in the presence of deletions.
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Lemma 3.5: With the ghost object technique, given any query Q, the non-shrinking

assumption holds.

Proof of Lemma 3.5:

With the ghost object technique, there are no deletions to the region defined by Q.

Note that in practice, we don’t need to record those ghost obg&ute, the calculation of
currency only needs to be conservative. How we bound the currereyahplete set is

discussed in Section 3.4.1.2.

3.2.6 Derived Data

If the cache only contains (parts of) base tables, then for @gect in the cache there is a
master version in the master database. This doesn’t apply todldate, i.e., materialized
views in the cache. An object (row) in a materialized view inciehe doesn’t necessarily
have a master copy in the master database. We introducenttept ofvirtual master copy

to remedy this. Conceptually, for any view V in the cache, fgrsmapshot Hof the master
database, we calculate Vi{jnd include it in the master database. Thus, by comparing two
adjacent snapshots, we can record any insertion/deletion/modificatithe view. With this
technique, any object in the cache — no matter whether it is froasetable or a view —
has a master copy in the master database. Thus, any query usadite define a region in

the cache.
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Again, in practice, since we only need to bound the currencyegiarr conservatively,

we don’t need to materialize the virtual master copies. See Section 3.4.1.2.

3.3 Dynamic Caching Model

In our model, a cache is a collection of materialized vigws {V 1, ..., Vi}, where each

D1: CREATE VIEW AuthorCopy AS
SELECT * FROM Authors

CREATE VIEW BookCopy AS
SELECT * FROM Books

D2: CREATE TABLE AuthorList_PCT(authorld int)
ALTER VIEW AuthorCopy
ADD PRESENCE ON authorld IN
(SELECT authorld FROM AuthorList_PCT)

D3: CREATE TABLE CityList_CsCT(city string)
ALTER VIEW AuthorCopy
ADD CONSISTENCY ON city IN
(SELECT city FROM CityList_CsCT)

D4: CREATE TABLE CityList_ CpCT/(city string)
ALTER VIEW AuthorCopy
ADD COMPLETE ON city IN
(SELECT city FROM CityList_CpCT)

D5: ALTER VIEW BookCopy
ADD PRESENCE ON authorld IN
(SELECT authorld FROM AuthorCopy)

D6: ALTER VIEW BookCopy ADD CONSISTENCY ROOT

Figure 3.5 DDL examples for adding cache constraint s
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view V; is defined using a query expression We describe the properties of the cache in
terms of integrity constraints defined owérin this section, we introduce a class of metadata
tables calledcontrol tablesthat facilitate specification of cache integrity constigirgnd
introduce extended SQL DDL syntax for constraint specificatiorur€ig.5 shows the set of

DDL examples used in this section. We start by defining two views as shown in D1.

3.3.1 View Partitions and Control-tables

Instead of treating all rows of a view uniformly, we allow thientbe partitioned into smaller
groups, where properties (presence, currency, consistency or temegk are guaranteed
per group. The same view may be partitioned into different setsoofg for different
properties. Further, the cache may providdulh or partial guarantee that is, it may
guarantee that the property holds for all groups in the partitiamiranly for some of the
groups. Although different implementation mechanisms might be uselifand partial
guarantees, conceptually, the former is a special case ohttbe we therefore focus on
partial guarantees.

In this thesis, we impose restrictions on how groups can be definecbasuer only
groups defined by equality predicates on one or more columns of theTWiawis, two rows
belong to the same group if they agree on the values of the groupimgnso For a partial
guarantee, the grouping values for which the guarantee holds arepft@dige listed in a
separate table calledcantrol table. Each value in the control table corresponds to a group

of rows of \f that we call acache region(or simply region). Each view Yin V can be
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associated with three types of control tabjgesenceconsistencyandcompleteness control
tables We usepresenc&onsistencicompleteness regioto refer to cache regions defined
for each type respectively. Note that control tables are conteptuae might be explicitly
maintained and others might be implicitly defined in terms of athehed tables in a given

implementation.

3.3.1.1 Presence Control-Table (PCT)

Suppose we receive many queries looking for some authors, as in Q&.dbitimors are
much more popular than others and the popular authors change over timbe igecdss
pattern is skewed and changes over time. We would like to andargedraction of queries
locally but maintenance overhead are too high to cache the corApkbiars table. Further,
we want to be able to adjust cache contents for the changingoadnkiithout changing the
view definition. These goals are achieved by presence control tables.

A presence control table (PCT)for view V; is a table with a 1-1 mapping between a
subset K of its columns and a subset K’ g\¢olumns. We denote this B3CTIK, K;
KOPCT is called th@eresencecontrol-key (PCK) for V;, and K’'LIVjis called thepresence
controlled-key (PCdK). For simplicity, we will use PCK and PCdK interchangeably unde
the mapping. A PCK defines the smallest group of rows (i.e., antpthat can be admitted
to or evicted from the cache in the MTCache “pull” framework. &gsume that the cache

maintenance algorithms materialize, update and evict all rows within girou@together.
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Presence AssumptionAll rows associated with the same presence control-keysarered

to be present, consistent and complete. That is, for each rothe presence control table,
subset U =ok=sk (V;) is complete and thus consistent w.icke£k °© Q) and H, for some

snapshot Hof the master database, wherasQhe query that defines V[

If Vihas at least one presence control table, itparally materialized view (PMV),
otherwise it is a fully materialized view. See [ZLGO05] foonm general types of partial
views, partial view matching, and run-time presence checking.

In our motivating example, we cache only the most popular authorssddmsirio can
be handled by creating a presence control table and adding a PRESE&Mstraint to
AuthorCopy, as in D2. AuthorList_PCT acts as a presence controla@adleontains the ids
of the authors who are currently present in the view AuthorCopy, i.¢erialezed in the

view.

3.3.1.2 Consistency Control-Table (CsCT)

A local view may still be useful even when all its rows arekeqt mutually consistent, e.g.,
in a scenario where we receive many queries like E1.3. Suppose Aaplyar@ntains all the
required rows. If we compute the query from the view, will thalltesatisfy the query’s
consistency requirements? The answer is “not necessarilgubedhe query requires all
result rows to be mutually consistent per city, but AuthorCopy onlyagtees that the rows
for each author are consistent; nothing is guaranteed about autirara fgiven city. The

consistency control table provides the means to specify a desired level stansi
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A consistency control table (CsCTJor view V, is denoted by CsCTI[K], where a set of
columns KJCsCT is also a subset of,\and is called theonsistencycontrol-key (CsCK)
for Vi. For each row s in CsCT, if there is arow t ind/t. s.K = t.K, then subset Uogr=sk
(Vi) must be consistent w.r.tod-sk °© Q) and H, for some snapshot Hof the master
database.

In our example, it is desirable to guarantee consistency fautlbrs from the same city,
at least for some of the popular cities. We propose an addiGEISISTENCY constraint
for specifying this requirement. We first create a consistenatrol table containing a set of
cities and then add a CONSISTENCY constraint to AuthorCopy, a8 iof Bigure 3.5. The
CONSISTENCY clause specifies that the cache must keepvedl related to the same city
consistent if the city is among the ones listed in CityList T;9@is is in addition to the
consistency requirements implicit in the Presence Assumption. Awhgréan now be used
to answer queries like E1.3.

If we want the cache to guarantee consistency for everyw#ychange the clause to
CONSISTENCY ON city. If we want the entire view to be cetesit, we change the clause
to CONSISTENCY ON ALL. If we don’t specify a consistencyuda, the cache will not
provide any consistency guarantees beyond the minimal consisten@dioyplthe presence

control table under the Presence Assumption.
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3.3.1.3 Completeness Control-Table (CpCT)

A view with a presence control table can only be used to answer goeries with an
equality predicate on its control columns. For example, AuthorCopy cannot answer Q3.

It is easy to find the rows in AuthorCopy that satisfy the qbetywe cannot tell whether
the view containgll required rows. If we want to answer a query with predicaten P
columns other than the control-keys, the cache must guaranteel travsaldefined by P
appear in the cache or none appear. Completeness constraints caprdsseel with
completeness control tables.

A completeness control table (CpCT)for view V; is denoted by CpCT[K]. A
completeness control table is a consistency control table witddditional constraint: the
subset U in Vdefined as before is not only consistent but also complete wy:t.k(c Q)
and H, for some snapshot,+bf the master database. We say K ompletenessontrol-
key (CpCK). Note that all rows within the same completeness region risgsba consistent
(Lemma 3.3).

We propose to instruct the cache about completeness requirements aising
COMPLETENESS constraint. Continuing our example, we create Ppleteness control
table and then add a completeness clause to the AuthorCopy defiasi in D4 of Figure
3.5. Table CityList_CpCT serves as the completeness controlftalAeithorCopy. If a city
is contained in CityList_ CpCT, then we know that either all autfians that city are
contained in AuthorCopy or none of them are. Note that an entry in thglet@ness control

table does not imply presence. Full completeness is indicated bymiydppi clause starting
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with “IN”. Not specifying a completeness clause indicates that default completeness
implicit in the Presence Assumption is sufficient.

A similar property is termed “domain completeness” in DBC&RK+03]. However,
our mechanism provides more flexibility. The cache admin can spégifthe subset of
columns to be complete; 2) to force completeness on all valuasta gubset of values for

these columns.

3.3.2 Correlated Presence Constraints

In our running example, we may not only receive queries looking foe switnors, but also
follow-up queries looking for related books. That is, the access pateBookCopy is
decided by the access pattern to AuthorCopy. In order to captuyrev¢hadlow a view to use
another view as a presence control table. To have BookCopy be conslhadhorCopy,
we only need to declare AuthorCopy as a presence control tableRESGENCE constraint
in the definition of BookCopy, as in D5 of Figure 3.5.

If a presence control table is not controlled by another one, Wé& eatoot presence
control table. LetL = {V 1, ..., Vn} be the set of root presence control tabW&s=V O L.
We depict the presence correlation constraints bgiche graph denoted by<W, E>. An
edge V O0{m - V;means that Ms a PCT[K;, Ki; '] of V;.

Circular dependencies require special care in order to avoiexpected loading”, a
problem addressed in [ABK+03]. In our model, we don’t allow circular depenee as

stated in Rule 1 in Figure 3.11. Thus we call a cache grapblee DAG
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Each view in the DAG has two sets of orthogonal properties., liregther it is view-
level or group-level consistent. Second, to be explained shortly, whetisecansistency-
wise correlated to its parent. For illustration purposes, wehsgees to represent the former:
circles for view-level consistent views and rectangle$a(dg for all others. We use colors
to denote the latter: gray if a view is consistency-wisaetated to its parents, white

(default) otherwise.

Definition: (Cache schema)A cache schema is a cache DA®V, E> together with the

completeness and consistency control tables associated with each Wew in

3.3.3 Correlated Consistency Constraints

In our running example, we have an edge AuthorCod"?"l’_, BookCopy, meaning if

we add a new author to AuthorCopy, we always bring in all of the asithooks. The books

AuthorList PCT ReviewerList PCT

authorld CityList_CsCT ] .
' - reviewerld
AuthorCopy 1~ v
ReviewerCopy
authorld

isbn Review

Copy

reviewld

BookCopy

A 4

Figure 3.6 Cache schema example
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of an author have to be mutually consistent, but they are not requireccomsistent with
the author.

If we wish the dependent view to be consistent with the controlling, wiee add the
consistency clause: CONSISTENCY ROOT, as in D6 of Figure 3.5ode with such
constraint is coloredray, it cannot have its own consistency or completeness control tables
(Rule 2 in Figure 3.11).

For a gray node V, we call its closest white ancest@momsistency root For any of V's
cache regions JJif U; is controlled by a PCK value included in a cache regipmUts
parent, we say that;ldonsistency-wise controldJ;; and that Yand |jareconsistency-wise
correlated.

Figure 3.6 illustrates a cache schema example, which c®ngfstfour partially
materialized views. AuthorCopy is controlled by a presence aotatible AuthorList PCT,
likewise for ReviewerCopy and ReviewerList PCT. Besides aepoes control table,
AuthorCopy has a consistency control table CityList CsCT on cibokBopy is both
presence-wise and consistency-wise correlated to AuthorCopy. rasihriReviewCopy has
two presence control tables: BookCopy and ReviewerCopy; it is ke@ consistent and

consistency-wise independent from its parents.

3.4 Safe Cached Views

A cache has to perform two tasks: 1) populate the cache and 2} ugitlates to the contents

of the cache, while maintaining the specified cache constraiotapléx cache constraints
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can lead to unexpected additional fetches in a pull-based maintersérategy, causing
severe performance problems. We illustrate the problems thesghes of examples, and
guantify the refresh cost for unrestricted cache schemas in Tin&tde We then identify an
important property of a cached view, callsafetythat allows us to optimize pull-based
maintenance, and summarize the gains it achieves in Theorem 3.@trodeice the concept
of ad-hoccache regions, used for adaptively refreshing the cache.

For convenience, we distinguish between the schema and the instancaabie region
U. The schema of U is denoted by <V, K, k>, meaning that U isiel®fon view V by a

control-key K with value k. We use titalic form U to denote the instance of U.

3.4.1 Pull-Based Cache Maintenance

In the “pull” model, we obtain a consistent set of rows using redhsingle query to the
backend or multiple queries wrapped in a transaction. As an example, su#ppghserCopy,
introduced in Section 3.3, does not have any children in the cache DAGarte cache
needs to refresh a row t (1, Rose, Female, Madison, WI).

First, consider the case where AuthorCopy does not have any consisienc
completeness control table, and so consistency follows the preséteeThen all rows in
the presence region identified by authorld 1 need to be refrespeithé¢r. This can be done

by issuing the presence query shown in Figure 3.8 to the backend server.
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Presence query: Consistency query: Completeness query:
SELECT * SELECT * SELECT *

FROM  Authors FROM  Authors FROM  Authors
WHERE authorld =1 WHERE authorld INK WHERE city = “Madison”

Figure 3.8 Refresh query examples

Presence (Completeness) query: Consistency query:
SELECT * SELECT *
FROMV FROM V
WHERE K=Kk WHERE K; IN K;

Figure 3.7 Refresh queries

Next, suppose we have CityList_ CsCT (see Section 3.3.1.2). If Madiswot found in
CityList_CsCT, the presence query described above is suftficiherwise, we must also
refresh all other authors from MadisonKiIfis the set of authors in AuthorCopy that are from
Madison, the consistency query in Figure 3.8 is sent to the backend server.

Finally, suppose we have CityList CpCT (see Section 3.3.1.3). If bladssfound in
CityList_CpCT, then besides the consistency query, we must fiéthtlaors from Madison
using the completeness query in Figure 3.8.

Formally, given a cache region U<V, K, k>, let the set o§@nee control tables of V be
P1, ..., B, with presence control-keys;K..., K,. For K, i = 1..n, letK=Ilx;ok=k(V), the
remote queries for U are: 1) the presence query, if U issepce region; 2) the consistency

queries (i = 1..n), if U is a consistency region; and 3) the consistgueries (i = 1..n) (and
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the completeness querylf £ @), if U is a completeness region. (The queries are shown i

Figure 3.7.)

Lemma 3.6: For any cache region U <V, K, k> in the cache, the resutieved from the
backend server using the refresh queries in Figure 3.7 not only keepadi&s constraints,

but also keeps the presence constraints for the presence regions in V that U overlaps.

Proof of Lemma 3.6:

This directly follows from the presence, consistency and completenesssquer

As this example illustrates, when refreshing a cache regiardar to guarantee cache
constraints, we may need to refresh additional cache regionsttoé @l such “affected”

cache regions is defined below.

Definition: (Affected closure The affected closuref a cache region U, denoted &S (U),

is defined transitively:

1) AC(U) ={U}
2) AC(U) = AC(U)U{U; | for U in AC(U), eitherU; overlapsU; or U and U are

consistency-wise correlated}.

For convenience, we assume that the calculation of AC(U) aleleymates consistency
region U, if there exists a completeness region iJ AC(U), s.t. Y = U;, since the

completeness constraint is stricter (Lemma 3.3). The setgaine in AC(U) is partially
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ordered by the set containment relationship. From Lemma 3.1 - L&&nae only need to
maintain the constraints of some “maximal”’ subset of AC(U).Max(Q2) denote the set of

the maximal elements in the partially ordered(set

Definition: (Maximal affected closurg@ The maximal affected closure of a cache region U,
MaxAC (U), is obtained by the following two steps: lket= AC(U),
1) Constructing step. Let, B be the set of all consistency regions and completeness
regions inQ respectively. MaxAC(U) = Maxt —n) U Max(Q2 —B).
2) Cleaning step. Eliminate any consistency regiginWMaxAC(U) if there exists a

completeness region; th MaxAC(U), s.t. YU U;. [

Maintenance Rule:
1) We only choose a region to refresh from a white node.
2) When we refresh a region U, we do the following:
Step 1: Retrieve every region in MaxAC(U) by sending properote queries
according to its constraint.
Step 2: Delete the old rows covered by AC(U) or the retdduple set; then insert

the retrieved tuple set. [

Theorem 3.1: Assuming the partial order between any two cache regiorengant, then
given any region U, if we apply the Maintenance Rule to a cexdtance that satisfies all
cache constraints, let newTupleSet be the newly retrieved saplé = AC(newTupleSet),

then
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1) Every region other than those i £ Q) observes its cache constraint after the refresh
transaction is complete.
2) If (A -Q) = @, then after the refresh transaction is complete, @flecaonstraints are
preserved.
3) If (A-Q) =@, MaxAC(U) is the minimal set of regions we haveefvesh in order

to refresh U while maintaining all cache constraints for all cache irestanc

Proof of Theorem 3.1:

Let Q = AC(U), maxSet=MaxAC(U), newTupleSet be the tuple setensd for

maxSet.

We first prove 1)

1) For any cache region X <V, K, k> @, let V' be the refreshed instance of V, D
be the set of rows for V in newRowS&t,= dk-k (V), X' = dk=« (V’), and X" =
dk=k (D).

We first proveX’ = X”. This is obvious from step 2 in the maintenance rule, since
all the rows inX are deleted and all the rowsXfi are inserted into V'.

Case 1: X is in maxSet. Directly from Lemma 3.6.

Case 2: X is in@—maxSet). Then there is a region Y in maxSet, such thay X
Case 2.1: If X is a presence region, then directly from Lemma 3.6. Otherwise,
Case 2.2: Y has an equal or stronger constraint than X. Since e¥vebsits
constraint (from Case 1), it follows from Lemma 3.1, Lemma 3.2 @mdnha 3.3

that so does X.
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Case 3: X is not im\ L1 Q. We prove thalX’ = X. This is so because from the
maintenance rule, those rows in U are not touched by the refresh transaction.
It directly follows from 1).
It is obvious if U is the only element €. Otherwise, prove by constructing
counterexamples from AuthorCopy. In AuthorCopy, suppose there is a present
control table on authorld with authorlds 1 and 2; there are two tufles<t,
Rose, Female, Madison, WI>, t2 = <2, Mary, Female, Seattle, \@Appose we
want to refresh t1 after an update that touched every row in Auithtine master
database.
Prove by contradiction. Suppose there exists X in maxSet that shotlde
refreshed.
Case 1: There exists Y in maxSet, such that¥X Due to the definition of the
maxSet, X must be a completeness region and Y a consistency region.
In AuthorCopy, suppose it has a completeness region defined on cityahutn
Madison; a consistency region defined on state with value WIi.nkva author
from Madison has been added in the master database, if we omghreéhe
consistency region by WI, only t1 will be refreshed, and aftéesk, the
completeness constraint on Madison is no longer preserved.
Case 2: There exists a cache region Y in maxSet, s.t. Xapgewith Y. In
AuthorCopy, suppose it has two consistency regions on WI and female
respectively. If we only refresh the first one, only t1 will béreshed, and after

refresh, the consistency constraint on the latter is no longer preserved.



58

The last part of the theorem shows that when a region U ishefile every region in
MaxAC(U) must be simultaneously refreshed. Otherwise, tlseserme instance of the cache
that satisfies all constraints, yet running the refresh transaen this state to refresh U will
leave the cache in a state violating some constraink HQ) # @, multi-trip to the master
database is needed in order to maintain all cache constraintenérafj maintenance
algorithm is sketched in Figure 3.10.

Function retrieve®) retrieves rows from the master database by sending & sdrie

remote queries accordingly for each grouginProcedure apply() as shown in Figure 3.9

Algorithm Maintenance
Inputs:  a cache region U from a white node
Outputs: refreshed U

begin
Q <{U};
repeat
Q < AC(Q);
maxSet < MaxAC(Q);

[]

oldRowSet = U, Omax Set Ui /I the instance set

NewRowSet = retrieve(maxSet);
A = AC(NewRowSet);
if (AOQ)
break;
end if
Q=AUQ;
until (true);
apply(oldRowSet, newRowSet);
end Maintenance

Figure 3.9 Algorithm for updating the cache with n ewly retrieved tuples
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refreshes the cache according to step 2 in the second part of the Maintenance Rule

Given a region U in a white PMV V, how do we get MaxAC(U)? &orarbitrary cache

schema, we need to start with U and add affected regions douitsively. There are two
scenarios that potentially complicate the calculation of MaxAC&dd could cause it to be
very large:

1) For any view Y, adding a region jfrom V; results in adding all regions from that
overlap with y.

2) A circular dependency may exist between two viewsand \{, i.e., adding new
regions from Y may result in adding more regions from Which in turn results in
adding yet more regions from.V

The potentially expensive calculation and the large size of MaMACénd the

correspondingly high cost of refreshing the cache motivate theitaa of safe PMVs in

Algorithm  Apply
Inputs: S - source row set; D - new row set
Output: a refreshed cache

begin
for (each view V; involved)
Let the set of rows in S that belongs to V; be S;;
Let the set of rows in D that belongs to V; be D;;
Let dkey = Iiey(Dj);
Delete S; from V;;
Delete rows in V; whose keys appear in dkey;
Insert D;j into V;;
end for
end Apply;

Figure 3.10 Algorithm for refreshing a cacheregio n
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Section 3.4.2.

3.4.1.1 Ad-hoc Cache Regions

Although the specified cache constraints are the minimum constthaitshe cache must
guarantee, sometimes it is desirable for the cache to providéoadtitad-hoc” guarantees.
For example, a query workload like E1.1 asks for authors from a geipofar authors and
requires them to be mutually consistent. Popularity changes ower Itinorder to adapt to
such workloads, we want the flexibility of grouping and regrouping autimos cache

regions on the fly. For this purpose, we allow the cache to grougneeigito “ad-hoc” cache

regions.

Definition: (Ad-hoc region) An ad-hoc cache region consists of a union of one or more

regions (which might be from different views) that are mutually consistent. [

Such “ad-hoc” consistency information is made known to the query pmcds

associating the region id of the ad-hoc region with each region it contains.

3.4.1.2 Keeping Track of Currency

In order to judge if cached data is current enough for a given quenyeed to keep track of
its currency. It is straightforward and we discuss it only lyigflhapter 4 used a “push”
model for cache maintenance, and relied on a heartbeat mechant$is purpose. To track

currency when using the pull model, we keep a timestamp for eaehe region. When a
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cache region is refreshed, we also retrieve and record the transawg@statnp of the refresh
guery. Assuming that a transaction timestamp is unique, in implatieenive simply use
the timestamp as region id. Thus, if the timestamp for a daghen isT and the current
time ist, since all updates unfll are reflected in the result of the refresh query, the region is

from a database snapshot no older thai.

3.4.2 Safe Views and Efficient Pulling

We now introduce the concept sdifeviews, motivated by the potentially high refresh cost

of pull-based maintenance for unrestricted cache schemas.

Definition: (Safe PMV) A partially materialized view V is safe if the two followg
conditions hold for every instance of the cache that satisfies all integngyraints:
1) For any pair of regions in V, either they don’t overlap or one is contained in the other.
2) If Vis gray, let X denote the set of presence regions in \& &partitioning of V and

no pair of regions in X is contained in any one region defined on V.

Intuitively, Condition 1 is to avoid unexpected refreshing because ofapypeng regions
in V; Condition 2 is to avoid unexpected refreshing because of congistermelation across

nodes in the cache schema.

Lemma 3.7: For a safe white PMV V that doesn’t have any children, gargncache region

U in V, the partially ordered set AC(U) is a tree.
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Proof of Lemma 3.7:

(By contradiction)
Suppose there is a group X in AC(U), such that X has two pareatsdYZ. Then

YNZ # @. From the safe definition, eitherlYZ, or ZLIY. Therefore they cannot

both be X’s parents. []

Since AC(U) on V has a regular structure, the maximal element can kedfimently.

Theorem 3.2:Consider a white PMV V, and letdenote V and all its gray descendants. If
all nodes inc are safe, whenever any region U defined on V is to be refreshed:

1) AC(U) can be calculated top-down in one pass.

2) Given the partially ordered set AC(U) on V, the calculation ax®C(U) on V can

be done in one pass/]
Proof of Theorem 3.2:

1) For any safe gray node V', given the subset of PCK vafudisat is in AC(U)
from its parent, we need to put in AC(U) the set of cache regiaetermined by
K in V'. A is the exact set of cache regions in V’ that need to be muAG{U),
because from the definition of a safe viewgdoesn't overlap or is contained by
any consistent or completeness region defined on V', nor does iapverlis

contained by the rest of the present CRs in V. Further, adding AC(U)
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doesn’t result in adding additional cache regions from its parecaube of the
first condition of the definition of safe.

2) From 1), the descendents of V don't affect AC(U) on V. ThusQlet AC(U),
from Lemma 3.7Q is a tree. Lel’ be empty, we check the tree recursively top
down from the root, let it be Y. If a node X is a completenessmeghen we add
it to I'; otherwise, we do the checking on each child of X. If Y is n®t, iadd it to
T.

We prove thal" = MaxAC(U). If Y is a complete or a presence region, we ar
done. Otherwise, let, 8 be the set of all consistency regions and completeness
regions inQ respectively. {Y} = Max 2 —B), since it is the root of the tree. Now
we proveI' — {Y} = Max(Q2 — a) by contradiction. Suppose there is a
completeness region Z M, such thaf" — {Y} doesn’t cover Z. Then Z doesn’t
have any ancestor that is a completeness region. Then frongaonéghan, Z must

be visited and put intb — {Y}, contradicting the assumption.

Further, the cleaning step doesn’t eliminate Y, since it isrdoé Thusl' =

MaxAC(U). [
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Rule 1: A cache graph is a DAG.

Rule 2:  Only white nodes can have independent completeness
or consistency control tables.

Rule 3: A view with more than one parent must be a white circle.

Rule 4: If a view has the shared-row problem according to
Lemma 5.2, then it cannot be gray.

Rule 5: A view cannot have incompatible control tables.

Figure 3.11 Cache schema design rules

3.5 Design Issues for Caches

In this section, we investigate conditions that lead to unsafe ¢agbe/s and propose
appropriate restrictions on allowable cache constraints. In particule develop three
additional rules to guide cache schema design, and show that R&lare a necessary and

sufficient condition for (all views in) the cache to be safe.

3.5.1 Shared-Row Problem

Let's take a closer look at the AuthorCopy and BookCopy example definBection 3.3.
Suppose a book can have multiple authors. If BookCopy is a rectangke ce-authoring is

allowed, a book in BookCopy may correspond to more than one control-keényor(dit
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value, and thus belong to more than one cache region. To reason aboutusicns] we

introduce cache-instance DAGS.

Definition: (Cache instance DAG) Given an instance of a cache DAGVg E>, we
construct its cache instance DAG as follows: make eachnr@ach node oV a node; and
for each edge M-t Vjin E, for each pair of rows s inj\and tin \, if s.K; = t.K;;’ then

add an edge= t. [

Definition: (Shared-row problem) For a cache DAG W, E>, a view V inW has the

shared-row problem if there is an instance DAG s.t. a row in V has more than onelparent.

There are two cases where a view V has the shared-row problethe first case
(Lemma 3.8), we can only eliminate the potential overlap of regiong defined by
different presence control tables if V is view-level consisté&unsidering the second
condition in the definition of safe, we have Rule 3 in Figure 3.11. Fos¢hend case

(Lemma 3.9) we enforce Rule 4 in Figure 3.11.

Lemma 3.8: Given a cache schemd\k E>, view V inW has the shared-row problem if V

has more than one parent.

Proof of Lemma 3.8:

(By constructing an instance DAG). Suppose V has two PCTsnflT2 on
attributes A and B respectively. Suppose values al and bl are in Tl12and T
respectively. ForarowtinV, if tA =al, t.B = bl, then t tvas parents: al and bl.

Thus V has the shared-row problem. [J
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Lemma 3.9:Given a cache schema\s E>, for any view V, let the parent of V be.W has

the shared-row problem iff the presence key K irfof Vis nota key iny. [
Proof of Lemma 3.9:

(sufficiency) Since K is not a key for;Vthere exists an instance of,\éuch that
there are two rows t1 and t2 in,M1.K=t2.K. Then forarow tin V, s.t. t.K = t1.K,
both t1 and t2 are t's parents.

(necessity) Because V has the shared-row problem, thereimstance of V, such
that a row t in V has two parents, t1 and t2 in $ince t1.K = t2.K=t.K, K is not a

key for Vp. [J

3.5.2 Control-Table Hierarchy

For a white view V in the cache, if it has consistency orpietaness control tables beyond
those implicit in the Presence Assumption, then it may have pyan@ regions. In our
running example, suppose BookCopy is a white rectangle; an author may hathanaee
publisher. If there is a consistency control table on publisherld, thek@py may have
overlapping regions. As an example, Alice has books 1 and 2, Bob has bauk \8hite
books 1 and 3 are published by publisher A, book 2 is published by publishgyuBligher

A is in the consistency control table for BookCopy, then we haveotx@dapping regions:

{book 1, book 2} by Alice, and {book 1, book 3} by publisher A.
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Definition: (Compatible control tables) For a view V in the cache, let the presence
controlled-key of V be K and let the set of its consistency and completeness control-keys be
K.
1) For any pair K and K in K, we say that Kand K, are compatible iff FD K> K, or
FD Ky~ Kj.
2) We sayK is compatible iff the elements ki are pair-wise compatible, and for any K

in K, FD K=>Ky. [

Rule 5 is stated in Figure 3.11. We require that a new cache aiohstan only be

created in the system if its addition does not violate Rules 1-5.

Theorem 3.3:Given a cache schers@V, E>, if it satisfies rules 1-5, then every view\
is safe. Conversely, if the schema violates one of these h#ées,is an instance of the cache

satisfying all specified integrity constraints in which some view isfensa

Proof of Theorem 3.3:

(Sufficiency) by contradiction. Suppose there exists a PMV Vishatt safe. There

are two cases:

Case 1: There exists a pair of cache regions Ul and U2 in V, s.t. Ul and U2 overlap.
This violates Rule 5.

Case 2: Vis grey. La® denote the set of cache regions in V defined by its presence
control-key values. Again, there are two cases:

Case 2.1: There are Ul and UZirsuch that Ul and U2 overlap.
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This implies that V has shared-row problem. Then it violates rule 3 or 4.
Case 2.2: There are Ul and U2Qnand U3 in V, such that Ul and U2 are
contained in U3.

This implies that V has its own consistency control-tables, which violates rule 2.

(Necessity) We use variations of the cache schema in Figure a.1dounter
examples in a proof by contradiction.

Case 1: Rule 1 is violated. Then <W, E> violates the definition of cache schema.
Case 2: Rule 2 is violated.

Suppose BookCopy is required to be consistent by type; author al has baois bl
b2; a2 has a book b3; and b1, b2, b3 are all of type paperback. Then Boak@opy
safe because cache regions {bl, b2} (by al), {b3} (by a2) are contairted one
defined by paperback type.

Case 3: Rule 3 is violated.

Suppose ReviewCopy is a rectangle or gray. If it is angb¢, suppose book bl has
two reviews rl, and r2, from reviewers x and y, respectively;otemeviews rl and
r3. Since cache regions {rl, r2} (by bl) and {rl, r3} (by x) overlap, ReQ@@py is
not safe.

Next, if ReviewCopy is a circle, suppose author al has books bl amadithdr a2
has a book b3; books b2, b3 have reviews r2, r3, respectively. Since caohs reg
{b1, b2} (by al) and {b2, b3} (by correlation with ReviewCopy), BookCopyas$

safe.
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Case 4: Rule 4 is violated.
Suppose a book can have multiple authors and BookCopy is gray. Suppose
AuthorCopy is consistent by city; author al has books b1l and b2; authorla®kas
b1l and b3; author al and a3 are from WI, a2 is from WA.
First, suppose BookCopy is a rectangle. Since cache regions {b1, bapYbibl,
b3} (by a2) overlap, BookCopy is not safe.
Second, suppose BookCopy is a circle. Since cache regions {al, a3}l pgpnty
{al, a2} (by consistency correlation with BookCopy) overlap, AuthorCopgois
safe.
Case 5: Rule 5 is violated.
Suppose ReviewerCopy is required to be consistent both by gendely aity;b
reviewers x and y are from WI, z is from WA; x and z ardemnahile y is female.
Since cache regions: {x, y} (by WI), {x, z} (by male) overlap,vitevCopy is not

safe.[]
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Chapter 4

Enforcing Data Quality Constraints for View-level
Granularity

How can we efficiently ensure that a query result meetsttted C&C requirements? This
chapter answers this question for a simplified case where 1judiylynaterialized views are
allowed in the cache schema; 2) all the rows in a view aneatty consistent. We explain
how C&C constraints are enforced in MTCache, a prototype midditabase cache, built
on the Microsoft SQL Server codebase, including how constraints plchrepdate policies
are elegantly integrated into the cost-based query optimizer.istansg/ constraints are
enforced at compile time while currency constraints are ezdioat run time with dynamic
plans that check the currency of each local replica before useseledt sub-plans
accordingly. This approach makes optimal use of the cache DBMS athihe same time
guaranteeing that applications always get data with sufficient quaditizdir purpose.

The rest of the chapter is organized as follows. Section 4.5 giweoverview of the
MTCache framework. Section 4.2 describes mechanisms to keep trexdaloflata quality.
We develop techniques to enforce C&C during query processing troisdc3 and report

analytical and experimental results in Section 4.4.
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4.1 MTCache Framework Overview

We have implemented support for explicit C&C constraints as paroprototype mid-tier

database cache, MTCache, which is based on the following approach:

1)

2)

3)

4)

5)

A shadow database is created on the cache DBMS, containing théaddeseas the
back-end database, including constraints, indexes, views, and permissionghbut
all tables empty. However, the statistics maintained on the shtdid@s, indexes
and materialized views reflect the data on the back-end server rather thaahte c
What data to cache is defined by creating materialized voewthe cache DBMS.
These materialized views may be selections and projectidablet or materialized
views on the back-end server.

The materialized views on the cache DBMS are kept up to dagQhyServer's
transactional replication [Ise01, Hen04]. When a view is creaedyatching
replication subscription is automatically created and the view is populated.

All queries are submitted to the cache DBMS, whose optimizedekevhether to
compute a query locally, remotely, or partly locally and partgmately.
Optimization is entirely cost based.

All inserts, deletes and updates are submitted to the cache DBNI&) then

transparently forwards them to the back-end server.

We have extended this cache prototype to support queries with C&@avoiss We

keep track of which materialized views are mutually consistefle¢t the same database

snapshot) and how current their data is. We extended the optimizeletd the best plan
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taking into account the query’'s C&C constraints and the status ofcappl local
materialized views. In contrast with traditional plans, the gee@rplan includes run-time
checking of the currency of each local view used. Depending on the outdédhis check,
the plan switches between using the local view and submittiegnate query. The result
returned to the user is thus guaranteed to satisfy the quegSstency and currency
constraints.

Our prototype currently only supports table-level consistency androdeslow C&C
constraints with grouping columns, such as described by the phras.idbhn” in E4. They
would have no effect in any case because all rows within a\Vemalare always mutually
consistent (they are updated by transactional replication).

We rely on the SwitchUnion operator in SQL Server. This operatorNads input
expressions. When opening the operator, one of the first N inp@iecsexi and all rows are
taken from that input; the other N-1 inputs are not touched. Which inp@iestes] is
determined by the last input expression, here called the seteqicgssion. The selector
must be a scalar expression returning a number in the range 0 to Nelselector
expression is first evaluated and the number returned determinels are of the first N
inputs to use. We use a SwitchUnion operator to transparently switcbdreretrieving data
from a local view and retrieving it with a query to the back-eaves. The selector
expression checks whether the view is sufficiently up-to-aasatisfy the query’s currency

constraint.
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4.2 Cache Regions

To keep track of which materialized views on the cache DBMS$naiteally consistent and
how current they are, we group them into logical cache regions. nid&atenance
mechanisms and policies must guarantee that all views withisathe region are mutually
consistent at all times.

Our prototype relies on SQL Server’s transactional replicatiaturfe [Ise01, Hen04] to
propagate updates from the back-end database to the cache. Updatespagated by
distribution agents. (A distribution agent is a process that wakesgufarly and checks for
work to do.) A local view always uses the same agent but an aggnbenresponsible for
multiple views. The agent applies updates to its target viewdrangaction at a time, in
commit order. This means that all cached views that are updatéidebgame agent are
mutually consistent and always reflect a committed state. d;jl@ticviews using the same
distribution agent form a cache region.

Our current prototype is somewhat simplified and does not impleraeheaegions as
separate database objects. Instead, we added three columns ttalthge da@ia describing
views: cid, update_interval, update_delay. Cid is the id of the cagmnr&o which this
view belongs. Update_interval is how often the agent propagatesespwathis region.
Update_delay is the delay for an update to be propagated to the froneerttie minimal
currency this region can guarantee. Update_delay and update intarvdle estimates

because they are used only for cost estimation during optimization.
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Our mechanism for tracking data currency is based on the iddaeaftbeat We have a
global heartbeat table at the back-end, containing one row forocaabe region. The table
has two columns: a cache region id and a timestamp. At reguéawals, say every 2
seconds, the region’s heart beats, that is, the timestamp coluima réfgion’s row is set to
the current timestamp by a stored procedure. (Another possilim deses a heartbeat table
with a single row that is common to all cache regions, but thidyates having different
heartbeat rates for different regions.)

Each cache region replicates its row from the heartbeatitdabla local heartbeat table
for the region. The agent corresponding to the cache region walkésagular intervals and
propagates all changes, including updates to the heartbeat tabkm&s@amp value in the
local heartbeat table gives us a bound on the staleness of the thatiaregion. Suppose the
timestamp value found in the region’s local heartbeat tableaad the current time is
Because we are using transactional replication, we know thapddites up to tim& have

been propagated and hence reflect a database snapshot no oltlerthan

4.3 Implementation

A traditional distributed query optimizer decides whether to usal ldata based on data
availability and estimated cost. In our setting, it must alge iato account local data
properties (presence, consistency, completeness and currenmfytbaaranteeing that the
result it produces satisfies the data quality requirementsfigoleiti a query. Our approach

depends on two key techniques of Microsoft's SQL Server optimizeredyired and
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delivered plan properties; and 2) the SwitchUnion operator. We trari3af requirements
into a normalized form (Section 4.3.1). We then employ the required aiverddl plan
properties framework to perform consistency checking during gocemypilation (Section
4.3.2), and use the SwitchUnion operator to enforce currency checking ptexeeution
time (Section 4.3.3). Further, a cost estimator for the SwitchUnioratopes developed
(Section 4.3.4), giving the optimizer the freedom to choose the besbated solely on

cost.

4.3.1 Normalizing C&C Constraints

We extended the SQL parser to also parse currency clausemfdimeation is captured,
table/view names resolved and each clause converted into a C&€aaunef the form
below.

Definition: (Currency and consistency constraint A C&C constraint C is a set of
tuples, C = {<h, S;>,..., {<bn, $>}, where eacls is a set of input operands (table or view
instances) and;bs a currency bound specifying the maximum acceptable stalehdbe
input operands . [

C&C constraints are sets (of tuples), so constraints from eliffeclauses can be
combined by taking their union. (After name resolution, all input operagids=nce unique
table or view inputs; the block structure of the originating expmesaffects only name

resolution.) We union together all constraints from the individual ekusto a single
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constraint, and convert it to a normalized form with no redundant or cantnadi

requirements.

Definition: (Normalized C&C constraint) A C&C constraint C = {<lp, S;>,..., {<bn, $>}
is in normalized form if all input operands (in the s8jsare base tables and the input

operand sets; ..., S, are all non-overlappingl’

Algorithm NormalizeConstraint
Inputs: A C&C constraint C
Outputs: A normalized C&C constraint C’

begin
C =C;
/I Step 1. Eliminate references to views
for (each tuple <c, S>in C’)
while (exists v S such that v is a view)
replace v in S by the input operands of the view expression;
end while
end for

/I Step 2. Combine overlapping tuples

while (exist p1= <c1, S1>and pz = <Cy, S;>In C’'s.t. S1 n Sy #0)
p = <min(cy, C2), (S1 0 Sy) >
delete p; and p, from C’;
addptoC

end while

/I Step 3. Add default requirement
S = all input operands of the query that are not included in C’;
if (S#£0)
add the tuple <0, S>to C;
end NormalizeConstraint

Figure 4.1 Algorithm for C&C constraint normalizati on
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The first condition simply ensures that the input sets all referactual input operands
of the query (and not views that have disappeared as a result oéxpansion). The second
condition eliminates redundancy and simplifies checking.

The algorithm that transforms a set of constraints into norewhlfiarm is shown in
Figure 4.1. At step 1, the algorithm recursively expands allreeées to views into
references to base tables. At step 2, it repeatedly melgeslak that have one or more
input operands in common. The bound for the new tuple is the minimum of the bouihes of
two input tuples. Input operands referenced in a tuple must all be lfi®rsaine database
snapshot. It immediately follows that if two different tuples hawg input operands in
common, they must all be from the same snapshot, and the snapsheatisfisthe tighter
of the two bounds. The merge step continues until all tuples are disjoint. Step 3 sim@y adds
default requirement on all input operands not yet covered. We chose akefault the
tightest requirements, namely, that the input operands must be muiadigtent and from
the latest snapshots, i.e., fetched from the back-end databasggfthiefault has the effect
that queries without an explicit currency clause will be sethé back-end server and their
result will reflect the latest snapshot. In other words, querig®ut a currency clause retain

their traditional semantics.

4.3.2 Compile-time Consistency Checking

SQL Server uses a transformation-based optimizer, i.e., the optgeizerates rewritings by

applying local transformation rules on subexpressions of the queryyiAg@l rule produces
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substitute expressions that are equivalent to the original ekpres3perators are of two
types: logical and physical. A logical operator specifieatvaigebraic operation to perform,
for example, a join, but not what algorithm to use. A physical opeedso specifies the
algorithm, for example, a hash join or merge join. Conceptually, optimrzaroceeds in
two phases: an exploration phase and an optimization phase. The explanasergenerates
new logical expressions, that is, algebraic alternatives. Thmimption phase recursively
finds the best physical plan, that is, the best way of evaluditenguery. Physical plans are
built bottom-up, producing plans for larger and larger sub-expressions.

Required and delivered (physical) plan properties play a veppriant role during
optimization. There are many plan properties but we’ll illustréite idea with the sort
property. A merge join operator requires that its inputs be sorted gnitheolumns. To
ensure this, the merge join passes down to its inputs a requitgorgoerty (a list of sort
columns and associated sort order). In essence, the merge maying: “Find me the
cheapest plan for this input that produces a result sorted onclesens.” Every physical
plan includes a delivered sort property that specifies if thdtredl be sorted and, if so, on
what columns and in what order. Any plan whose delivered properties deatigfy the
required properties is discarded. Among the qualifying plansptigewith the estimated
lowest cost is selected.

To integrate consistency checking into the optimizer we mustifgpgnd implement
required consistency properties, delivered consistency properties;ul@sdfor deciding

whether a delivered consistency property satisfies a required consigtepeyty.



79

4.3.2.1 Required Consistency Plan Property

A query’s required consistency property consists precisely ohthmalized consistency
constraint described above that is computed from the query’'s currdagges. The
constraint is attached as a required plan property to the robe afuery. A pointer to this

property is inherited recursively by its children.

4.3.2.2 Delivered Consistency Plan Property

A delivered consistency property consists of a set of tupleg &8 where R is the id of a
cache region an&; is a set of input operands, namely, the input operands of the current
expression that belong to region R

Delivered plan properties are computed bottom-up. Each physicatopéselect, hash
join, merge join, etc.) computes what plan properties it deliversdive properties of its
inputs. We can divide the physical operators into four categorieb, @sing a specific
algorithm to compute the delivered consistency property. The algoistismown in Figure
4.2.

The leaves of a plan tree are table or index scan operatorshlyposgh a range
predicate. If the input operand is a base table (or an index on sabise we simply return
the id of the table and the id of its cache region. Consistency pespaiwvays refer to base
tables. Hence, a scan of a materialized view returns the ttie efew’s input tables, not the

id of the view.
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Algorithm DrvdPropertyCalc
Inputs: op — an operator
Outputs: CPd

Begin
switch (the type of op)
/I case 1: table or index scan operator, possibly with a range predicate
case leaf operator:
CPd = {<R, S>}, which is directly obtained from the table, view or index
referred to by op;
break;

/I case 2: operators with only one relational operand
case Single operand operator:
CPd = the property of the relational operand of op;
break ;

/I case 3: join operators with a set of operands
case join operator:
Let {CPd;} be the set of properties of op’s relational operands;
CPd =0 CPd;;
repeat
Merge <R31, S; >and <R, S, Q,> in CPd by <R, S> if
R1=R2,whereR=R3;,S=5; 0OS..
end repeat
break ;

/I case 4: SwitchUnion operator
case SWU operator:
Let {CPd;} be the set of properties of op’s relational operands, i=1..n;
CPd = CPd; [ initialization
for each cpd, where i =2..n
CPdTemp = g, //initialization
for each <R, S>in CPd
CPdTemp O = IntersectByPhrase(CPd, <R, S>);
end for
CPd = CPdTemp;
end for
break;
end DrvdPropertyCalc

Figure 4.2 Algorithm for calculating derived C&C p roperty
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All operators with a single relational input such as filtevjgat, aggregate, and sort do
not affect the delivered consistency property and simply copy tpegy from its relational
input.

Join operators combine two or more input streams into a single outpams We
compute the consistency property of the output from the consistencytmepd the two
(relational) children. If the two children have no inputs from the seaohe region, the
output property is simply the union of the two child properties. If theye two tuples with

the same region id, the input sets of the two tuples are merged.

Algorithm IntersectByPhrase
Inputs:  CPd; — derived C&C property,

<R, S> - a phrase of derived C&C property
Outputs: CPd — intersected C&C property

begin
CPd = [,
/Il check all phrases in CPd; that intersect <R, S>
for each phrase <R;, Si> in CPd;, where S n S;# [
/l decide the correct region id

if (R==R)
R, = R;
else

/Il local is weaker than remote, take the weaker guarantee

if one of the region is remote, w/o loss of generality, suppose R;
R, = R;

else //both local, then R; is undecided
R, = UNDECIDED,;

end if

CPd = {<R2, (Sl N Sz)>};

end for
end IntersectByPhrase

Figure 4.3 Algorithm for calculating intersection of C&C property
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A SwitchUnion operator has multiple input streams but it does not centhém in any
way; it simply selects one of the streams. So how do we diéveelivered consistency of a
SwitchUnion operator? The basic observation is that we can only gematdatt two input
operands are consistent if they are consistent in all childreau®e@ny one of the children
may be chosen). The algorithm repeatedly calculates the commontprgparanteed by
two inputs. A subroutine algorithm in Figure 4.2 calculates the compnoperty from a

single phrase and a C&C property (i.e., a set of phrases).

4.3.2.3 Satisfaction Rules

Plans are built bottom-up, one operator at a time. As soon as @oeeperator is added to
a plan, the optimizer checks whether the delivered plan propssdtesfy the required plan
properties. If not, the plan, i.e., the new root operator, is discardedndliee the new
consistency property in this framework.

Our consistency model does not allow two columns from the same taplet T to
originate from different snapshots. It is possible to generatanatipht produces a result with
this behavior. Suppose we have two (local) projection views of T thamdé¢o different
cache regions, say R1 and R2, and cover different subsets of cdramn$. A query that
requires columns from both views could then be computed by joining thei¢ws. The
delivered consistency property for this plan would be {<R1, T>, <R2, Thj¢chvconflicts

with our current consistency model. Here is a more formal definition.
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Conflicting consistency property: A delivered consistency property CPd is conflicting
if there exist two tuples RS> and <R S> in CPd such the® N § # @ and R# R,.

A consistency constraint specifies that certain input operands balgstg to the same
region (but not which region). We can verify that a complete @#sfies the constraint by
checking that each required consistency group is fully containedome delivered
consistency group. The following rule is based on this observation.

Consistency satisfaction rule A delivered consistency property CPd satisfies a required
consistency constraint CCr if and only if CPd is not conflicting &deach tuple <B S>
in CCr, there exists a tuple §R5¢> in CPd such th& is a subset di.

While easy to understand, this rule can only be applied to complete pécause a
partial plan may not include all input operands covered by the eejcansistency property.
We need a rule that allows us to discard partial plans that deatisfy the required
consistency property as soon as possible. We use the followingnrpiartial plans to detect
violations early.

Consistency violation rule A delivered consistency property CPd violates a required
consistency constraint CCr if (1) CPd is conflicting or (2) éhexists a tuple <R Ss> in
CPd that intersects more than one consistency class in CCrs,tlla¢re exist two tuples
<B1;, S1> and <B2, S2> in CCr such tha®; N S # @ andSy N S # 3.

We also added a simple optimization to the implementation. If tipeiresl currency
bound is less than the minimum delay that the cache region caantpegrwe know at
compile time that data from the region cannot be used to answgué¢he In that case, the

plan is immediately discarded.
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4.3.3 Run-time Currency Checking

Consistency constraints can be enforced during optimization, buhcyrcenstraints must
be enforced during query execution. The optimizer must thus produce pktnsheck
whether a local view is sufficiently up-to-date and switch ketwusing the local view and
retrieving the data from the back-end server. For this purposeisevghe SwitchUnion
operator described earlier.

Recall that all local data is defined by materialized vidwsyical plans making use of a
local view are always created through view matching, thahésyiew matching algorithm
finds an expression that can be computed from a local view and that esodunew
substitute for the original expression, but exploiting the view. Mietails about the view
matching algorithm can be found in [GLO1].

Consider a (logical) expression E and a matching view V from which E czonfqauted.
If there are no currency constraints on the input tables of E, matehing produces a
“normal” substitute consisting of, at most, a select, a projettaagroup-by on top of V. If
there is a currency constraint, view matching produces a substituisisting of a
SwitchUnion on top, with a selector expression that checks whethatis¥ies the currency
constraint, as shown in Figure 4.4. The SwitchUnion has two input sigissa local
branch and a remote branch. The local branch is the “normal” substinigoned earlier
and the remote plan consists of a remote SQL query createdheoaniginal expression E.
If the selector expression, which we call the currency guaraluates to true, the local

branch is chosen, otherwise the remote branch is chosen. SwitchUnionorspenae
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Figure 4.4 Substitute with a SwitchUnion and a cur  rency guard

generated at the leaf-level but they can always be propagpteards and merged with
adjacent SwitchUnion operators. However, these and other optimizatnwmadving
SwitchUnion are left as future work.

As mentioned earlier, we track a region’s data currency usihgartbeat mechanism.
The currency guard for a view in region R is an expression eguivia the following SQL
predicate:

EXISTS ( SELECT 1 FROM Heartbeat_R

WHERE TimeStamp > getdate() — B )

where Heartbeat R is the local heartbeat table for regiomdR,Bais the applicable
currency bound from the query.

The above explanation deliberately ignores the fact that clockisfferent servers may
not be synchronized. This complicates the implementation but is nenhtiessto

understanding the approach.

4.3.4 Cost Estimation

For a SwitchUnion with a currency guard we estimate the cost as
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Figure 4.5 Synchronization cycle and data currency

c= p* Ciocar + (1_ p) DCremote + ch

wherep is the probability that the local branch is executeg, is the cost of executing the
local branchgremote the cost of executing the remote branch, agdhe cost of the currency
guard. This approach is similar to that of [CHS99, DR99].

The cost estimates for the inputs are computed in the normal wayelmged some way
to estimatep. We'll show how to estimatgp assuming that updates are propagated
periodically, the propagation interval is a multiple of the heatthearval, their timing is
aligned, and query start time is uniformly distributed.

Denote the update propagation intervalf laynd the propagation delay ésThe currency
of the data in the local view goes through a cycle illustratdelgure 4.5. Immediately after
propagation, the local data is no more thavut of date (the time it took to deliver the data).
The currency of the data then increases linearly with tona-f when the next propagation

event takes place and the currency drogs to
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Suppose the query specifies a currency bound.ofhe case whed < B < d+f is
illustrated in the figure. The execution of the query is equiddbly to start at any point
during a propagation cycle. If it starts somewhere in the intemaaked “Local”, the local
view satisfies the currency constraint and the local branch iichd$e length of this
interval isB — dand the total length of the cyclefiso the probability that the local branch
will be chosen igB — d)/f

There are two other cases to consideB4fl, the local branch is never chosen because
the local data is never sufficiently fresh g80. On the other hand, B > d+f, the local
branch is always chosen because the local data is alwaysesulficfresh sop=1. In

summary, here is the formula used for estimating p:

0 fB—ds<0
p= {(&mﬁ fO<B-d <f (1)
1 ifB—d>f

The special case when updates are propagated continuously is comediyed by

settingf = 0. Then ifB > d, we havep = 1; otherwisep = 0.

4.4 Analysis and Experiments

This section reports analytical and experimental results wingrototype. We show how
the choice of query plan is affected as the query’s C&C constilaamges. We also analyze

the overhead of plans with currency guards.
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4.4.1 Experimental Setup

For the experiments we used a single cache DBMS and a back+ered 3de back-end
server hosted a TPCD database with scale factor 1.0 (about 1GBgxpariments reported
here used only the Customer and Orders tables, which contained 150,000 and 1,500,000
rows, respectively. The Customer table was clustered onintsuyrkey, c_custkey, and had
a secondary index on c_acctbal. The Orders table was clusteréid pnimary key,
(o_custkey, o_orderkey).

The cache DBMS had a shadow TPCD database with empty tablegthwtatistics
reflecting the database on the back-end server. There were two local views

cust_prj(c_custkey, c_name, c_nationkey, c_acctbal)

orders_prj(o_custkey, o_orderkey, o_totalprice)

Which are projections of the Customer and the Orders tables, respectivelyrCusd a
clustered index on the primary key c_custkey and orders_prj had aretushdex on
(o_custkey, o_orderkey). They had no secondary indexes. The views widferent cache
regions and, hence, not guaranteed to be consistent. The propagation interiRgs are

shown in Table 4.1.

cid | interval | delay | views
CR1 1 15 5 cust_prj
CR2 | 2 10 5 orders_prj

Table 4.1 Cache region settings
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4.4.2 Workload Distribution (Analytical Model)

Everything else being equal, one would expect that when currencyeraguits are relaxed
further, more queries can be computed using local data and hencefmtioeeworkload is
shifted to the cache DBMS. We will show how the workload shifts vihercurrency bound
B is gradually increased in Q7 (Figure 4.7).

The query plan for Q7 uses either the view cust_prj or a remetsy.gii the query is
executed repeatedly, how often can we expect it to run loaaiiyhew does this depend on

the currency bounB?

S1: SELECT c_custkey, c_name, o_orderkey, o_totalprice
FROM customer, orders
WHERE c_custkey = 0_custkey [AND c_custkey<$K]
[CURRENCY clause ]
S2: SELECT c_custkey, c_ name FROM customer
WHERE c_acctbal between $A and $B
CURRENCY BOUND 10 on (customer)

Figure 4.6 Query schemas used for experiments

Q1: $K =500 P1
Q2: No range predicate; no currency clause P2
Q3: $K =500; BOUND 10 ON (customer, orders) P1

Q4: $K =500; BOUND 2 ON (customer), BOUND 20 on (orders) P4
Q5: $K =500; BOUND 10 ON (customer), BOUND 20 on (orders) P5
Q6: $A =100; $B =105 P1
Q7: $A =100; $B =110 P3

Figure 4.7 Query variants used for experiments
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Figure 4.8 Local workload at the cache

Assuming query arrivals follow a Poisson process, we plotted fundt)oinofn Section
4.3.4 in Figure 4.8. In Figure 4.8 (a) it is plotted as a function ofuherecy bound for f =
100 andd = 1, 5, 10, respectively. When the currency bound is less than thettelayery
is never executed locally. As the currency bound is relaxedrabgoin of queries executed
locally increases linearly until it reaches 100%. This lesaleached wheB = d+f, i.e.,
when it exceeds the maximal currency of local data. When thg imhereases, the curve just
shifts to the right.

Figure 4.8 (b) shows the effects of varying the refreshniateWe fixedB = 10 and
chosed = 1, 5, 8, respectively. When the refresh interval is suffigiesttiall, that isf <B —

d, the query can always be computed locally. When the refresh inteimateased, more of
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the workload shifts to the back-end. The effect is much more sigmifat the beginning and

slows down later.

4.4.3 Query Optimization Experiments

We have fully integrated currency and consistency considerations hetacdst-based
optimizer. The first set of experiments demonstrate how the @eatitmichoice of plan is
affected by a query’s currency and consistency requirementdaldgalocal views, their
indexes and how frequently they are refreshed.

We used different variants of the query schemas in Figure 4.6nettitay varying the
parameter $K and the currency clause in S1 for Q1 to Q5; $A anad $B for the rest. The
parameter values used and the logical plans generated are showh kigare 4.7 and
Figure 4.9, respectively. The rightmost column in Figure 4.7 indicatésh plan was
chosen for each query.

If we do not include a currency clause in the query, the default esgeirts apply: all
inputs mutually consistent and currency bound equal to zero. Q1 and Q2 doluae iac
currency clause. Since local data can never satisfy thenoyr requirement, remote queries
were generated. Because of the highly selective predicate ith&aptimizer selected plan
1, which sends the whole query to the back-end. For Q2, plan 2 was seildtbbdcontains
a local join and two remote queries, each fetching a base tabieisicase, it is better to

compute the join locally because the join result is significdatlyer (72 MB) than the sum
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of the two sources (42 MB). Customers have 10 orders on average afoth®tion for a
customer is repeated 10 times in the join result.

A remote plan (plan 1) is also generated for Q3 but for a diffeeason. The applicable
local views cust_prj and orders_prj satisfy the currency bounds buth@otonsistency
requirement because they are in different cache regions. In Qélaxed the consistency
requirement between Customer and Orders and changed their gub@nuods (lower on
Customer, higher on Orders). The local views now satisfy thestensy requirement and
orders_prj also satisfies the currency bound but cust_prj will neveurbent enough to be
useful. Thus a mixed plan (plan 4) was selected by the optintizee relax the currency
bound on Customer further as in Q5, both local views becomes usable madpkelected.
Q3, Q4 and Q5 demonstrate how changing the currency can diastitahge the query
plan.

As we can see in Figure 4.9, every local data access is ptiegta currency guard,
which guarantees that local data that is too stale will never be used.

Optimization is entirely cost based. One consequence of this is that the optirazehoose
not to use a local view even though it satisfies all requirenifeibis cheaper to get the data
from the back-end server. This is illustrated by the following tweries. Even though they
differ only in their range predicates, the optimizer chooses different mattzem.

For Q6, a remote query was chosen even though the local view custigigddhe
currency requirement. The reason is the lack of a suitable segondex on cust_prj while

there is one at the back-end server. The range predicate inHfhhg selective (53 rows
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returned) so the index on c_acctbal at the back-end is very effeatnile at the cache the
whole view (150,000 rows) would have to be scanned. When we increase the range, as in Q7,
the benefit of an index scan over a sequential scan diminishespdard exploiting the local

view is chosen.
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Figure 4.9 Generated logical plans
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4.4.4 Currency Guard Overhead

To guarantee that the result satisfies the query’s currency hailvedsptimizer generates
plans with a currency guard for every local view in the plan. t\Méhthe actual overhead of
currency guards in the current system implementation? Wioaretime go? We ran a series
of experiments aimed at answering these questions using the queries shown §h2l'able
Qa is the simplest and fastest type of query but also very conmpuactice. The local
cache and the back-end server used the same trivial plan: lookupabustieeing index. For
Qb, both servers used the same plan: a nested loop join with ordersrgejsiCas the

(indexed) inner. Again, for Qc, both servers used the same plan: a complete table sca

Qa: SELECT c_custkey, c_name, c_nationkey,
key select c_acctbal, c_mktsegment
FROM customer

WHERE c_custkey =1

[CURRENCY 10 on (customer)]

Qb: SELECT c_custkey, c_name, o_orderkey,

join query o_totalprice

FROM customer, orders

WHERE c_custkey=0_custkey and c_custkey=1
[CURRENCY 10 on (customer), 20 on (orders)]

Qc: SELECT c_custkey, c_name, c_nationkey
non-key c_acctbal, c_mktsegment
select FROM  customer

WHERE c_nationkey =1
[CURRENCY 10 on (customer)]

Table 4.2 Queries used for experiments



96

Local Remote
Qa Qb Qc Qa Qb Qc
Cost (ms) 0.11 0.19) 2.39 0.24 0.42 0.90
Cost (%) 15.25| 21.30, 3.66| 3.59 4.31 0.41
Base query (ms) 0.72/ 0.89 65.30| 6.69| 9.74| 219.51

Table 4.3 Currency guard overhead

For each query, we generated two traditional plans without curadrexking (one local
and one remote) and a plan with currency checking. We ran the planusiency checking
twice, once with the local branches being executed and the witnethe remote branches
being executed. We then compared their execution times (elapsdwith the execution
times of the plans without currency guards. In each run, wenashed up the cache, then
executed the current query repeatedly (100,000 times for Qa and &lexecution, 1000
for Qc remote execution and 1000 for the others) and computed the agreagédon time.
Note that we executed exactly the same query in order to rduiffsx pool and cache
misses, thereby minimizing the execution time (and maximitiegelative overhead). The
last row of Table 4.3 shows the execution time for the queridswitrun-time currency
checking. The rest of the table shows the absolute and relativefansrency guards and
the number of output rows.

In absolute terms, the overhead is small, being less thariseoohd for Qa and Qb. In
the remote cases the relative overhead is less than 5% sloglp longer execution times.
However, in the local case the relative overhead of 15% for Qa Hidf@ Qb seems

surprisingly high, even taking into account their very short execution time.
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setup run shutdown IdealTotal
ms % | ms % ms | % ms %
Qa | 0.04 27.13| 0.06| 152.52| 0.01| 26.56/~0.07~11.51
Qb | 0.06/39.39| 0.09/ 98.52 0.01| 29.69/~0.10~14.32
Qc | 0.01 2.98| 1.99 3.79 0.04 46.21/~0.10 ~0.16

Table 4.4 Local overhead breakdown

Where does the extra time go? We investigated furtherddiipg the execution of local
plans. The results are shown in the first three columns of Tablevithdeach column
showing an absolute overhead and a relative overhead. Each column corréspome®f
the main phases during execution of an already-optimized queug kn, run plan and
shutdown plan. The absolute difference for a phase is the diffebetween the (estimated)
elapsed time for the phase in the plan with and without currenakiolge The relative
difference is as a percentage of the time of that phase iplan without currency checking.
In other words, both indicate how much the elapsed time of a phasednaased in the
plans with currency checking.

During the setup phase, an executable tree is instantiatedhifeoguéry plan, which also
involves schema checking and resource binding. Compared with a tradglanala plan
with currency checking is more expensive to set up becauseeéhbas more operators and
remote binding is more expensive than local binding. From Table 4.4eevéhat the setup
cost of a currency guard is independent of the output size buasesravith the number of

currency guards in the plan. For small queries such as Qa andeQiverhead for this phase
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seems high. We found that the overhead is not inherent but primandeddy earlier
implementation choices that slow down setup for SwitcshUnions witkerayrguards. The
problem has been diagnosed but not yet remedied.

During the run phase, the actual work of processing rows to prodeaegult is done.
The overhead for Qa and Qb is relatively high because running theplaos is so cheap
(Single indexed row retrieval for Qa, and 6-row indexed nekded join for Qb). The
overhead for a SwitchUnion operator during this phase consists of ttgo @aaluating the
guard predicate once and overhead for each row passing through @wengeraluating the
predicate is done only once and involves retrieving a row from tla¢ heartbeat table and
applying a filter to it. Qa just retrieves a single row frdme Customer table so it is not
surprising that the relative overhead is as high as it iscjJralhost 6000 rows pass through
the SwitchUnion operator so the absolute overhead increases but the l@rhead is
small, under 4%. There are some (limited) opportunities for speeding up this phase.

In an ideal scenario (i.e., with possible optimizations in platehauld be possible to
reduce the overhead of a currency guard to the overhead in Qagklaitdown cost. Based
on this reasoning, we estimated the minimal overhead for our vaokkibhe results are

shown in the ldealLocal column of Table 4.4.
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Chapter 5

Enforcing Data Quality Constraints for Finer
Granularity

The extension to finer granularity cache management fundamertiatiges every aspect of
the problem, imposing non-trivial challenges: 1) how the cache tdatiessquality; 2) how
administrators specify cache properties; 3) how to maintainatiee efficiently; and 4) how
to do query processing. While Chapter 3 addresses the firstghesgéons, in this chapter
we focus on the last one. A traditional distributed query optimizeides whether to use
local data based on data availability and estimated cost. Iretiings it must also take into
account local data properties (presence, consistency, completenessrrency). Presence
checking is addressed in [ZLGO5]; the same approach can be extendedhpleteness
checking. This chapter describes efficient checking for C&Ctcainss, the approach being
an extension of the framework developed in Chapter 4. Theorem 5.1, Theoreamd.2,
Theorem 5.3 guarantee the correctness of our algorithms.
The algorithms developed here are generalizations of those in CHajaterover finer

granularity C&C checking. In Chapter 4, consistency checking dea®e completely at
optimization time and currency checking at run time, because kel cache region

information is stable and available at optimization, while cusreimdormation is only
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available at run time. In this chapter we still perform as mumsistency checking as
possible at optimization time but part of it may have to be ddlay run time. For a view
with partial consistency guarantees, we don’t know at optimizatiea Wwhich actual groups
will be consistent at run time. Further, ad-hoc cache regionsamange over time, also
prompting run-time checking.

The rest of the chapter is organized as follows. Sections 5.1 tdllis8ate the
extensions to C&C constraints normalization, query compilation ¢immsistency checking,
and query execution time C&C checking respectively. Experimeamilanalytical results

are reported in Section 5.4.

5.1 Normalizing C&C Constraints

A query may contain multiple currency clauses, at most one peridéck. The first task is
to combine the individual clauses and convert the result to a noamal To begin the

process, each currency clause is represented as follows.

Definition: (Currency and consistency constraint A C&C constraint CCr is a set of
tuples, CCr = {<h, K1, $1, G>, ..., <k, Ky, S\, G>}, where S is a set of input operands
(table or view instances); s a currency bound specifying the maximal acceptablensss

of the input operands i8, G;is a grouping key anl; a set of grouping key values!

Each tuple has the following meaning: for any database irsté#n@e group the input
operands referenced in a tuple by the tuple’s groupingseten for those groups with one

of the key values irK;, each group is consistent. The key value Ketwill be used when
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constructing consistency guard predicates to be checked at rinNwmte that the default
value for each field is the strongest constraint.

All constraints from individual currency clauses are merged legeinto a single
constraint and converted into an equivalent or stricter normalared with no redundant

requirements.

Definition: (Normalized C&C constraint) A C&C constraint CCr = {<h K1, S, G1>, ...,
<bn, Kn, Sy, Go>} is in normalized form if all input operands (in the s8fsare base tables

and the input operand s&s..., S, are all non-overlapping.

We extend the algorithm for transforming a set of constramsnormalized form given
in Figure 4.1 to cover finer granularity. The structure of therélyn remains unchanged,
while the rules are generalized. As shown in Figure 4.1, theithlgofirst recursively
expands all references to views into references to base.talaet, it repeatedly merges any
two tuples that have one or more input operands in common, but using thsirfgll

generalized rule. Refer to [RG02] for the concettibute closure

Normalization Rule: Given CCi = {<b;, K1, S, G1>} and CCp = {<by, K2, S, G2>}, SN
S, # @, replace the two constraints by CCr = {Kh,S, G >}, where b = min (i b)), andS=
S1US,. Given a set of functional dependencies (FDs) F over the query melation Y, let
Gi" be the attribute closure @; w.r.t. F, where i = 1, 2. TheB = G;" NG,". LetK;" =

IMeogi=ki(Y), i =1, 2. TherK = K1+ ] K2+. 0
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Given a set of FDs over the base relations, and the equivalessescladuced by a
query, we can infer the set of FDs over the query resultaoelaior example, for Q2, let
CCn = {<10, g, {Authors, Books}, {city}>}, CCk = {<5, @, {Books}, {isbn}>}. CCnr,
requires that if we group the query result by city, then withiin gagup, all the rows have to
be consistent. CGrequires that if we group the result by isbn, then each book row bas to
consistent. From the key constraints in Authors and Books, togethetheifbin condition
in Q2, we know that isbn is a key for the final relation. Thus €Gk5, @, {Authors,
Books}, {city}>}. If an instance satisfies CCr, then it must sigtisoth CCgand CCs, and
vice versa.

In what follows, we formally define implication and equivalence eetwany two CCrs,
and prove that when K1 and K2 are set to default, then the outcahe mdrmalization rule
CCr is equivalent to the inputs GCrCCr, w.r.t. F. Further, we prove that not knowing all

FDs doesn't affect the correctness of the rule.

Definition: (Implication, Equivalence) Given two C&C constraints C€and CCy, a cache
schemaA, and a set of FDs F ovér, we say that CGrimpliesCCr, w.r.t A and F, if every
instance ofA that satisfies F and CCalso satisfies CGrIf CCr; implies CCg w.r.t A and F

and CCs implies CCi w.r.t A and F, then CGrand CCs are equivalentv.r.t A and F.[]

Lemma 5.1: Given a cache schemyg for any CCr = {<bK, S, G>} and any instance of,
the consistency constraint in CCr can be satisfied wrand F, iff the grouping ke’ of

the cache region partitioning &in A is a subset o0& w.r.t. A and F. [

Proof of Lemma 5.1:
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Sufficiency is obvious. Now we prove necessity. Since each groupoopigg key
G belongs to one group by grouping k&y, G functionally determiness’. Thus

G 0 G.

Theorem 5.1:1f K;andK,are set to default, then the output of the Normalization Rule CCr

is equivalent to its input C&lrl CCr, w.r.t. A and F. [
Proof of Theorem 5.1:

Given any instance oA\ that satisfies {CCr} w.r.t. to F, from Lemma 5.1, the
grouping key of its cache region partitioning is a subs&’oSinceG LIG", i = 1, 2,
G"OG;i", the consistency constraints in (QCECr} are satisfied. Further, since the
consistency partitioning satisfies currency constraint b, and m=£bnib,), b, and b

are also satisfied.]

From Lemma 5.1, it follows that for any instance that satifitge CCg and CCgw.r.t.
F, the grouping key of its cache region partitioning has to be a sob&etThus, it also

satisfies CCr. Since it satisfiegdnd b, and b = min(ly 1), it also satisfies b.

Theorem 5.2: Suppose FDs over a cache scheiaF+ [J F+. The output of the

Normalization Rule {CCr} w.r.t. F implies its input CQt CCr, w.r.t. A and F. [J

Proof of Theorem 5.2:



104
Let G = G1' NGy  w.rt. F,G = G;" NG," w.r.t. F. ThenGUG’. Thus for any
instance ofA that satisfies CCr, sindé = K;* LIK," w.r.t. F, from Lemma 5.1, it

satisfies CGrll CCn. [

5.2 Compile-time Consistency Checking

We take the following approach to consistency checking. At optiroizéime, we proceed

as if all consistency guarantees were full. A plan is teged it would not produce a result
satisfying the query’s consistency requirements even under shamation. Whenever a
view with partial consistency guarantees is included in a plaradgeconsistency guards
that check at run-time if the guarantee holds for the groups actually used.

As explained in Chapter 4 SQL Server uses a transformatiod-baggmizer.
Conceptually, optimization proceeds in two phases: an exploration pithea aptimization
phase. The former generates new logical expressions; therkttesively finds the best
physical plan. Physical plans are built bottom-up.

Required and delivered (physical) plan properties play a veppriant role during
optimization. To make use of the plan property mechanism for camsystéhecking, we
must be able to perform the following three tasks: 1) transftwnquery’s consistency
constraints into required consistency properties; 2) given a phpsaca derive its delivered
consistency properties from the properties of the local viewefdats to; 3) check whether

delivered consistency properties satisfy required consistency properties
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5.2.1 Required Consistency Plan Property

A query’s required consistency property consists of the normatiaedistency constraint

described in Section 5.1.

5.2.2 Delivered Consistency Plan Property

A delivered consistency property CPd consists of a set of tuples $s®;>} where R is
the id of a cache regiorg is a set of input operands, namely, the input operands of the
current expression that belong to regignddd€; is the set of grouping keys for the input
operands. Each operator computes its delivered plan properties bottom-dpobatee
delivered plan properties of its inputs. We extend the algorithmo®rs in Figure 4.2 and
Figure 4.3 for calculating derived C&C property to cover the gémedaform of derived
C&C property. The structure of the algorithms remains unchanged, wialeules are
generalized, as stated shortly. For convenience, we call tlended oneAlgorithm
DrvdPropertyCalcGeneral

Delivered plan properties are computed bottom-up for each physicat@pean terms of
the properties of its inputs, according to the algorithm describ&igure 4.2, which treats
the physical operators accordingly as four categories:vg$eaf the plan tree (e.g., tables or
materialized views), ii) single-input operators, iii) joins, and iv) Switclodni

Theleaves of a plan treare table, materialized view, or index scan operators, possibly
with a range predicate. If the input operand is a local vieturn the ids of the view’s input

tables inS, not the id of the view, since consistency properties alwags tebase tables. If
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the whole view is consistent, the id of its cache region; othervatigrn the set of grouping
keys of its consistency root, and a flag, say —1, in the regionlddtbendicate row-level
granularity. For a remote table or view, return a special region id, say, 0.
All operators with a single relational inpgusuch as filter, project, aggregate and sort do
not affect the delivered consistency property so copy the property from théwmal input.
Join operatorscombine multiple input streams into a single output stream. Union the
input consistency properties and merge property tuples that d@ne same cache region.
Formally, given two delivered C&C property tuples GRd{<R;, S;, 2;>} and CPd =
{<R,, S, 2>}, merge them if either of the following conditions is true:
1) If the input operands are from the same cache region, {.2.RR> 0, then merge the
tables, i.e., replace CPdnd CPdby CPd = {<R, S, @ >}, whereS=S U S,.

2) If the input operands are grouped into cache regions by the sam@dietye same
root), i.e.,Q; = Q,, they are group-wise consistent so merge them into CPd =$<-1,
Q.>} whereS=5, U S,. [

A SwitchUnionoperator has multiple input streams but it does not combine theny in an
way; it simply selects one of the streams. Thus, the output temsysproperty is the
strongest consistency property implied by every input. When gergeeat intersection from
two derived C&C phrases as shown in Figure 4.3, we follow the deeeraules. Formally,
given two delivered C&C property tuples 55, ;> and <R, S, >, whereS; n' S,

# [J, generate a common C&C tuple <® Q> if any of the following conditions is true:

1) If Q=9Q,=01,thenQ =101, and R is determined the same way as in Figure 4.3.
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2) If one and only one of2; =[1,i = 1, 2, without loss of generality, suppde= [,
then R =R, Q = Q.
3) If Q" nQy’#0, where Q" denotes the union of the attribute closure of each
grouping key inQ;, i=1, 2, then R = -1, ard = Q;" n Q,".

For all case$s=S5,0 S;. 0

In case 1), both tuples are view level consistent, thus the commonigugémerated
following the same rule as in Figure 4.3. In case 2), only one isipiew level consistent,
since group level consistency is weaker, we output the group lewsilstency guarantee. In
case 3), both tuples are group level consistent, thus we can only outpairiim®n grouping

keys implied by them.

5.2.3 Satisfaction Rules

Now, given a required consistency property CCr and a delivered aheh@G® do we know
whether CPd satisfies CCr? Firstly, our consistency model mteslow two columns from

the same input table T to originate from different snapshots, tpadinthe following
property:
Conflicting consistency property: A delivered consistency property CPd is conflicting if

there exist two tuples <RS,;, Q:> and <R, $;, Q> in CPd s.tS; N S, # @ and one of the

following conditions holds: 1) R£ Ry, or 2)Q1 # Q5. [
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This property is conservative in that it assumes that two aaghens 4 and U from
different views can only be consistent if they have the same set of control-keys.
Secondly, a complete plan satisfies the constraint if each eegoamsistency group is
fully contained in some delivered cache region. We extend the caomgisatisfaction rule

in Chapter 4 to include finer granularity cache regions.

Consistency satisfaction rule:A delivered consistency property CPd satisfies a required
CCr w.r.t. a cache schemaand functional dependencies F, iff CPd is not conflicting and,
for each tuple <bK, S, G/> in CCr, there is a tuple sRSy, Q¢> in CPd s.tS; 0y, and
one of the following conditions holds: 84 = @, or 2) there exists GgL1Qq S.t. G4 G,"

whereG," is the attribute closure &, w.r.t. F.[]

For query Q2, suppose we have CCr = {<5, @, {Authors, Books}, {isbn}>}, and that the
cache schema is the one in Figure 3.6. During view matchingoAtopy and BookCopy
will match Q2. Thus CPd = {<-1, {Authors, Books}, {Authors.authorld, city}>}. If
AuthorCopy joins with BookCopy on authorld (a join condition indicated byptiesence
correlation), and the result is R, then from the key constraintsutdiofs and Books we
know that isbn is a key in R. Therefore titffsbn}*. CPd satisfies CCr.

Not knowing all FDs doesn’t affect the correctness of the faatisn rule, it only

potentially produces false negatives:
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Theorem 5.3:For any two sets of functional dependenciesiéf F over the cache scheria
where FLI F, if a delivered consistency property CPd satisfies a requi@dwCr.t. F,

then it satisfies CCr w.r.t. F"J
Proof of Theorem 5.3:

Let G, be the attribute closure & w.r.t. F, G, * be the attribute closure &, w.r.t.

F'*, thenG,” UG,". [

Theorem 5.4: Assuming run-time checking is correct, with the DelivereahPAlgorithm,
for any plan of which CPd satisfies CCr w.r.t. a cachemefzand functional dependencies
F, no matter which data sources are used at execution time, iC®e wsatisfied w.r.t F.

]
Proof of Theorem 5.4:

Let the set of C&C properties of the sources be CPd = <R, Qq >}. Let the

output of the Delivered-Plan Algorithm be CPd'.

Case 1: There are no SwitchUnion operators in the plan.

Since operators with a single relational input simply pass the prpperty; while
join operators simply merge the input properties with the same cagioe, we have
CPd = CPd".

Case 2: There are some SwitchUnions used as C&C guards.
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In this case, for each SWU, there are two types of checkorgistency checking
and currency checking. So the branch actually used satisfies nmfstency and
currency constraints.
The difference between CPd and CPd'’ is that in CPd, for a localesauth property
CPd = {< Ruyi, Syi, Q¢>} guarded with a SWU, we have either GBdCPg = {<O0,
Sqi, D>}, depending on whether the local branch or the remote branch is usegl dur
execution.
For any tuple r = <bK,, S;, G;> in CCr, since CPd’ satisfies CCr, there exists a row t
= <Ry, Sy, Q4 >, such thatS: [1Sy, and one of the following conditions holdsQy =
@, or ii) let G+ be the attribute closure w.r.t. F. There existS4a/Qq4 such that
GeUG/ .
If t is merged from sources that don’'t have a SWU, thensad appears in CPd,
otherwise, w/o loss of generality, we can assume it comes wontotal resources
with SWU operators and with property= < Ry1, Sy1, 41> and = < Ryz, Sy2, Q42>.
Trivial case: IfS; 1 Sqi(or Syp), then r is satisfied by {or t) in CPd.
Otherwise, we claim that for any cache instance, either bo#h boanches are used
or both remote branches are used. Thus if CPd’ satisfies CCiif therplug in CPd
the property of the data sources actually used, CPd also satisfies CCr.
Case 2.1: R>0. Since both local resources belong to the sameegicime they have
the same currency, so does the currency checking result.
Case 2.2: R= -1. Since the two resources are controlled by the satnmaf

consistency control-keys, again, the C&C checking results are the same.
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While a plan is being constructed, bottom-up, we want to stop as sabe asrrent
subplan cannot deliver the consistency required by the query. The aorsistgisfaction
rule cannot be used for checking subplans; a check may fail sbapfuse the partial plan
does not include all inputs covered by the required consistency projmstiyad we apply
the followingviolation rules We prove that a plan cannot satisfy the required plan properties

if a subplan violates any of the three rules (Theorem 5.5).

Consistency violation rules: A delivered consistency property CPd violates a required
consistency constraint CCr w.r.t. a cache schBraad functional dependencies F, if one of
the following conditions holds:
1) CPd is conflicting,
2) There exists a tuple <,IK,, S, G, > in CCr that intersects more than one consistency
group in CPd, that is, there exist two tuples <,ly, Q14 > and < Rg, SZ;, Q24 >
in CPd s.tS N S1y# @ andS, N SZ; # 9,
3) There exists <bK;, §, G> in CCr, and < R S, Qq > in CPd, stSUSy, Qq # 9D
and the following condition holds: I&+ be the attribute closure w.rX. and F.

There does naxistGyL!Qg, s.t.GyOG,". [

Theorem 5.5:Using the Delivered-Plan Algorithm, if a partial plan A vielthe required
consistency property CCr w.r.t. a cache sch&rand functional dependencies F, then no

plan that includes A as a branch can satisfy CCr &.ahd F. [

Proof of Theorem 5.5:
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This is true because from the algorithm, for any tuple,<SR Qg > in the delivered
plan property of P, there is a tuple g, By, Qq > in the delivered plan property of

any plan that includes P as a branch, wisgieSy' . O

5.3 Run-time Currency and Consistency Checking

To include C&C checking at run-time, the optimizer must produce pretscheck whether

a local view satisfies the required C&C constraints andchwietween using the local view
and retrieving the data from the backend server. Such run-timeasemsiking is built into

a plan by using &witchUnionoperator. A SwitchUnion operator has multiple input streams
but only one is selected at run-time based on the result of a selector expression.

In MTCache, all local data is defined as materialized viguwgslogical plans making use
of a local view are always created through view matchingZ@4, GLO1]. Consider an
(logical) expression E and a matching view V from which E carcdmaputed. If C&C
checking is required, we produce a substitute consisting of altimitcn on top, as shown
in Figure 5.1, with a selector expression that checks whetherisfiesmtthe currency and

consistency constraint, and two input expressions: a local branchrantbte branch. The

SwitchUnion \ ' C&C Guards

PN

Local plan Remote plan

Figure 5.1 SwitchUnion with consistency and curren cy guards
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local branch is a normal substitute expression produced by view nwt@hd the remote
plan consists of a remote SQL query created from the origipaéesion E. If the condition,
which we call consistency guard or currency guard according tpuitpose, evaluates to
true, the local branch is chosen, otherwise the remote one.

The discussion of when and what type of consistency checkingrerage and the
inexpensive consistency checking we support is deferred to Section 5.4.

Currency bound checking: If the required lowest currency bound on the input tables of
E is B, the optimizer generates a currency guard that checks if any reqgicedisdoo stale
for the query. Given a control-table CT on control-key CK, a setalfipg valueK on CK,

the check is:

NOT EXIST( SELECT 1 FROM CT
WHERE CK IN K AND rid < getdate() - B )

Recall that the timestamp is recorded in the rid column of eantrol-table (Section

3.4.1.2).

5.4 Analysis and Experiments

This section reports experimental results for consistency ciggdla@sults for presence and

currency checking are reported in [ZLGO05] and Chapter 4 respectively.
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5.4.1 Experimental Setup

We used a single cache DBMS and a backend server. The baekeadlssted a TPCD
database with scale factor 1.0 (about 1GB), where only the Custamer©rders tables
were used. The Customers table was clustered on its priragyyc kcustkey with an index
on c_nationkey. The Orders table was clustered on (o_custkey, o_ojddtkeygache had a
copy of each table, CustCopy and OrderCopy, with the same indélxescontrol table
settings and queries used are shown in Figure 5.2. We populated trendkeiey columns
with c_custkey and c_nationkey columns from the views respectively.

C_PCT and O_PCT are the presence control tables of CustCopy antCépyle

Settings: CREATE TABLE C_PCT (ckey int PRIMARY, rid int)
CREATE TABLE C_CsCT(nkey int PRIMARY, rid int)
CREATE TABLE O_PCT (ckey int PRIMARY, rid int)

Qa: SELECT *
FROM  Customers C
WHERE c_custkey in $custSet
[CURRENCY BOUND 10 on (C) BY $key]

Qb: SELECT *
FROM  Customers C, orders O
WHERE c_custkey=0_custkey and c_custkey IN $custSet
[CURRENCY BOUND 10 on (C, O) BY $key]

Qc: SELECT *
FROM  Customers C
WHERE c_nationkey in $nationSet
[CURRENCY 10 on (C) BY $key]

Figure 5.2 Settings and queries used for experimen  ts
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respectively. C_CsCT is a consistency control table on CustCgpseting the timestamp
field, we can control the outcome of the consistency guard.

The caching DBMS ran on an Intel Pentium 4CPU 2.4 GHz box with 500 MB RAM. The
backend ran on an AMD Athlon MP Processor 1800+ box with 2GB RAM. Both nexchi

ran Windows 2000 and were connected by LAN.

5.4.2 Success Rate of Ad-hoc Consistency Checking (Anabail)

Intuitively, everything else being equal, the more relaxed themcyrrequirements are, the
more queries can be computed locally. Although less obvious, thissas tale for
consistency constraints.

Assuming all rows in $custSet are in the cache, a dynamicfpta@a will switch
between either CustCopy and a remote query, depending on the outcdraeconsistency
guard. If there is only one customer in $custSet, by defaultethdt is consistent. At the
other extreme, if $custSet contains 1000 customers, they are ngttlkéle consistent.
When the number of customers in $custSet increases, the likelihode oédult being
consistent decreases. Suppose there are N rows in CustCopy, divaléti cache regions.
We assume that the regions are the same size and each$ousiSet is independently and
randomly chosen from CustCopy. Let the size of $custSet be x, wkehe. The result is
consistent only when all the chosen rows are from the same ceglmm. Thus, the

probability of an ad-hoc consistency check being succesgitasistent) = (1/MJ™.
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As one would expect, and as this formula confirms, the probabilitycafess decreases
rapidly as the number of consistency groups and/or number of requirethorease (Figure

5.3 ().

5.4.3 Update Cost (Analytical)

Suppose there are N rows in CustCopy, divided into M cache regianssgume that the
regions are the same size and each row in $custSet is indepgrasehtandomly chosen
from CustCopy. We model the cost of refreshing a consistency regouastCopy once by
three components: sgup Setup cost of the remote queryga€ calculation cost at the

backend; Ganstes N€twork transfer cost for the query results.

Crefresh-once = Csetup + Ccalc + Ctransfer

In this formula, Gewpis a fixed setup cost for every query, while the other two are

proportional to the number of tuples. Thuscal+ GCuanster CAN be expressed as

Ceac TChanster = — * C,it » Where Gnitis the cost of calculating and transferring one tuple. Let

2|z

the refresh frequency be f, then in a time unit, the total refresh cost fogite vell be:

Crefresh = T * Crefresh-once

By dividing data into different consistency regions, we have divargage of being able
to refresh them at different rates. For example, update platustomers every 10 minutes,
and normal customers every hour. To model this, we use a decaetserf Suppose that

originally all the rows are in one region, with refresh ratd=or each consistency region
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added, the refresh rate drops by r% from its predecessor, i.eegioni, f = (1 — rj‘l. Thus,
the total update cost of refreshing M regions is as follows, andutieion is plotted in

Figure 5.3 (b).

M
C = z fi D(C setup + * Cunit )

refresh - total
i=1 M

M
= (Csetup + M—* Cunit )z fi
i=1

5.4.4 Consistency Guard Overhead

We made the design choice to only support certain inexpensivedypestime consistency
guards. A natural question is: what is the overhead of the consigieacys? Furthermore,

how expensive are more complicated guards?
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Figure 5.3 Workload shift and update cost
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We experimentally evaluate the cost of a spectrum of guardadays of emulation.
Given a query Q, we generate another query Q’ that includes steoicy guard for Q, and
use the execution time difference between Q' and Q to apprexithatoverhead of the
consistency guard. For each query, depending on the result of the consistedcit gaa be

executed either locally or at the backend. We measure the overhead for botloscenari

5.4.4.1 Single-Table Case

We first analyze what type of consistency guard is neede@#& when $key differs. The
decision making process is shown in Figure 5.4 and the consistency guards irbFEgure
Condition A: Is each required consistency group equal to or contained in a mesenc
region?
If Yes, it follows from the Presence Assumption that all thesrassociated with each
presence control-key are consistent. No explicit consistencyl gsiareeded. For example,

for Qa with $key = c_custkey.

Yes No
‘@ checking

No Yes

checking

Assured checking Ad-hoc Checking

Figure 5.4 Generating consistency guard
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Condition B: Is each required consistency group equal to or contained bysstency
region? If Yes, we check C, otherwise we check D.

Condition C: Is the consistency guarantee full?

If Yes, then no run-time consistency checking is necessary. Qsleenme need to probe
the consistency control table with the required key values atme-tor example, for Qa
with $key = c_nationkey, we have two scenarios:

In the first scenario, we have to first calculate which natayesin the results, and then
check if they all appear in the consistency control table C_G#&QTa). A more precise
guard (Allb) only checks nations with more than one customer, by addi@UNT(*)>1
condition. Checking like Alla, Allb and Al12 is calkeskured consistency checkingn
that it checks if the required consistency groups are part of the guaranteecegamine

In the second scenario, a redundant equality predicate on c_nationkelpdgd in the
query, allowing us to simply check if the required nations are in C_CsCT (AE8nihates
the need to examine the data for consistency checking.

Condition D: Can each required consistency group be covered by a collecteaciod
regions.

If Yes, we have the opportunity to do ad-hoc consistency checkingQ#&avith $key =
@, we check if all the required customers are in the sanm@adache region (S11). Such
checking (e.g., S11, S12 and S21, S22 from Figure 5.5) is cafldtbc consistency
checking

If $key=c_nationkey and suppose we don’'t have C_CsCT, we need to checkagrh

(S12).



Alla, A11b: SELECT 1 WHERE NOT EXISTS (

Al2:

S11:

S12:

S21:

S22:

SELECT 1 FROM CustCopy

WHERE c_custkey IN $custSet

GROUP BY c_nationkey

HAVING [COUNT(*) > 1 AND] c_nationkey NOT IN
(SELECT nkey FROM C_CsCT))

SELECT 1 WHERE |$nationSet| = (
SELECT COUNT(*) FROM C_CsCT
WHERE nkey IN $nationSet )

SELECT 1 WHERE 1 =(
SELECT COUNT(DISTINCT rid) FROM C_PCT
WHERE ckey IN $custSet )

SELECT 1 WHERE 1 =ALL (
SELECT COUNT(DISTINCT rid) FROMC_PCT, CustCopy
WHERE c_custkey IN $custSet AND key=c_custkey
GROUP BY c_nationkey )

SELECT 1 FROM/(
SELECT COUNT (DISTINCT rid1) AS countl,
SUM (ABS(rid1-rid2)) AS count2
FROM (
SELECT Aurid AS rid1, B.rid AS rid2)
FROM C PCTA O PCTB
WHERE  A.ckey IN $custSet AND A.ckey = B.ckey))
AS FinalCount
WHERE countl =1 AND count2 =0 )

SELECT 1 WHERE NOT EXISTS (
SELECT 1 FROM/(
SELECT c_custkey, c_nationkey,
A.rid AS rid1, B.rid AS rid2
FROM C_PCT A, O_PCT B, CustCopy C
WHERE  A.ckey IN $custSet AND
A.ckey = c_custkey AND c_custkey = B.ckey
) AS FinalCount
GROUP BY c_nationkey
HAVING MIN(rid1) <> MAX(rid1 OR MIN(rid2) <> MAX(rid2)
OR MIN(rid1) <> MIN(rid2))

Figure 5.5 Consistency guard examples
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Local Remote
Qa | Qb Q¢ Qa Qb | Qc
Cost (ms) .078 .08 1.17 .01 19 1.13
Cost (%) 16.56| 14.00 <2 <1 <2 <1
# Rows 1 6/ 5975 1 6/ 5975
Base query (ms) 0.45 0.57 67.99 5.54| 11.72| 70.77

Table 5.1 Simple consistency guard overhead
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Experiment 1 is designed to measure the overhead of the simplsteoog guards

supported in our current framework. We chose to support only run-timestsnsi guards

that 1) do not require touching the data in a view; 2) only requakiny a single control

table. We fixed the guards and measured the overhead for: Qa andhQrustSet = (1);

Qc with $nationSet = (1). The consistency guard for Qa and Qblisand the one for Qc is

Al2.

The results are shown in Table 5.1, where the last row is thaiteedime for the

gueries without run-time consistency checking. As expected, in botlo¢dhkdnd remote

case, the absolute cost remains roughly the same, the relasivelecreases as the query

execution time increases. The overhead for remote executioralk (s12%). In the local

case, the overhead for Qc (returning ~6000 rows) is less tha\l#96ugh the absolute

overhead for Qa and Qb is small (<0.1ms), since the queries apemnsé/e (returning 1 and

6 rows respectively), the relative overhead is ~15%.
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Local Remote
Alla Allb | A12 | S11 | S12 Alla | A12 | A12 S11 | S12
Cost(ms) | .31 .12 .084 .29 .35 .33 .27| .13 .41 .48
Cost (%) [62.85/ 23.77| 16.98| 58.32| 71.41 6.06| 4.95 2.33 7.48 8.79
Qa (ms) 49 49 49 49] .49 544 544 544 544 5.44

Table 5.2 Single-table case consistency guard over  head

In experiment 2, we used query Qa with $custSet = (2, 12), whiegmse2 rows; and
compared the overhead of different types of consistency guaatisntvolve one control
table. The results are shown in Table 5.2, where the last rdve isxecution time for the
gueries without run-time checking.

For local execution, if the consistency guard has to touch theotlatee view (Alla,
Allb and S12), the overhead surges to ~70% for S12, because we léregilye the local
query twice. Alla and b show the benefit of being more precisé&sltppy”’ guard in Alla
incurs 63% overhead, while the overhead of the more precise ghbtd)(is only 24%,
because it is less likely to touch CustCopy. The simple guard iddirs the smallest

overhead (~17%).

5.4.4.2 Multi-Table Case

Different from Qa, the required consistency group in Qb has olfjeatsdifferent views. In
this case, we first check:

Condition E: Do they have the same consistency root?
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Local Remote
S21 S22 S21 S22
Cost (ms) .90 .83 1.00 .98
Cost (%) 155.83| 143.82] 24.82] 24.36
Qb (ms) .58 .58 4.02 4.02

Table 5.3 Multi-table case consistency guard overh  ead

If Yes, then the consistency guard generation reduces tatijle sable case, because the
guaranteed cache regions are decided by the consistency rootvi€ghere have to perform
ad-hoc checking involving joins of presence control tables. There are two cases.

Case 1:$key =@. We check if all the required presence control-keys point teahe
cache region (S21).

Case 2:$key = c_nationkey. We first group the required rows by c_nationke\reeuk
for each group if 1) all the customers are from the samernregnd 2) all the orders are from
the same region as the customers (S22).

In Experiment 3, we use query Qb with $custSet = (2, 12), which sefunows, and
measure the overhead of consistency guards that involve multipteldaes. The results
are shown in Table 5.3, where the last row is the execution tim@dowrithout run-time
checking. Note that the execution time for the remote executid@boin this setting is
different than that in the first experiment (Table 5.1). Thearas that different plans were
generated and used for those two settings. This differencendbesfect the results of this

study. Guards S21 and S22 involve not only accessing the data, but atsmipgyfjoins.
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Such complicated checking incurs huge overhead in the local execae (~150%). Note
that if CustCopy and OrderCopy are consistency-wise correléted the overhead (refer to
the single-table case) reduces dramatically.

It is worth pointing out that in all experiments, even for compdatonsistency guards,
the overhead of remote execution is relatively small (<10%ifagle-table case, <25% for
multi-table case). It raises an interesting point: evergiiad is less likely to be successful,
it might still be preferable to do the check than simply usenaote plan. Thus the cost-

model should bias in favor of plans with consistency checking instead of remote plans.
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Chapter 6

Quality-Aware Database Caching Performance
Modeling: Alternatives and Implications

6.1 Introduction

Chapter 1 - Chapter 4 has presented a novel database caching rhedelqweries are
allowed to express their data quality requirements; the caclyecim@ose to maintain
different levels of local data quality; and the caching DBM&/ales quality guarantees for
qguery results by shifting between using local data and remtddrdan the master. The use
of replication is not free, because of the potential update propagastnn such a complex
system, the performance improvements provided by caching “good enoygkScif any,
will be determined by many factors, including query workload, updatklead and the
system configurations. The goal of this chapter is to exploresyseem design space,
guantify the impact of alternatives, and offer insights into performance tradeoff

It is worth emphasizing what we are NOT set out to do. Firstdar NOT intend to
investigate the adaptive caching aspect of this problem, an exarhpihich is cache
replacement or admission policies. Rather, we examine the infleéraesign alternatives

under the full replication assumption (i.e., a cache has all thet®lgjethe master). Second,
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it is not our purpose to predict the performance of some actuansyRather, we try to
exemplify under what circumstances gains can be achievedhat aesign and what the
magnitude of these gains might be.

We begin by establishing a performance evaluation frameworld base simple but
realistic model. Our model is an extension of a database m@ead system model
developed by Agrawal et al. [ACL87], which we refer to as #grawal modelfor
convenience. The Agrawal model captures the main elements of Easkatanvironment,
including bothusers(i.e., terminals, the sources of transactions) @mgsical resourceor
storing and processing the data (i.e., disks and CPUSs), in additiondioattaeteristics of the
workload and the database. We extend the single-site model thearoaster configuration,
capturing the interaction between the cache and the mastelditiom, we refine the single-
site model to reflect the characteristics of cache organization ancensnce.

Based on this framework, we examine the effects of aligenassumptions and system
configurations. In particular, we critically examine the comrassumption that performance
improves as the number of caches increases. The use of a caubtefise; workload
offloading is achieved at the cost of update propagation. We show undecomd#tons the
performance can be improved by adding more caches, and when the owénmeattaining
a cache exceeds the benefit it can bring.

Allowing queries to express their C&C requirements gives thehe freedom in
maintenance, because if local data does not meet the specifiegudhiy requirements, the

cache can simply shift the query to the master, thus providingededata quality
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guarantees. Obviously, the tradeoff is between workload offloading andtemance
overhead. We quantify the performance differences with different tradeoffs

In addition to these experiments quantifying the effectiveness laximg C&C
requirements and local data quality, we examine the impdbegiush maintenance and the
pull maintenance. The push maintenance uses incremental update propégdtcam only
be applied to view-level cache regions, thus not providing support rfer firanularity
caching. In contrast, the pull mode is more flexible, supporting §reaned (hence smaller)
cache regions, but requires recalculation. By experimentally isgowhich alternatives
work best for what workload, we provide insights into choosing appropsgséeem
configurations.

The rest of the chapter is organized as follows. Section 6.2 desthidgush and pull
maintenance. We implement the model of cache-master architesting the CSIM discrete
event simulation package [Sch86, Mesquite] for our performance studies is based on
a closed queuing model. The structure and characteristics ahodel are described in
Section 6.3. Section 6.4 discusses the performance metrics asticalathnethods used for
the experiments, and how a number of our parameter values esenc We present the

experimental results and analysis in Section 6.5 and conclude in Section 6.6.

6.2 Push vs. Pull Maintenance

In Chapter 4 we briefly described the push maintenance for view deaeularity cache

regions, where Microsoft SQL Server’s transactional repdinateature [Ise01, Hen04] is
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used to propagate changes to the cache. With this model, the masbasdatan specify a
set of materialized views gmiblications A cache can subscribe to views from one or more
publications. Each subscriber corresponds to a distribution agent (an OS process)s @hange
a publication are recorded to a separate database, calletutiistridatabase using a log
sniffing technique. Periodically, a dispatch agent wakes up and ptepag&vant changes
to its subscriber. After all the subscribers of the publication heseived the changes, the
records are deleted from the distribution database.

Such maintenance is efficient, since the cache is updated imtetipeHowever, it
imposes two restrictions on the cache organization: 1) only vieal &che regions are
supported; 2) only limited types of views, i.e., selection and projection views are supported.

In comparison, the pull maintenance we introduced in Chapter 4 emplags a
computation approach. For a cache region, the cache periodicallghesfré by sending
gueries to the master. The newly retrieved data calculated from teatcstate of the master
is then used to replace the stale data in the cache. This oftetel maximal flexibility in
cache region organization, since we can choose to refresh anyf gaview by sending a
remote query. Although re-computation can be expensive, this approadie aseful in

cases where skewed data quality requirements to a view are observed.

6.3 Performance Model

Our model is built on top of the Agrawal model, which is an extendesdoveof the model

used in [CS84], which in turn has its origins in the models of [RS779&SAlthough the
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Agrawal model is developed to evaluate the performance ofd k®tking protocols, since
it models a database system in a fairly detailed and confpit®n, we were able to adopt
it for our own purpose.

We begin by explaining the Agrawal model in Section 6.3.1. For aeeaaster
configuration, we extend this model in three aspects. Firstlyextend the single-site
database model to the cache-master configuration. This is aclugwvaddeling interactions
between the cache and the master during query processingelbsas during cache
maintenanceSection 6.3.2 Secondly, we capture C&C related characteristics forcheca
master configuration, for instance, workload with C&C constrairdshe region concept,
and C&C-aware transaction processing at the caSketipn 6.3.8 Finally, we refine the
model to differentiate sequential access from random access) hritical for our study,
because “pull” maintenance tends to be sequential, and “push” maintenance r&wetion (

6.2).

6.3.1 Single Site Database Management Systems

In this section, we describe the Agrawal model for singledsitabase management systems.
There are three main parts to the performance model: a dasylstées®m model, a user model,
and a transaction model. Tdatabase system modsptures the relevant characteristics of
the system’s hardware and software, including the physicalimess (CPUs and disks) and
their associated schedulers, the characteristics of the datédg., its size and granularity),

the load control mechanism for controlling the number of active dctioss, and the
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concurrency control algorithm. Theser modelcaptures the arrival process for users,
assuming a closed system with terminals, batch-style (noraatitez) in nature. Finally, the
transaction modelcaptures the reference behavior and processing requiremenke of t
transactions in the workload. A transaction submitted at the nwstdye described via two
characteristic strings with C&C components. There is a é&bgieference string, which
contains concurrency control level read and write requests; andsecgdhneference string,
which contains requests for accesses to physical items on miiskha associated CPU
processing time for each item accessed. In addition, if tiseraore than one class of
transactions in the workload, the transaction model must specify thefmransaction
classes.

The closed queuing model of a single-site database system is shéwgure 6.1. There
are a fixed number of terminals from which transactions origindtere is a limit to the
number of transactions allowed to be active at any time in teermy depicted by the
multiprogramming levelmpl. A transaction is considered active if it is either receiving
service or waiting for service inside the database system.nVdheew transaction is
generated, if the system already has a full set of aitmeactions, it enters thheady queug
where it waits for a currently active transaction to coneptat abort. (Transactions in the
ready queue are not considered active.) The transaction then ¢mexs queue
(concurrency control queue) and makes the first of its lock requéeste lock request is
granted, the transaction proceeds to ¢fgect queueand accesses its first object. It is
assumed for modeling convenience that a transaction performs ai$ oéads before

performing any writes.
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If the result of a lock request is that the transaction must bib@nters theblocked
gueueuntil it is once again able to proceed. If a request leads toisiaeto restart the
transaction due to deadlock, it goes to the back of the ready gueereaaandomly
determined restart delay period of the observed response timen Ibéigins making all of
the same concurrency control requests and object accessesgaver Eventually, the

transaction may complete and the concurrency control algorithnchwnse to commit the

TERMINALS

0

update queue

ready queue

@

UPDATE

&)

cc queue RESTART

blocked

object queue

Figure 6.1 Logical queuing model (From [ACL87])
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transaction. If the transaction is read-only, it is finished.Hfs written one or more objects
during its execution however, it first enters tipgate queuand writes its deferred updates
into the database. Locks are released together at the ends#etian (after the deferred
updates have been performed). Wait queues for locks and a waitgbrageamaintained by
aresource manager

Underlying the logical model of Figure 6.1 are two physical ressyrthe CPU and the
I/O (i.e., disk) resources. The amounts of CPU and I/O timeogerdl service are specified
as model parameters. The physical queuing model is depictégure 6.2, and Table 6.1

summarizes the associated model parameters for the wholemsysteshown, the physical
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ready queue u
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Figure 6.2 Physical queuing model (From [ACL87])
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model is a collection of terminals, multiple CPU servers, auallipte I/O servers. The delay
paths for the think and restart delays are also reflected phtreecal queuing model. Model
parameters specify the number of CPU servers, the number sév@rs, and the number of
terminals for the model. When a transaction needs CPU seitviseassigned a free CPU
server; otherwise the transaction waits until one becomesrtas, the CPU servers may be
thought of as a pool of servers, all identical and serving one glédadldDeue. Requests in
the CPU queue are serviced FCFS (first come, first served)/@haodel is a probabilistic
model of a database that is spread out across all of the disks.iFlaegqueue associated with
each of the I/O servers. When a transaction needs servibepgeas a disk (at random, with
all disks being equally likely) and waits in an I/O queue asstiaith the selected disk.
The service discipline for the 1/0 requests is also FCFS.

The parametersbj_io andobj_cpuare the amounts of I/O and CPU time associated with
reading or writing an object. Reading an object takes resdareeejual tabj_io followed
by obj_cpu Writing an object takes resources equabbp cpu at the time of the write
request and obj_io at deferred update time, since it is assumetatisgictions maintain
deferred update lists in buffers in main memory. For simplititgse parameters represent
constant service time requirements rather than stochastic dressxtTthink _timearameter
is the mean time delay between the completion of a traosamtd the initiation of a new

transaction from a terminal. We assume it is exponentially distributed.
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Parameter

Meaning

db_size
num_terms_total
num_terms_cache
mpl

max_size

min_size

write_prob
read_only_percentage
ext_think_time

obj_io

obj_io_seek
obj_io_transfer
obj_cpu

num_cpus

num_disks
num_caches
network_delay_query
network_delay_transfer
log_sniffing_fixed_cpu
log_sniffing_unit_cpu
log_sniffing_fixed_disk
log_sniffing_unit_disk
distribution_fixed_cpu
distribution_unit_cpu
distribution_fixed_disk
distribution_unit_disk
seq_prob_copier
seq_prob_refresh
num_regions
max_num_classes
min_num_classes
num_classes
refresh_interval
currency bound

Number of objects in database

Total number of terminals

Number of terminals at a cache
Multiprogramming level

Size of largest transaction

Size of smallest transaction

Pr (write X | read X)

Percentage of read-only transactions

Mean transaction think time

Disk time for accessing an object

Disk seeking time

Disk transfer time for an object

CPU time for accessing an object

Number of CPUs

Number of disks

Number of caches

Network delay for sending a query

Network delay for sending an object

Fixed part of CPU time for log sniffing a transaction
Unit CPU time for log sniffing a write action
Fixed part of Disk time for log sniffing a transaction
Unit Disk time for log sniffing a write action
Fixed part of CPU time for distributing updates
Unit CPU time for distributing a write action
Fixed part of Disk time for distributing updates
Unit disk time for distributing a write action

Pr (copier reads are sequential)

Pr (copier writes are sequential)

Number of cache regions at each cache
Maximal number consistency classes per Xact
Minimal number of consistency classes per Xact
Number of consistency classes of the database
Refresh interval

Currency bound

Table 6.1 Model parameters
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A transaction is modeled according to the number of objects ttetds and writes. The
number of objects read by a transaction is chosen from a unif@tmbdiion between
min_sizeandmax_siz€inclusive). These objects are randomly chosen (without replacement
from all of the objects in the database. The probability that arctolgad by a transaction
will also be written is determined by the parametedte _proh The size of the database is

db_size

6.3.2 Cache-Master Configuration

In this section, we describe the extension to the Agrawal ntbdeteflects the C&C-aware
features for a cache-master configuration. The modified logicalingienodel is shown in

Figure 6.3.

6.3.2.1 Cache Region Concept

A cache has the same set of objects as the master. Objaatache are logically partitioned
into cache regionsAll the objects from the same cache region are mutually stensiat all
times. Currency information is managed, and update propagationrisdcaut at the
granularity of cache region. For simplicity, we assume eqmealcache regions. The number
of regions in a cache is controlled by model paranraiar_regionsObjects are mapped to
regions by a default mapping: objecbelongs to cache region*(um_regionsjdb_sizé.
Each cache region is associated with the following metadata:

1) Cache region ID: a unique identifier of the region.



136

2) Synchronization timestamp: the timestamp of the last synchramzawint, which is

used for approximating the currency of this cache region. Supposentdrstamp is

t1, and current time is t, then the currency of the region is less thaj).(t —t

3) Refresh interval: the refresh interval for this cache region.

6.3.2.2 Transaction Model

In our setting, there are transactions generated by thentdsmas well as transactions

generated by the system (which will be explained shortly)differentiate, we call them

user transactiongndsystem transactiongspectively. In comparison to the Agrawal model,

user transactions have richer semantics in our setting. Belsalbagic characteristics, a user

transaction also includes C&C requirements. To reflect thatanéipn the objects in a user
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Figure 6.3 Queuing model for a cache-master config  uration
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transaction into consistency classes, each with a currency bouradl. fRea Chapter 4 that
the C&C constraints mean that all the objects in the same tamgisclass have to be
mutually consistent, and no older than the currency bound.

For simplicity, we assume the cache is partitioned into equahlexmpsistency classes.
The number of classes in a cache is controlled by model paramete classeObjects are
mapped to consistency classes by a default mapping: objelselongs to class
((*num_classegiib_siz¢. We also assume a consistency class can be mapped to one and
only one cache region. That is, the cache always satisfieptisgstency requirement of the
user transactions. The number of consistency classes a usactianaccesses is uniformly
distributed betweemin_num_classeand max_num_classe@nclusive). The consistency
classes are randomly chosen (without replacement) from anfi@asistency classes in the
cache. Assuming n classes are accessed by a user fandacta chosen class, the number
of objects the user transaction reads is uniformly distributed batwen_sizén and
max_sizi. Those objects are chosen (without replacement) from among tak abjects
contained in this region. Thus the minimal and maximal sizes ot#tkeset of a transaction
continue to bemin_sizeandmax_sizeSimilar to the Agrawal model, the probability that an
object read by a transaction will also be written is detegohiby the parametevrite proh
Unless otherwise noted, the currency bound associated with a coogistss is

currency_Boungdand the refresh interval for a cache regiomisesh_interval
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6.3.2.3 Cache Maintenance

In our cache model, all read-write user transactions are gsedeat the master and we
propagate changes to the cache periodically at the granwé&@tycache region. To reflect
that, we associate each cache region witlis&ribution agentthat wakes up periodically
according to the refresh interval of this cache region and propageteges from the master
to the cache.

In the “pull” model, each time distribution agentwakes up, it first generates a remote
transaction that reads all the objects of this cache region, wieicall acopier transaction
The agent enters themote queuand waits for the return of the remote transaction. Then it
generates a transaction consisting of writes to all the gbgcthe cache region, called a
refresh transaction

In the “push” model, the master maintainsleta queuefor each cache region, which
stores the delta changes relevant to that cache region.aAfeaad-write transaction at the
master commits, we enter each of its writes into itsespwndingdelta queuesThe
transactional boundary and commit order for the writes in dalth queueare preserved. In
SQL Server’'s Transactional Replication, such delta queues are piaaking a log sniffing
technique. To model the cost of log sniffing, each time we putta wito thedelta queues
we charge a CPU cost followed by a disk cost. The CPU costrhasnartized fixed
componentlogSniffing_fixed_cpuand a unit component for each object written out
logSniffing_unit_cpu Likewise, the disk cost has two componembgSniffing_fixed_disk

andlogSniffing_unit_disk
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When adistribution agentwakes up, it empties the corresponddeita queugships all
the actions to the cache, and executes a batch of refresh tarsamte by one. The
distribution cost is charged similar to the sniffing cost with rhogarameters
distribution_fixed_cpu distribution_unit_cpu distribution_fixed_disk and
distribution_unit_disk Each refresh transaction consists of all writes from thee saser
transaction, and the refresh transactions are executed in the tcardaer of their
corresponding user transactions.

Note that in our model, the distribution agents consume the resquee<PUs and
disks) of the master site. In reality the distribution datalcasesit on a separate machine,
which is similar to adding more resources dedicated to thebdistmn agents to the master.
This is valid for our study since our focus is to examine thepagnce with a fixed number

of resources assigned to the master.

6.3.2.4 Keeping Track of Currency

In the “pull” model, after each refresh, the timestamp of theespondingcopier
transactionis used as the current timestamp of the cache region.

In the “push” model, we record the timestamp of a user traosaaong with its writes
in adelta queueAfter each refresh transaction, we use the timestamp obthesponding
user transaction as the current timestamp of the cache regigmosng the system clock is
t; when a distribution agent wakes up, we assume that all the changed have already

been added to its delta queue. Thus, after the whole batch of nefresdctions finishes, we
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set the timestamp of the cache region;toNibte that this timestamp is set towhen the

agent wakes up even in case the delta queue is empty (i.e., no changes till t

6.3.2.5 Transaction Processing

There are two types of transactions in our system: userati@mss generated by the
terminals and system transactions generated bydigtabution agents We give system
transactions higher priority over user transactions: as soon @stam transaction is
generated, it becomes active immediately. We achieve yhaygmssing the ready queue for
system transactions. That is, the multiprogramming level ontgiatssuser transactions, not
the system transactions.

The master executes transactions in the same way as ingthevad model; it simply
ignores any C&C components of a query, since all C&C requiremalhise satisfied at the
master.

A cache differentiates three types of transactions and hahélesdifferently: read-write
transactions, read-only transactions, and refresh transactions. Whifest two are user
transactions, the last one is of the system transactions Rgeel-write transactions are
directly forwarded to the master; C&C checking is enforced dad+only transactions; and
refresh transactions are processed in the same manner assindleesite case. In what

follows, we describe each type of user transactions in more detail.
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For a read-write transaction A, the moment it becomes activesemd a separate
transaction A’ (identical to A) to the master, and put A into rdr@ote queue. After A’
finishes and returns from the master, A simply commits.

For a read-only transaction B, if B has mismatched consisteasged, we treat it the
same way as a read-write transaction. Otherwise, we modehlt@rnatives in currency
checking: cache region level and query level. For the formepragess each consistency
class specified in B in turn. Before requesting any read loclafoache region, we first
check the timestamp of the region against the currency bound spéciftesl query. If the
checking succeeds, reads to this consistency class will berrped locally; otherwise, all
the reads in the same consistency class are sent in atseépmrsaction B’ to the master and
B enters thaemote queueB will proceed again only if B’ finishes and returns from the

master. It commits when all the reads are finished.

6.3.2.6 Network Cost

In addition to CPU and disk, we model a third physical resotineenetwork. Each remote
guery to the master uses a roundtrip of the network resource. Assunfimitg bandwidth,
when a transaction needs the network resource, it immediatelyitgéige assume the
network delay for sending a remote query is the same for alleguevhich is specified as
model parametemnetwork_delay _querylhe network transfer time per object is specified as
model parametenetwork_delay objSuppose the number of reads in a remote query is n,

then the total round-trip delay of the remote query is calculated by:
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network_delay _query + n * network_delay_obj

6.3.3 Model Refinement

In this section, we refine the model to capture charactertbttsre critical for our purpose,
but not for the Agrawal model. In particular, Agrawal et al. did netwasrkloads containing
several classes of transactions; neither did they model sequentrahdom accesses, since
neither is necessary for their specific goal. Both charactergtécsritical in our model given
the asymmetric nature of the cache and the master in tramshanhdling, and the significant

difference in access patterns using the pull or push maintenance alternatives

6.3.3.1 Locking

For the master, strict two-phase locking is used to guarantedizedility. For the cache,
since it only guarantees consistency within each cache regioapphg strict two-phase
locking for the duration of each region access. That is, all ths lmT objects in a region are
released together at the point when accesses to the region finish.

We check for deadlock upon each lock request. If a lock request isde aadeadlock,
we abort the transaction which makes the request. To avoid it calesadtpcks repeatedly,
before it restarts, we hold the aborted transaction for an exporggiagl with a mean equal
to the running average of the transaction response time — ttia¢ iduration of the delay is

adaptive depending on the observed average response time.
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6.3.3.2 Sequential vs. Random Access

With a pull model, reads/writes will most likely be sequentigi¢es a copier needs to read
from the master all the objects in the whole cache region, atelthem back into the cache.
In contrast, with a push model, the writes to the cache are rkelg o be random, since
only updates are propagated to the cache. We differentiate thesedess patterns in our
model in the following way.

Firstly, instead of assuming that objects are spread arttenglisks uniformly, we
assume that cache regions are spread among the disks unifeamigll experiments, we
keep a fixed mapping between cache regions and disks. Supposeaée¢hdrdisks, then the
i cache region belongs to disknjod N). If the number of regions is less than the disks, we
bypass this mapping and apply the disk assignment approach described in Section 6.3.1

Secondly, instead of having a single paramelgrio to model the 10 cost, we use two
model parametersbj_io_seekandobj_io_transfer The 10 cost of sequentially reading m
objects is §eeking_cost m * transfer_cost

In addition, we adjust the locking protocol as follows. If a trangaattads/writes a set
of objects sequentially, it has to lock them all before it aesedseem, because otherwise the
sequential access pattern cannot be guaranteed.

Accordingly, in ourtransaction modelwe add one more characteristic to a system
transaction, a flag indicating whether the reads in this traoeactan be proceeded

sequentially. The probability that the reads/writes of aesydransaction are sequential is
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represented by a model parameteq_prob_copiéseq_ prob_refreshntuitively, these two
probabilities are much greater for the pull maintenance than for the “push” one.

We could have added the sequential vs. random access characteristesstransactions
in a similar way. We chose not to because the focus of this sudpt the absolute
performance of the system, rather, the comparison between wlifi@wafigurations. The

behavior of user transactions does not change under those configurations.

6.4 General Experiment Information

The remainder of this chapter presents results from a numbewmpefiments designed to
investigate system performance with the alternative configmsiliscussed in Section 6.2.
In this section we look at the performance metrics and statistiethods used in the rest of

this study, and how we chose many of the parameter settings used in the experime

6.4.1 Performance Metrics

The primary performance metric used throughout the study isseretransaction throughput
rate, which is the number of user transactions completed per secendisé Condor
[Condor] to run all our experiments. Each simulation was run for 2héstwith a large
batch time to produce sufficiently tight 90 percent confidence irlterVde actual batch
time was 100,000 seconds (simulation time). Our throughput confidence lnteveee
typically in the range of plus or minus a few percentage pahthe mean value, more than

sufficient for our purposes. We omit confidence interval information foom graphs for
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clarity, but we discuss only the statistically significant f@enance differences when
summarizing our results.

In analyzing the experiment results, we divide the system thpuiginto three
categories, and measure them separately:

1) Throughput for read-only transactions submitted to the master.

2) Throughput for read-only transactions submitted to the caches. d?atte reads
might actually be executed at the master depending on the wdsglirrency
checking.

3) Throughput for read-write transactions. All read-write transactions amied at the
master, regardless where they are submitted. This metric teelpaderstand the
number of updates that need to be propagated per synchronization.

We also measure the throughput for system transactions. Again, ageinadé separately

for copier transactions and refresh transactions.

Response times, expressed in seconds, are also given in somé& lcasesare measured
as the difference between when a transaction is generatedhandtie transaction returns
following its successful completion, including any time spent ngitn the ready queue,
time spent before (and while) being restarted, and so forth. Wauree®e response time
separately for each category in the same way as for throughput.

To understand the effectiveness of replication, we measure thewockload ratio,
which is the ratio of the number of reads completed at the cazhies tiotal number of reads

submitted to the cache.
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Several additional performance-related metrics are used inzamalthe results of our
experiments. We measure the average batch size (measucttbms)aper synchronization,
which determines the minimal time needed for executing théh ldteransactions, hence
indicates the effectiveness of synchronization.

In monitoring the effects of data contention, two conflict-relatedrics are employed.
The first metric is the blocking ratio, which gives the averagebeunof times that a
transaction has to block per commit (computed as the ratio of the nwhbansaction-
blocking events to the number of transaction commits). The other ¢aefited metric is
the restart ratio, which gives the average number of times thhahsaction has to restart per
commit (computed similarly). We measure the conflict for bothntlaster and the caches.
Another set of metrics used in our analysis is the workloatl gi€entage measured at the
object level, which gives the ratio of reads that pass curremegkig to the total reads
generated from a cache.

The last set of metrics used in our analysis is the aveiageitilization, which gives the
fraction of time during which a disk is busy. Again, we measure it both for therraastéor
the caches. Note that disk utilization is used instead of CHiatibn because the disks turn

out to be the bottleneck resource with our parameter settings (discussed next).

6.4.2 Parameter Settings

Table 6.2 gives the values of the simulation parameters that allr experiments have in

common (except where otherwise noted). Parameters that vary dsqrariment to
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experiment are not listed there, but will instead be given witldéseription of the relevant
experiments.

The total number of terminals is set to 300, and the number oh@eassigned to each
cache is set to 20. When we increase the number of caches frort5) the number of
terminals at the master decreases from 300 to 0. This givdslitspectrum of workload
origination. Following [ACL87], we use 1 CPU and 2 disks as 1 resauniteand then vary
the number of resources for the master and a cache. This balhac€®Ws and disks,
making the utilization of these resources about equal, as opposedgoeitbier strongly
CPU bound or strongly I1/0O bound. We set the number of resource urhes miaster and a
cache to 2 and 1 respectively. We did not use larger numbers afidésrar resources units,
because our preliminary experiments showed that the chosen pettdes reliable results

while not requiring excessive simulation time.



Parameter Value
db_size 10,000 pages
num_terms_total 300
num_terms_cache 15
mpl 50
max_size 12-page readset (maximum)
min_size 4-page readset (minimum)
write_prob 0.25

read_only_percentage
ext_think_time

obj_io

obj_io_seek
obj_io_transfer
obj_cpu

num_cpus (master)
num_disks (master)
num_cpus (cache)
num_disks (cache)
num_caches
network_delay _query
network_delay_transfer
log_sniffing_fixed_cpu
log_sniffing_unit_cpu
log_sniffing_fixed_disk
log_sniffing_unit_disk
distribution_fixed_cpu
distribution_unit_cpu
distribution_fixed_disk
distribution_unit_disk
seq_prob_copier
seq_prob_refresh
num_regions

90

1 second

35 milliseconds

30 milliseconds

5 milliseconds

15 milliseconds

2 CPUs at the master
4 disks at the master
1 CPUs at a cache

2 disks at a cache
0,1,3,5,8,10, 13, and15
20 milliseconds

5 milliseconds

15 milliseconds

5 milliseconds

20 milliseconds

5 milliseconds

200 milliseconds

5 milliseconds

200 milliseconds

5 milliseconds

1

0 for push, 1 for pull
1

Table 6.2 Simulation parameter setting

We set the database size to 10,000 pages, the average sizadbalyetransaction to 8

reads, and the write probability is set to 0.25. Thus in average ateeBereads and 2 writes
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in a read-write transaction. The multiprogramming level is eebQ. Our preliminary
experiments showed that this setting causes significant rescomtention with minimal
data contention (due to locking). This is desirable since we arenteoésted in locking
performance, but rather system behavior due to limited resourmdete that the
multiprogramming level is internal to the database systehichacontrols the number of
transactions that may concurrently compete for data, CPU anskelices (as opposed to
the number of users that may be attached to the system). Weham@ddchosen a higher
number, which causes even more resource contention. However, wedhleniege control
of the frequency of system transactions, because of the long evesgpnse time due to
extremely high resource contention.

We set low amortized log sniffing cost (roughly 1/5 of the ayetaansaction execution
time), assuming log sniffing is always sequential and does notvmwvolch CPU cost. The
amortized distribution cost is set to roughly the average transastecution time, since it
involves waking up the distribution agent, and setting up a remote camméctihe cache,
which is costly.

For the first three experiments, the whole cache forms tigedacache region, and the
whole database forms the largest consistency class. Thus adetnig transaction only has
1 consistency class.

It is worth pointing out that there are a number of parametersvéhabuld have varied
but did not. For example, we could have varied the size of databasesactions,
distribution of transaction sizes, or the database granularityglseecould have varied the

number of resource units, total number of terminals and number of t&sratre cache. For
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the purposes of this study, such variations were not of interestg@alirwas to see how

certain basic assumptions affect the system behaviors.

6.5 Experiments and Analysis

The high level goal of the experiments is to answer the following questions:

1) the impact of writes,

2) the impact of relaxing refresh intervals,

3) the impact of relaxing currency requirements and

4) the impact of push vs. pull.

The push model incurs log sniffing overhead and distribution overhead atatter.
Such overhead increases as the number of caches increases.riatnapcent, the refresh
cost becomes the bottleneck of the system. We address this priobBection 6.5.1. A
natural response to this problem is to relax the refresh intamval hence reduce the
propagation cost. The question then is if that will help? Section 6.5nenthis question.
Even if it does help, what if we also want to provide data qugligrantees to each query?
In this case, reducing refresh interval may bring a sigefivorkload being shifted back to
the master. In Section 6.5.3, we study the impact of relaxation r@hoyrrequirements. The
first three experiments adopt a traditional setting, where #dobecis always consistent.
Finally, we want to examine how the system can benefit from evae relaxed cache
maintenance, i.e., at the granularity of cache regions. Push andngintenance have

different implications in the allowed granularity. First, we extpbat the use of caches is not
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free. Although the pull model is generally more costly, it idulder certain cases. Section
6.5.4 sheds light on different performance tradeoffs between push and pull.

Note that for illustration purpose, we include in this section only gra@tgoresent the
main results. For graphs that help to analyze and understand the bg$tavior, instead, we

put them into the Appendix.

6.5.1 Experiment 1: Impact of Writes

We performed two sets of simulation experiments to study the system behaviovanoles
workloads with a spectrum of read-only percentages: 100, 95, 90, 80, 70, and 50. With a
lower read-only percentage, one can expect less perfornmapoavement when the number
of caches increases, because less workload can be shifted to the cachliethd®@ cache in
our framework directly forwards read-write transactions tontlaster. The results confirm
our intuition.

In the first set of experiments, we set the refresh intetwainfinity. The system
throughput is shown in Figure 6.4. In general, the system throughpuasesras the number
of caches increases. When the read-only percentage is high (100d9%0)athe system
throughput improves roughly 6-fold. Note that a cache is only half asrpdvas the master.
When the read-only percentage is low (80, 70, and 50), however, the imprn\soemes
marginal (less than 2-fold for 0.8, less than 50% for 0.5). Thereiite between different
curves is purely the number of read-only transactions assignedx@cutexl) at the caches.

This is so because 1) the currency bounds are set to infinity, Rkmead-only transactions
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submitted to the caches can be executed locally; and 2) theremsintenance overhead
since the refresh interval is infinity. From Figure 6.4, wetbaéthe difference between the
curves increases as the number of caches increases. Thisaisédbe difference in
percentage of workload executed at the cache increases withuthieer of caches, as
obvious from the following formula:

cache workload = num_caches * num_terms_cache *
(read_only_percentage/100)

And this is confirmed by the throughput of the master (Figure 8®@)tzat of the cache
(Figure 8.1), from which we can see that the difference inecdictoughput component
dominates the difference in system throughput. In Figure 8.3, each goeg down because
the percentage of read-write (longer) transactions increassbown in Figure 8.4. For the
last segment, a curve with a high read-only percentage (0@,.,95 and 90) drops greatly,
because from the above formula, the workload on the master drops.gre&ibyure 8.1, the
curves are not linear. This is because the transaction geneedéds affected by the master
response time. Recall that after generating a transactiteryranal has to wait until that
transaction returns before generating a new one. For the cutvesad-only percentage 95,
there is a bigger leap for the last segment, which is a consegoktie greater decrease in
master response time (Figure 8.2).

In Figure 6.4, we see a flat segment when the number of cadneases from 13 to 15.
The reason is as follows. From our parameter settings, thentotader of terminals in the

system is 300 and each cache is assigned 20 terminals. 13 emohed0 terminals at the
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master, while 15 caches leave none. Since the master isasvipewerful as the cache, it
does not make much difference to have the 40 terminals at the master or at two hese cac

In the second set of experiments, we set the refresh inter@alTbat is, the cache is
continuously refreshed, and the system throughput is shown in Figuréhé.®ehavior of
the system is similar to the first case where the refreterval is infinity, but with every
curve shifted down except for the special case of a read-onlynpageeof 100. Cache
maintenance overhead contributes to the difference. With a reagh@rdgntage of 90 and
15 caches, the improvement reduces dramatically from 7-fold to less than 2-fold.

Last but not least, we claimed that our setting causes samtiffesource contention but
minimal data contention. To show that this is true, we plotted the wtibkation and
blocking ratio for the master and the caches respectivelyomieshow the results for the
first setting (Figure 8.5, Figure 8.6, Figure 8.7 and Figure 8.8),similar results are
observed for the second setting. For the master, the disk tigiiza above 0.95 till the
number of caches reaches 13. Then the utilization drops because tke ima® longer
saturated. For the cache, the utilization ranges from ~0.11 to ~0.9% twberead-only
percentage increases from 50 to 100, as the cache becomes agaluratblocking ratio is
less than 0.09 even for a read-only percentage of 50. That is, on avéraggaation waits
for less than 0.09 times before it completes. For the cache, thengloatio is 0. We did not

show the restart ratios here since they are indistinguishable from therttariaxis.
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6.5.2 Experiment 2: Impact of Relaxing Refresh Interval

The first set of experiments showed that the cache maintepaadeead may jeopardize the
performance improvement we get by using more caches, evenfé&myahigh read-only
percentage of 90 when we refresh the cache continuously. In thig egperiments, we
examine the difference in system performance when we retheeaefresh intervals.
Intuitively, when we refresh the caches less frequently, we iesarmaintenance overhead,
and hence get better system performance.

We fix the workload with a read-only percentage of 90 and infiniteenayr bound (the
same setting as the curve with read-only percentage of 90 in theysresection). The
refresh intervals are set to 0, 5, 10, 50 and 100 respectively, arastifies shown in Figure
6.6. Surprisingly, there is no significant difference between thefimgs for most cases
except when there are 15 caches. When the number of caches ithlbyeiresh interval of
5 seconds, the performance improves about 50%; larger refresh Istenyaove the
performance by about 80%. To better understand the results, we phettbddughput at the
master (Figure 8.9) and the caches (Figure 8.10), and throughpud-efnigatransactions at
the cache (Figure 8.11).

The system throughput is dominated by the cache throughput, sincgydtesn is
dominated by read-only transactions. The throughput of the master atemgdar trend as
that the system. The master directly benefits from fiespuent refreshes, because in our
model the distribution costs are charged to the master for each refreshisTin@isignificant

difference when the number of caches is less than 15. The ddéis more significant
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when the number of caches increases, because of the increaseumtier of distribution
agents. The throughput of the cache shown in Figure 8.10 reflectsdhgput of the read-
write transactions at the master, as confirmed by the sityi{@xcept for the scale) between
Figure 8.10 and Figure 8.11, for the same reason as described in loaigection: a
terminal at a cache waits for a read-write transaction to return lggfoegating a new one.

We suspected that the reason we do not see significant changeshehammber of
caches is less than 15 is that in our setting, the distributios aostrather low. To verify
that, we repeated the set of experiments with a heaviegecher distribution cost (4 times
for distribution_fixed_i9 and the results (Figure 6.7) confirm our conjecture. The difference
between different refresh intervals is significant in thidirsggt By changing the refresh

interval from O to 100, the system performance almost doubles even with only 5 caches.
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6.5.3 Experiment 3: Impact of Refresh Interval vs. Data Qality
Requirement
In the previous section, we showed that by relaxing local datayquakt can potentially
improve the system performance, even when the distribution codatisely low. At one
extreme, if we never refresh the caches, we totally avoidnthmtenance overhead.
However, the observed performance improvement was under the assurhatidinet data
quality requirements from the read-only transactions are eglyemelaxed (infinity). In our
framework, the cache needs to satisfy data quality requireftentgead-only transactions.
If local data is too old for a consistency class specifiethienttansaction, all the reads from
that class will be sent to execute at the master. Intuititleéylonger the refresh interval, the
poorer the local data quality, and hence less read-only tremsactan be answered from the
caches. Thus, there is a trade-off between refresh overhead akidadoshifted to the
master. We examine this tradeoff in this section.

We conducted 4 sets of experiments, each with a differensheiinéerval (0, 5, 50 and
infinity, measured in seconds). For each experiment, we measuregeittoemance of
workloads with different mean currency bounds (0O, 5, 10, 50, 100 and infinitgunaéain
seconds). We first examine the results of the first set péraxents in detail, and then we

compare the impact of the 4 refresh interval settings.
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6.5.3.1 Experiments with Refresh Interval of zero

Figure 6.8 shows the throughput of the first set of experimenitsamefresh interval of 0.
The throughput of currency bound 0 and infinity serve as the lower and bppads
respectively. When the currency bound is 0, the whole workload isitexkat the master.
Increasing the number of caches does not bring any benefit; wbrgeposes cache
maintenance overhead and network cost to the system. Thus, the thraleggrpases (from
~13 to ~8). When the currency bound is infinity, since all read-only&acsioss are executed
at the cache, the cache can share the maximal workload framasiter. (Note that there is a
crossover point, which will be discussed shortly.) For most casegjmglcurrency bound
significantly improves system performance. With 10 caches, xample, the system
throughput is roughly 9 for currency bound 0. It increases to rolghly2 and 52 when
relaxing the currency bound to 5, 10 and 50 seconds respectively, dghengelative
improvements of 2.4, 4.7 and 5.8-fold.

However, some characteristic of this figure is less intuithcg.the remaining settings of
currency bounds, the performance first increases and then decikdsedoes it not keep
increasing?

The system behavior is the result of rather complex interacbbreseveral factors:
currency bound, refresh interval, response time of copier transaetmohgorkload at the
master. (1) After each refresh, the timestamp of the cachpdated. The effectiveness of
updating this timestamp depends on how often this timestamp istseh is the refresh

interval when the copier batch execution time is less than tresihehterval. Otherwise, it is
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the execution time, which is determined by the size of the batdbhwn turn is determined
by the throughput of read-write transactions at the master. 12}h® other hand, the
throughput of read-write transactions at the master is infludmgdide number of read-only
transactions executed at the master. (3) The throughput of & cachffected by the
throughput of the master because the response time from the reamst&ctions it sends
affects the speed of transaction generation.

We plotted the local workload ratio at the cache (Figure 6.Qugfmput of the cache
(Figure 8.12), and throughput of read-write transactions at théem@sgure 8.13) for
analysis.

From Figure 6.9, the local workload ratio is well above 90% focattency bounds.
When the currency bound relaxes, the ratio comes even closer tinalhg reaches 1.
Differences between the curves are tiny. Note that givernitite percentage of read-only
transactions, even small changes result in a significant amountr&foad shifted to the
master. For example, for 15 caches, 1% workload shifted to the ragatds to (300 * 0.9 *
0.01 = 2.7) read-only terminals shifted to the master.

After the number of caches reaches 13, the master is no longextedt Together with
the fact that the master is slightly more powerful tharaehe, this explains the unusual
characteristics of Figure 6.8, which are shared by both Figure BdLEigure 8.13. When
the master is not overly burdened, the benefit of shifting more warktoaew caches might
be diminished by the cost of maintaining more caches. Thusysitens performance may

decrease.
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6.5.3.2 Comparison of Different Refresh Interval Settings

The system throughput for the other sets of experiments, wigtsheintervals of 5, 50 and
infinity is shown in Figure 6.10, Figure 6.11 and Figure 6.12 respectively. |dded
workload ratio is shown in Figure 6.13, Figure 6.14 and Figure 6.15.

The figures clearly show a tradeoff in refresh intervalirsgtiv.r.t. the currency bound.
To one extreme, when the refresh interval is sufficiently toghrhpared to the currency
bound, almost all read-only transactions are executed locally atatiees. Thus the
throughput is roughly the same as that of infinite currency bound. lodkés tightening the
refresh interval further can only hamper system performane¢cdunnecessary refresh. For
example, for a currency bound of 100, with 15 caches, the system throigghmughly 56,
46 and 30 for refresh interval of 50, 5 and 0.

To the other extreme, when the refresh interval is sufficidatige compared to the
currency bounds, almost all read-only transactions are shifted tonéiséer. Thus the
throughput is close to that of O currency bound. In this case, refgeste caches does not
help. For example, for a currency bound of 5, with 10 caches, thensyktoughput is
roughly 13 and 16 for a refresh interval of 100 and infinity.

For the best performance, the refresh interval needs to bpmepdately according to
the currency bound, in order to balance the refresh overhead and loklaladartio. In Fig
? and Fig ?, we fix the currency bound to 5 and 10, respectively, andhplaystem
throughput for our setting of refresh intervals. While in the foroase the best performance

is reached with refresh interval of O, for the latter it is with refregmiat of 5.
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6.5.4 Experiment 4: Impact of Push vs. Pull

In the previous experiments, we assume that the workload haartiee aaverage currency
bounds for all the cache regions. In this set of experiments wg gtadmpact of cache
region granularity for workloads with skewed currency bounds. For cosoparve also use
a workload with the same currency bound as a reference. Fbieadixperiments the seed
currency bound is set to 5 seconds. We first describe the exp&sifoethe skewed setting.

Then we compare that with the reference setting.

6.5.4.1 Skewed Setting

In generating the workload, we partitioned the database into 1,000 uwifcized
consistency classes. Object n belongs to consistency classdwithO. For a skewed
workload, the distribution of the average currency bounds for the regramsases
guadratically. That is, region i's average currency bound is givgif*®)rcurrency_bound.
Regardless of the actual number of cache regions, the refreslalraf a cache region is set
to the tightest average currency bound of the consistency clhasgesll into this region.
Thus the refresh frequency follows a Zipfian(2) distribution. Beeaadaptive caching was
not the focus of this study, this setting assumes that the cache is tuned for thedvorkloa
For the push model, we assign the number of cache regions to be 1, 20, #@0and

because it can only support view level (relatively big) caelgeons. For the pull model, it is
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the opposite. We assign the number of cache regions to be 100, 200, 500 and 1008, becaus
it can support fine-grained cache regions.

The skewed setting affects the system behavior under diffemehe aegion granularity
mainly in two ways. Firstly, given our simulation time, accordinghe decaying function,
out of the total 1,000 consistency classes there are 141 with nomyirdinrency bound.
That is, only about 14% consistency classes have non-infinity currenogsioSecondly, as
a consequence, the ratio of data at the caches that is aatiagliained varies for different
settings. Using some simple calculation, we compute that the nuwfbactive regions for
the push model are 1, 3, 6, and 15, while those for the pull model are 15, 3&] Z41a
From these numbers, the percentage of data at the caches by awtintained is 100%
for 1 with 1 cache region, 15% with 20, 40 and 100 regions, and about 14% festiu#
our settings.

Figure 6.18 shows the system throughput for the push model. Betternpents is
observed with more cache regions. With 10 caches, the relative iempeots (compared to
1 region) are roughly 15%, 40% and 60%, for 20, 40 and 100 regions, respediivel
factors contribute to this difference. With more cache regionsg mhata can be maintained
exponentially less frequently and hence there is a lowelkdistm overhead and higher
throughput for read-write transactions at the master, as showgureR8.14, which in turn
leads to higher throughput at the cache, as shown in Figure 8.15. Althahghsatme time,
more regions require more distribution agents, for our settingsliffeeence in the number
of regions is not much (1, 3, 6 and 15) compared to the difference (expbnentefresh

intervals.
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For this experiment, the difference in local workload ratithatcaches is tiny, as shown
in Figure 6.19. For most cases, local workload ratio is well above O/88.tRe lowest point
is still ~0.94 (1 region setting with 1 cache).

Figure 6.20 shows the throughput for the pull model with the skewedgsefor the
chosen granularities, comparable throughputs are observed. Interestihgly there are
more than 10 caches, the setting with 100 regions is slightly iblese that with more than
100 regions. This is because the master is burdened with the capsactions when the
number of regions increases and hence has lower throughput, as showner8FEig, which
again leads to lower output to the cache (Figure 8.17). Figure 6.2% shatvin all cases
almost all read-only transactions at the caches are exeadalllyl Thus, the difference
between the throughputs is purely due to the difference in refresh cost.

Comparing the pull with the push model, there is no obvious different¢e small
number of caches, due to our low push maintenance overhead settmgl@~to 15 caches,
however, both with 100 cache regions, the pull model performs about 15%-6@¥ot etk

the push model, where the push maintenance overhead exceeds the pull overhead.
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6.5.4.2 Reference Setting

For the reference workload, the refresh interval for every caepen is the same as
currency_bound.

As expected, the results for the reference setting areatistom that of the skewed
setting. For the push model, as shown in Figure 6.22, the performatitel wegion
improves from about 12 to 22, while that of the other settings desrése local workload
ratio is shown in Figure 6.23. In this setting, increasing the numbe¥gans negatively
affects the performance, because it does not save any work but incurs mimatidistcosts.
As shown in Figure 8.18 and Figure 8.19, for 20, 40 and 100 cache regions, the maste
throughput dominates the total throughput.

For the pull model, as shown in Figure 6.24 the performance drarhyatoaps below 2
when there are 3 or more caches, with all our chosen numbergiafseThis is what we
expected, because with pull and 100 cache regions, it is simil&lOtenore terminals that
together read the whole database from the master and wrike toache. This workload
makes the master the bottleneck. Because of the averageekminse time (above 200
seconds) of copier transactions, as shown in Figure 6.25, more than 70%reddkenly
transactions are shifted back to the master, as shown in Figurewhizh worsens the

bottleneck situation.
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6.6 Conclusions

The previous chapters of this dissertation have developed a fleataejuality-aware cache
management framework. We have implemented a prototype in SQerSearode base for a
simple case. In this chapter, we built a reasonable model, whistsaus to explore the
cache design space, and examine the system behavior in suchpkexceystem under
different assumptions.

Starting with the single-site database model from [ACL87],exeended it to cache-
master configuration, and refined it to model the characteyispecific to our study. Our
model includes a model of the database system and its resouncexjel of the user

population, a model of data transaction behavior, a cache modeheraster interaction
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model and a cache maintenance model. Except for the user motied, athers have a data
guality-aware component. We built the simulation framework usiegSIM package, and
included in it all of these models. We used it to study alternasseimptions about the
transaction behavior and system configurations.

The first conclusion is that a detailed model is crucial in unaledgtg the system
behavior. The interaction between the user transaction data qeagjityements, local data
refresh policy, resource utilization and the cache maintenance odeeteais complex.
Under different situations, different components might dominate teeerayperformance.
Only a detailed model can realistically reflect such a complex systéavior.

Specific to our setting, the first set of experiments shows that not all wortdmabenefit
from adding more caches to the system. Even when the cache isrefeeshed, we only
observe reasonable performance improvement (about 6-fold with 15syadmen the read-
only percentage is above 90; with a read-only percentage of d80gxample, the
performance only improves 2-fold. This is because read-write athoss cannot be
processed at the caches. When the caches are refreshed continuagsiygeupush model,
even with low maintenance overhead, the performance improvemenastbpgsaches even
with a read-only percentage of 90.

The second set of experiments examines the effect of diffeedrésh intervals.
Although the gap between two extreme cases with refrestvahtaf O and infinity increases
with more caches, there is not much difference among the edieate refresh intervals

when the number of caches is less than 15 because of the low amortized distribution cost.



177

In the second set of experiments, the currency bounds are sentty,irso the refresh
interval only affects the propagation cost. Together with the lowilmlison cost, refresh
interval does not affect system throughput that much. However, whetsw@rovide data
guality guarantees, the situation changes dramatically. The third esgp@iments shows the
tradeoff in refresh interval setting and its significant impant system performance.
Relaxing the refresh interval causes less refresh overheathadetworkload is shifted to
the master due to poorer local data quality. Tightening the refresival has the opposite
effects.

Thus, for best performance, the refresh interval should be dgrefidsen according to
gueries’ data quality requirements. Potential performance impratesmenly possible by
tightening the refresh interval if it significantly increasthe local workload ratio. In our
setting where distribution overhead is low, it is better to seftee cache continuously for a
workload with tight currency bounds. For a currency bound of 5, the locdtloadr
percentages are in the 90s and 70s for refresh intervals of O r@sgpéctively, but they drop
close to O for refresh intervals of 50 and infinity. Consequently, ¥dticaches, the system
throughput is 27, 19, 13 and 16 for the four refresh interval settings, respectively.

In the first three sets of experiments, we assume that tHéoadrhas the same average
currency bound for the whole cache. Our last set of experimewliesthe impact of cache
region granularity for workloads with skewed currency bounds. Forukke model, better
performance is observed with more cache regions. With 10 cachesyeldug/e
improvements (compared to 1 region) are roughly 15%, 40% and 60%, f4® 20d 100

regions, respectively. Two factors contribute to this differenceh Wiore cache regions,
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more data can be maintained exponentially less frequently and begreeis a lower
distribution overhead and higher throughput for read-write transactiadhe anaster, which
in turn leads to higher throughput at the cache.

For the pull model, for the chosen granularities, comparable throughputbserved.
Peak performance is obtained with 100 cache regions when ther@mdhan 10 caches.
This is because the master is burdened with the copier transastiemsthe number of
regions increases and hence has lower throughput, which againddad&r output to the
caches.

Comparing the pull with the push model, for a read-dominated workloadswanitar
currency bounds, the push model with 1 cache region is more effi€teapull model with
fine granularity of cache regions excels for a skewed workloadenddy a small part of the
cache is accessed with high data quality requirements. Thacedbvious difference with a
small number of caches, due to our low push maintenance overhead $&timglO to 15
caches, however, both with 100 cache regions, the pull model per&trows 15%-60%
better than the push model, where the push maintenance overhead exceeds the pull overhead.

A more general conclusion is that synchronization delay may tead drop in local
workload ratio; hence special care has to be given to the @plerefresh transactions. It is
not a good practice to combine many small refresh transactionoma, because of the
longer lock waiting time and the higher chance of lock failure andensarged response
time. Further, it is necessary to give refresh transactiigbker priority over user
transactions. Otherwise, even for a workload with a low write prbtyatthe response time

of a refresh transaction may surge due to resource contention.
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Chapter 7

Related Work

We classify work related to ours into two main categomesk on relaxing data quality and
work on caching. In comparison with them, our approach is unique in the fojjovays: 1)
we allow individual queries to specify fine-grained consistency amekigcy requirements;
2) we allow flexible local data quality control in terms o&gularity and cache properties;

and 3) we provide transactional C&C guarantees for individual queries.

7.1 Relaxing Data Quality

Tradeoffs between data freshness and availability, concurremtynaintenance overhead
have been explored in several areas of database systems, sigplicas management,
distributed databases, warehousing and web caching. Yet no work we know of allaes quer
to specify fine-grained C&C constraints, provides well-defineanastics for such

constraints, and produces query plans guaranteeing that query results meetthiatsons
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7.1.1 Replica management

In a typical replica system setting, updates are centratimeal back-end server, while read
workloads are offloaded to local replicas. Keeping all the soppeto date at all times is
neither practical nor necessary. Can one lower the maintenanteadet the cost of lower
data quality? Different studies have tackled different aspects of this problem.

Quasi-copies [ABGMAS88] allow an administrator to specify thexiimam divergence of
cached objects, and maintain them accordingly. A later paper [Gié@BRlizes these
concepts and models the system using a queuing network. The work on B&oadgh”
Views [SK97] extends these ideas to approximate view mainten@tcbe [KKST98] to
wide-area distributed systems; [LC02] to mobile computing withidiged data sources.
Identity connection [WQ87] suggests a relationship to model the coomeotitween a
master and its copies. Researchers at Bellcore [SR90] projosetbmy for interdependent
data management.

The approach taken in these papers is fundamentally different frantbeir approach
is maintenance centriavhile ours isquery centric They propose different approximate
replica maintenance policies, each guaranteeing certain C8genies on the replicas. In
contrast, given a query with C&C requirements, our work focuses ondixgethe optimizer
to generate a plan according to the known C&C properties of theagplihus, C&C
requirements are enforced by the cache DBMS.

TRAPP [OWO0O0] stores intervals instead of exact values in ttebdse, combining local

bounds and remote data to deliver a bounded answer that satisfiesdiseon requirement.
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Divergence caching [HSW94], Moving Objects Databases [WXCJX8waork at Stanford
[OLWO1] deal with the problem of setting optimal bounds for approximatees given
gueries with precision bound and an update stream. These earliercquery proposals
allow a query to specify divergence bounds and guarantee that the bourds. dewever,
they have several limitations. First, they do not guarantee anistanty. Second, they do
not consider using derived data, e.g., materialized views, toearcperies. Third, field-
value level currency control limits the scalability of thosstems. Fourth, the decision to
use local data is not cost based, i.e., local data is alwaysifuseshtisfies the currency

constraints.

7.1.2 Distributed databases

In this area there are many papers focused on improving aimiland autonomy by
allowing local data to diverge from the master copy. They diffem each other in
divergence metrics, the concrete update protocols and correspondingtegddivergence
bound. Read-only Transactions [GMW82], the Demarcation Protocol [BGMRR[,C
[YV0Oa, YVO0Ob], and ASPECT [Len96] fall into this category. Thesseagches are all
maintenance centric. None of them supports queries with data quality requseme
Epsilon-serializability [PL91] allows queries to specify incotegisy bounds. However,
they focus on a different problem, hence utilize different technidues:to achieve higher
degree of concurrency by allowing queries to see databass with bounded inconsistency

introduced by concurrent update transactions.



182

7.1.3 Warehousing and web views

WebViews [LRO3] suggests algorithms for the on-line view selegiroblem considering a
new constraint — the required average freshness of the cachedresultg. Obsolescent
Materialized Views [Gal99] determines whether to use locakprote data by integrating
the divergence of local data into the cost model of the optimizdater paper [BR0O2]
tackles a similar problem for single object accesses. lthedle approaches, the models of
freshness are coarse-grained and its use is purely heuristigdipg no guarantees on
delivered data currency and consistency.

The work on distributed materialized views in [SF90] allows quédespecify currency
bounds, and they also support local materialized views. Howeverugde®n determining
the optimal refresh sources and timing for multiple views definethe@rsame base data. It
does not consider consistency constraints, assuming a query is a@nsysred from a
single view. Furthermore, it is not clear how it keeps trackefdurrency information of
local views, or how and when it checks the currency constraints.

FAS [RBSS02] explores some preliminary query-centric ideaslloyving queries to
specify currency requirements. Working as middleware on top of #ichfsmulti-versioned
replicated databases, FAS provides two major functionalitieso(iting a query to the right
database according to its currency requirement, and (2) decidieg and which replica
database to refresh based on the workload with currency requirerGemtpared to our
work, FAS has three major limitations. First, it does not allow igeeio specify relaxed

consistency requirements, i.e., a query result always has to bsteonstecond, it only
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supports database level currency control. This limits replica emante flexibility, possibly
resulting in higher overhead. Last but not least, enforcing currezauirements at the
middleware level instead of inside the DBMS, FAS cannot providedcéinsal currency

guarantees on query results.

7.2 Semantic Caching

Data-shipping at page level have been studied primarily in thextositeobject-oriented
database systems, detailed discussion regarding this body ofcheseen be found in
[Fra96]. The work in [DFJ+96] proposes a semantic caching model, ichwvitve cache is
organized into semantic regions. Usage information and replacemeanépalie maintained
for semantic regions. In general, a semantic caching sys¢es to address the following
three fundamental questions: 1) Replacement / admission po®)iékRv to map a query to
the cached data? 3) How to maintain the cache in the presengpdates? We first
summarize related work from each of the above perspectives tiegpyecThen we address
the work most closely related to ours in the middle tier cacbamgext. To the best of our
knowledge, there is no previous work on semantic caching that isthilmr workload with
relaxed C&C constraints.

Caching has been used in many areas. Regarding what to caclee,sahe works
[DFJ+96, APTPO03] support arbitrary query results, others arerddilfor certain simple

types of queries [KB96, BPKO02, LNO1], or even just base tables [AJL+Q2;+@,
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LKM+02]. In the database caching context, good surveys can be foundDm+[L1,

Moho1].

7.2.1 Replacement and Admission Policy

From a cache admission and replacement policy perspective, quée @olicies are
proposed in the literature, each of which tries to maximizetaioeyptimization goal under
a given space budget. Least Recently Used (LRU) is probably deewdely used cache
replacement policy. As an extension, LRU-K [OOW93] intends to dmcate between
objects that have frequent references and objects that are aaoelysed by looking at a
longer history. However, LRU-based schemes are not suited demantic cache because
they assume that all objects are of the same size, sarmgemalty and same replacement
cost. As a remedy, size-adjusted LRU (SLRU) [AWY99] is desigto generalize LRU to
objects of varying sizes and varying replacement costs.

The work in [DFJ+96] uses semantic distance for the replacemeacy.gdbwever, this
metric is only proper when the semantic regions have well defined geomening.

In [SJGP90], a cache management system is described for €3osigre proposed
admission and eviction policies take into account several propertitge afached views:
size, cost to materialize, cost to access it from the cagitate cost, access frequency, and
update frequency. These parameters are combined in a formutstihates the benefit per
unit size of caching a view. A similar cache management amesim is used by [KB96], but

in a different context, namely, semantic caching in a client-servetestie.
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DynaMat [KR99], a dynamic view selection and maintenanceesyst proposed in the
OLAP context. Several "goodness" functions are evaluated. Two dotstige considered:
time bound for update and space bound for admission and replacement.

WATCHMAN [SSV96] is a warehouse caching system. The proposedt [fwofition
combines average rate of reference, size, and cost of exeotitoquery. Their admission
and eviction policies are similar to the Postgres policiesil&ito LRU-K, they also retain,
for some time, information about results that have been evictedtfi@ache. A follow-up
work [SSV99] includes partial reuse and considers updates.

The cache investment idea is introduced in [KFDAOQOQ] for a distribdétalbase system.
Different from our work, they consider caching base tables andemdience different
techniques are used to gather statistics and to generate candidates.

In [SS02], in a multi-version caching system, a future accegsiéncy is estimated from
the frequency and recency of past references. In the cost/lfenefibn, they consider cost

of aborts due to a miss of an object version that is not re-fetchable.

7.2.2 Matching Cached Results

In the semantic caching scenario, the proposed matching algofithroached results are
mostly tailored to certain knowledge of the cached data. In [LC99] ledig®-based rules
are used as an addition to the match algorithms. Matching algeritrmonjunctive queries
are proposed in [CBO0O0]. The form-based caching scheme [LNO1] descab&inments test

for queries from a simple top-n selection on a single table view with a keywordgisedi
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The improved version of WATCHMAN [SSV99] recognizes two concepts of
derivability, namely, 1) a data cube is derivable from a compattibt less aggregated data
cube and b) a slice query is derivable from its underlying dabe query. For all other
gueries, exact match is required. The system maintains quewalillty information in a
directed graph. Similarly, DynaMat [KR99] also keeps the data lautee for derivability
information. In addition, they use a Directory Index for each node tioefiuprune the search
space.

In a chunk-based caching scheme for OLAP systems [DRSN98yeh defined by a
group by is divided into uniform chunks, which are the unit of cachinguery can be
answered only from the same level of chunks. A follow-up work [DNOGxed this
constraint by allowing a query to use chunks from lower levelaggregation. They
associate a Virtual Count with each chunk that records the deryahfliormation of the
chunk. The algorithm also maintains cost-based information that can be used todigpine

best possible option for computing a query result from the cache.

7.2.3 Cache Maintenance

From a cache maintenance policy perspective, existing works on ypagt@gation and
cache invalidation can be in turn classified into two categosiesed-storage and shared-
nothing based. As an example of the former, [APTP0O0] and [ATPPO&teptually
decompose the query results and store the tuples in the basehtaplasetfrom. The idea is

that to maintain base tables is cheaper than to maintainad gews. However, with this
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approach, queries sent to the back-end have to be rewritten and thenelb&comes
expensive. Furthermore, we lose the flexibility to maintain #ehe according to different
C&C requirements.

Algorithms in the second category are complementary to our agprgVe focus on how
to reduce maintenance frequency with the knowledge of relaxed G&$Iraints, while they
focus on how to propagate updates or calculate invalidation efficighB21] proposed
view updates scheduling algorithms for the back-end server to max@ae(Quality of
Data) based on the cost of updating and popularity of views. [CDI99] teedUP
algorithm to maintain data dependence information between cachedtsolgjed the
underlying data, and built a hash table index to efficiently inviida update highly
obsolete cached objects. [CLL+01] shows an example of using popul@orents in the
industry to support invalidation of front-end cached web pages. [CALH@fJests using

polling queries to reduce server invalidation workload at the cost of over-invatidat

7.2.4 Middle-tier Database Caching

In the context of middle-tier caching, the closest work to our&@ache [ABK+03] and
Constraint-based Database Caching (CBDC) [HB04]. Similarlystothey consider full-
fledged DBMS caching; and they define a cache with a setrsti@ints. However, there are
two fundamental differences. First, they don’t consider relaxed data gegjuyements, nor
do they provide currency guarantees from the DBMS. Our work is gesreral in the sense

that the cache-key and RCC constraints (an extension to cashpsgn [Tea02]) they
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support can be seen as a subset of ours. Second, in DBCache, lmeafailability checking
is done outside of the optimizer, while in our case, local datekiige is integrated into
qguery optimization, which not only allows finer granularity checking, &ab gives the

optimizer the freedom to choose the best plan based on cost.
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Chapter 8

Conclusion and Future Directions

This work was motivated by the lack of a rigorous foundation for idespread practice of
applications using replicated and cached data. This dissertatiodieenthe situation by
extending DBMS support for weak consistency, realizing our vision:icapipins are
allowed to explicitly express relaxed currency and consisted&L) requirements in SQL;
an administrator can explicitly express the desired local Q&C level in the cache schema;
and query processing provides transactional guarantees for the C&C requsrefreequery.

In Chapter 2, we showed how C&C constraints can be expressed sycoinSQL
through a new currency clause. We developed a formal model tiwly stlefines the
semantics of general C&C constraints, providing correctness stanétardhe use of
replicated and cached data.

In Chapter 3, we presented a fine-grained C&C-aware databdsagatodel, enabling
a flexible cache administration in terms of granularity ansirdd local data quality. We
formally defined four fundamental cache properties: presence, @ngistcompleteness,
and currency. We proposed a cache model in which administratospecify a cache
schema by defining a set of local views, together with caohesti@ints that define what

properties the cache must guarantee.
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In Chapter 4, we demonstrated for a simplified case, wheréealtows in a view are
consistent, how support for C&C constraints can be implemented in 8hECaur prototype
mid-tier database cache built on the Microsoft SQL Server cedelyde not only fully
integrated C&C checking into query optimization and execution, enaliargactional
guarantees, but also provide cost estimation, giving the optimizdregdom to choose a
best plan based on cost.

In Chapter 5, we extended the framework developed in Chapter 4 taer@&C
checking for a finer-grained cache model, where cache propargedgefined at the unit of
partition of a view.

Chapter 2 - Chapter 5 presented a comprehensive solution for blefleldta quality
aware cache management. In Chapter 6, we built a cachersiastiéator based on a closed
gueuing model, and conducted a series of experiments, systemaggallyating and
comparing the effectiveness of different design choices,imffensights into performance
tradeoffs.

To conclude, this dissertation built a solid foundation for supporting wealkstanmsy in
a database caching system, and we have demonstrated the feadithie proposed solution
by implementing a prototype in the Microsoft SQL Server codebageehvVision three
directions of future research:

To improve the current prototype. Firstly, now we only process oefdtransactions at
the cache. One possible future work is to handle read-write tteorsa@t the cache. A
possible extension is to process the read part of a read-vanigattion at the cache, and

send the write part to the master. However, it is not unusualnf@application to require
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seeing its own changes, which imposes time-line constraints dratisaction. How do we
efficiently support such constraints? Secondly, in our current caodelpwe only support
groups defined by equality conditions. For efficient cache managem would be useful to
include other predicates, e.g., range predicates.

Adaptive data quality-aware caching policies. This dissertatiorlolged mechanisms
for a flexible fine-grained cache model, but not the policies. How el@aaptively decide
the contents of the control tables? What refresh intervals tdosetach cache region?
Allowing queries to specify relaxed C&C constraints fundamentdignges the traditional
semantic caching problem in two ways. First, hit ratio is no loaggod indicator of cache
usage. The fact that a query can be semantically answeradtlie cached data does not
necessarily mean that the cache can be used, becausdatzcahight not be good enough
for the query’'s C&C constraints. Second, update workload on the backend databas
longer directly decides the maintenance overhead of the cachenstamce, even if the
backend database is updated frequently, we do not have to propagaés tpdae cache as
often if the query workload allows extremely relaxed C&C constraints.

Automatic/aided cache schema design and tuning. Given a queryoawnkiith C&C
constraints and an update workload at the master, how to genegatel &ache schema?
How to adjust a cache schema when the workload changes? Cuthentdgiche admin is
burdened with this task. To devise algorithms to aid or even autonmfgrdlcess remains

challenging.
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Appendix

Supporting Graphs

Experiment 1.
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Experiment 3:
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Experiment 4:

Throughput (per Sec)

0.5 i
0 Il Il
0 5 10 15
Number of Caches
Regions(1) —— Regions(40) —<—
Regions(20) —— Regions(100) —*—

Figure 8.14 Throughput for read-write transactions at the master
(skewed, push)

Throughput (per sec)

O | |
0 5 10 15

Number of Caches

’ Regions(1) —— Regions(40) ——
Regions(20) —— Regions(100) —»—

Figure 8.15 Throughput for all caches (skewed, pus  h)



Throughput (per Sec)

Throughput (per sec)

4 L -
2+ |
O 1 1
0 5 10 15
Number of Caches
| Regions(100) —— Regions(500) —<—
Regions(200) —— Regions(1000) ——

Figure 8.16 Master throughput (skewed, pull)

80 T T

70 |

50 |

40 +

20 |

O 1 1
0 5 10 15

Number of Caches

| Regions(100) —— Regions(500) —<—
Regions(200) —— Regions(1000) —*—

Figure 8.17 Throughput for all caches (skewed, pul )

200



201

20

18 b 1
16 F 1
14 1
12 b :

Throughput (per sec)
o

8 i
6 i
4+ i
2 - .
o Il Il
0 5 10 15
Number of Caches
Regions(1) —— Regions(40) —»—
Regions(20) —— Regions(100) —*—

Figure 8.18 Master throughput (non-skewed, push)

20

Throughput (per sec)

o n ~ »
T
I

0 5 10 15
Number of Caches

Regions(1) —— Regions(40) —x—
Regions(20) —— Regions(100) —»—

Figure 8.19 Throughput for all caches (non-skewed, push)



202

Bibliography

[ABGMAB88]Rafael Alonso, Daniel Barbara, Hector Garcia-Molirepd Soraya Abad.

[ABK+03]

[ACL87]

[AJL+02]

[APTPO3]

[ATPPO2]

[AWY99]

[BAK+03]

[BGM92]

Quasi-copies: Efficient data sharing for information retliesgstems. In
Proceedings of the International Conference on Extending Database
Technology(EDBT)Venice, Italy, March 14-18, 1988, volume 303 of Lecture
Notes in Computer Science, pages 443-468. Springer, 1988.

Mehmet Altinel, Christof Bornhévd, Sailesh Krishnamurthy, GHdn, Hamid
Pirahesh, and Berthold Reinwald. Cache tables: Paving the way &ataptive
database cache. Broc. Int. Conf. on Very Large Data Bases (VLDBges
718-729, Berlin, Germany, September 2003.

Rakesh Agrawal, Michael J. Carey, and Miron Livny. Corency control
performance modeling: Alternatives and implicatioA€M Transactions on
Database Systems (TOD$2(4):609-654, 1987.

Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parkerg Zssrg, and Tie
Zhong. Web caching for database applications with oracle wetecénProc.
ACM SIGMOD Int. Conf. on Management of Dgtages 594-599, New York,
NY, USA, June 2002. ACM Press.

Khalil Amiri, Sanghyun Park, Renu Tewari, and Srirfddadmanabhan.
Dbproxy: A dynamic data cache for web applicationsPioc. Int. Conf. on
Data Engineering (ICDE)pages 821-831, 2003.

Khalil Amiri, Renu Tewari, Sanghyun Park, and SrirBadmanabhan. On
space management in a dynamic edge data cacReodnInt. Workshop on the
Web and Databases (WebDPpages 37-42, Madison, Wisconsin, June 2002.

Charu Aggarwal, Joel L. Wolf, and Philip S. Yu. Caching on\terld Wide
Web. Knowledge and Data Engineering, 11(1):94-107, 1999.

Christof Bornhovd, Mehmet Altinel, Sailesh Krishnamurthy, Ghdn, Hamid
Pirahesh, and Berthold Reinwald. Dbcache: Middle-tier databasengafor
highly scalable e-business architecturesPioc. ACM SIGMOD Int. Conf. on
Management of Datgages 662—662, San Diego, California, June 2003.

Daniel Barbara and Hector Garcia-Molina. The dent@mtaprotocol: A
technigue for maintaining linear arithmetic constraints in disteitbuidatabase



[BPKO2]

[BRO2]

[CAL+02]

[CBOO]

[CDI99]

[CHS99]

[CLL+01]

[Condor]

[CS84]

[DDT+01]

203

systems. IREDBT, volume 580 of Lecture Notes in Computer Science, pages
373-388. Springer, 1992.

Julie Basu, Meikel Poess, and Arthur M. Keller. Perbotoe Analysis of an
Associative Caching Scheme for Client-Server Databases. Tatheport,
Stanford Computer Science Technical Note:STAN-CS-TN-97-55, 2002.

Laura Bright and Louiga Raschid. Using Latency-Recenofil& for Data
Delivery on the Web. IProc. Int. Conf. On Very Large Data Bases (VLDB),
pages 550-561, Hong Kong, China, August 2002.

K. Selguk Candan, Divyakant Agrawal, Wen-Syan Li, OliRer and Wang-Pin
Hsiung. View invalidation for dynamic content caching in multgeer
architectures. IrProc. Int. Conf. On Very Large Data Bases (VLDBages
562-573, Hong Kong, China, August 2002.

Boris Chidlovskii and Uwe M. Borghoff. Semantic Caching#b Queries.
VLDB Journal - The International Journal on Very Large Data BaS¢€E).2—
17, 2000.

Jim Challenger, Paul Dantzig, and Arun lyengar. A Scal&)ystem for
Consistently Caching Dynamic Web Data.Rroc. IEEE INFOCOM Conf. on
Computer Communicationslew York, New York, 1999.

Francis Chu, Joseph Y. Halpern, and Praveen Seshadi.expasted cost
query optimization: An exercise in utility. IRroc. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems(P@B§Hs 138—
147, Philadephia, PA, June 1999.

K. Selgcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, angaRkant
Agrawal. Enabling dynamic content caching for database-drivensitef In
Proc. ACM SIGMOD Int. Conf. on Management of Da&anta Barbara,
California, May 2001.

Condor team. University of Wisconsin - Madison.
http://www.cs.wisc.edu/condor/

Michael J. Carey and Michael Stonebraker. The performancencurrency
control algorithms for database management systemBrdo. Int. Conf. on
Very Large Data Bases (VLDBpages 107-118, San Francisco, CA, USA,
1984. Morgan Kaufmann Publishers Inc.

Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E. VanderMeéhi
Ramamritham, and Dan Fishman. A comparative study of alteenatiddle



[DFJ+96]

[DNOO]

[DR99]

[DRSNOS]

[Fra96]

[Gal9g]

[GLO1]

[GLRO5a]

[GLROS5b]

[GLRGO4]

204

tier caching solutions to support dynamic web content acceleratiénot. Int.
Conf. on Very Large Data Bases (VLDB)ages 667—670, Roma, Italy,
September 2001.

Shaul Dar, Michael J. Franklin, Bjérn T. Jonsson, DivestaSava, and
Michael Tani. Semantic data caching and replacemerradg. Int. Conf. on
Very Large Data Bases (VLDBpages 330-341, Mumbai (Bombay),India,
September 1996.

Prasad Deshpande and Jeffrey F. Naughton. Aggregate @aehirg for multi-
dimensional queries. IRroc. Int. Conf. On Extending Database Technology
(EDBT), London, UK, 2000. Springer-Verlag.

Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimizatitop
n queries. In Prodnt. Conf. on Very Large Data Bases (VLDBages 411—
422, Edinburgh, Scotland, September 1999.

Prasad M. Deshpande, Karthikeyan Ramasamy, Amit ShakthJeffrey F.
Naughton. Caching multidimensional queries using chunksProc. ACM
SIGMOD Int. Conf. on Management of Datpages 259-270, Seattle,
Washington, June 1998.

Michael J. Franklin, Client data caching: A foundation fghperformance
object oriented database systems. Kluwer, 1996.

Avigdor Gal. Obsolescent materialized views in querygssiag of enterprise
information systems. IfProc. ACM CIKM Int. Conf. on Information and
Knowledge Managemenpages 367—-374, New York, NY, USA, 1999. ACM
Press.

Jonathan Goldstein and Plke Larson. Optimizing queries using materialized
views: a practical, scalable solution. Rroc. ACM SIGMOD Int. Conf. on
Management of Datgpages 331-342, Santa Barbara, California, May 2001.

Hongfei Guo, Pekke Larson, and Raghu Ramakrishnan. Caching with “good
enough” currency, consistency, and completen€sshnical report, TR1520,
University of Wisconsin, 20086ttp://cs.wisc.edu/ guo/publications/TR1450.pdf.

Hongfei Guo, Peike Larson, and Raghu Ramakrishnan. Caching with “good
enough” currency, consistency, and completenesBradg. Int. Conf. on Very
Large Data Bases (VLDBYrondheim, Norway, 2005.

Hongfei Guo, Pekke Larson, Raghu Ramakrishnan, and Jonathan Goldstein.
Relaxed currency and consistency: How to say “good enough” insBtoc.



[GMWS2]

[GNO5]

[HBO4]

[Hen04]

[HSW94]

[Ise01]

[KB96]

[KFDAOQ]

[KKST98]

[KR99]

[LCO9]

205

ACM SIGMOD Int. Conf. on Management of Datmges 815-826, Paris,
France, June 2004.

Hector Garcia-Molina and Gio Wiederhold. Read-only traisas in a
distributed databaseACM Transactions on Database Systems (TQDS)
7(2):209-234, 1982.

Rainer Gallersdorfer and Matthias Nicola. Improving grenfance in replicated
databases through relaxed coherencyPdoc. Int. Conf. on Very Large Data
Bases (VLDB)pages 445-456, Zurich, Switzerland, September 1995.

Theo Harder and Andreas Buhmann. Query processing in cobh$issed
database cachd&EE Data Engineering Bulletjr27(2), 2004.

Ken Henderson, The Guru's Guide to SQL Server Architeahdgenternals,
Addison Wesley, 2004.

Yixiu Huang, Robert H. Sloan, and Ouri Wolfson. Divergencehi@gcin
Client Server Architectures. IRDIS pages 131-139, Washington, DC, USA,
1994. IEEE Computer Society.

David Iseminger. Microsoft SQL Server 2000 Referendwmaty, Vol 4,
Replication and English Query, Microsoft Press, 2001.

Arthur M. Keller and Julie Basu. A predicate-based CacBicigeme for Client-
server Database Architectures.MhDB Journal - The International Journal on
Very Large Data Bases, 1996

Donald Kossmann, Michael J. Franklin, Gerhard Drasch, andAfJigCache
investment: integrating query optimization and distributed data placeA@nt.
Trans. Database System25(4):517-558, 2000.

Anne-Marie Kermarrec, Ihor Kuz, Maarten Van Steen, a@mtrew S.
Tanenbaum. A framework for consistent, replicated web objectdrda. Int.
Conf. on Distributed Computing Systems(ICDG#)ge 276, Washington, DC,
USA, 1998. IEEE Computer Society.

Yannis Kotidis and Nick Roussopoulos. Dynamat: A dynamic view
management system for data warehouseBrdec. ACM SIGMOD Int. Conf. on
Management of Datgpages 371-382, Philadelphia, PA, June 1999.

Dongwon Lee andWesley W. Chu. Semantic caching via query mgtém
web sources. IfProc. ACM CIKM Int. Conf. On Information and Knowledge
Managementpages 77-85, New York, NY, USA, 1999. ACM Press.



[LCO2]

[Len96]

[LGGZ04]

[LGZ03]

[LGZ04]

[LKM+02]

[LNO1]

[LRO1]

[LRO3]

[Mesquite]
[Moh01]

[OLWO1]

206

Susan Weissman Lauzac and Panos K. Chrysanthis. Personalfaimngation
gathering for mobile database cliedts SAG March 2002.

Richard Lenz. Adaptive distributed data management with weagistent
replicated data. I'Symposium on Applied Computingages 178-185. ACM
Press, 1996.

PerAke Larson, Jonathan Goldstein, Hongfei Guo, and Jingren Zhou. Mtcache:
Mid-tier database cache in sgl servéEEE Data Engineering Bulletin
27(2):35-40, 2004.

PerAke Larson, Jonathan Goldstein, and Jingren Zhou. Transparent mid-tier
database caching in sql server. Rroc. ACM SIGMOD Int. Conf. on
Management of Datgages 661-661, San Diego, California, USA, June 2003.

PerAke Larson, Jonathan Goldstein, and Jingren Zhou. Mtcache: Transparent
mid-tier database caching in sql serverPhoc. Int. Conf. on Data Engineering
(ICDE), pages 177-189, Washington, DC, USA, 2004. IEEE Computer Society.

Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesimgdk Woo,
Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-tier databagencafor e-
business. InlProc. ACM SIGMOD Int. Conf. on Management of Dgiages
600-611, Madison, Wisconsin, June 2002.

Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching fabake-
backed web sites. IRroc. Int. Conf. On Very Large Data Bases (VLDEBges
191-200, Roma, Italy, September 2001.

Alexandros Labrinidis and Nick Roussopoulos. Update Propagaticiedisa
for Improving the Quality of Data on the Web. W.DB Journal - The
International Journal on Very Large Data Baspages 391-400, 2001.

Alexandros Labrinidis and Nick Roussopoulos. Balancing performance and dat
freshness in web database server®rbrt. Int. Conf. on Very Large Data Bases
(VLDB), pages 393-404, Berlin, Germany, September 2003.

Mesquite Software, “C++/CSim User’s Guide”. http://wvmasquite.com/

C. Mohan. Caching technologies for web application®ryc. Int. Conf. on
Very Large Data Bases (VLDBRoma, Italy, September 2001.

Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive Precgstting
for Cached Approximate Values. IRroc. ACM SIGMOD Int. Conf. on
Management of Datgages 355-366, Santa Barbara, California, May 2001.



207

[OOW93] Elizabeth J. O'Neil, Patrick E. O’Neil, and GerhardikMm. The LRU-K page
replacement algorithm for database disk buffering?rdoc. ACM SIGMOD Int.
Conf. on Management of Datpages 297-306, Washington, D.C., May 1993.

[OWO00] Chris Olston and Jennifer Widom. Offering a precision performaadedff for
aggregation queries over replicated datdroc. Int. Conf. on Very Large Data
Bases (VLDB)pages 144-155, Cairo, Egypt, September 2000.

[PLI1] Calton Pu and Avraham Leff. Replica control in distributedtesgs: An
asynchronous approach. Rroc. ACM SIGMOD Int. Conf. on Management of
Data, pages 377-386, Denver, Colorado, May 1991.

[RGO2] Raghu Ramakrishnan and Johannes Gehrke. Database manageteers. sys
McGraw-Hill, Inc., New York, NY, USA, August 2002.

[RS77] Daniel R. Ries and Michael Stonebraker. Effects of mgckjranularity in a
database management syst&@M Trans. Database System2(3):233-246,
1977.

[RS79a] Daniel R. Ries and Michael R. Stonebraker. Locking gnatyulevisited. ACM
Transactions on Database Systems (TOBR&):210-227, 1979.

[Sch86] Herb Schwetman. Csim: a c-based process-oriented simui@abguage. In
WSC ’'86: Proceedings of the 18th conference on Winter simulpéges 387—
396, New York, NY, USA, 1986. ACM Press.

[SFO0] Arie Segev and Weiping Fang. Currency-based updates tobudes
materialized views. InProc. Int. Conf. on Data Engineering (ICDEpages
512-520. IEEE Computer Society, 1990.

[SJIGP90] Michael Stonebraker, Anant Jhingran, Jeffrey Goh, arrdsSpgtamianos. On
rules, procedures, caching and views in data base systenodn ACM
SIGMOD Int. Conf. on Management of Dapages 281-290, Atlantic City, NJ,
May 1990. ACM Press.

[SK97] Leonard J. Seligman and Larry Kerschberg. A mediator afggroximate
consistency: Supporting "good enough” materialized viewstelligent
Information Systems (JI1S3(3):203-225, 1997.

[SR9I0] Amit P. Sheth and Marek Rusinkiewicz. Management of iepemndent data:
Specifying dependency and consistency requirement3iVdnkshop on the
Management of Replicated Dagzages 133-136, 1990.

[SS02] Andr'e Seifert and Marc H. Scholl. A multi-version hmaceplacement and
prefetching policy for hybrid data delivery environmentsPhoc. Int. Conf. on



[SSV96]

[SSV99]

[Tea02]

[WQ87]

[WQ90]

[WXCJ98]

[YV00a]

[YVOOb]

[ZLGO5]

208

Very Large Data Bases (VLDBpages 850-861, Hong Kong, China, August
2002.

Peter Scheuermann, Junho Shim, and Radek Vingralek. Watchfnalata
warehouse intelligent cache managerPhoc. Int. Conf. on Very Large Data
Bases (VLDB)pages 51-62, Mumbai (Bombay),India, September 1996.

Junho Shim, Peter Scheuermann, and Radek Vingralek. Dy@aciing of

Query Results for Decision Support Systerirs. Scientific and Statistical
Database Management Conferenc@/ashington, DC, USA, 1999. IEEE
Computer Society.

Times-Ten Team. Mid-tier caching: the timesten ambroIn Proc. ACM
SIGMOD Int. Conf. on Management of Datpages 588-593, Madison,
Wisconsin, June 2002.

Gio Wiederhold and Xiaolei Qian. Modeling asynchrony in riisted
databases. IProc. Int. Conf. on Data Engineering (ICDE)ages 246—250.
IEEE Computer Society, 1987.

GioWiederhold and Xiaolei Qian. Consistency control of refdttadata in
federated databases. Workshop on the Management of Replicated Data
pages 130-132, 1990.

Ouri Wolfson, Bo Xu, Sam Chamberlain, and Ligin Jiang. Movingaibj
databases: Issues and solutions. Smatistical and Scientific Database
Managementpages 111-122. IEEE Computer Society, 1998.

Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous
Consistency Model for Replicated ServicesPhoc. Symposium on Operating
Systems Design and Implementation (OSp#éges 305-318, New York, NY,
USA, 2000. ACM Press.

Haifeng Yu and Amin Vahdat. Efficient numerical error boundogeplicated
network services. liProc. Int. Conf. On Very Large Data Bases (VLDiEgges
123-133, Cairo, Egypt, September 2000.

Jingren Zhou, Pekke Larson, and Jonathan Goldstein. Partially materialized
views. Technical report, MSR-TR-2005-77, Microsoft Research, 2005.
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-77.pdf.



