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Abstract 

Many application systems make use of various forms of asynchronously updated replicas to 

improve scalability, availability and performance. If an application uses replicas that are not 

in sync with source data, it is clearly willing to accept results that are not completely current, 

but typically with some limits on how stale the data can be. Today, such requirements are not 

explicitly declared anywhere; they can only be inferred from the properties of the replicas 

used. Because requirements are not explicit, the system cannot detect when they are not met 

and take appropriate action. Instead, data currency requirements are implicitly expressed in 

the application logic through the choice of data sources. This very much resembles the 

situation in the early days of database systems when programmers had to choose what 

indexes to use and how to join records. 

This dissertation is about extending DBMS support for weaker consistency. We envision 

a scenario where applications are allowed to explicitly express relaxed currency and 

consistency (C&C) requirements in SQL; an administrator can explicitly express the desired 

local data C&C level in the cache schema; and query processing provides transactional 

guarantees for the C&C requirements of a query. Our research provides a comprehensive 

solution to this problem by addressing the following four issues: specifying “good enough” 

in SQL; building a constraint-based fine-grained “good enough” database caching model; 

enforcing “good enough” in query processing; and conducting a holistic system performance 

evaluation.  
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The first part of this dissertation proposes to allow queries to explicitly express relaxed 

C&C constraints. We extend SQL with a new currency clause, suggest a tentative syntax and 

develop a formal model that rigorously defines the semantics, thereby providing correctness 

standards for the use of replicated or cached data. 

The second part of the dissertation develops a data quality-aware, fine-grained cache 

model and studies cache design in terms of four fundamental properties: presence, 

consistency, completeness and currency. Such a model provides an abstract view of the cache 

to the query processing layer, and opens the door for adaptive cache management.  

The third part of this dissertation presents query processing methods for enforcing C&C 

constraints. We describe an implementation approach that builds on the MTCache 

framework for partially materialized views. The optimizer checks most consistency 

constraints and generates a dynamic plan that includes currency checks and inexpensive 

checks for dynamic consistency constraints that cannot be validated during plan compilation. 

Our solution not only supports transparent caching but also provides transactional fine 

grained data currency and consistency guarantees. 

The last part of this dissertation reports a systematic performance evaluation. We 

establish a simplified but realistic model of a full-fledged database caching system in order to 

examine the influence of different workload assumptions, and different query processing and 

cache maintenance choices. This study reveals system characteristics under those 

assumptions and design choices, offering insights into performance tradeoffs.  
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Chapter 1   

Introduction 

Many application systems today make use of various forms of asynchronously updated 

replicas to improve scalability, availability and performance. We use the term replica broadly 

to include any saved data derived from some underlying source tables, regardless of where 

and how the data is stored. This covers traditional replicated data and data cached by various 

caching mechanisms. “Asynchronously updated” simply means that the replica is not 

updated as part of a database transaction modifying its source tables; the state of the replica 

does not necessarily reflect the current state of the database.  

If an application uses replicas that are not in sync with the source data, it is clearly 

willing to accept results that are not completely current, but typically with some limits on 

how stale the data can be. For instance, a typical e-commerce site such as eBay makes 

frequent use of replicated and cached data. When browsing auctions in a category, the data 

(e.g., item prices, number of bids) may be a little out of date. However, most users 

understand and accept this, as long as the page they see when they click on an individual 

auction is completely current. As a concrete example, consider the following query that 

returns a summary of books with the specified title: 
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SELECT * 
FROM  Books B, Reviews R  
WHERE B.isbn = R.isbn AND B.title = “Databases” 
 

Different applications may have different freshness requirements for this query. 

Application A needs an up-to-date query result. Application B prefers a low response time 

but doesn’t care if the reviews are a bit stale. Application C does not mind if the result is 

stale but it requires the entire result to be snapshot consistent, i.e., reflect a state of the 

database at a certain point of time. Application D is satisfied with a weaker version of this 

guarantee, requiring only that all rows retrieved for a given book reflect the same snapshot, 

with different books possibly from different snapshots.  

Application designers normally understand when it is acceptable to use copies and what 

levels of data staleness and inconsistency are within the application’s requirements. 

Currently, such requirements are only implicitly expressed through the choice of data sources 

for queries. For example, if a query Q1 does not require completely up-to-date data, we may 

design the application to submit it to a database server C that stores replicated data instead of 

submitting it to database server B that maintains the up-to-date state. Another query Q2 

accesses the same tables but requires up-to-date data so the application submits it to database 

server B. The routing decisions are hardwired into the application and cannot be changed 

without changing the application. 

Because requirements are not explicit, the system cannot detect when they are not met 

and take appropriate action. For example, the system could return a warning to the 

application or use another data source. 
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This very much resembles the situation in the early days of database systems when 

programmers had to choose what indexes to use and how to join records. This was remedied 

by raising the level of abstraction, expressing queries in SQL and making the database 

system responsible for finding the best way to evaluate a query. We believe the time has 

come to raise the level of abstraction for the use of replicated and cached data by allowing 

applications to state their data currency and consistency requirements explicitly and having 

the system take responsibility for producing results that meet those requirements.  

This dissertation focuses on extending DBMS support for relaxed consistency. We 

envision a scenario where applications are allowed to explicitly express relaxed currency and 

consistency (C&C) requirements in SQL; an administrator can explicitly express the desired 

local data C&C level in the cache schema; query processing provides transactional 

guarantees for the C&C constraints of a query; and the cache makes intelligent decisions on 

scarce resource allocation. Our research provides a comprehensive solution to this problem 

by addressing the following four issues: specifying “good enough” in SQL; building a 

constraint-based fine-grained “good enough” database caching model; enforcing “good 

enough” in query processing; and conducting a holistic system performance evaluation. 

The first part of this dissertation [GLRG04] proposes to allow queries to explicitly 

express relaxed C&C constraints. We extend SQL with a new currency clause and suggest a 

tentative syntax. We also develop a formal model that rigorously defines the semantics, 

thereby providing correctness standards for the use of replicated or cached data. 

The second part of the dissertation [GLR05a, GLR05b] provides a fine-grained data 

quality-aware cache model. We build a solid foundation for cache description by formally 
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defining four fundamental properties of cached data: presence, consistency, completeness 

and currency. We introduce a novel cache model that supports a specific way of partitioning 

cached data, and translate a rich class of integrity constraints (expressed in extended SQL 

DDL syntax) into properties required to hold over different partitions. We identify an 

important property of cached views, called safety, and show how safety aids in efficient 

cache maintenance. Further, we formally define cache schemas and characterize when they 

are safe, offering guidelines for cache schema design.  

The third part of this dissertation [GLRG04, LGGZ04] develops query processing 

methods for enforcing C&C constraints. First, for a simple case where each view in the cache 

is consistent and complete, we implement a prototype in MTCache, our mid-tier database 

cache built on the Microsoft SQL Server codebase. The optimizer checks the consistency 

constraints during plan compilation and generates a dynamic plan that includes currency 

checks. A SwitchUnion plan operator checks the currency of each local replica before use 

and switches between local and remote sub-plans accordingly. We integrate the C&C 

constraints of a query and replica update policies into the cost-based query optimizer. This 

approach supports transparent caching, and makes optimal use of the cache DBMS, while 

guaranteeing that applications always get data with sufficient quality for their purpose. 

We then extend the framework for a more general case where we keep track of cache 

properties at the granularity of partitions of a view [GLR05a, GLR05b]. The optimizer 

checks most consistency constraints during plan compilation and generates a dynamic plan 

that includes currency checks and inexpensive checks for dynamic consistency constraints 

that cannot be validated during plan compilation.  
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The last part of this dissertation reports a systematic performance evaluation. We begin 

by establishing a performance evaluation framework based on a model of a database 

management system. Our model captures the main elements of a database environment, 

including both users (i.e., terminals, the sources of transactions) and physical resources for 

storing and processing the data (i.e., disks and CPUs), in addition to the characteristics of the 

workload and the database. Then we extend the single-site model to a cache-master 

configuration, capturing the interaction between the cache and the master. In addition, we 

refine the single-site model to reflect the characteristics of cache organization and 

maintenance.  

Based on this framework, we examine the influence of different workload assumptions, 

and different query processing and cache maintenance choices. This study reveals system 

characteristics under those assumptions and design choices, offering insights into 

performance tradeoffs. 

Although this dissertation focuses on a database caching environment, the philosophy of 

our solutions can be applied to a broad range of usage scenarios where the system can 

provide additional functionality if applications explicitly state their C&C requirements.  

Traditional replicated databases: Consider a database containing replicated data 

propagated from another database using normal (asynchronous) replication. The system can 

easily keep track of how current the data is, but today that information is not exploited. If an 

application states its currency requirements, the system could detect and take action when the 

application’s requirements are not met. Possible actions include logging the violation, 

returning the data but with an error code, or aborting the request. 
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Mid-tier database caching: This scenario was motivated by current work on transparent 

mid-tier database caching as described in [LGZ04, ABK+03, BAK+03]. Suppose we have a 

back-end database server that is overloaded. To reduce the query load, we replicate part of 

the database to other database servers that act as caches. When a cache DBMS receives a 

query, it attempts to answer it from the local data and if that is not possible it forwards the 

query transparently to the back-end server. In this scenario, it is crucial to know the C&C 

constraints so that the cache DBMS can decide whether local data can be used or not.  

Caching of query results: Suppose we have a component that caches SQL query results 

(e.g., application level caching) so that those results can be reused if the same query is 

submitted later. The cache can easily keep track of the staleness of its cached results and if a 

result does not satisfy a query’s currency requirements, transparently recompute it. In this 

way, an application can always be assured that its currency requirements are met.  

The rest of the dissertation is organized as follows. Chapter 2 presents the SQL 

extension, which allows an individual query to specify fine-grained C&C requirements. We 

develop a data quality-centric database caching model in Chapter 3, providing flexible local 

data quality control for cache administration in terms of granularity and cache properties. In 

Chapter 4, we introduce the framework to enforce C&C constraints in MTCache, a prototype 

transparent mid-tier database cache built on Microsoft SQL Server codebase, for the simple 

case where each view in the cache is consistent. We remove this restriction, and generalize 

the algorithms to support fine-grained C&C checking in Chapter 5. Chapter 6 establishes a 

model of a full-fledged database caching system and reports performance evaluation results. 

We discuss related work in Chapter 7 and conclude in Chapter 8.     
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Chapter 2  

Specifying Data Quality Constraints in SQL  

Different applications might have different data quality requirements. We define a model for 

relaxed currency and consistency (C&C) constraints, allowing an individual query to express 

its fine-grained data quality requirements. Section 2.1 describes how to specify C&C 

constraints through a simple extension of SQL syntax. We start with constraints for read-only 

transactions; first for single-block queries, and then generalizing to multi-block queries. Then 

we introduce an additional constraint for read-write transactions. We build a formal model in 

Section 2.2, which not only defines the semantics of the set of C&C constraints specified by 

the proposed SQL extension, but also covers general C&C constraints. It thereby provides 

correctness standards for general use of replicated and cached data.  

2.1 Specifying Currency and Consistency Constraints 

In this section we introduce our model for currency and consistency constraints by means of 

examples. We propose expressing C&C constraints in SQL by a new currency clause and 

suggest a tentative syntax. The semantics of C&C constraints are described informally in this 

section; the following one contains formal definitions. 
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Before proceeding, we need to clarify what we mean by the terms currency and 

consistency. Suppose we have a database with two tables, Books and Reviews, as might be 

used by a small online book store.   

Replicated data or the result of a query computed from replicated data may not be 

entirely up-to-date. Currency (staleness) simply refers to how current or up-to-date we can 

guarantee a set of rows (a table, a view or a query result) to be. Suppose that we have a 

replicated table BookCopy that is refreshed once every hour. In this scenario, the currency of 

BookCopy is simply the elapsed time since this copy became stale (i.e., when the first update 

was committed to Books after BookCopy’s last refresh) to the commit time of the latest 

update transaction on the back-end database. 

Suppose we have another replicated table, ReviewCopy, which is also refreshed once 

every hour. The state of BookCopy corresponds to some snapshot of the underlying database 

and similarly for ReviewCopy. However, the states of the two replicas do not necessarily 

correspond to the same snapshot. If they do, we say that they are mutually consistent or that 

they belong to the same consistency group. Whether or not the two replicas are mutually 

consistent depends entirely on how they are updated. 

2.1.1 Single-Block Queries 

To express C&C constraints we propose a new currency clause for SQL queries. The new 

clause occurs after a Select-From-Where (SFW)  block and follows the same scoping rules as 

the WHERE clause. Specifically, the new clause can reference tables defined in the current 
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or in outer SFW blocks. We use query Q1 to illustrate different forms of the currency clause 

and their semantics, as shown in Figure 2.1. The query is a join of Books and Reviews. 

Currency clause E1 expresses two constraints: a) the inputs cannot be more than 10 min 

out of date and b) the the two input tables must be consistent, that is, from the same database 

snapshot. We say that B and R belong to the same consistency class. 

Suppose that we have cached replicas of Books and Reviews, and compute the query 

from the replicas. To satisfy the C&C constraint, the result obtained using the replicas must 

be equivalent to the result that would be obtained if the query were computed against some 

mutually consistent snapshots of Books and Reviews, that are no older than 10 min (when 

execution of the query begins). 

E2 relaxes the bound on R to 30 min and no longer requires that the tables be mutually 

consistent by placing them in different consistency classes. The easiest way to construct a 

currency clause is to first specify a bound for each input and then form consistency groups by 

deciding which inputs must be mutually consistent. 

Figure 2.1 Single-block example C&C constraints 

Q1: SELECT * 
  FROM  Books B, Reviews R 
  WHERE B.isbn = R.isbn and B.title = “Databases“ 
 
E1: CURRENCY BOUND 10 min ON (B, R) 
E2: CURRENCY BOUND 10 min ON (B), 30 min ON (R) 
E3: CURRENCY BOUND 10 min ON (B) BY B.isbn, 
      30 min ON (R) BY R.isbn 
E4: CURRENCY BOUND 10 min ON (B, R) BY B.isbn 
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E1 and E2 require that every Books row be from the same snapshot and similarly for 

Reviews, which may be stricter than necessary. Sometimes it is acceptable if rows or groups 

of rows from the same table are from different snapshots. E3 and E4 illustrate how we can 

express different variants of this requirement. 

We assume that isbn is a unique key of Books. E3 allows each row of the Books table to 

originate from different snapshots (because B.isbn is unique). The phrase “(R) by R.isbn” has 

the following meaning: if the rows in Reviews are grouped on isbn, rows within the same 

group must originate from the same snapshot.  Note that a Books row and the Reviews rows 

it joins with may be from different snapshots (because Books and Reviews are in different 

consistency classes).   

In contrast, E4 requires that each Books row be consistent with the Reviews rows that it 

joins with. However, different Books rows may be from different snapshots. 

In summary, a C&C constraint in a query consists of a set of triples where each triple 

specifies 

1) a currency bound,  

2) a set of tables forming a consistency class, and  

3) a set of columns defining how to group the rows of the consistency class into 

consistency groups. 

The query-centric approach we have taken for dealing with asynchronously maintained 

copies is a fundamental departure from maintenance-centric prior work on replica 

management (see Chapter 7), which concentrates on maintenance policies for guaranteeing 

different kinds of constraints over cached objects. While this earlier work can be leveraged 
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by a system in determining what constraints hold across a set of cached objects, the user’s 

C&C requirements in the query ultimately determine what copies are acceptable, and the 

system must guarantee that these requirements are met, if necessary by fetching master 

versions of objects. This is the focus of this thesis.  

An important consequence of our approach is a significant difference in workloads, 

because C&C constraints influence when and how caches need to be updated, necessitating 

new cache management policies and mechanisms. However, this issue is beyond the scope of 

this thesis. 

Figure 2.2  Multi-block example C&C Constraints 

Q2:  
 
SELECT * 
FROM  Sales S, 
(  
 SELECT  * 
 FROM  Books B, Reviews R 
 WHERE  B.isbn = R.isbn 
 CURRENCY BOUND   
   5 min ON (B, R) 
) T 
WHERE S.isbn = T.isbn  
 AND year= ‘2003’  
CURRENCY BOUND  
   10 min ON (S, T) 
 

Q3:  
 
SELECT * 
FROM  Books B, Reviews R 
WHERE B.isbn = R.isbn 
 AND B.isbn IN  
( 
 SELECT  isbn 
 FROM  Sales S  
 WHERE  year=‘2003’ 
 CURRENCY BOUND  
   10 min ON (S, B) 
) 
CURRENCY BOUND  
   10 min ON (B, R) 
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2.1.2 Multi-Block Queries 

An SQL query may, of course, consist of multiple SFW blocks. C&C constraints are not 

restricted to the outermost block of a query — any SFW block can have a C&C constraint. If 

a query contains multiple constraints, all constraints must be satisfied.  

We first consider subqueries in the FROM clause. Suppose we have an additional table 

Sales with one row for each book sale and consider the query Q2 in Figure 2.2. Note that 

such queries can arise in a variety of ways. For instance, the original query may have 

referenced a view and the query in the FROM clause is the result of expanding the view. 

Whatever input data the query is computed from, the inputs must be such that both 

constraints are satisfied. The outer currency clause states that S must be from the same 

snapshot as T. But T is computed from B and R, which implies that S, B and R must all be 

from the same snapshot. If they are from the same snapshot, they are all equally stale. 

Clearly, to satisfy both constraints, they must be no more than 5 min out of date. In 

summary, the least restrictive constraint that the inputs must satisfy is “5 min ON (S, B, R)”.  

Next we consider subqueries in clauses other than the FROM clause. For such subqueries 

we must also decide whether the inputs defined in the subquery need to be consistent with 

any of the inputs in an outer block. We modify our join query Q1 by adding a subquery that 

selects only books with at least one sale during 2003, see Q3 in Figure 2.2.  

When constructing the currency clause for the subquery, we must decide whether S 

(Sales) needs to be consistent with B and/or R (in the outer block). If S must be consistent 

with B, we simply add B to the consistency class of S, see Q3. Because the outer currency 
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clause requires that R be consistent with B, it follows that B, R, and S must all be consistent, 

that is, they all form a single consistency class. 

If S need not be consistent with any tables in the outer block, we simply omit the 

reference to B and change the inner currency clause to “10 min on S”. 

2.1.3 Timeline Consistency 

Until now we have considered each query in isolation. Given a sequence of queries in a 

session, what constraints on the relationships between inputs to different queries are of 

interest? Even though not explicitly stated, current database systems provide an important 

guarantee on sequences of queries within the same session: time moves forward. If a user 

reads a row R twice but row R is updated and the change committed in between the reads, 

then the second read will see the updated version of R.  

This rather natural behavior follows from the fact that queries use the latest committed 

database state. However, if queries are allowed to use out-of-date replicas and have different 

currency bounds, there is no automatic guarantee that perceived time moves forward. 

Suppose queries Q1 and then Q2 are executed against replicas S1 and S2, respectively. S2 is 

not automatically more current than or equal to S1; the ordering has to be explicitly enforced.  

We take the approach that forward movement of time is not enforced by default and has 

to be explicitly specified by bracketing the query sequence with “begin timeordered” and 

“end timeordered”. This guarantees that later queries use data that is at least as fresh as the 

data used by queries earlier in the sequence.  
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This feature is most useful when two or more of the queries in a sequence have 

overlapping input data. In this case, we may get very counterintuitive results if a later query 

were to use older data than an earlier one. Note that users may not even see their own 

changes unless timeline consistency is specified, because a later query may use a replica that 

has not yet been updated. 

2.2 Formal Semantics of Currency and Consistency Constraints 

In this section, we build a formal model that defines the semantics of general currency and 

consistency constraints. We classify currency and consistency requirements into four types: 

per-object, per-group, inter-group, and inter-statement. Our approach to currency and 

consistency constraints in a query specification reflects two principles: 

1) C&C constraints of query results should not depend on data objects not used in 

constructing the result; this is achieved through the use of the extended query 

(Section 2.2.2). 

2) It must be possible to require consistency for any subsets of the data used in a query; 

we achieve this, naturally, by leveraging the query mechanism to identify the subsets 

(Section 2.2.3.3). 

2.2.1 A Model of Databases with Copies 

A database is modeled as a collection of database objects organized into one or more tables. 

Conceptually, the granularity of an object may be a view, a table, a column, a row or even a 
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single cell in a row. To be specific, in this thesis an object is a row. Let identity of objects in 

a table be established by a (possibly composite) key K. When we talk about a key at the 

database level, we implicitly include the scope of that key. Every object has a master and 

zero or more copies. The collection of all master objects is called the master database. We 

denote the database state after n committed update transactions (T1..Tn) by Hn = (Tn ° Tn–1 ° 

… ° T1(H0)), where H0 is the initial database state, and “°” is the usual notation for functional 

composition. Each database state Hi is called a snapshot of the database. Assuming each 

committed transaction is assigned a unique timestamp, we sometimes use Tn and Hn 

interchangeably. 

A cache is a collection of (local) materialized views, each consisting of a collection of 

copies (of row-level objects). Although an object can have at most one copy in any given 

view, multiple copies of the same object may co-exist in different cached views. We only 

consider local materialized views defined by selection queries that select a subset of data 

from a table or a view of the master database.  

Transactions only modify the master database, and we assume Strict 2PL is enforced. 

Further, for simplicity we assume that writers only read from the master database. Copies of 

modified objects are synchronized with the master by the DBMS after the writer commits 

through (system-initiated) copy-transactions, but not necessarily in an atomic action as part 

of the commit.  

Next, we extend the database model to allow for the specification of currency and 

consistency constraints. We emphasize that the extensions described below are conceptual; 

how a DBMS supports these is a separate issue.  
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Self-Identification: master() applied to an object (master or copy) returns the master 

version of that object. 

Transaction Timestamps: The function xtime(T) returns the transaction timestamp of 

transaction T. We overload the function xtime to apply to objects. The transaction timestamp 

associated with a master object O, xtime(O, Hn), is equal to xtime(A), where A is the latest 

transaction in T1..Tn that modified O. For a copy C, the transaction timestamp xtime(C, Hn) 

is copied from the master object when the copy is synchronized.  

Copy Staleness: Given a database snapshot Hn, a copy C is stale if master(C) was 

modified in Hn after xtime(C, Hn). The time at which O becomes stale, called the stale point, 

stale(C, Hn), is equal to xtime(A), where A is the first transaction in T1..Tn that modifies 

master(C) after xtime(C, Hn). The currency of C in Hn is measured by how long it has been 

stale, i.e., currency(C, Hn) = xtime(Tn) – stale(C, Hn). 

A read-only transaction's read requests include currency and consistency constraints, and 

any copy of the requested object that satisfies the constraints can be returned to the 

transaction. We assume that as transactions commit, the DBMS assigns them an integer id — 

a timestamp — in increasing order. 

2.2.2 The Extended Query Set 

Intuitively, the C&C requirements of query results should not depend on data objects not 

used in constructing the result. For a given query Q, we construct an extended query set 

Qext, which consists of a set of extended versions of Q, termed extended queries, denoted by 
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ext
iQ . For a simple query (single block, without referring to any views), Qext contains only 

one query. For more general queries, the construction proceeds block-at-a-time, starting from 

the outmost one, and finding one query for each sub-block or view, ensuring that the result of 

Qext includes all objects used in constructing the result of Q (including objects used in 

WHERE clauses, grouping, etc.). We refer to the result of Qext, a set of derived tables, as the 

relevant set for Q. We first describe the construction for simple queries and then for 

generalized cases. 

2.2.2.1 Simple queries 

For a simple query, i.e., a single-block query that does not refer to any views, the extended 

query is the original query without aggregates, but with the projected out attributes that are 

referred to in the query. Given a query Q in the following format: 

SELECT <select-list>      FROM   <from-list> 
WHERE <where-constraints> 
[GROUP BY <group-by-key>] 
[HAVING <having-constraints>] 

Where the from-list contains only base tables. The construction of the extended query 

extQ is described by algorithm ConstructExtendedQuery shown in Figure 2.3.  

2.2.2.2 Queries with Nested Queries 

Consider a query Q with n levels of nested queries, numbered from outmost to innermost, of 

which nested query Qi, i = 1..n, with Q1 = Q,  is defined recursively as follows: 
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SELECT <select-listi> 
FROM  <from-listi> 
WHERE <where-constraintsi> AND (OR) 
        pi( 1iattr , …, 

imiattr , Qi+1) 

[GROUP BY <group-by-keyi>] 
[HAVING <having-constraintsi>] 

Where pi (i=1,…,n–1) is a predicate defined on a set of attributes from tables in the from-

list and the result of nested query Qi+1, and pn is true. We proceed from outmost to 

innermost, block-by-block, to find the extended query for each nested query. For each nested 

query Qi, i=1..n, we first apply ConstructExtendedQuery. If Qi is not correlated, we are done. 

Otherwise, we only want to keep in the result of the extended query rows that are correlated 

to its outer blocks. This is achieved by replacing any attribute A that are from an outer block 

Qj (j<i) by Qj
ext.A and adding Qj

ext to the from-list. Note that for simplicity, we use Qj
ext here 

to refer to the result table of query Qj
ext. For convenience, we call this modified algorithm 

ConstructExtendedQueryGeneral.  

This construction method can be extended to a more general case, where there might be 

multiple nested queries at the same level. In order to include the possible aggregates 

introduced by each nested query, we union the set of all {Qi} and the extended query set 

Qext, and call the result the complete extended query set, denoted by Qext-all. 

Figure 2.4 shows an example. Query Q asks for all the books that are less than $25 and 

have more than 10 reviews. For the outmost query, Q1
ext is the same as Q except for the 

select-list, which also includes columns referred in the where clause. Since the nested query 

Q2 is correlated to the outer query, we put in Q2
ext the result table of Q1

ext, and replace B.isbn 

with Q1
ext.isbn. 
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Figure 2.3  Algorithm for constructing extended que ry 

Figure 2.4  Extended query example 

Algorithm  ConstructExtendedQuery 
Inputs: query Q 
Outputs: Qext 
 
begin 
 step1: Copy SELECT, FROM and WHERE clauses from Q; 
 step 2:Add to the select-list all attributes mentioned somewhere in Q; 

(including those appearing in any aggregate function) and the 
key for each table in the from-list. Delete from the select-list 
any aggregate functions. 

 step 3:If there is no HAVING clause, go to step 5. 
 step 4:Add to the WHERE clause the following constraint:  
   AND (group-by-key) IN ( 
    SELECT group-by-key 
    (Q without the select clause) ) 
 step 5:exit; 
end ConstructExtendedQuery 
 

Q: SELECT isbn, title  
 FROM  Books B 
 WHERE B.price < $25 AND 
   10 < ( SELECT COUNT (*) 
      FROM Reviews R 
      WHERE R.isbn = B.isbn )  
Q1

ext:  
 

SELECT isbn, title, price  
FROM  Books B 
WHERE B.price < $25 AND 
  10 < ( SELECT COUNT (*) 
    FROM Reviews R 
    WHERE R.isbn = B.isbn ) 

Q2
ext:  

 
SELECT *  
FROM  Reviews R, Q1

ext 
WHERE  R.isbn = Q1

ext.isbn 
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2.2.2.3 Queries with Views in the From Clause 

Consider a query Q of the same format as in the last section, yet with another relaxation: we 

allow views in the FROM clause. In this case, the extended query is constructed in two 

phases. In the first phase, treat the views as base tables, and construct the extended query for 

each nested query using ConstructExtendedQueryGeneral. In phase 2, we construct the 

extended query set ext

ijVQ  for each view Vij — the jth view at level i — using two steps. Step 

1: add to Vij ’s WHERE clause a nested query as follows 

AND EXISTS ( SELECT * 
    FROM  ext

iQ  

    WHERE ext
iQ . Vij.key = Vij.key ) 

Where we implicitly assume that there is a mapping between the key of Vij and the keys 

of the base tables of Vij. The idea is to select only those rows in Vij that contribute to the 

query result of ext
iQ . Step 2: we simply regard the modified view as a regular query, and 

apply ConstructExtendedQueryGeneral to construct its extended query set ext

ijVQ . The union 

of the extended query set from phase 1 and that from phase 2 is the extended query set for 

query Q. The complete extended query set for Q is the union of that from each phase. 

2.2.3 Specifying Currency and Consistency 

We classify currency and consistency requirements into four types: per-object, per-group, 

inter-group, and inter-statement. Per-object freshness requirements, which we call currency 
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constraints, specify the maximal acceptable deviation for an object from its master copy. 

Group consistency constraints specify the relationship among a group of objects, for 

example the answers to a query. Inter-group consistency constraints specify the relationships 

among object groups, for example answer sets to multiple (sub-) queries. Session consistency 

constraints are essentially inter-group consistency constraints, but cover groups of objects 

arising from multiple SQL statements within a session; we do not discuss them further.  

Constraints of all four types can be expressed using standard formulas constructed from 

object variables and constants, comparison operators, quantifiers and Boolean connectives. 

2.2.3.1 Currency Constraints for Single Object 

For a query Q, a user can specify currency requirements for any copy C in the complete 

extended query set Qext-all by comparing C with its counterpart in the master copy of the 

results of Qext-all, in terms of either the value of C or the timestamp associated with C. In our 

implementation, we measure the currency of copy C in snapshot Hn by how long it has been 

stale, i.e., currency(C, Hn) = xtime(Tn) – stale(C, Hn). 

Figure 2.5  Basic concepts 

Xact 2
 updates 
master(A)

currency(A, t5)

Xact 1 
updates 

master(A)

Time

Xtime(B, t4)
t1

distance(A, B, t4)

xtime(A, t4)
t2 t3 t4 t5

Xtime of the
 lastest Xact on 

master database

stale(A, t4)
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For simplicity, we do not allow deletion on the master database. This restriction is lifted 

by a “ghost technique” introduced in Section 3.2.5.  

Note that an attribute in the select-list might be defined by an aggregation function. For 

instance, if “SUM (O_TOTAL) AS TOTAL” appears in the select-list, a user can specify 

requirements on this aggregate attribute TOTAL. However, such derived data does not have 

a master copy; hence its currency is not well-defined. We remedy this by a “virtual master 

copy” technique introduced in Section 3.2.6. 

2.2.3.2 Group Consistency for Cached Objects 

The function return (O, s) returns the value of O in database state s. We say that object O in 

scache is snapshot consistent with respect to a database snapshot Hn if return (O, scache) = 

return (O, Hn) and xtime(O, Hn) = xtime(master (O), Hn).  

Given how copies are updated through copy transactions, we observe that for every 

object in a cache, there is at least one database snapshot (the one with which it was 

synchronized) with respect to which it is snapshot consistent. However, different objects in a 

cache could be consistent with respect to different snapshots. For a subset K of the cache, if a 

snapshot Hn exists such that each object in K is snapshot consistent with respect to Hn, then 

we say K is snapshot consistent with respect to Hn. If K is the entire cache, we say that the 

cache is snapshot consistent. 
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We define the distance between two objects (which could be masters or copies) A and B 

in a snapshot Hn as follows. Let xtime(B, Hn) = Tm and let xtime(A, Hn) ≤  xtime(B, Hn). 

Then: 

   distance(A, B, Hn) = currency(A, Hm) 

Since B is current (identical to its master) at time Tm, the distance between A and B 

reflects how close A and B are to being snapshot consistent with respect to snapshot Hm. 

Figure 2.5 illustrates the basic concepts. 

Let t be the distance between A and B. We say that A and B are -consistent with 

consistency bound t. We also extend the notion of -consistency for a set of objects K, by 

defining the bound t to be the maximum distance between any pair of objects in K. 

Consider a set of cached objects K and a database snapshot Hn. If K is -consistent with 

consistency bound t = 0, and O is the object with the largest value of xtime(O, Hn) in K, it is 

easy to show that K is snapshot-consistent with respect to the database snapshot at xtime(O, 

Hn). In general, as t increases, the deviation from snapshot consistency also increases. 

2.2.3.3 Group Consistency for Queries 

Given a query Q, the relevant set for Q (the result of the extended version extQ ) includes all 

objects that affect the result of Q. We can apply the concept of -consistency to this set, and 

thereby impose a consistency constraint on Q.  

In practice, however, we may not care whether the entire relevant set is -consistent, and 

simply wish to require that certain subsets of the relevant set be -consistent. We leverage 
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the power of SQL queries to achieve this, as follows. Given query Q, we allow the use of an 

auxiliary set of queries P over the relevant set of Q to identify the subset that must be -

consistent. We illustrate the approach by discussing two common cases. 

1) Consistency requirements on input tables of query Q: We may want to state that 

one or more input tables must be from a single database snapshot. We can do this 

using a query p that simply selects all attributes associated with those tables from 

extQ and requiring -consistency with respect to the result of p.  

2) Consistency with respect to horizontal partitions of the result of query Q: Again, 

we use an auxiliary query p over extQ . We can use SQL’s GROUP BY clause to 

divide the result of p horizontally into partitions, and require -consistency with 

respect to one or more partitions (selected using the HAVING clause). 

2.2.3.4 Inter-Group Consistency 

We have discussed two natural ways in which groups of related objects arise, namely as 

subsets of a cache, or as part of the result of a query. It is sometimes necessary to impose 

consistency requirements across multiple groups of objects. Examples include: 

1) Multiple groups of cached objects, such as all cached Order records and all cached 

Catalog records.   

2) Groups of objects from different blocks of a query. (Note that each subquery has an 

extended version!) 
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3) Groups of objects drawn from multiple statements (e.g., different queries) within a 

session. 

Regardless of the context in which groups arise, let G1, G2, … , Gn be the sets of 

relevant data objects for groups 1 to n.  

A user can specify two types of consistency requirements over this collection:  

-consistency: Naturally, we can require that the objects in the union or intersection of 

one or more groups be -consistent with bound t.  

Time-line consistency: Intuitively, we might want to say that “time always moves 

forward” across a certain ordering of groups. That is, for any i, j such that nji ≤< , any 

objects A ∈ Gi, B ∈ Gj, xtime(A, Hn) ≤  xtime(B, Hn), where Hn is the database snapshot 

after executing all statements corresponding to the groups G1, G2, … , Gn.  

2.2.3.5 Session Consistency Constraints 

We extend the previous concept to a group of statements. Given a group of ordered queries 

Q1, …, Qn, similar to the single query case, we allow a user to use a set of auxiliary queries 

Pi over ext
iQ , the relevant set of Qi, and specify 

�
-consistency or time-line consistency 

requirements over any subset of ∪ (P1..Pn). While -consistency constraints bound the 

divergence of the result unit set from one snapshot, time-line constraints require time to 

move forward within the group with regards to the specified result unit sets. 
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Chapter 3  

Data Quality-Centric Caching Model 

SQL extensions that allow individual queries to explicitly specify data quality requirements 

in terms of currency and consistency were proposed in Chapter 2. This chapter develops a 

data quality-aware, fine-grained cache model and studies cache design in terms of four 

fundamental properties: presence, consistency, completeness and currency. Such a model 

provides an abstract view of the cache to the query processing layer, enabling the 

implementation of the latter to be independent of the former. Regardless of the cache 

management mechanisms or policies used, as long as cache properties are observed, query 

processing can deliver correct results. Further, the flexible mechanism provided by this cache 

model opens the door for adaptive cache management. 

3.1 Introduction 

3.1.1 Background 

We model cached data as materialized views over a master database. Queries can specify 

their data quality requirements in terms of currency and consistency. It is the caching 

DBMS’s responsibility to ensure that it produces query results that satisfy the stated quality 
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requirements. In order to do that, the caching DBMS needs to keep track of local data 

quality. The question is, at what granularity? At one end of the spectrum is database level 

consistency. That is, the whole cache has to be consistent. This approach requires the least 

bookkeeping, but is the least flexible: suppose a query requires an object to be less than 1 

second stale, if we want to answer that query locally, we have to keep the whole cache no 

more than 1 second stale.  

A slightly refined granularity is view level. That is, all rows of a cached view are 

consistent, i.e., from the same database snapshot. We explain the corresponding maintenance 

and query processing mechanisms for this granularity level in Chapter 4.  

Although more flexible than the database level granularity, view level granularity still 

severely restricts the cache maintenance policies that can be used. A pull policy, where the 

cache explicitly refreshes data by issuing queries to the source database, offers the option of 

using query results as the units for maintaining consistency and other cache properties. In 

particular, issuing the same parameterized query with different parameter values returns 

different partitions of a cached view, offering a much more flexible unit of cache 

maintenance (view partitions) than using entire views. This is the focus of this chapter. 

Figure 3.1 shows our running example, where Q1 is a parameterized query, followed by 

different parameter settings. 
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3.1.2 Motivation 

We now motivate four properties of cached data that determine whether it can be used to 

answer a query. In the model proposed in Chapter 2, a query’s C&C constraints are stated in 

a currency clause. For example, in Q2, the currency clause specifies three “quality” 

constraints on the query results: 1) “ON (A, B)” means that all Authors and Books rows 

returned must be consistent, i.e., from the same database snapshot. 2) “BOUND 10 min” 

means that these rows must be current to within 10 minutes, that is, at most 10 minutes out 

Figure 3.1  Running examples 

Authors  (authorId, name, gender, city, state)  
 
Books (isbn, authorId, publisherId, title, type) 
 
Q1: SELECT * 
  FROM Authors A  
  WHERE authorId in (1,2,3) 
  CURRENCY BOUND 10 min on (A) BY $key 
 
E1.1: $key = Ø 
E1.2: $key = authorId  
E1.3: $key = city 
 
Q2: SELECT * 
  FROM Authors A, Books B  
  WHERE authorId in (1,2,3) AND A.authorId = B.authorId 
  CURRENCY BOUND 10 min ON (A, B) BY authorId 
 
Q3:  SELECT * FROM Authors A WHERE city = “Madison” 
  CURRENCY BOUND 10 min ON (A) BY authorId 
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of date. 3) “BY authorId” means that all result rows with the same authorId value must be 

consistent. To answer the query from cached data, the cache must guarantee that the result 

satisfies these requirements and two more: 4) the Authors and Books rows for authors 1, 2, 

and 3 must be present in the cache and 5) they must be complete, that is, no rows are 

missing. 

E1.1 requires that all three authors with id 1, 2 and 3 be present in the cache, and that 

they be mutually consistent. Suppose we have in the cache a partial copy of the Authors 

table, AuthorCopy, which contains some frequently accessed authors, say those with 

authorId 1-10. We could require the cache to guarantee that all authors in AuthorCopy be 

mutually consistent, in order to ensure that we can use the rows for authors with id 1, 2 and 3 

to answer E1.1, if they are present. However, query E1.1 can be answered using the cache as 

long as authors 1, 2 and 3 are mutually consistent, regardless of whether other author rows 

are consistent with these rows. On the other hand, if the cache provides no consistency 

guarantees, i.e., different authors could have been copied from a different snapshot of the 

master database, the query cannot be answered using the cache even if all requested authors 

are present. In contrast, query E1.2, in which the BY clause only requires rows for a given 

author to be consistent, can be answered from the cache in this case. 

Query Q3 illustrates the completeness property. It asks for all authors from Madison, but 

the rows for different authors do not have to be mutually consistent. Suppose we keep track 

of which authors are in the cache by their authorIds. Even if the cache happens to contain all 

the authors from Madison, we cannot safely use the cached data unless the cache guarantees 
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that it has all the authors from Madison. Intuitively, the cache guarantees that its content is 

complete w.r.t. the set of objects in the master database that satisfy a given predicate.  

Regardless of the cache management mechanisms or policies used, as long as cache 

properties are observed, query processing can deliver correct results. Thus, cache property 

descriptions serve as an abstraction layer between query processing and cache management, 

enabling the implementation of the former to be independent of the latter.  

The rest of the chapter is organized as follows. Section 3.2 builds a solid foundation for 

cache description by formally defining presence, consistency, completeness and currency. 

Section 3.3 introduces a novel cache model that supports a specific way of partitioning the 

cache and translating a rich class of integrity constraints (expressed in extended SQL DDL 

syntax) into properties required to hold over different partitions. We identify an important 

property of cached views, called safety, and show how safety aids in efficient cache 

maintenance in Section 3.4. Finally, we formally define cache schemas and characterize 

when they are safe, offering guidelines for cache schema design in Section 3.5. 

Figure 3.2  Cache property example 

Q1(H2)
Q2(H2)

Q3(H2)

1
23

5
4

6
7

U2

U3

Q1(H1)
Q2(H1)

Q3(H1)

1
23

5
4

6
7

U1

 



   31

3.2 Formal Definition of Cache properties 

3.2.1 Presence 

The simplest type of query asks for an object identified by its key (e.g., Q1). How to tell if an 

object is in the cache?  

Intuitively, we require every object in the cache to be copied from some valid snapshot. 

Let return (O, s) return the value of object O in database state s. We say that copy C in a 

cache state Scache is snapshot consistent w.r.t. a snapshot Hn of the master database if 

return(C, Scache) = return(master(C), Hn) and xtime(C, Hn) = xtime(master(C), Hn). We also 

say CopiedFrom(C, Hn) holds.  

Definition : (Presence) An object O is present in cache Scache iff there is a copy C in Scache s.t. 

master(C) = O, and for some master database snapshot Hn CopiedFrom(C, Hn) holds.    

3.2.2 Consistency 

When a query asks for more than one object, it can specify mutual consistency requirements 

on them, as shown in E1.1.  

For a subset U of the cache, we say that U is mutually snapshot consistent (consistent for 

short) w.r.t. a snapshot Hn of the master database iff CopiedFrom(O, Hn) holds for every 

object O in U. We also say CopiedFrom(U, Hn) holds. 

Besides specifying a consistency group by object keys (e.g., authorId in E1.2), a query 

can also specify a consistency group by a selection, as in E1.3. Suppose all authors with id 1, 



   32

2 and 3 are from Madison. The master database might contain other authors from Madison. 

The cache still can be used to answer this query as long as all three authors are mutually 

consistent and no more than 10 minutes stale. Given a query Q and a database state s, let Q(s) 

denote the result of evaluating Q on s. 

Definition : (Consistency) For a subset U of the cache Scache, if there is a snapshot Hn of the 

master database s.t. CopiedFrom(U, Hn) holds, and for some query Q, U⊆ Q(Hn), then U is 

snapshot consistent (or consistent) w.r.t. Q and Hn.  

U consists of copies from snapshot Hn and Q is a selection query. Thus the containment 

of U in Q(Hn) is well defined. Note that object metadata, e.g., timestamps, are not used in 

this comparison. 

If a collection of objects is consistent, then any of its subsets is also consistent. Formally, 

Lemma 3.1: If a subset U of the cache Scache is consistent w.r.t. a query Q and a snapshot Hn, 

then subset P(U) defined by any selection query P is consistent w.r.t. P°Q and Hn.  

Proof of Lemma 3.1:  

Since U is consistent w.r.t. Q and Hn, we have:   

U ⊆  Q(Hn)     (1)    

CopiedFrom(U, Hn)    (2) 

Since (1), for any selection query P, 

P(U) ⊆  P°Q (Hn)    (3) 

Since P is a selection query, P(U) ⊆  U. Together with (2), we have  
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CopiedFrom(P(U), Hn)    (4) 

From (3) and (4), we know that P(U) is snapshot consistent w.r.t. P°Q and Hn.   

3.2.3 Completeness 

As illustrated in Q3, a query might ask for a set of objects defined by a predicate. How do we 

know that all the required objects are in the cache? 

Definition:  (Completeness) A subset U of the cache Scache is complete w.r.t. a query Q and a 

snapshot Hn of the master database iff CopiedFrom(U, Hn) holds and U = Q(Hn).  

Lemma 3.2: If a subset U of the cache Scache is complete w.r.t. a query Q and a snapshot Hn, 

then subset P(U) defined by any selection query P is complete w.r.t. P°Q and Hn.  

Proof of Lemma 3.2:  

From the given, we have  

CopiedFrom(U, Hn)   (1)  

U = Q(Hn)     (2) 

From (2), for any selection query P,  

P(U) = P°Q(Hn)    (3) 

Since P(U) ⊆  U, from (1), we have  

CopiedFrom(P(U), Hn)   (4) 

From (3) and (4), we know P(U) is complete w.r.t. P°Q and Hn.  
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The above constraint is rather restrictive. Assuming that objects’ keys are not modified, it 

is possible to allow subsequent updates of some objects in U to be reflected in the cache, 

while still allowing certain queries (which require completeness, but do not care about the 

modifications and can therefore ignore consistency) to use cached objects in U.  

Definition : (Associated Objects) We say that a subset U of the cache Scache is associated 

with a query Q if for each object C in U, there exists a snapshot Hn of the master database 

such that CopiedFrom(C, Hn) holds and C is in Q(Hn).  

Definition:  (Key-completeness) For a subset U of the cache Scache, we say U is key-

complete w.r.t. Q and a snapshot Hn, iff U is associated with Q and keyQ(Hn) ⊆  key(U).  

Intuitively, U includes (as identified by the keys) all the objects that appear in the result 

of Q applied to the master database Hn. However, the objects in the cache might have been 

copied from different earlier snapshots of the master database, and subsequent changes to 

these objects might not be reflected in the cache. 

Figure 3.2 illustrates cache properties, where an edge from object O to C denotes that C 

is copied from O. Assuming all objects are modified in H2, U1 is consistent but not complete 

w.r.t. Q1 and H1, U2 is complete w.r.t. Q2 and H1, and U3 is key-complete w.r.t. Q3 and 

both H1 and H2. 

Lemma 3.3: If a subset U of the cache Scache is complete w.r.t. a query Q and a database 

snapshot Hn, then U is both key-complete and consistent w.r.t. Q and Hn.   



   35

Proof of Lemma 3.3:  

Directly from the definitions.   

3.2.4 Currency 

We have defined stale point and currency for a single object. Now we extend the concepts to 

a set of objects. Suppose that at 1pm, there are only two authors from Madison in the master 

database, and we copy them to the cache, forming set U. At 2pm, a new author moves to 

Madison. At 3pm, how stale is U w.r.t. predicate “city = Madison”? Intuitively, the answer 

should be 1 hour, since U gets stale the moment the new author is added to the master 

database. However, we cannot use object currency to determine this since both objects in U 

are still current. For this reason we use the snapshot where U is copied from as a reference.  

We overload stale() to apply to a database snapshot Hm w.r.t. a query Q: stale(Hm, Q, Hn) 

is equal to xtime(A), where A is the first transaction that changes the result of Q after Hm in 

Hn. Similarly, we overload the currency() function: currency(Hm, Q, Hn) = xtime(Hn) – 

stale(Hm, Q, Hn). 

Figure 3.3  Currency example (1) 
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Definition : (Currency for complete set) If a subset U of the cache Scache is complete w.r.t. a 

query Q and a snapshot Hm, then the currency of U w.r.t. a snapshot Hn of the master 

database is: currency(U, Q, Hn) = currency(Hm, Q, Hn).  

From the definition, the currency of U depends on the snapshot Hm used in the 

calculation. This problem can be solved using a “ghost row” technique, see Section 3.2.5 for 

details. 

Figure 3.3 illustrates the currency of two complete sets, where A1 and A2 are two copies of 

A’ and B is a copy of B’, Q(Hi) = {A’, B’}, i = 1, 2, Q(H i) = {A’, B’, C’}, i = 3, 4. {A1, B} 

and {A2, B} are complete w.r.t. Q and H1, H2. 

Non-Shrinking Assumption: For any query Q, any database snapshot Hi and Hj, where i j, 

keyQ(Hi) ⊆ keyQ(Hj).   

Currency Property 3.1: Under the assumption above, for any subset U of the cache Scache, 

any query Q, and any master database snapshots Hi and Hj, if U is complete w.r.t. Q and both 

Hi and Hj, then for any n, currency(Hi, Q, Hn) = currency(Hj, Q, Hn).   

Figure 3.4  Currency example (2) 
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Proof of Currency Property 3.1:  

(By contradiction)  

Since the case i=j is trivial, without loss of generality, assume i<j. Assume Tk is the 

first transaction that modifies Q(Hi) after Hi. We claim that k>j. For the proof by 

contradiction, assume kj.  

From the non-shrinking assumption, Tk either 1) modifies an object in Q(Hi), say O1 

or 2) adds a new object, say O2 to the result of Q. Further, both O1 and O2 are in 

Q(Hj). 

In case 1), since kj, xtime(O1, Hj)>xtime(O1, Hi), which contradicts the given that 

U is consistent w.r.t. both Hi and Hj.  

In case 2), O2 is not in Q(Hi), which also contradicts the given that U is complete 

w.r.t. both Hi and Hj.  

Thus k>j, hence currency(Hi, Q, Hn) = currency(Hj, Q, Hn).    

 

How to measure the currency of a key-complete set? Figure 3.4 shares the same 

assumptions as Figure 3.3, except for T2 and xtime(B), where {A1, B}and {A2, B} are key-

complete w.r.t. Q and H1 and H2, while the latter is also complete w.r.t. Q and H2. It is 

desirable that 1) currency({A1,B}, Q, H4) is deterministic; and 2) since A1 is older than A2, 

{A1, B}should be older than {A2, B}. 

We address these problems by firstly identifying a unique referenced snapshot, and 

secondly incorporating the currency of the objects into the currency definition. 
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Definition : (Max key-complete snapshot) For any subset U of the cache Scache and a query 

Q, the max key-complete snapshot of U w.r.t. Q and a database snapshot Hn, max-

snapshot(U, Q, Hn) is equal to Hk, if there exists k, s.t., for any ik, ∏∏ ⊆
keykey i UHQ )( , 

and one of the following conditions holds: 1) k=n; 2) )( 1∏∏ +⊂
key kkey

HQU . Otherwise 

it is Ø.     

Directly from the definition of key-completeness and the non-shrinking assumption, we 

have the following lemma. 

Lemma 3.4: If there exists a database snapshot Hm, s.t. U is key-complete w.r.t. Q and Hm, 

then for any n, max-snapshot(U, Q, Hn) is not Ø.  

Lemma 3.4 guarantees that the following definition is well defined for a key-complete 

set.  

Definition : (Currency for key-complete set) For a subset U of the cache Scache, if U is key-

complete w.r.t. a query Q and some database snapshot, then the currency of U w.r.t. a 

snapshot Hn of the master database is defined as follows. Let Hm = max-snapshot(U, Q, Hn) 

and                        )),,((max n
UC

HCcurrencyY
∈

=  

Then currency(U, Q, Hn) = max (Y, currency(Hm, Q, Hn)).       

Figure 3.4 shows the currency of a key-complete set {A1, B} and a complete set {A2, 

B}. 

The currency of a key-complete set has some nice properties that intuitively fit. 



   39

Currency Property 3.2: For any subset U of the cache Scache, and a query Q, if U is key-

complete w.r.t. Q and some database snapshot, then for any n, currency(U, Q, Hn) is 

deterministic.        

Proof of Currency Property 3.2: 

Directly from the definition and Lemma 3.4.      

Currency Property 3.3: Given any query Q, and two subsets U1 and U2 of the cache Scache, 

if max-snapshot(U1, Q, Hn) = max-snapshot(U2, Q, Hn)  Ø, let 

)),,((max n
UO

i HOcurrencyY
i∈

=  

where i=1, 2. If Y1 Y2, then currency(U1, Q, Hn)  currency(U2, Q, Hn).                   

Proof of Currency Property 3.3:  

Directly from the definition.                                     

Currency Property 3.4: currency-complete is a special case of currency-key-complete.  

Proof of Currency Property 3.4:  

Given any subset U of the cache Scache that is complete w.r.t. a query Q and some 

database snapshot Hm. For any nm, let Hg = max-snapshot(U, Q, Hn). From the 

definition of max key-complete snapshot we know gm. There are two cases:  

Case 1: U is complete w.r.t. Hg.  
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Let Tk be the first transaction in Hn that changes the result of Q after Hg. From the 

non-shrinking assumption, again, we have two cases: 

Case 1.1: Tk touches at least one object, say O1, in U. Since Tk is the first 

transaction that touches U,  

         (1) 

 

Since the stale points for O1 and Q(Hg) are both xtime(Tk), currency(Hg, Q, Hn) = 

currency(O1, Hn). Thus  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))  

       = currency(Hg, Q, Hn) = currency(O1, Hn). 

 

Case 1.2: Tk adds new objects into the result of Q.  

In this case the stale point of any object O in U is later than xtime(Tk), so 

currency(Hg, Q, Hn)  currency(O, Hn).  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn)) 

                               = currency(Hg, Q, Hn).    

Case 2: U is not complete w.r.t. Hg.  

Let Tk be the first transaction in Hn that modifies at least an object, say O1 in U after 

Hm, then 

     currency(Hm, Q, Hn) = currency(O1, Hn)   (2) 

                                                                             (3) 

 

),()),(( 1max nn
UO

HOcurrencyHOcurrencyY ==
∈

),()),(( 1max nn
UO

HOcurrencyHOcurrencyY ==
∈
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In addition we have kg, otherwise from the non-shrinking assumption, U would be 

complete w.r.t. Hg. Thus  

           Y  currency(Hg, Q, Hn)     (4) 

Putting (2), (3) and (4) together,  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))  

       = currency(Hg, Q, Hn) = currency(O1, Hn).       

3.2.5 Dealing with Deletion 

Currency properties 2.1 to 2.4 don’t hold without the non-shrinking assumption. Take 

Property 2.1 for example. On day 1 there are two customers C1, C2 from WI, which we 

copied to the cache, U = {C1, C2}. On day 2, customer C3 moved to WI temporarily, and 

moved out of WI on day 5. Then on day 4, the currency of U is 2 days stale. However, on 

day 6, it goes back to 0!  

The reason is that when an object is deleted, we lose its xtime record. Consequently, 

given a set of objects K , one cannot uniquely identify the first snapshot K  appears in. To 

remedy that, we introduce the concept of ghost object. Conceptually, when an object is 

deleted from a region in the master copy, we don’t really delete it, instead, we mark it as a 

ghost object and treat it the same way as a normal object. Thus we keep the xtime timestamp 

of deleted objects. Ghost objects and their timestamps are propagated to the cache just as 

normal objects. With this technique, deletion is modeled as a special modification. Thus the 

non-shrinking assumption is guaranteed even in the presence of deletions. 
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Lemma 3.5: With the ghost object technique, given any query Q, the non-shrinking 

assumption holds.  

Proof of Lemma 3.5:   

With the ghost object technique, there are no deletions to the region defined by Q.   

Note that in practice, we don’t need to record those ghost objects, since the calculation of 

currency only needs to be conservative. How we bound the currency of a complete set is 

discussed in Section 3.4.1.2. 

3.2.6 Derived Data 

If the cache only contains (parts of) base tables, then for each object in the cache there is a 

master version in the master database. This doesn’t apply to derived data, i.e., materialized 

views in the cache. An object (row) in a materialized view in the cache doesn’t necessarily 

have a master copy in the master database. We introduce the concept of virtual master copy 

to remedy this. Conceptually, for any view V in the cache, for any snapshot Hi of the master 

database, we calculate V(Hi) and include it in the master database. Thus, by comparing two 

adjacent snapshots, we can record any insertion/deletion/modification on the view. With this 

technique, any object in the cache — no matter whether it is from a base table or a view — 

has a master copy in the master database. Thus, any query can be used to define a region in 

the cache.  
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Again, in practice, since we only need to bound the currency of a region conservatively, 

we don’t need to materialize the virtual master copies. See Section 3.4.1.2. 

3.3 Dynamic Caching Model 

In our model, a cache is a collection of materialized views V = {V 1, …, Vm}, where each 

Figure 3.5 DDL examples for adding cache constraint s 

D1: CREATE VIEW AuthorCopy AS  
    SELECT * FROM Authors 
 
  CREATE VIEW BookCopy AS  
    SELECT * FROM Books 
 
D2: CREATE TABLE AuthorList_PCT(authorId int) 
  ALTER VIEW AuthorCopy  
    ADD PRESENCE ON authorId IN  
     (SELECT authorId FROM AuthorList_PCT) 
 
D3: CREATE TABLE CityList_CsCT(city string) 
  ALTER VIEW AuthorCopy  
    ADD CONSISTENCY ON city IN  
     (SELECT city FROM CityList_CsCT) 
 
D4: CREATE TABLE CityList_CpCT(city string) 
  ALTER VIEW AuthorCopy  
    ADD COMPLETE ON city IN  
     (SELECT city FROM CityList_CpCT) 
 
D5: ALTER VIEW BookCopy  
  ADD PRESENCE ON authorId IN 
     (SELECT authorId FROM AuthorCopy) 
 
D6: ALTER VIEW BookCopy ADD CONSISTENCY ROOT 
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view Vi is defined using a query expression Qi. We describe the properties of the cache in 

terms of integrity constraints defined over V. In this section, we introduce a class of metadata 

tables called control tables that facilitate specification of cache integrity constraints, and 

introduce extended SQL DDL syntax for constraint specification. Figure 3.5 shows the set of 

DDL examples used in this section. We start by defining two views as shown in D1. 

3.3.1 View Partitions and Control-tables 

Instead of treating all rows of a view uniformly, we allow them to be partitioned into smaller 

groups, where properties (presence, currency, consistency or completeness) are guaranteed 

per group. The same view may be partitioned into different sets of groups for different 

properties. Further, the cache may provide a full or partial guarantee, that is, it may 

guarantee that the property holds for all groups in the partitioning or only for some of the 

groups. Although different implementation mechanisms might be used for full and partial 

guarantees, conceptually, the former is a special case of the latter; we therefore focus on 

partial guarantees. 

In this thesis, we impose restrictions on how groups can be defined and consider only 

groups defined by equality predicates on one or more columns of the view. That is, two rows 

belong to the same group if they agree on the values of the grouping columns. For a partial 

guarantee, the grouping values for which the guarantee holds are (conceptually) listed in a 

separate table called a control table. Each value in the control table corresponds to a group 

of rows of Vi that we call a cache region (or simply region). Each view Vi in V can be 
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associated with three types of control tables: presence, consistency and completeness control 

tables. We use presence/consistency/completeness region to refer to cache regions defined 

for each type respectively. Note that control tables are conceptual; some might be explicitly 

maintained and others might be implicitly defined in terms of other cached tables in a given 

implementation. 

3.3.1.1 Presence Control-Table (PCT) 

Suppose we receive many queries looking for some authors, as in Q1. Some authors are 

much more popular than others and the popular authors change over time, i.e., the access 

pattern is skewed and changes over time. We would like to answer a large fraction of queries 

locally but maintenance overhead are too high to cache the complete Authors table. Further, 

we want to be able to adjust cache contents for the changing workload without changing the 

view definition. These goals are achieved by presence control tables. 

A presence control table (PCT) for view Vi is a table with a 1-1 mapping between a 

subset K of its columns and a subset K’ of Vi’s columns. We denote this by PCT[K, K’]; 

K ⊆ PCT is called the presence control-key (PCK) for Vi, and K’⊆ V i is called the presence 

controlled-key (PCdK). For simplicity, we will use PCK and PCdK interchangeably under 

the mapping. A PCK defines the smallest group of rows (i.e., an object) that can be admitted 

to or evicted from the cache in the MTCache “pull” framework. We assume that the cache 

maintenance algorithms materialize, update and evict all rows within such a group together. 
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Presence Assumption: All rows associated with the same presence control-key are assumed 

to be present, consistent and complete. That is, for each row s in the presence control table, 

subset U = K’=s.K (Vi) is complete and thus consistent w.r.t. (K’=s.K  Qi) and Hn, for some 

snapshot Hn of the master database, where Qi is the query that defines Vi .  

If V i has at least one presence control table, it is a partially materialized view (PMV) , 

otherwise it is a fully materialized view. See [ZLG05] for more general types of partial 

views, partial view matching, and run-time presence checking. 

 In our motivating example, we cache only the most popular authors. This scenario can 

be handled by creating a presence control table and adding a PRESENCE constraint to 

AuthorCopy, as in D2. AuthorList_PCT acts as a presence control table and contains the ids 

of the authors who are currently present in the view AuthorCopy, i.e., materialized in the 

view. 

3.3.1.2 Consistency Control-Table (CsCT) 

A local view may still be useful even when all its rows are not kept mutually consistent, e.g., 

in a scenario where we receive many queries like E1.3. Suppose AuthorCopy contains all the 

required rows. If we compute the query from the view, will the result satisfy the query’s 

consistency requirements? The answer is “not necessarily” because the query requires all 

result rows to be mutually consistent per city, but AuthorCopy only guarantees that the rows 

for each author are consistent; nothing is guaranteed about authors from a given city. The 

consistency control table provides the means to specify a desired level of consistency.  
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A consistency control table (CsCT) for view Vi is denoted by CsCT[K], where a set of 

columns K⊆ CsCT is also a subset of Vi, and is called the consistency control-key (CsCK) 

for Vi. For each row s in CsCT, if there is a row t in Vi, s.t. s.K = t.K, then subset U = K=s.K 

(V i) must be consistent w.r.t. (K=s.K  Qi) and Hn for some snapshot Hn of the master 

database.  

In our example, it is desirable to guarantee consistency for all authors from the same city, 

at least for some of the popular cities. We propose an additional CONSISTENCY constraint 

for specifying this requirement. We first create a consistency control table containing a set of 

cities and then add a CONSISTENCY constraint to AuthorCopy, as in D3 of Figure 3.5. The 

CONSISTENCY clause specifies that the cache must keep all rows related to the same city 

consistent if the city is among the ones listed in CityList_CsCT; this is in addition to the 

consistency requirements implicit in the Presence Assumption. AuthorCopy can now be used 

to answer queries like E1.3.  

If we want the cache to guarantee consistency for every city, we change the clause to 

CONSISTENCY ON city. If we want the entire view to be consistent, we change the clause 

to CONSISTENCY ON ALL. If we don’t specify a consistency clause, the cache will not 

provide any consistency guarantees beyond the minimal consistency implied by the presence 

control table under the Presence Assumption. 
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3.3.1.3 Completeness Control-Table (CpCT) 

A view with a presence control table can only be used to answer point queries with an 

equality predicate on its control columns. For example, AuthorCopy cannot answer Q3. 

It is easy to find the rows in AuthorCopy that satisfy the query but we cannot tell whether 

the view contains all required rows. If we want to answer a query with predicate P on 

columns other than the control-keys, the cache must guarantee that all rows defined by P 

appear in the cache or none appear. Completeness constraints can be expressed with 

completeness control tables. 

A completeness control table (CpCT) for view Vi is denoted by CpCT[K]. A 

completeness control table is a consistency control table with an additional constraint: the 

subset U in Vi defined as before is not only consistent but also complete w.r.t. (K=s.K  Qi) 

and Hn, for some snapshot Hn of the master database. We say K is a completeness control-

key (CpCK ). Note that all rows within the same completeness region must also be consistent 

(Lemma 3.3). 

We propose to instruct the cache about completeness requirements using a 

COMPLETENESS constraint. Continuing our example, we create a completeness control 

table and then add a completeness clause to the AuthorCopy definition, as in D4 of Figure 

3.5. Table CityList_CpCT serves as the completeness control table for AuthorCopy. If a city 

is contained in CityList_CpCT, then we know that either all authors from that city are 

contained in AuthorCopy or none of them are. Note that an entry in the completeness control 

table does not imply presence. Full completeness is indicated by dropping the clause starting 
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with “IN”. Not specifying a completeness clause indicates that the default completeness 

implicit in the Presence Assumption is sufficient. 

A similar property is termed “domain completeness” in DBCache [ABK+03]. However, 

our mechanism provides more flexibility. The cache admin can specify: 1) the subset of 

columns to be complete; 2) to force completeness on all values or just a subset of values for 

these columns. 

3.3.2 Correlated Presence Constraints 

In our running example, we may not only receive queries looking for some authors, but also 

follow-up queries looking for related books. That is, the access pattern to BookCopy is 

decided by the access pattern to AuthorCopy. In order to capture this, we allow a view to use 

another view as a presence control table. To have BookCopy be controlled by AuthorCopy, 

we only need to declare AuthorCopy as a presence control table by a PRESENCE constraint 

in the definition of BookCopy, as in D5 of Figure 3.5. 

If a presence control table is not controlled by another one, we call it a root presence 

control table. Let L  = {V m+1, …, Vn} be the set of root presence control tables; W = V ∪  L . 

We depict the presence correlation constraints by a cache graph, denoted by <W, E>. An 

edge Vi  → ', ,, jiji KK  Vj means that Vi is a PCT[Ki,j, Ki,j ’] of V j.  

Circular dependencies require special care in order to avoid “unexpected loading”, a 

problem addressed in [ABK+03]. In our model, we don’t allow circular dependencies, as 

stated in Rule 1 in Figure 3.11. Thus we call a cache graph a cache DAG. 
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Each view in the DAG has two sets of orthogonal properties. First, whether it is view-

level or group-level consistent. Second, to be explained shortly, whether it is consistency-

wise correlated to its parent. For illustration purposes, we use shapes to represent the former: 

circles for view-level consistent views and rectangles (default) for all others. We use colors 

to denote the latter: gray if a view is consistency-wise correlated to its parents, white 

(default) otherwise. 

Definition : (Cache schema) A cache schema is a cache DAG <W, E> together with the 

completeness and consistency control tables associated with each view in W.   

3.3.3 Correlated Consistency Constraints 

In our running example, we have an edge AuthorCopy  →authorId  BookCopy, meaning if 

we add a new author to AuthorCopy, we always bring in all of the author’s books. The books 

Figure 3.6  Cache schema example 

AuthorCopy

ReviewerCopy

ReviewerList_PCTAuthorList_PCT

BookCopy

CityList_CsCTauthorId

isbn

reviewerId

reviewIdReview
Copy
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of an author have to be mutually consistent, but they are not required to be consistent with 

the author. 

If we wish the dependent view to be consistent with the controlling view, we add the 

consistency clause: CONSISTENCY ROOT, as in D6 of Figure 3.5. A node with such 

constraint is colored gray; it cannot have its own consistency or completeness control tables 

(Rule 2 in Figure 3.11). 

For a gray node V, we call its closest white ancestor its consistency root. For any of V’s 

cache regions Uj, if Uj is controlled by a PCK value included in a cache region Ui in its 

parent, we say that Ui consistency-wise controls Uj; and that Ui and Uj are consistency-wise 

correlated. 

Figure 3.6 illustrates a cache schema example, which consists of four partially 

materialized views. AuthorCopy is controlled by a presence control table AuthorList_PCT, 

likewise for ReviewerCopy and ReviewerList_PCT. Besides a presence control table, 

AuthorCopy has a consistency control table CityList_CsCT on city. BookCopy is both 

presence-wise and consistency-wise correlated to AuthorCopy. In contrast, ReviewCopy has 

two presence control tables: BookCopy and ReviewerCopy; it is view level consistent and 

consistency-wise independent from its parents. 

3.4 Safe Cached Views 

A cache has to perform two tasks: 1) populate the cache and 2) reflect updates to the contents 

of the cache, while maintaining the specified cache constraints. Complex cache constraints 
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can lead to unexpected additional fetches in a pull-based maintenance strategy, causing 

severe performance problems. We illustrate the problems through a series of examples, and 

quantify the refresh cost for unrestricted cache schemas in Theorem 3.1. We then identify an 

important property of a cached view, called safety that allows us to optimize pull-based 

maintenance, and summarize the gains it achieves in Theorem 3.2. We introduce the concept 

of ad-hoc cache regions, used for adaptively refreshing the cache. 

For convenience, we distinguish between the schema and the instance of a cache region 

U. The schema of U is denoted by <V, K, k>, meaning that U is defined on view V by a 

control-key K with value k. We use the italic form U to denote the instance of U. 

3.4.1 Pull-Based Cache Maintenance 

In the “pull” model, we obtain a consistent set of rows using either a single query to the 

backend or multiple queries wrapped in a transaction. As an example, suppose AuthorCopy, 

introduced in Section 3.3, does not have any children in the cache DAG and that the cache 

needs to refresh a row t (1, Rose, Female, Madison, WI). 

First, consider the case where AuthorCopy does not have any consistency or 

completeness control table, and so consistency follows the presence table. Then all rows in 

the presence region identified by authorId 1 need to be refreshed together. This can be done 

by issuing the presence query shown in Figure 3.8 to the backend server. 
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Next, suppose we have CityList_CsCT (see Section 3.3.1.2). If Madison is not found in 

CityList_CsCT, the presence query described above is sufficient. Otherwise, we must also 

refresh all other authors from Madison. If K  is the set of authors in AuthorCopy that are from 

Madison, the consistency query in Figure 3.8 is sent to the backend server. 

Finally, suppose we have CityList_CpCT (see Section 3.3.1.3). If Madison is found in 

CityList_CpCT, then besides the consistency query, we must fetch all authors from Madison 

using the completeness query in Figure 3.8. 

Formally, given a cache region U<V, K, k>, let the set of presence control tables of V be 

P1, …, Pn, with presence control-keys K1, …, Kn. For Ki, i = 1..n, let K i= Ki K=k(V), the 

remote queries for U are: 1) the presence query, if U is a presence region; 2) the consistency 

queries (i = 1..n), if U is a consistency region; and 3) the consistency queries (i = 1..n) (and 

Figure 3.7  Refresh queries 

Figure 3.8  Refresh query examples 

Presence query: 

 
SELECT  *  
FROM Authors 
WHERE authorId = 1 

Consistency query: 
 
SELECT *  
FROM  Authors  
WHERE authorId IN K 

Completeness query:  
 
SELECT * 

 FROM  Authors  
WHERE city = “Madison” 
 

Presence (Completeness) query: 

 
SELECT  *  
FROM V  
WHERE K = k 

Consistency query:  
 
SELECT *  
FROM  V  
WHERE Ki IN K i 
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the completeness query if U  Ø), if U is a completeness region. (The queries are shown in 

Figure 3.7.)  

Lemma 3.6: For any cache region U <V, K, k> in the cache, the results retrieved from the 

backend server using the refresh queries in Figure 3.7 not only keeps U’s cache constraints, 

but also keeps the presence constraints for the presence regions in V that U overlaps.    

Proof of Lemma 3.6: 

This directly follows from the presence, consistency and completeness queries.  

 

As this example illustrates, when refreshing a cache region, in order to guarantee cache 

constraints, we may need to refresh additional cache regions; the set of all such “affected” 

cache regions is defined below. 

Definition:  (Affected closure) The affected closure of a cache region U, denoted as AC(U), 

is defined transitively: 

1) AC(U) = {U} 

2) AC(U) = AC(U)∪ {U i | for Uj in AC(U), either Uj overlaps Ui or Uj and Ui are 

consistency-wise correlated}.  

 

For convenience, we assume that the calculation of AC(U) always eliminates consistency 

region Ui, if there exists a completeness region Uj in AC(U), s.t. Ui = Uj, since the 

completeness constraint is stricter (Lemma 3.3). The set of regions in AC(U) is partially 
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ordered by the set containment relationship. From Lemma 3.1 - Lemma 3.3, we only need to 

maintain the constraints of some “maximal” subset of AC(U). Let Max( ) denote the set of 

the maximal elements in the partially ordered set . 

Definition:  (Maximal  affected closure) The maximal affected closure of a cache region U, 

MaxAC (U), is obtained by the following two steps: Let  = AC(U),  

1) Constructing step. Let ,  be the set of all consistency regions and completeness 

regions in  respectively. MaxAC(U) = Max( – ) ∪ Max(  – ). 

2) Cleaning step. Eliminate any consistency region Ui in MaxAC(U) if there exists a 

completeness region Uj in MaxAC(U), s.t. Ui ⊆ Uj.    

Maintenance Rule:  

1) We only choose a region to refresh from a white node. 

2) When we refresh a region U, we do the following: 

Step 1: Retrieve every region in MaxAC(U) by sending proper remote queries 

according to its constraint. 

Step 2: Delete the old rows covered by AC(U) or the retrieved tuple set; then insert 

the retrieved tuple set.      

Theorem 3.1: Assuming the partial order between any two cache regions is constant, then 

given any region U, if we apply the Maintenance Rule to a cache instance that satisfies all 

cache constraints, let newTupleSet be the newly retrieved tuple set,  = AC(newTupleSet), 

then  
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1) Every region other than those in ( – ) observes its cache constraint after the refresh 

transaction is complete. 

2) If (  – ) = Ø, then after the refresh transaction is complete, all cache constraints are 

preserved. 

3) If (  – ) = Ø, MaxAC(U) is the minimal set of regions we have to refresh in order 

to refresh U while maintaining all cache constraints for all cache instances.    

Proof of Theorem 3.1:  

Let  = AC(U), maxSet=MaxAC(U), newTupleSet be the tuple set retrieved for 

maxSet. 

We first prove 1) 

1) For any cache region X <V, K, k> in , let V’ be the refreshed instance of V, D 

be the set of rows for V in newRowSet, X = K=k (V), X’ = K=k (V’), and X” = 

K=k (D).  

We first prove X’ = X” . This is obvious from step 2 in the maintenance rule, since 

all the rows in X are deleted and all the rows in X”  are inserted into V’.  

Case 1: X is in maxSet. Directly from Lemma 3.6. 

Case 2: X is in ( –maxSet). Then there is a region Y in maxSet, such that X⊆ Y.  

Case 2.1: If X is a presence region, then directly from Lemma 3.6. Otherwise, 

Case 2.2: Y has an equal or stronger constraint than X. Since Y observes its 

constraint (from Case 1), it follows from Lemma 3.1, Lemma 3.2 and Lemma 3.3 

that so does X. 
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Case 3: X is not in ∪ . We prove that X’ = X. This is so because from the 

maintenance rule, those rows in U are not touched by the refresh transaction.  

2) It directly follows from 1). 

3) It is obvious if U is the only element in . Otherwise, prove by constructing 

counterexamples from AuthorCopy. In AuthorCopy, suppose there is a present 

control table on authorId with authorIds 1 and 2; there are two tuples: t1 = <1, 

Rose, Female, Madison, WI>, t2 = <2, Mary, Female, Seattle, WA>. Suppose we 

want to refresh t1 after an update that touched every row in Authors in the master 

database.  

Prove by contradiction. Suppose there exists X in maxSet that should not be 

refreshed.  

Case 1: There exists Y in maxSet, such that X⊆ Y. Due to the definition of the 

maxSet, X must be a completeness region and Y a consistency region.  

In AuthorCopy, suppose it has a completeness region defined on city with value 

Madison; a consistency region defined on state with value WI. If a new author 

from Madison has been added in the master database, if we only refresh the 

consistency region by WI, only t1 will be refreshed, and after refresh, the 

completeness constraint on Madison is no longer preserved. 

Case 2: There exists a cache region Y in maxSet, s.t. X overlaps with Y. In 

AuthorCopy, suppose it has two consistency regions on WI and female 

respectively. If we only refresh the first one, only t1 will be refreshed, and after 

refresh, the consistency constraint on the latter is no longer preserved.  
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The last part of the theorem shows that when a region U is refreshed, every region in 

MaxAC(U) must be simultaneously refreshed. Otherwise, there is some instance of the cache 

that satisfies all constraints, yet running the refresh transaction on this state to refresh U will 

leave the cache in a state violating some constraint. If ( – )  Ø, multi-trip to the master 

database is needed in order to maintain all cache constraints. A general maintenance 

algorithm is sketched in Figure 3.10. 

Function retrieve( ) retrieves rows from the master database by sending a series of 

remote queries accordingly for each group in . Procedure apply() as shown in Figure 3.9 

Figure 3.9  Algorithm for updating the cache with n ewly retrieved tuples 

Algorithm Maintenance  
Inputs:  a cache region U from a white node 
Outputs:  refreshed U 
 
begin 
   �{U}; 
 repeat 
    � AC( ); 
   maxSet � MaxAC( ); 

   oldRowSet = ,maxSetU i∈
∪ Ui     // the instance set 

   NewRowSet = retrieve(maxSet); 
   = AC(NewRowSet); 
   if  ( ⊆ )  
   break ;  
  end if 
    =  ∪ ; 
 until  (true ); 
 apply(oldRowSet, newRowSet); 
end Maintenance 
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refreshes the cache according to step 2 in the second part of the Maintenance Rule.  

Given a region U in a white PMV V, how do we get MaxAC(U)? For an arbitrary cache 

schema, we need to start with U and add affected regions to it recursively. There are two 

scenarios that potentially complicate the calculation of MaxAC(U), and could cause it to be 

very large: 

1) For any view Vi, adding a region Uj from Vi results in adding all regions from Vi that 

overlap with Uj. 

2) A circular dependency may exist between two views Vi and Vj, i.e., adding new 

regions from Vi may result in adding more regions from Vj, which in turn results in 

adding yet more regions from Vi.  

The potentially expensive calculation and the large size of MaxAC(U), and the 

correspondingly high cost of refreshing the cache motivate the definition of safe PMVs in 

Figure 3.10  Algorithm for refreshing a cache regio n 

Algorithm   Apply 
Inputs: S - source row set; D - new row set 
Output: a refreshed cache 
 
begin 
 for  (each view Vi involved) 
  Let the set of rows in S that belongs to Vi be Si; 
  Let the set of rows in D that belongs to Vi be Di; 
     Let dkey = Π key(Di); 
  Delete Si from Vi; 
  Delete rows in Vi whose keys appear in dkey; 
     Insert Di into Vi; 
 end for 
end Apply; 
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Section 3.4.2.  

3.4.1.1 Ad-hoc Cache Regions 

Although the specified cache constraints are the minimum constraints that the cache must 

guarantee, sometimes it is desirable for the cache to provide additional “ad-hoc” guarantees. 

For example, a query workload like E1.1 asks for authors from a set of popular authors and 

requires them to be mutually consistent. Popularity changes over time. In order to adapt to 

such workloads, we want the flexibility of grouping and regrouping authors into cache 

regions on the fly. For this purpose, we allow the cache to group regions into “ad-hoc” cache 

regions.  

Definition : (Ad-hoc region) An ad-hoc cache region consists of a union of one or more 

regions (which might be from different views) that are mutually consistent.   

Such “ad-hoc” consistency information is made known to the query processor by 

associating the region id of the ad-hoc region with each region it contains.  

3.4.1.2 Keeping Track of Currency 

In order to judge if cached data is current enough for a given query, we need to keep track of 

its currency. It is straightforward and we discuss it only briefly. Chapter 4 used a “push” 

model for cache maintenance, and relied on a heartbeat mechanism for this purpose. To track 

currency when using the pull model, we keep a timestamp for every cache region. When a 
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cache region is refreshed, we also retrieve and record the transaction timestamp of the refresh 

query. Assuming that a transaction timestamp is unique, in implementation we simply use 

the timestamp as region id. Thus, if the timestamp for a cache region is T and the current 

time is t, since all updates until T are reflected in the result of the refresh query, the region is 

from a database snapshot no older than t – T. 

3.4.2 Safe Views and Efficient Pulling 

We now introduce the concept of safe views, motivated by the potentially high refresh cost 

of pull-based maintenance for unrestricted cache schemas.  

Definition: (Safe PMV) A partially materialized view V is safe if the two following 

conditions hold for every instance of the cache that satisfies all integrity constraints: 

1) For any pair of regions in V, either they don’t overlap or one is contained in the other.  

2) If V is gray, let X denote the set of presence regions in V. X is a partitioning of V and 

no pair of regions in X is contained in any one region defined on V.      

 

Intuitively, Condition 1 is to avoid unexpected refreshing because of overlapping regions 

in V; Condition 2 is to avoid unexpected refreshing because of consistency correlation across 

nodes in the cache schema. 

Lemma 3.7: For a safe white PMV V that doesn’t have any children, given any cache region 

U in V, the partially ordered set AC(U) is a tree.   
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Proof of Lemma 3.7:  

(By contradiction)  

Suppose there is a group X in AC(U), such that X has two parents Y and Z. Then 

Y Z  Ø. From the safe definition, either Y⊆  Z, or Z⊆ Y. Therefore they cannot 

both be X’s parents.     

 

Since AC(U) on V has a regular structure, the maximal element can be find efficiently.  

Theorem 3.2: Consider a white PMV V, and let  denote V and all its gray descendants. If 

all nodes in  are safe, whenever any region U defined on V is to be refreshed:  

1) AC(U) can be calculated top-down in one pass. 

2) Given the partially ordered set AC(U) on V, the calculation of MaxAC(U) on V can 

be done in one pass.     

Proof of Theorem 3.2:    

1) For any safe gray node V’, given the subset of PCK values K that is in AC(U) 

from its parent, we need to put in AC(U) the set of cache regions  determined by 

K  in V’.  is the exact set of cache regions in V’ that need to be put into AC(U), 

because from the definition of a safe view,  doesn’t overlap or is contained by 

any consistent or completeness region defined on V’, nor does it overlap or is 

contained by the rest of the present CRs in V’. Further, adding  to AC(U) 
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doesn’t result in adding additional cache regions from its parent, because of the 

first condition of the definition of safe.  

2) From 1), the descendents of V don’t affect AC(U) on V. Thus, let  = AC(U), 

from Lemma 3.7,  is a tree. Let  be empty, we check the tree recursively top 

down from the root, let it be Y. If a node X is a completeness region, then we add 

it to ; otherwise, we do the checking on each child of X. If Y is not in , add it to 

. 

We prove that  = MaxAC(U). If Y is a complete or a presence region, we are 

done. Otherwise, let ,  be the set of all consistency regions and completeness 

regions in  respectively. {Y} = Max (  – ), since it is the root of the tree. Now 

we prove  – {Y} = Max(  – ) by contradiction. Suppose there is a 

completeness region Z in , such that  – {Y} doesn’t cover Z. Then Z doesn’t 

have any ancestor that is a completeness region. Then from the algorithm, Z must 

be visited and put into  – {Y}, contradicting the assumption. 

Further, the cleaning step doesn’t eliminate Y, since it is the root. Thus  = 

MaxAC(U).   
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3.5 Design Issues for Caches 

In this section, we investigate conditions that lead to unsafe cached views and propose 

appropriate restrictions on allowable cache constraints. In particular, we develop three 

additional rules to guide cache schema design, and show that Rules 1-5 are a necessary and 

sufficient condition for (all views in) the cache to be safe. 

3.5.1 Shared-Row Problem 

Let’s take a closer look at the AuthorCopy and BookCopy example defined in Section 3.3. 

Suppose a book can have multiple authors. If BookCopy is a rectangle, since co-authoring is 

allowed, a book in BookCopy may correspond to more than one control-key (authorId) 

Figure 3.11  Cache schema design rules 

Rule 1 : A cache graph is a DAG. 
 
Rule 2: Only white nodes can have independent completeness 

or consistency control tables. 
 
Rule 3 : A view with more than one parent must be a white circle. 
 
Rule 4 : If a view has the shared-row problem according to 

Lemma 5.2, then it cannot be gray. 
 
Rule 5 : A view cannot have incompatible control tables. 
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value, and thus belong to more than one cache region. To reason about such situations, we 

introduce cache-instance DAGs. 

Definition: (Cache instance DAG) Given an instance of a cache DAG <W, E>, we 

construct its cache instance DAG as follows: make each row in each node of W a node; and 

for each edge Vi  → ', ,, jiji KK  Vj in E, for each pair of rows s in Vi and t in Vj, if s.Ki,j = t.Ki,j’ then 

add an edge s � t.  

Definition: (Shared-row problem) For a cache DAG <W, E>, a view V in W has the 

shared-row problem if there is an instance DAG s.t. a row in V has more than one parent.  

There are two cases where a view V has the shared-row problem. In the first case 

(Lemma 3.8), we can only eliminate the potential overlap of regions in V defined by 

different presence control tables if V is view-level consistent. Considering the second 

condition in the definition of safe, we have Rule 3 in Figure 3.11. For the second case 

(Lemma 3.9) we enforce Rule 4 in Figure 3.11. 

Lemma 3.8: Given a cache schema <W, E>, view V in W has the shared-row problem if V 

has more than one parent.  

Proof of Lemma 3.8: 

(By constructing an instance DAG). Suppose V has two PCTs T1 and T2 on 

attributes A and B respectively. Suppose values a1 and b1 are in T1 and T2 

respectively. For a row t in V, if t.A = a1, t.B = b1, then t has two parents: a1 and b1. 

Thus V has the shared-row problem.        
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Lemma 3.9: Given a cache schema <W, E>, for any view V, let the parent of V be V1. V has 

the shared-row problem iff the presence key K in V1 for V is not a key in V1.    

Proof of Lemma 3.9:  

(sufficiency) Since K is not a key for V1, there exists an instance of V1, such that 

there are two rows t1 and t2 in V1, t1.K = t2.K. Then for a row t in V, s.t. t.K = t1.K, 

both t1 and t2 are t’s parents.   

(necessity) Because V has the shared-row problem, there is an instance of V, such 

that a row t in V has two parents, t1 and t2 in V1. Since t1.K = t2.K= t.K, K is not a 

key for V1.     

3.5.2 Control-Table Hierarchy 

For a white view V in the cache, if it has consistency or completeness control tables beyond 

those implicit in the Presence Assumption, then it may have overlapping regions. In our 

running example, suppose BookCopy is a white rectangle; an author may have more than one 

publisher. If there is a consistency control table on publisherId, then BookCopy may have 

overlapping regions. As an example, Alice has books 1 and 2, Bob has book 3, and while 

books 1 and 3 are published by publisher A, book 2 is published by publisher B. If publisher 

A is in the consistency control table for BookCopy, then we have two overlapping regions: 

{book 1, book 2} by Alice, and {book 1, book 3} by publisher A. 
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Definition: (Compatible control tables) For a view V in the cache, let the presence 

controlled-key of V be K0, and let the set of its consistency and completeness control-keys be 

K . 

1) For any pair K1 and K2 in K , we say that K1 and K2 are compatible iff FD K1� K2 or 

FD K2� K1.  

2) We say K is compatible iff the elements in K  are pair-wise compatible, and for any K 

in K , FD K�K0.   

 

Rule 5 is stated in Figure 3.11. We require that a new cache constraint can only be 

created in the system if its addition does not violate Rules 1-5. 

Theorem 3.3: Given a cache schema <W, E>, if it satisfies rules 1-5, then every view in W 

is safe. Conversely, if the schema violates one of these rules, there is an instance of the cache 

satisfying all specified integrity constraints in which some view is unsafe.  

Proof of Theorem 3.3:  

(Sufficiency) by contradiction. Suppose there exists a PMV V that is not safe. There 

are two cases: 

Case 1: There exists a pair of cache regions U1 and U2 in V, s.t. U1 and U2 overlap. 

This violates Rule 5.  

Case 2: V is grey. Let  denote the set of cache regions in V defined by its presence 

control-key values. Again, there are two cases: 

      Case 2.1: There are U1 and U2 in , such that U1 and U2 overlap. 
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             This implies that V has shared-row problem. Then it violates rule 3 or 4. 

      Case 2.2: There are U1 and U2 in , and U3 in V, such that U1 and U2 are 

contained in U3.   

This implies that V has its own consistency control-tables, which violates rule 2. 

 

(Necessity) We use variations of the cache schema in Figure 3.11 as counter 

examples in a proof by contradiction. 

Case 1: Rule 1 is violated. Then <W, E> violates the definition of cache schema. 

Case 2: Rule 2 is violated.  

Suppose BookCopy is required to be consistent by type; author a1 has books b1 and 

b2; a2 has a book b3; and b1, b2, b3 are all of type paperback. Then BookCopy is not 

safe because cache regions {b1, b2} (by a1), {b3} (by a2) are contained in the one 

defined by paperback type.  

Case 3: Rule 3 is violated.  

Suppose ReviewCopy is a rectangle or gray. If it is a rectangle, suppose book b1 has 

two reviews r1, and r2, from reviewers x and y, respectively; x wrote reviews r1 and 

r3. Since cache regions {r1, r2} (by b1) and {r1, r3} (by x) overlap, ReviewCopy is 

not safe. 

Next, if ReviewCopy is a circle, suppose author a1 has books b1 and b2; author a2 

has a book b3; books b2, b3 have reviews r2, r3, respectively. Since cache regions 

{b1, b2} (by a1) and {b2, b3} (by correlation with ReviewCopy), BookCopy is not 

safe.  
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Case 4: Rule 4 is violated.  

Suppose a book can have multiple authors and BookCopy is gray. Suppose 

AuthorCopy is consistent by city; author a1 has books b1 and b2; author a2 has books 

b1 and b3; author a1 and a3 are from WI, a2 is from WA.  

First, suppose BookCopy is a rectangle. Since cache regions {b1, b2} (by a1), {b1, 

b3} (by a2) overlap, BookCopy is not safe.  

Second, suppose BookCopy is a circle. Since cache regions {a1, a3} (by WI), and 

{a1, a2} (by consistency correlation with BookCopy) overlap, AuthorCopy is not 

safe.  

Case 5: Rule 5 is violated. 

Suppose ReviewerCopy is required to be consistent both by gender and by city; 

reviewers x and y are from WI, z is from WA; x and z are male, while y is female. 

Since cache regions: {x, y} (by WI), {x, z} (by male) overlap, ReviewCopy is not 

safe.  � 
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Chapter 4  

Enforcing Data Quality Constraints for View-level 
Granularity 

How can we efficiently ensure that a query result meets the stated C&C requirements? This 

chapter answers this question for a simplified case where 1) only fully materialized views are 

allowed in the cache schema; 2) all the rows in a view are mutually consistent. We explain 

how C&C constraints are enforced in MTCache, a prototype mid-tier database cache, built 

on the Microsoft SQL Server codebase, including how constraints and replica update policies 

are elegantly integrated into the cost-based query optimizer. Consistency constraints are 

enforced at compile time while currency constraints are enforced at run time with dynamic 

plans that check the currency of each local replica before use and select sub-plans 

accordingly. This approach makes optimal use of the cache DBMS while at the same time 

guaranteeing that applications always get data with sufficient quality for their purpose. 

The rest of the chapter is organized as follows. Section 4.1 gives an overview of the 

MTCache framework. Section 4.2 describes mechanisms to keep track of local data quality. 

We develop techniques to enforce C&C during query processing in Section 4.3 and report 

analytical and experimental results in Section 4.4. 
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4.1 MTCache Framework Overview 

We have implemented support for explicit C&C constraints as part of our prototype mid-tier 

database cache, MTCache, which is based on the following approach: 

1) A shadow database is created on the cache DBMS, containing the same tables as the 

back-end database, including constraints, indexes, views, and permissions, but with 

all tables empty. However, the statistics maintained on the shadow tables, indexes 

and materialized views reflect the data on the back-end server rather than the cache. 

2) What data to cache is defined by creating materialized views on the cache DBMS. 

These materialized views may be selections and projections of tables or materialized 

views on the back-end server. 

3) The materialized views on the cache DBMS are kept up to date by SQL Server’s 

transactional replication [Ise01, Hen04]. When a view is created, a matching 

replication subscription is automatically created and the view is populated. 

4) All queries are submitted to the cache DBMS, whose optimizer decides whether to 

compute a query locally, remotely, or partly locally and partly remotely. 

Optimization is entirely cost based. 

5) All inserts, deletes and updates are submitted to the cache DBMS, which then 

transparently forwards them to the back-end server. 

We have extended this cache prototype to support queries with C&C constraints. We 

keep track of which materialized views are mutually consistent (reflect the same database 

snapshot) and how current their data is. We extended the optimizer to select the best plan 
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taking into account the query’s C&C constraints and the status of applicable local 

materialized views. In contrast with traditional plans, the generated plan includes run-time 

checking of the currency of each local view used. Depending on the outcome of this check, 

the plan switches between using the local view and submitting a remote query. The result 

returned to the user is thus guaranteed to satisfy the query’s consistency and currency 

constraints.  

Our prototype currently only supports table-level consistency and does not allow C&C 

constraints with grouping columns, such as described by the phrase “BY B.isbn” in E4. They 

would have no effect in any case because all rows within a local view are always mutually 

consistent (they are updated by transactional replication).  

We rely on the SwitchUnion operator in SQL Server. This operator has N+1 input 

expressions. When opening the operator, one of the first N inputs is selected and all rows are 

taken from that input; the other N–1 inputs are not touched. Which input is selected is 

determined by the last input expression, here called the selector expression. The selector 

must be a scalar expression returning a number in the range 0 to N–1. The selector 

expression is first evaluated and the number returned determines which one of the first N 

inputs to use. We use a SwitchUnion operator to transparently switch between retrieving data 

from a local view and retrieving it with a query to the back-end server. The selector 

expression checks whether the view is sufficiently up-to-date to satisfy the query’s currency 

constraint. 
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4.2 Cache Regions 

To keep track of which materialized views on the cache DBMS are mutually consistent and 

how current they are, we group them into logical cache regions. The maintenance 

mechanisms and policies must guarantee that all views within the same region are mutually 

consistent at all times.  

Our prototype relies on SQL Server’s transactional replication feature [Ise01, Hen04] to 

propagate updates from the back-end database to the cache. Updates are propagated by 

distribution agents. (A distribution agent is a process that wakes up regularly and checks for 

work to do.) A local view always uses the same agent but an agent may be responsible for 

multiple views. The agent applies updates to its target views one transaction at a time, in 

commit order. This means that all cached views that are updated by the same agent are 

mutually consistent and always reflect a committed state. Hence, all views using the same 

distribution agent form a cache region.  

Our current prototype is somewhat simplified and does not implement cache regions as 

separate database objects. Instead, we added three columns to the catalog data describing 

views: cid, update_interval, update_delay. Cid is the id of the cache region to which this 

view belongs. Update_interval is how often the agent propagates updates to this region. 

Update_delay is the delay for an update to be propagated to the front-end, i.e., the minimal 

currency this region can guarantee. Update_delay and update_interval can be estimates 

because they are used only for cost estimation during optimization.  
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Our mechanism for tracking data currency is based on the idea of a heartbeat. We have a 

global heartbeat table at the back-end, containing one row for each cache region. The table 

has two columns: a cache region id and a timestamp. At regular intervals, say every 2 

seconds, the region’s heart beats, that is, the timestamp column of the region’s row is set to 

the current timestamp by a stored procedure. (Another possible design uses a heartbeat table 

with a single row that is common to all cache regions, but this precludes having different 

heartbeat rates for different regions.) 

Each cache region replicates its row from the heartbeat table into a local heartbeat table 

for the region. The agent corresponding to the cache region wakes up at regular intervals and 

propagates all changes, including updates to the heartbeat table. The timestamp value in the 

local heartbeat table gives us a bound on the staleness of the data in that region. Suppose the 

timestamp value found in the region’s local heartbeat table is T and the current time is t. 

Because we are using transactional replication, we know that all updates up to time T have 

been propagated and hence reflect a database snapshot no older than t – T. 

4.3 Implementation 

A traditional distributed query optimizer decides whether to use local data based on data 

availability and estimated cost. In our setting, it must also take into account local data 

properties (presence, consistency, completeness and currency), thereby guaranteeing that the 

result it produces satisfies the data quality requirements specified in a query. Our approach 

depends on two key techniques of Microsoft’s SQL Server optimizer: 1) required and 
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delivered plan properties; and 2) the SwitchUnion operator. We translate C&C requirements 

into a normalized form (Section 4.3.1). We then employ the required and delivered plan 

properties framework to perform consistency checking during query compilation (Section 

4.3.2), and use the SwitchUnion operator to enforce currency checking at query execution 

time (Section 4.3.3). Further, a cost estimator for the SwitchUnion operator is developed 

(Section 4.3.4), giving the optimizer the freedom to choose the best plan based solely on 

cost.   

4.3.1 Normalizing C&C Constraints 

We extended the SQL parser to also parse currency clauses. The information is captured, 

table/view names resolved and each clause converted into a C&C constraint of the form 

below.  

Definition:  (Currency and consistency constraint) A C&C constraint C is a set of 

tuples, C = {<b1, S1>,…, {<bn, Sn>}, where each Si is a set of input operands (table or view 

instances) and bi is a currency bound specifying the maximum acceptable staleness of the 

input operands in Si.    

C&C constraints are sets (of tuples), so constraints from different clauses can be 

combined by taking their union. (After name resolution, all input operands reference unique 

table or view inputs; the block structure of the originating expression affects only name 

resolution.) We union together all constraints from the individual clauses into a single 
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constraint, and convert it to a normalized form with no redundant or contradictory 

requirements. 

Definition:  (Normalized C&C constraint) A C&C constraint C = {<b1, S1>,…, {<bn, Sn>} 

is in normalized form if all input operands (in the sets Si) are base tables and the input 

operand sets S1,…, Sn are all non-overlapping.   

Figure 4.1  Algorithm for C&C constraint normalizati on 

Algorithm  NormalizeConstraint 
Inputs: A C&C constraint C 
Outputs: A normalized C&C constraint C’ 
  
begin  
 C’ = C; 
 // Step 1: Eliminate references to views 
 for (each tuple <c, S> in C’)  
  while  (exists v ∈ S such that v is a view)  
   replace v in S by the input operands of the view expression; 
  end while 
 end for  
  
 // Step 2: Combine overlapping tuples 
 while  (exist p1= <c1, S1> and p2 = <c2, S2> in C’ s.t. S1 ∩ S2 ≠ ∅)  
   p = <min(c1, c2), (S1 ∪ S2) > ; 
   delete p1 and p2 from C’; 
   add p to C’ 
 end while  
 
 // Step 3: Add default requirement 
 S = all input operands of the query that are not included in C’; 
 if  (S ≠ ∅)  
  add the tuple <0, S> to C’; 
end NormalizeConstraint 
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The first condition simply ensures that the input sets all reference actual input operands 

of the query (and not views that have disappeared as a result of view expansion). The second 

condition eliminates redundancy and simplifies checking.  

The algorithm that transforms a set of constraints into normalized form is shown in 

Figure 4.1. At step 1, the algorithm recursively expands all references to views into 

references to base tables. At step 2, it repeatedly merges all tuples that have one or more 

input operands in common. The bound for the new tuple is the minimum of the bounds of the 

two input tuples. Input operands referenced in a tuple must all be from the same database 

snapshot. It immediately follows that if two different tuples have any input operands in 

common, they must all be from the same snapshot, and the snapshot must satisfy the tighter 

of the two bounds. The merge step continues until all tuples are disjoint. Step 3 simply adds a 

default requirement on all input operands not yet covered. We chose as the default the 

tightest requirements, namely, that the input operands must be mutually consistent and from 

the latest snapshots, i.e., fetched from the back-end database. This tight default has the effect 

that queries without an explicit currency clause will be sent to the back-end server and their 

result will reflect the latest snapshot. In other words, queries without a currency clause retain 

their traditional semantics. 

4.3.2 Compile-time Consistency Checking 

SQL Server uses a transformation-based optimizer, i.e., the optimizer generates rewritings by 

applying local transformation rules on subexpressions of the query. Applying a rule produces 
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substitute expressions that are equivalent to the original expression. Operators are of two 

types: logical and physical. A logical operator specifies what algebraic operation to perform, 

for example, a join, but not what algorithm to use. A physical operator also specifies the 

algorithm, for example, a hash join or merge join. Conceptually, optimization proceeds in 

two phases: an exploration phase and an optimization phase. The exploration phase generates 

new logical expressions, that is, algebraic alternatives. The optimization phase recursively 

finds the best physical plan, that is, the best way of evaluating the query. Physical plans are 

built bottom-up, producing plans for larger and larger sub-expressions.  

Required and delivered (physical) plan properties play a very important role during 

optimization. There are many plan properties but we’ll illustrate the idea with the sort 

property. A merge join operator requires that its inputs be sorted on the join columns. To 

ensure this, the merge join passes down to its inputs a required sort property (a list of sort 

columns and associated sort order). In essence, the merge join is saying: “Find me the 

cheapest plan for this input that produces a result sorted on these columns.” Every physical 

plan includes a delivered sort property that specifies if the result will be sorted and, if so, on 

what columns and in what order. Any plan whose delivered properties do not satisfy the 

required properties is discarded. Among the qualifying plans, the one with the estimated 

lowest cost is selected. 

To integrate consistency checking into the optimizer we must specify and implement 

required consistency properties, delivered consistency properties, and rules for deciding 

whether a delivered consistency property satisfies a required consistency property. 
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4.3.2.1 Required Consistency Plan Property 

A query’s required consistency property consists precisely of the normalized consistency 

constraint described above that is computed from the query’s currency clauses. The 

constraint is attached as a required plan property to the root of the query. A pointer to this 

property is inherited recursively by its children.  

4.3.2.2 Delivered Consistency Plan Property 

A delivered consistency property consists of a set of tuples {<Ri, Si>} where Ri is the id of a 

cache region and Si is a set of input operands, namely, the input operands of the current 

expression that belong to region Ri.  

Delivered plan properties are computed bottom-up. Each physical operator (select, hash 

join, merge join, etc.) computes what plan properties it delivers given the properties of its 

inputs. We can divide the physical operators into four categories, each using a specific 

algorithm to compute the delivered consistency property. The algorithm is shown in Figure 

4.2.  

The leaves of a plan tree are table or index scan operators, possibly with a range 

predicate. If the input operand is a base table (or an index on a base table), we simply return 

the id of the table and the id of its cache region. Consistency properties always refer to base 

tables. Hence, a scan of a materialized view returns the ids of the view’s input tables, not the 

id of the view. 
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Figure 4.2  Algorithm for calculating derived C&C p roperty 

Algorithm  DrvdPropertyCalc 
Inputs: op – an operator  
Outputs: CPd  
 

Begin 
 switch  (the type of op) 
 // case 1: table or index scan operator, possibly with a range predicate 
 case  leaf operator: 
  CPd = {<R, S>}, which is directly obtained from the table, view or index 

referred to by op; 
  break ; 
 

 // case 2: operators with only one relational operand 
 case  Single operand  operator: 
  CPd = the property of the relational operand of op; 
  break ; 
 

 // case 3: join operators with a set of operands  
 case  join operator: 
  Let {CPdi} be the set of properties of op’s relational operands; 
  CPd = ∪ CPdi; 
  repeat  
   Merge <R1, S1 >and <R2, S2, 2> in CPd by <R, S> if  
    R1 = R2, where R = R1, S = S1 ∪ S2. 
  end repeat 
  break ; 
 

 // case 4: SwitchUnion operator 
 case  SWU operator: 
  Let {CPdi} be the set of properties of op’s relational operands, i=1..n; 

 CPd = CPd1; // initialization 
 for  each CPdi , where i = 2..n 
    CPdTemp = Ø; //initialization 
    for  each <R, S> in CPdi  
     CPdTemp  ∪ = IntersectByPhrase(CPd, <R, S>); 
    end for  
   CPd = CPdTemp; 
 end for  

break ; 
end  DrvdPropertyCalc 
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      All operators with a single relational input such as filter, project, aggregate, and sort do 

not affect the delivered consistency property and simply copy the property from its relational 

input.  

Join operators combine two or more input streams into a single output stream. We 

compute the consistency property of the output from the consistency properties of the two 

(relational) children. If the two children have no inputs from the same cache region, the 

output property is simply the union of the two child properties. If they have two tuples with 

the same region id, the input sets of the two tuples are merged. 

Figure 4.3  Algorithm for calculating intersection of C&C property 

Algorithm IntersectByPhrase 
Inputs: CPd1 – derived C&C property,  
   <R, S> – a phrase of derived C&C property 
Outputs: CPd – intersected C&C property 
 
begin 
 CPd = ∅; 
 // check all phrases in CPd1 that intersect <R, S> 
 for  each phrase <Ri, Si> in CPd1, where S ∩ Si ≠ ∅ 
  // decide the correct region id 
  if  (R == Ri)  
   R2 = R; 
  else 
  // local is weaker than remote, take the weaker guarantee 
  if  one of the region is remote, w/o loss of generality, suppose R1 
   R2 = R;  
  else  //both local, then R2 is undecided 
   R2 = UNDECIDED; 
  end if        
  CPd ∪ = {<R2, (S1 ∩ S2)>}; 
 end for 
end  IntersectByPhrase 
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A SwitchUnion operator has multiple input streams but it does not combine them in any 

way; it simply selects one of the streams. So how do we derive the delivered consistency of a 

SwitchUnion operator? The basic observation is that we can only guarantee that two input 

operands are consistent if they are consistent in all children (because any one of the children 

may be chosen). The algorithm repeatedly calculates the common property guaranteed by 

two inputs. A subroutine algorithm in Figure 4.2 calculates the common property from a 

single phrase and a C&C property (i.e., a set of phrases). 

4.3.2.3 Satisfaction Rules 

Plans are built bottom-up, one operator at a time. As soon as a new root operator is added to 

a plan, the optimizer checks whether the delivered plan properties satisfy the required plan 

properties. If not, the plan, i.e., the new root operator, is discarded. We include the new 

consistency property in this framework. 

Our consistency model does not allow two columns from the same input table T to 

originate from different snapshots. It is possible to generate a plan that produces a result with 

this behavior. Suppose we have two (local) projection views of T that belong to different 

cache regions, say R1 and R2, and cover different subsets of columns from T. A query that 

requires columns from both views could then be computed by joining the two views. The 

delivered consistency property for this plan would be {<R1, T>, <R2, T>}, which conflicts 

with our current consistency model. Here is a more formal definition. 



   83

Conflicting consistency property: A delivered consistency property CPd is conflicting 

if there exist two tuples <Ri, Si> and <Rj, Sj> in CPd such that Si  Sj  Ø and Ri  Rj. 

A consistency constraint specifies that certain input operands must belong to the same 

region (but not which region). We can verify that a complete plan satisfies the constraint by 

checking that each required consistency group is fully contained in some delivered 

consistency group. The following rule is based on this observation.  

Consistency satisfaction rule: A delivered consistency property CPd satisfies a required 

consistency constraint CCr if and only if CPd is not conflicting and, for each tuple <Br, Sr> 

in CCr, there exists a tuple <Rd, Sd> in CPd such that Sr is a subset of Sd. 

While easy to understand, this rule can only be applied to complete plans because a 

partial plan may not include all input operands covered by the required consistency property. 

We need a rule that allows us to discard partial plans that do not satisfy the required 

consistency property as soon as possible. We use the following rule on partial plans to detect 

violations early.  

Consistency violation rule: A delivered consistency property CPd violates a required 

consistency constraint CCr if (1) CPd is conflicting or (2) there exists a tuple <Rd, Sd> in 

CPd that intersects more than one consistency class in CCr, that is, there exist two tuples 

<B1r, S1r> and <B2r, S2r> in CCr such that Sd  S1r  Ø and Sd  S1r  Ø. 

We also added a simple optimization to the implementation. If the required currency 

bound is less than the minimum delay that the cache region can guarantee, we know at 

compile time that data from the region cannot be used to answer the query. In that case, the 

plan is immediately discarded. 
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4.3.3 Run-time Currency Checking 

Consistency constraints can be enforced during optimization, but currency constraints must 

be enforced during query execution. The optimizer must thus produce plans that check 

whether a local view is sufficiently up-to-date and switch between using the local view and 

retrieving the data from the back-end server. For this purpose, we use the SwitchUnion 

operator described earlier.  

Recall that all local data is defined by materialized views. Logical plans making use of a 

local view are always created through view matching, that is, the view matching algorithm 

finds an expression that can be computed from a local view and that produces a new 

substitute for the original expression, but exploiting the view. More details about the view 

matching algorithm can be found in [GL01]. 

Consider a (logical) expression E and a matching view V from which E can be computed. 

If there are no currency constraints on the input tables of E, view matching produces a 

“normal” substitute consisting of, at most, a select, a project and a group-by on top of V. If 

there is a currency constraint, view matching produces a substitute consisting of a 

SwitchUnion on top, with a selector expression that checks whether V satisfies the currency 

constraint, as shown in Figure 4.4. The SwitchUnion has two input expressions: a local 

branch and a remote branch. The local branch is the “normal” substitute mentioned earlier 

and the remote plan consists of a remote SQL query created from the original expression E. 

If the selector expression, which we call the currency guard, evaluates to true, the local 

branch is chosen, otherwise the remote branch is chosen. SwitchUnion operators are 
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generated at the leaf-level but they can always be propagated upwards and merged with 

adjacent SwitchUnion operators. However, these and other optimizations involving 

SwitchUnion are left as future work. 

As mentioned earlier, we track a region’s data currency using a heartbeat mechanism. 

The currency guard for a view in region R is an expression equivalent to the following SQL 

predicate: 

EXISTS ( SELECT  1  FROM Heartbeat_R  
   WHERE  TimeStamp > getdate() – B ) 

 

where Heartbeat_R is the local heartbeat table for region R, and B is the applicable 

currency bound from the query. 

The above explanation deliberately ignores the fact that clocks on different servers may 

not be synchronized. This complicates the implementation but is not essential to 

understanding the approach. 

4.3.4 Cost Estimation 

For a SwitchUnion with a currency guard we estimate the cost as 

Figure 4.4  Substitute with a SwitchUnion and a cur rency guard 

Currency 
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Remote planLocal  plan
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cgremotelocal ccpcpc +∗−+= )1(*  

where p is the probability that the local branch is executed, clocal is the cost of executing the 

local branch, cremote the cost of executing the remote branch, and ccg the cost of the currency 

guard. This approach is similar to that of [CHS99, DR99]. 

The cost estimates for the inputs are computed in the normal way but we need some way 

to estimate p. We’ll show how to estimate p assuming that updates are propagated 

periodically, the propagation interval is a multiple of the heartbeat interval, their timing is 

aligned, and query start time is uniformly distributed.  

Denote the update propagation interval by f and the propagation delay as d. The currency 

of the data in the local view goes through a cycle illustrated in Figure 4.5. Immediately after 

propagation, the local data is no more than d out of date (the time it took to deliver the data). 

The currency of the data then increases linearly with time to d+f when the next propagation 

event takes place and the currency drops to d.  

Figure 4.5  Synchronization cycle and data currency 
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Suppose the query specifies a currency bound of B. The case when d < B < d+f is 

illustrated in the figure. The execution of the query is equally likely to start at any point 

during a propagation cycle. If it starts somewhere in the interval marked “Local”, the local 

view satisfies the currency constraint and the local branch is chosen. The length of this 

interval is B – d and the total length of the cycle is f so the probability that the local branch 

will be chosen is (B – d)/f. 

There are two other cases to consider. If B<d, the local branch is never chosen because 

the local data is never sufficiently fresh so p=0. On the other hand, if B > d+f, the local 

branch is always chosen because the local data is always sufficiently fresh so p=1. In 

summary, here is the formula used for estimating p: 

 

The special case when updates are propagated continuously is correctly modeled by 

setting f = 0. Then if B > d, we have p = 1; otherwise, p = 0. 

4.4 Analysis and Experiments 

This section reports analytical and experimental results using our prototype. We show how 

the choice of query plan is affected as the query’s C&C constraint changes. We also analyze 

the overhead of plans with currency guards. 

p =  

0            if B – d ≤ 0 

(B-d)/f  if 0 < B – d  ≤ f 

1   if B – d > f 

(1) 
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4.4.1 Experimental Setup 

For the experiments we used a single cache DBMS and a back-end server. The back-end 

server hosted a TPCD database with scale factor 1.0 (about 1GB). The experiments reported 

here used only the Customer and Orders tables, which contained 150,000 and 1,500,000 

rows, respectively. The Customer table was clustered on its primary key, c_custkey, and had 

a secondary index on c_acctbal. The Orders table was clustered on its primary key, 

(o_custkey, o_orderkey). 

The cache DBMS had a shadow TPCD database with empty tables but with statistics 

reflecting the database on the back-end server. There were two local views: 

cust_prj(c_custkey, c_name, c_nationkey, c_acctbal) 
orders_prj(o_custkey, o_orderkey, o_totalprice) 
 

Which are projections of the Customer and the Orders tables, respectively. Cust_prj had a 

clustered index on the primary key c_custkey and orders_prj had a clustered index on 

(o_custkey, o_orderkey). They had no secondary indexes. The views were in different cache 

regions and, hence, not guaranteed to be consistent. The propagation intervals and delays are 

shown in Table 4.1. 

 Table 4.1  Cache region settings 

  cid  interval  delay  views 

CR1 1 15 5 cust_prj 

CR2 2 10 5 orders_prj 
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4.4.2 Workload Distribution (Analytical Model) 

Everything else being equal, one would expect that when currency requirements are relaxed 

further, more queries can be computed using local data and hence more of the workload is 

shifted to the cache DBMS. We will show how the workload shifts when the currency bound 

B is gradually increased in Q7 (Figure 4.7). 

The query plan for Q7 uses either the view cust_prj or a remote query. If the query is 

executed repeatedly, how often can we expect it to run locally and how does this depend on 

the currency bound B?  

Figure 4.6  Query schemas used for experiments 

Figure 4.7  Query variants used for experiments 

S1: SELECT c_custkey, c_name, o_orderkey, o_totalprice 
  FROM customer, orders 
  WHERE c_custkey = o_custkey [AND c_custkey<$K] 

 [CURRENCY clause ] 
S2: SELECT c_custkey, c_name  FROM customer 
  WHERE c_acctbal between $A and $B  
  CURRENCY BOUND 10 on (customer) 

Q1: $K = 500                P1 
Q2: No range predicate; no currency clause    P2 
Q3: $K = 500; BOUND  10  ON (customer, orders)   P1 
Q4: $K = 500; BOUND  2 ON (customer), BOUND 20 on (orders) P4 
Q5: $K = 500; BOUND 10 ON (customer), BOUND 20 on (orders) P5 
Q6: $A = 100; $B = 105       P1 
Q7: $A = 100; $B = 110       P3 
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Assuming query arrivals follow a Poisson process, we plotted function (1) from Section 

4.3.4 in Figure 4.8. In Figure 4.8 (a) it is plotted as a function of the currency bound B for f = 

100 and d = 1, 5, 10, respectively. When the currency bound is less than the delay, the query 

is never executed locally. As the currency bound is relaxed, the fraction of queries executed 

locally increases linearly until it reaches 100%. This level is reached when B = d+f, i.e., 

when it exceeds the maximal currency of local data. When the delay increases, the curve just 

shifts to the right. 

Figure 4.8 (b) shows the effects of varying the refresh interval. We fixed B = 10 and 

chose d = 1, 5, 8, respectively. When the refresh interval is sufficiently small, that is, f ≤ B – 

d, the query can always be computed locally. When the refresh interval is increased, more of 

Figure 4.8  Local workload at the cache 
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the workload shifts to the back-end. The effect is much more significant at the beginning and 

slows down later.  

4.4.3 Query Optimization Experiments 

We have fully integrated currency and consistency considerations into the cost-based 

optimizer. The first set of experiments demonstrate how the optimizer’s choice of plan is 

affected by a query’s currency and consistency requirements, available local views, their 

indexes and how frequently they are refreshed.  

We used different variants of the query schemas in Figure 4.6, obtained by varying the 

parameter $K and the currency clause in S1 for Q1 to Q5; $A and $B in S2 for the rest. The 

parameter values used and the logical plans generated are shown in and Figure 4.7 and 

Figure 4.9, respectively. The rightmost column in Figure 4.7 indicates which plan was 

chosen for each query.  

If we do not include a currency clause in the query, the default requirements apply: all 

inputs mutually consistent and currency bound equal to zero. Q1 and Q2 do not include a 

currency clause. Since local data can never satisfy the currency requirement, remote queries 

were generated. Because of the highly selective predicate in Q1, the optimizer selected plan 

1, which sends the whole query to the back-end. For Q2, plan 2 was selected, which contains 

a local join and two remote queries, each fetching a base table. In this case, it is better to 

compute the join locally because the join result is significantly larger (72 MB) than the sum 
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of the two sources (42 MB). Customers have 10 orders on average so the information for a 

customer is repeated 10 times in the join result.  

A remote plan (plan 1) is also generated for Q3 but for a different reason. The applicable 

local views cust_prj and orders_prj satisfy the currency bounds but not the consistency 

requirement because they are in different cache regions. In Q4 we relaxed the consistency 

requirement between Customer and Orders and changed their currency bounds (lower on 

Customer, higher on Orders). The local views now satisfy the consistency requirement and 

orders_prj also satisfies the currency bound but cust_prj will never be current enough to be 

useful. Thus a mixed plan (plan 4) was selected by the optimizer. If we relax the currency 

bound on Customer further as in Q5, both local views becomes usable and plan 5 is selected. 

Q3, Q4 and Q5 demonstrate how changing the currency can drastically change the query 

plan. 

As we can see in Figure 4.9, every local data access is protected by a currency guard, 

which guarantees that local data that is too stale will never be used. 

Optimization is entirely cost based. One consequence of this is that the optimizer may choose 

not to use a local view even though it satisfies all requirements if it is cheaper to get the data 

from the back-end server. This is illustrated by the following two queries. Even though they 

differ only in their range predicates, the optimizer chooses different plans for them. 

For Q6, a remote query was chosen even though the local view cust_prj satisfied the 

currency requirement. The reason is the lack of a suitable secondary index on cust_prj while 

there is one at the back-end server. The range predicate in Q6 is highly selective (53 rows 
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returned) so the index on c_acctbal at the back-end is very effective, while at the cache the 

whole view (150,000 rows) would have to be scanned. When we increase the range, as in Q7,  

the benefit of an index scan over a sequential scan diminishes and a plan exploiting the local 

view is chosen. 
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Figure 4.9  Generated logical plans 
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4.4.4 Currency Guard Overhead 

To guarantee that the result satisfies the query’s currency bounds, the optimizer generates 

plans with a currency guard for every local view in the plan. What is the actual overhead of 

currency guards in the current system implementation? Where does time go? We ran a series 

of experiments aimed at answering these questions using the queries shown in Table 4.2. 

Qa is the simplest and fastest type of query but also very common in practice. The local 

cache and the back-end server used the same trivial plan: lookup on the clustering index. For 

Qb, both servers used the same plan: a nested loop join with orders_prj (Orders) as the 

(indexed) inner. Again, for Qc, both servers used the same plan: a complete table scan. 

Table 4.2  Queries used for experiments 

Qa:  
key select 

SELECT c_custkey, c_name, c_nationkey,  
c_acctbal, c_mktsegment 

 FROM   customer  
 WHERE c_custkey = 1 
 [CURRENCY 10 on (customer)] 

Qb:  
join query 

SELECT c_custkey, c_name, o_orderkey,  
            o_totalprice 
 FROM customer, orders  
 WHERE c_custkey=o_custkey and c_custkey=1  
 [CURRENCY 10 on (customer), 20 on (orders)] 

Qc:  
non-key  
select 

SELECT c_custkey, c_name, c_nationkey  
            c_acctbal, c_mktsegment 
FROM       customer  
WHERE c_nationkey = 1 
[CURRENCY 10 on (customer)] 
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For each query, we generated two traditional plans without currency checking (one local 

and one remote) and a plan with currency checking. We ran the plan with currency checking 

twice, once with the local branches being executed and the other with the remote branches 

being executed. We then compared their execution times (elapsed time) with the execution 

times of the plans without currency guards. In each run, we first warmed up the cache, then 

executed the current query repeatedly (100,000 times for Qa and Qb local execution, 1000 

for Qc remote execution and 1000 for the others) and computed the average execution time. 

Note that we executed exactly the same query in order to reduce buffer pool and cache 

misses, thereby minimizing the execution time (and maximizing the relative overhead). The 

last row of Table 4.3 shows the execution time for the queries without run-time currency 

checking. The rest of the table shows the absolute and relative cost of currency guards and 

the number of output rows.  

In absolute terms, the overhead is small, being less than a millisecond for Qa and Qb. In 

the remote cases the relative overhead is less than 5% simply due to longer execution times. 

However, in the local case the relative overhead of 15% for Qa and 21% for Qb seems 

surprisingly high, even taking into account their very short execution time.   

Table 4.3  Currency guard overhead 

Local Remote 
 

Qa Qb Qc Qa Qb Qc 

Cost  (ms) 0.11 0.19 2.39 0.24 0.42 0.90 

Cost (%) 15.25 21.30 3.66 3.59 4.31 0.41 

Base query (ms)  0.72 0.89 65.30 6.69 9.74 219.51 
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Where does the extra time go? We investigated further by profiling the execution of local 

plans. The results are shown in the first three columns of Table 4.4 with each column 

showing an absolute overhead and a relative overhead. Each column corresponds to one of 

the main phases during execution of an already-optimized query: setup plan, run plan and 

shutdown plan. The absolute difference for a phase is the difference between the (estimated) 

elapsed time for the phase in the plan with and without currency checking. The relative 

difference is as a percentage of the time of that phase in the plan without currency checking. 

In other words, both indicate how much the elapsed time of a phase has increased in the 

plans with currency checking.  

During the setup phase, an executable tree is instantiated from the query plan, which also 

involves schema checking and resource binding. Compared with a traditional plan, a plan 

with currency checking is more expensive to set up because the tree has more operators and 

remote binding is more expensive than local binding. From Table 4.4, we see that the setup 

cost of a currency guard is independent of the output size but increases with the number of 

currency guards in the plan. For small queries such as Qa and Qb, the overhead for this phase 

Table 4.4  Local overhead breakdown 

setup run shutdown  IdealTotal   
ms % ms % ms % ms % 

Qa 0.04 27.13 0.06 152.52 0.01 26.56 ~0.07 ~11.51 

Qb 0.06 39.39 0.09 98.52 0.01 29.69 ~0.10 ~14.32 

Qc 0.01 2.98 1.99 3.79 0.04 46.21 ~0.10 ~0.16 
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seems high. We found that the overhead is not inherent but primarily caused by earlier 

implementation choices that slow down setup for SwitcshUnions with currency guards. The 

problem has been diagnosed but not yet remedied. 

During the run phase, the actual work of processing rows to produce the result is done. 

The overhead for Qa and Qb is relatively high because running the local plans is so cheap 

(Single indexed row retrieval for Qa, and 6-row indexed nested loop join for Qb). The 

overhead for a SwitchUnion operator during this phase consists of two parts: evaluating the 

guard predicate once and overhead for each row passing through the operator. Evaluating the 

predicate is done only once and involves retrieving a row from the local heartbeat table and 

applying a filter to it. Qa just retrieves a single row from the Customer table so it is not 

surprising that the relative overhead is as high as it is. In Qc, almost 6000 rows pass through 

the SwitchUnion operator so the absolute overhead increases but the relative overhead is 

small, under 4%. There are some (limited) opportunities for speeding up this phase.  

In an ideal scenario (i.e., with possible optimizations in place), it should be possible to 

reduce the overhead of a currency guard to the overhead in Qa plus the shutdown cost. Based 

on this reasoning, we estimated the minimal overhead for our workload. The results are 

shown in the IdealLocal column of Table 4.4. 
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Chapter 5  

Enforcing Data Quality Constraints for Finer 
Granularity  

The extension to finer granularity cache management fundamentally changes every aspect of 

the problem, imposing non-trivial challenges: 1) how the cache tracks data quality; 2) how 

administrators specify cache properties; 3) how to maintain the cache efficiently; and 4) how 

to do query processing. While Chapter 3 addresses the first three questions, in this chapter 

we focus on the last one. A traditional distributed query optimizer decides whether to use 

local data based on data availability and estimated cost. In our setting, it must also take into 

account local data properties (presence, consistency, completeness and currency). Presence 

checking is addressed in [ZLG05]; the same approach can be extended to completeness 

checking. This chapter describes efficient checking for C&C constraints, the approach being 

an extension of the framework developed in Chapter 4. Theorem 5.1, Theorem 5.2, and 

Theorem 5.3 guarantee the correctness of our algorithms. 

The algorithms developed here are generalizations of those in Chapter 4 to cover finer 

granularity C&C checking. In Chapter 4, consistency checking was done completely at 

optimization time and currency checking at run time, because view level cache region 

information is stable and available at optimization, while currency information is only 
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available at run time. In this chapter we still perform as much consistency checking as 

possible at optimization time but part of it may have to be delayed to run time. For a view 

with partial consistency guarantees, we don’t know at optimization time which actual groups 

will be consistent at run time. Further, ad-hoc cache regions may change over time, also 

prompting run-time checking. 

The rest of the chapter is organized as follows. Sections 5.1 to 5.3 illustrate the 

extensions to C&C constraints normalization, query compilation time consistency checking, 

and query execution time C&C checking respectively. Experimental and analytical results 

are reported in Section 5.4. 

5.1 Normalizing C&C Constraints 

A query may contain multiple currency clauses, at most one per SFW block. The first task is 

to combine the individual clauses and convert the result to a normal form. To begin the 

process, each currency clause is represented as follows. 

Definition:  (Currency and consistency constraint) A C&C constraint CCr is a set of 

tuples, CCr = {<b1, K1, S1, G1>, ..., <bn, Kn, Sn, Gn>}, where Si is a set of input operands 

(table or view instances), bi is a currency bound specifying the maximal acceptable staleness 

of the input operands in Si, Gi is a grouping key and K i a set of grouping key values.   

Each tuple has the following meaning: for any database instance, if we group the input 

operands referenced in a tuple by the tuple’s grouping key Gi, then for those groups with one 

of the key values in K i, each group is consistent. The key value sets K i will be used when 
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constructing consistency guard predicates to be checked at run time. Note that the default 

value for each field is the strongest constraint. 

All constraints from individual currency clauses are merged together into a single 

constraint and converted into an equivalent or stricter normalized form with no redundant 

requirements. 

Definition:  (Normalized C&C constraint) A C&C constraint CCr = {<b1, K1, S1, G1>, ..., 

<bn, Kn, Sn, Gn>} is in normalized form if all input operands (in the sets Si) are base tables 

and the input operand sets S1,…, Sn are all non-overlapping.  

We extend the algorithm for transforming a set of constraints into normalized form given 

in Figure 4.1 to cover finer granularity. The structure of the algorithm remains unchanged, 

while the rules are generalized. As shown in Figure 4.1, the algorithm first recursively 

expands all references to views into references to base tables. Next, it repeatedly merges any 

two tuples that have one or more input operands in common, but using the following 

generalized rule. Refer to [RG02] for the concept of attribute closure. 

Normalization Rule: Given CCr1 = {<b1, K1, S1, G1>} and CCr2 = {<b2, K2, S2, G2>}, S1  

S2  Ø, replace the two constraints by CCr = {<b, K , S, G >}, where b = min (b1, b2), and S = 

S1 U S2. Given a set of functional dependencies (FDs) F over the query result relation Y, let 

Gi
+ be the attribute closure of Gi w.r.t. F, where i = 1, 2. Then G = G1

+ G2
+. Let K i

+ = 

G Gi=ki(Y), i = 1, 2. Then K  = K1
+ ∪ K2

+.      
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Given a set of FDs over the base relations, and the equivalence classes induced by a 

query, we can infer the set of FDs over the query result relation. For example, for Q2, let 

CCr1 = {<10, Ø, {Authors, Books}, {city}>}, CCr2 = {<5, Ø, {Books}, {isbn}>}. CCr1 

requires that if we group the query result by city, then within each group, all the rows have to 

be consistent. CCr2 requires that if we group the result by isbn, then each book row has to be 

consistent. From the key constraints in Authors and Books, together with the join condition 

in Q2, we know that isbn is a key for the final relation. Thus CCr = {<5, Ø, {Authors, 

Books}, {city}>}. If an instance satisfies CCr, then it must satisfy both CCr1 and CCr2, and 

vice versa.  

In what follows, we formally define implication and equivalence between any two CCrs, 

and prove that when K1 and K2 are set to default, then the outcome of the normalization rule 

CCr is equivalent to the inputs CCr1∪ CCr2 w.r.t. F. Further, we prove that not knowing all 

FDs doesn’t affect the correctness of the rule.  

Definition:  (Implication, Equivalence) Given two C&C constraints CCr1 and CCr2, a cache 

schema , and a set of FDs F over , we say that CCr1 implies CCr2 w.r.t  and F, if every 

instance of  that satisfies F and CCr1 also satisfies CCr2. If CCr1 implies CCr2 w.r.t  and F 

and CCr2 implies CCr1 w.r.t  and F, then CCr1 and CCr2 are equivalent w.r.t  and F.  

Lemma 5.1: Given a cache schema , for any CCr = {<b, K , S, G>} and any instance of , 

the consistency constraint in CCr can be satisfied w.r.t.  and F, iff the grouping key G’  of 

the cache region partitioning on S in  is a subset of G+ w.r.t.  and F.   

Proof of Lemma 5.1:  
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Sufficiency is obvious. Now we prove necessity. Since each group by grouping key 

G belongs to one group by grouping key G’ , G functionally determines G’ . Thus 

G’ ⊆  G+. 

Theorem 5.1: If K1 and K2 are set to default, then the output of the Normalization Rule CCr 

is equivalent to its input CCr1∪ CCr2 w.r.t.  and F.    

Proof of Theorem 5.1: 

Given any instance of  that satisfies {CCr} w.r.t. to F, from Lemma 5.1, the 

grouping key of its cache region partitioning is a subset of G+. Since G ⊆ Gi
+, i = 1, 2, 

G+ ⊆ Gi
+, the consistency constraints in (CCr∪ CCr2} are satisfied. Further, since the 

consistency partitioning satisfies currency constraint b, and b = min (b1, b2), b1 and b2 

are also satisfied.    

 

From Lemma 5.1, it follows that for any instance that satisfies both CCr1 and CCr2 w.r.t. 

F, the grouping key of its cache region partitioning has to be a subset of G. Thus, it also 

satisfies CCr. Since it satisfies b1 and b2, and b = min(b1, b2), it also satisfies b. 

Theorem 5.2: Suppose FDs over a cache schema : F+ ⊂ F’+. The output of the 

Normalization Rule {CCr} w.r.t. F implies its input CCr1∪ CCr2 w.r.t.  and F’.   

Proof of Theorem 5.2:   
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Let G = G1
+ G2

+ w.r.t. F, G’  = G1
+ G2

+ w.r.t. F’. Then G ⊆ G’ . Thus for any 

instance of  that satisfies CCr, since K  = K1
+ ∪ K2

+ w.r.t. F, from Lemma 5.1, it 

satisfies CCr1∪ CCr2.   

5.2 Compile-time Consistency Checking 

We take the following approach to consistency checking. At optimization time, we proceed 

as if all consistency guarantees were full. A plan is rejected if it would not produce a result 

satisfying the query’s consistency requirements even under that assumption. Whenever a 

view with partial consistency guarantees is included in a plan, we add consistency guards 

that check at run-time if the guarantee holds for the groups actually used. 

As explained in Chapter 4 SQL Server uses a transformation-based optimizer. 

Conceptually, optimization proceeds in two phases: an exploration phase and an optimization 

phase. The former generates new logical expressions; the latter recursively finds the best 

physical plan. Physical plans are built bottom-up.  

Required and delivered (physical) plan properties play a very important role during 

optimization. To make use of the plan property mechanism for consistency checking, we 

must be able to perform the following three tasks: 1) transform the query’s consistency 

constraints into required consistency properties; 2) given a physical plan, derive its delivered 

consistency properties from the properties of the local views it refers to; 3) check whether 

delivered consistency properties satisfy required consistency properties.  
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5.2.1 Required Consistency Plan Property 

A query’s required consistency property consists of the normalized consistency constraint 

described in Section 5.1. 

5.2.2 Delivered Consistency Plan Property 

A delivered consistency property CPd consists of a set of tuples {<Ri, Si, i>} where Ri is 

the id of a cache region, Si is a set of input operands, namely, the input operands of the 

current expression that belong to region Ri, and i is the set of grouping keys for the input 

operands. Each operator computes its delivered plan properties bottom-up based on the 

delivered plan properties of its inputs. We extend the algorithms shown in Figure 4.2 and 

Figure 4.3 for calculating derived C&C property to cover the generalized form of derived 

C&C property. The structure of the algorithms remains unchanged, while the rules are 

generalized, as stated shortly. For convenience, we call the extended one Algorithm 

DrvdPropertyCalcGeneral. 

Delivered plan properties are computed bottom-up for each physical operator, in terms of 

the properties of its inputs, according to the algorithm described in Figure 4.2, which treats 

the physical operators accordingly as four categories: i) leaves of the plan tree (e.g., tables or 

materialized views), ii) single-input operators, iii) joins, and iv) SwitchUnion.  

The leaves of a plan tree are table, materialized view, or index scan operators, possibly 

with a range predicate. If the input operand is a local view, return the ids of the view’s input 

tables in S, not the id of the view, since consistency properties always refer to base tables. If 
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the whole view is consistent, the id of its cache region; otherwise, return the set of grouping 

keys of its consistency root, and a flag, say –1, in the region id field to indicate row-level 

granularity. For a remote table or view, return a special region id, say, 0. 

All operators with a single relational input, such as filter, project, aggregate and sort do 

not affect the delivered consistency property so copy the property from their relational input.  

Join operators combine multiple input streams into a single output stream. Union the 

input consistency properties and merge property tuples that are in the same cache region. 

Formally, given two delivered C&C property tuples CPd1 = {<R1, S1, 1>} and CPd2 = 

{<R2, S2, 2>}, merge them if either of the following conditions is true: 

1) If the input operands are from the same cache region, i.e., R1 = R2  0, then merge the 

tables, i.e., replace CPd1 and CPd2 by CPd = {<R1, S, Ø >}, where S = S1 U S2. 

2) If the input operands are grouped into cache regions by the same keys (for the same 

root), i.e., 1 = 2, they are group-wise consistent so merge them into CPd = {<–1, S, 

1>} where S = S1 U S2.         

A SwitchUnion operator has multiple input streams but it does not combine them in any 

way; it simply selects one of the streams. Thus, the output consistency property is the 

strongest consistency property implied by every input. When generating an intersection from 

two derived C&C phrases as shown in Figure 4.3, we follow the generalized rules. Formally, 

given two delivered C&C property tuples <R1, S1, 1> and <R2, S2, 2>, where S1 ∩ S2 

≠ ∅, generate a common C&C tuple <R, S, > if any of the following conditions is true: 

1) If  1 = 2 = ∅, then  = ∅, and R is determined the same way as in Figure 4.3.  
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2) If  one and only one of  i = ∅, i = 1, 2, without loss of generality, suppose 1 = ∅, 

then R = R2,  = 2. 

3) If  1
+ ∩ 2

+≠ ∅, where i
+ denotes the union of the attribute closure of each 

grouping key in i, i=1, 2, then R = –1, and  = 1
+ ∩ 2

+. 

For all cases S = S1 ∪ S2.   

 

In case 1), both tuples are view level consistent, thus the common tuple is generated 

following the same rule as in Figure 4.3. In case 2), only one tuple is view level consistent, 

since group level consistency is weaker, we output the group level consistency guarantee. In 

case 3), both tuples are group level consistent, thus we can only output the common grouping 

keys implied by them. 

5.2.3 Satisfaction Rules 

Now, given a required consistency property CCr and a delivered one CPd, how do we know 

whether CPd satisfies CCr? Firstly, our consistency model does not allow two columns from 

the same input table T to originate from different snapshots, leading to the following 

property: 

Conflicting consistency property: A delivered consistency property CPd is conflicting if 

there exist two tuples <R1, S1, 1> and <R2, S2, 2> in CPd s.t. S1  S2  Ø and one of the 

following conditions holds: 1) R1  R2, or 2) 1  2.     
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This property is conservative in that it assumes that two cache regions U1 and U2 from 

different views can only be consistent if they have the same set of control-keys.  

Secondly, a complete plan satisfies the constraint if each required consistency group is 

fully contained in some delivered cache region. We extend the consistency satisfaction rule 

in Chapter 4 to include finer granularity cache regions.  

Consistency satisfaction rule: A delivered consistency property CPd satisfies a required 

CCr w.r.t. a cache schema  and functional dependencies F, iff CPd is not conflicting and, 

for each tuple <br, K r, Sr, Gr> in CCr, there is a tuple <Rd, Sd, d> in CPd s.t. Sr ⊆ Sd, and 

one of the following conditions holds: 1) d = Ø, or 2) there exists a Gd∈ d s.t. Gd⊆ Gr
+   

where Gr
+ is the attribute closure of Gr w.r.t. F.  

For query Q2, suppose we have CCr = {<5, Ø, {Authors, Books}, {isbn}>}, and that the 

cache schema is the one in Figure 3.6. During view matching, AuthorCopy and BookCopy 

will match Q2. Thus CPd = {<–1, {Authors, Books}, {Authors.authorId, city}>}. If 

AuthorCopy joins with BookCopy on authorId (a join condition indicated by the presence 

correlation), and the result is R, then from the key constraints of Authors and Books we 

know that isbn is a key in R. Therefore city∈{isbn} +. CPd satisfies CCr. 

Not knowing all FDs doesn’t affect the correctness of the satisfaction rule, it only 

potentially produces false negatives: 
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Theorem 5.3: For any two sets of functional dependencies F and F’ over the cache schema , 

where F+ ⊆  F’+, if a delivered consistency property CPd satisfies a required CCr w.r.t. F, 

then it satisfies CCr w.r.t. F’.  

Proof of Theorem 5.3:   

Let Gr
+ be the attribute closure of Gr w.r.t. F+, Gr’

+ be the attribute closure of Gr w.r.t. 

F’+, then Gr
+ ⊆ Gr’

+.      

Theorem 5.4: Assuming run-time checking is correct, with the Delivered-Plan Algorithm, 

for any plan of which CPd satisfies CCr w.r.t. a cache schema  and functional dependencies 

F, no matter which data sources are used at execution time, CCr will be satisfied w.r.t F.      

 

Proof of Theorem 5.4: 

Let the set of C&C properties of the sources be CPd = {< Rdi, Sdi, di >}. Let the 

output of the Delivered-Plan Algorithm be CPd’. 

Case 1: There are no SwitchUnion operators in the plan.  

Since operators with a single relational input simply pass the input property; while 

join operators simply merge the input properties with the same cache region, we have 

CPd = CPd’.  

Case 2: There are some SwitchUnions used as C&C guards. 



   110 

In this case, for each SWU, there are two types of checking: consistency checking 

and currency checking. So the branch actually used satisfies both consistency and 

currency constraints.  

The difference between CPd and CPd’ is that in CPd, for a local source with property 

CPdi = {< Rdi, Sdi, di>} guarded with a SWU, we have either CPdi or CPdi’ = {<0, 

Sdi, Ø>}, depending on whether the local branch or the remote branch is used during 

execution. 

For any tuple r = <br, K r, Sr, Gr> in CCr, since CPd’ satisfies CCr, there exists a row t 

= <Rd, Sd, d >, such that, Sr ⊆ Sd, and one of the following conditions holds: i) d = 

Ø, or ii) let Gr+ be the attribute closure w.r.t. F. There exists a Gd∈ d such that 

Gd⊆ Gr
+. 

If t is merged from sources that don’t have a SWU, then it also appears in CPd, 

otherwise, w/o loss of generality, we can assume it comes from two local resources 

with SWU operators and with property t1 = < Rd1, Sd1, d1> and t2 = < Rd2, Sd2, d2>. 

Trivial case: If Sr ⊆ Sd1(or Sd2), then r is satisfied by t1 (or t2) in CPd.  

Otherwise, we claim that for any cache instance, either both local branches are used 

or both remote branches are used. Thus if CPd’ satisfies CCr, then if we plug in CPd 

the property of the data sources actually used, CPd also satisfies CCr. 

Case 2.1: R>0. Since both local resources belong to the same cache region, they have 

the same currency, so does the currency checking result. 

Case 2.2: R= –1. Since the two resources are controlled by the same set of 

consistency control-keys, again, the C&C checking results are the same.       
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While a plan is being constructed, bottom-up, we want to stop as soon as the current 

subplan cannot deliver the consistency required by the query. The consistency satisfaction 

rule cannot be used for checking subplans; a check may fail simply because the partial plan 

does not include all inputs covered by the required consistency property. Instead we apply 

the following violation rules. We prove that a plan cannot satisfy the required plan properties 

if a subplan violates any of the three rules (Theorem 5.5).  

Consistency violation rules: A delivered consistency property CPd violates a required 

consistency constraint CCr w.r.t. a cache schema  and functional dependencies F, if one of 

the following conditions holds: 

1) CPd is conflicting, 

2) There exists a tuple < br, K r, Sr, Gr > in CCr that intersects more than one consistency 

group in CPd, that is, there exist two tuples < R1d, S1d, 1d > and < R2d, S2d, 2d > 

in CPd s.t. Sr  S1d  Ø and Sr  S2d  Ø,  

3) There exists <b, K r, Sr, Gr> in CCr, and < Rd, Sd, d > in CPd, s.t. Sr ⊆ Sd, d  Ø 

and the following condition holds: let Gr+ be the attribute closure w.r.t.  and F. 

There does not exist Gd∈ d, s.t. Gd⊆ Gr
+.  

Theorem 5.5: Using the Delivered-Plan Algorithm, if a partial plan A violates the required 

consistency property CCr w.r.t. a cache schema  and functional dependencies F, then no 

plan that includes A as a branch can satisfy CCr w.r.t.  and F .      

Proof of Theorem 5.5:  
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This is true because from the algorithm, for any tuple < Rd, Sd, d > in the delivered 

plan property of P, there is a tuple < Rd, Sd’ , d > in the delivered plan property of 

any plan that includes P as a branch, where Sd⊆ Sd’ .        

5.3 Run-time Currency and Consistency Checking 

To include C&C checking at run-time, the optimizer must produce plans that check whether 

a local view satisfies the required C&C constraints and switch between using the local view 

and retrieving the data from the backend server. Such run-time decision-making is built into 

a plan by using a SwitchUnion operator. A SwitchUnion operator has multiple input streams 

but only one is selected at run-time based on the result of a selector expression. 

In MTCache, all local data is defined as materialized views and logical plans making use 

of a local view are always created through view matching [LGZ04, GL01]. Consider an 

(logical) expression E and a matching view V from which E can be computed. If C&C 

checking is required, we produce a substitute consisting of a SwitchUnion on top, as shown 

in Figure 5.1, with a selector expression that checks whether V satisfies the currency and 

consistency constraint, and two input expressions: a local branch and a remote branch. The 

Figure 5.1  SwitchUnion with consistency and curren cy guards 

C&C Guards

Remote planLocal  plan

SwitchUnion
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local branch is a normal substitute expression produced by view matching and the remote 

plan consists of a remote SQL query created from the original expression E. If the condition, 

which we call consistency guard or currency guard according to its purpose, evaluates to 

true, the local branch is chosen, otherwise the remote one.  

The discussion of when and what type of consistency checking to generate and the 

inexpensive consistency checking we support is deferred to Section 5.4.  

Currency bound checking: If the required lowest currency bound on the input tables of 

E is B, the optimizer generates a currency guard that checks if any required region is too stale 

for the query. Given a control-table CT on control-key CK, a set of probing values K  on CK, 

the check is:  

 

NOT EXIST ( SELECT 1 FROM CT  
   WHERE CK IN K AND rid < getdate() – B   ) 
 

Recall that the timestamp is recorded in the rid column of each control-table (Section 

3.4.1.2). 

5.4 Analysis and Experiments 

This section reports experimental results for consistency checking; results for presence and 

currency checking are reported in [ZLG05] and Chapter 4 respectively. 
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5.4.1 Experimental Setup 

We used a single cache DBMS and a backend server. The backend server hosted a TPCD 

database with scale factor 1.0 (about 1GB), where only the Customers and Orders tables 

were used. The Customers table was clustered on its primary key, c_custkey with an index 

on c_nationkey. The Orders table was clustered on (o_custkey, o_orderkey). The cache had a 

copy of each table, CustCopy and OrderCopy, with the same indexes. The control table 

settings and queries used are shown in Figure 5.2. We populated the ckey and nkey columns 

with c_custkey and c_nationkey columns from the views respectively. 

C_PCT and O_PCT are the presence control tables of CustCopy and OrderCopy 

Figure 5.2  Settings and queries used for experimen ts 

Settings:  CREATE TABLE C_PCT (ckey int PRIMARY, rid int) 
   CREATE TABLE C_CsCT(nkey int PRIMARY, rid int) 
   CREATE TABLE O_PCT (ckey int PRIMARY, rid int) 
 
Qa: SELECT *   
  FROM  Customers C 
   WHERE c_custkey in $custSet 
   [CURRENCY BOUND 10 on (C) BY $key ] 
 
Qb:  SELECT *  
  FROM Customers C, orders O  
  WHERE c_custkey=o_custkey and c_custkey IN $custSet   
   [CURRENCY BOUND 10 on (C, O) BY $key ] 
 
Qc:  SELECT *  
  FROM Customers C 
  WHERE  c_nationkey in $nationSet 
  [CURRENCY 10 on (C) BY $key ] 



   115 

respectively. C_CsCT is a consistency control table on CustCopy. By setting the timestamp 

field, we can control the outcome of the consistency guard. 

The caching DBMS ran on an Intel Pentium 4CPU 2.4 GHz box with 500 MB RAM. The 

backend ran on an AMD Athlon MP Processor 1800+ box with 2GB RAM. Both machines 

ran Windows 2000 and were connected by LAN. 

5.4.2 Success Rate of Ad-hoc Consistency Checking (Analytical) 

Intuitively, everything else being equal, the more relaxed the currency requirements are, the 

more queries can be computed locally. Although less obvious, this is also true for 

consistency constraints.   

Assuming all rows in $custSet are in the cache, a dynamic plan for Qa will switch 

between either CustCopy and a remote query, depending on the outcome of the consistency 

guard. If there is only one customer in $custSet, by default the result is consistent. At the 

other extreme, if $custSet contains 1000 customers, they are not likely to be consistent. 

When the number of customers in $custSet increases, the likelihood of the result being 

consistent decreases. Suppose there are N rows in CustCopy, divided into M cache regions. 

We assume that the regions are the same size and each row in $custSet is independently and 

randomly chosen from CustCopy. Let the size of $custSet be x, where x  N. The result is 

consistent only when all the chosen rows are from the same cache region. Thus, the 

probability of an ad-hoc consistency check being successful is P(consistent) = (1/M)X–1. 
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As one would expect, and as this formula confirms, the probability of success decreases 

rapidly as the number of consistency groups and/or number of required rows increase (Figure 

5.3 (a)). 

5.4.3 Update Cost (Analytical) 

Suppose there are N rows in CustCopy, divided into M cache regions. We assume that the 

regions are the same size and each row in $custSet is independently and randomly chosen 

from CustCopy. We model the cost of refreshing a consistency region in CustCopy once by 

three components: Csetup, setup cost of the remote query; Ccalc, calculation cost at the 

backend; Ctransfer, network transfer cost for the query results. 

Crefresh-once = Csetup + Ccalc + Ctransfer   

In this formula, Csetup is a fixed setup cost for every query, while the other two are 

proportional to the number of tuples. Thus, Ccalc + Ctransfer can be expressed as 

unittransfercalc C
M

N
CC *=+ , where Cunit is the cost of calculating and transferring one tuple. Let 

the refresh frequency be f, then in a time unit, the total refresh cost for the region will be: 

Crefresh = f * Crefresh-once  

By dividing data into different consistency regions, we have the advantage of being able 

to refresh them at different rates. For example, update platinum customers every 10 minutes, 

and normal customers every hour. To model this, we use a decrease factor r. Suppose that 

originally all the rows are in one region, with refresh rate 1. For each consistency region 
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added, the refresh rate drops by r% from its predecessor, i.e., for region i, fi = (1 – r)i–1. Thus, 

the total update cost of refreshing M regions is as follows, and the function is plotted in 

Figure 5.3 (b). 
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5.4.4 Consistency Guard Overhead 

We made the design choice to only support certain inexpensive types of run-time consistency 

guards. A natural question is: what is the overhead of the consistency guards? Furthermore, 

how expensive are more complicated guards?  

Figure 5.3  Workload shift and update cost 
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We experimentally evaluate the cost of a spectrum of guards by means of emulation. 

Given a query Q, we generate another query Q’ that includes a consistency guard for Q, and 

use the execution time difference between Q’ and Q to approximate the overhead of the 

consistency guard. For each query, depending on the result of the consistency guard, it can be 

executed either locally or at the backend. We measure the overhead for both scenarios.  

5.4.4.1 Single-Table Case 

We first analyze what type of consistency guard is needed for Qa when $key differs. The 

decision making process is shown in Figure 5.4 and the consistency guards in Figure 5.5. 

Condition A: Is each required consistency group equal to or contained in a presence 

region? 

If Yes, it follows from the Presence Assumption that all the rows associated with each 

presence control-key are consistent. No explicit consistency guard is needed. For example, 

for Qa with $key = c_custkey. 

Figure 5.4  Generating consistency guard 
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Condition B: Is each required consistency group equal to or contained by a consistency 

region? If Yes, we check C, otherwise we check D.  

Condition C: Is the consistency guarantee full? 

If Yes, then no run-time consistency checking is necessary. Otherwise, we need to probe 

the consistency control table with the required key values at run-time. For example, for Qa 

with $key = c_nationkey, we have two scenarios: 

In the first scenario, we have to first calculate which nations are in the results, and then 

check if they all appear in the consistency control table C_CsCT (A11a). A more precise 

guard (A11b) only checks nations with more than one customer, by adding the COUNT(*)>1 

condition. Checking like A11a, A11b and A12 is called assured consistency checking in 

that it checks if the required consistency groups are part of the guaranteed cache regions. 

In the second scenario, a redundant equality predicate on c_nationkey is included in the 

query, allowing us to simply check if the required nations are in C_CsCT (A12). It eliminates 

the need to examine the data for consistency checking. 

Condition D: Can each required consistency group be covered by a collection of cache 

regions. 

If Yes, we have the opportunity to do ad-hoc consistency checking. For Qa with $key = 

Ø, we check if all the required customers are in the same ad-hoc cache region (S11). Such 

checking (e.g., S11, S12 and S21, S22 from Figure 5.5) is called ad-hoc consistency 

checking.  

If  $key=c_nationkey and suppose we don’t have C_CsCT, we need to check each group 

(S12).
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Figure 5.5  Consistency guard examples 

A11a, A11b:  SELECT 1    WHERE NOT EXISTS ( 
   SELECT 1 FROM  CustCopy 
   WHERE c_custkey IN $custSet   
   GROUP BY c_nationkey 
   HAVING [COUNT(*) > 1 AND] c_nationkey NOT IN  
    (SELECT nkey FROM C_CsCT) ) 
 

A12: SELECT 1 WHERE |$nationSet| =  ( 
   SELECT COUNT(*) FROM C_CsCT  
   WHERE  nkey IN $nationSet ) 
 

S11: SELECT 1 WHERE 1 = ( 
   SELECT COUNT(DISTINCT rid)  FROM  C_PCT 
   WHERE ckey IN $custSet ) 
 

S12: SELECT 1 WHERE 1 = ALL ( 
   SELECT COUNT(DISTINCT rid)  FROM C_PCT, CustCopy  
   WHERE c_custkey IN $custSet AND key=c_custkey 
   GROUP BY c_nationkey ) 
 

S21: SELECT 1 FROM ( 
   SELECT COUNT (DISTINCT rid1) AS count1,  
    SUM (ABS(rid1-rid2)) AS count2  
   FROM ( 
    SELECT A.rid AS rid1, B.rid AS rid2) 
    FROM C_PCT A, O_PCT B 
    WHERE A.ckey IN $custSet AND A.ckey = B.ckey) ) 
    AS FinalCount 
   WHERE count1 = 1 AND count2 = 0 ) 
 

S22: SELECT 1  WHERE NOT EXISTS ( 
   SELECT 1 FROM ( 
    SELECT c_custkey, c_nationkey,  
     A.rid AS rid1, B.rid AS rid2 
    FROM C_PCT A, O_PCT B, CustCopy C  
    WHERE A.ckey IN $custSet AND 
    A.ckey = c_custkey AND c_custkey = B.ckey 
    ) AS FinalCount 
   GROUP BY c_nationkey 
   HAVING MIN(rid1) <> MAX(rid1 OR MIN(rid2) <> MAX(rid2)  
     OR MIN(rid1) <> MIN(rid2))  
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Experiment 1 is designed to measure the overhead of the simple consistency guards 

supported in our current framework. We chose to support only run-time consistency guards 

that 1) do not require touching the data in a view; 2) only require probing a single control 

table. We fixed the guards and measured the overhead for: Qa and Qb with $custSet = (1); 

Qc with $nationSet = (1). The consistency guard for Qa and Qb is S11 and the one for Qc is 

A12.  

The results are shown in Table 5.1, where the last row is the execution time for the 

queries without run-time consistency checking. As expected, in both the local and remote 

case, the absolute cost remains roughly the same, the relative cost decreases as the query 

execution time increases. The overhead for remote execution is small (< 2%). In the local 

case, the overhead for Qc (returning ~6000 rows) is less than 2%. Although the absolute 

overhead for Qa and Qb is small (<0.1ms), since the queries are inexpensive (returning 1 and 

6 rows respectively), the relative overhead is ~15%. 

Table 5.1  Simple consistency guard overhead 

Local Remote 
 

Qa Qb Qc Qa Qb Qc 

Cost (ms) .078 .08 1.17 .01 .19 1.13 

Cost (%) 16.56 14.00 <2 <1 <2 <1 

# Rows 1 6 5975 1 6 5975 

Base query (ms) 0.45 0.57 67.99 5.54 11.72 70.77 
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In experiment 2, we used query Qa with $custSet = (2, 12), which returns 2 rows; and 

compared the overhead of different types of consistency guards that involve one control 

table. The results are shown in Table 5.2, where the last row is the execution time for the 

queries without run-time checking. 

For local execution, if the consistency guard has to touch the data of the view (A11a, 

A11b and S12), the overhead surges to ~70% for S12, because we literally execute the local 

query twice. A11a and b show the benefit of being more precise: the “sloppy” guard in A11a 

incurs 63% overhead, while the overhead of the more precise guard (A11b) is only 24%, 

because it is less likely to touch CustCopy. The simple guard A12 incurs the smallest 

overhead (~17%). 

5.4.4.2 Multi-Table Case 

Different from Qa, the required consistency group in Qb has objects from different views. In 

this case, we first check: 

Condition E: Do they have the same consistency root? 

Table 5.2  Single-table case consistency guard over head 

 

Local Remote 
 

A11a A11b A12 S11 S12 A11a A12 A12 S11 S12 

Cost (ms)  .31 .12 .084 .29 .35 .33 .27 .13 .41 .48 

Cost (%)  62.85 23.77 16.98 58.32 71.41 6.06 4.95 2.33 7.48 8.79 

Qa (ms) .49 .49 .49 .49 .49 5.44 5.44 5.44 5.44 5.44 
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If Yes, then the consistency guard generation reduces to the single table case, because the 

guaranteed cache regions are decided by the consistency root. Otherwise, we have to perform 

ad-hoc checking involving joins of presence control tables. There are two cases. 

Case 1: $key = Ø. We check if all the required presence control-keys point to the same 

cache region (S21). 

Case 2: $key = c_nationkey. We first group the required rows by c_nationkey, and check 

for each group if 1) all the customers are from the same region; and 2) all the orders are from 

the same region as the customers (S22). 

In Experiment 3, we use query Qb with $custSet = (2, 12), which returns 7 rows, and 

measure the overhead of consistency guards that involve multiple control tables. The results 

are shown in Table 5.3, where the last row is the execution time for Qb without run-time 

checking. Note that the execution time for the remote execution of Qb in this setting is 

different than that in the first experiment (Table 5.1). The reason is that different plans were 

generated and used for those two settings. This difference does not affect the results of this 

study. Guards S21 and S22 involve not only accessing the data, but also performing joins. 

Table 5.3  Multi-table case consistency guard overh ead 

Local Remote 
 

S21 S22 S21 S22 

Cost (ms) .90 .83 1.00 .98 

Cost (%) 155.83 143.82 24.82 24.36 

Qb (ms) .58 .58 4.02 4.02 
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Such complicated checking incurs huge overhead in the local execution case (~150%). Note 

that if CustCopy and OrderCopy are consistency-wise correlated, then the overhead (refer to 

the single-table case) reduces dramatically.  

It is worth pointing out that in all experiments, even for complicated consistency guards, 

the overhead of remote execution is relatively small (<10% for single-table case, <25% for 

multi-table case). It raises an interesting point: even if a guard is less likely to be successful, 

it might still be preferable to do the check than simply use a remote plan. Thus the cost-

model should bias in favor of plans with consistency checking instead of remote plans. 
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Chapter 6  

Quality-Aware Database Caching Performance 
Modeling: Alternatives and Implications 

6.1 Introduction 

Chapter 1 - Chapter 4 has presented a novel database caching model where queries are 

allowed to express their data quality requirements; the cache may choose to maintain 

different levels of local data quality; and the caching DBMS provides quality guarantees for 

query results by shifting between using local data and remote data from the master. The use 

of replication is not free, because of the potential update propagation cost. In such a complex 

system, the performance improvements provided by caching “good enough” copies, if any, 

will be determined by many factors, including query workload, update workload and the 

system configurations. The goal of this chapter is to explore the system design space, 

quantify the impact of alternatives, and offer insights into performance tradeoffs.  

It is worth emphasizing what we are NOT set out to do. First, we do NOT intend to 

investigate the adaptive caching aspect of this problem, an example of which is cache 

replacement or admission policies. Rather, we examine the influence of design alternatives 

under the full replication assumption (i.e., a cache has all the objects of the master). Second, 
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it is not our purpose to predict the performance of some actual system. Rather, we try to 

exemplify under what circumstances gains can be achieved for what design and what the 

magnitude of these gains might be. 

We begin by establishing a performance evaluation framework based on a simple but 

realistic model. Our model is an extension of a database management system model 

developed by Agrawal et al. [ACL87], which we refer to as the Agrawal model for 

convenience. The Agrawal model captures the main elements of a database environment, 

including both users (i.e., terminals, the sources of transactions) and physical resources for 

storing and processing the data (i.e., disks and CPUs), in addition to the characteristics of the 

workload and the database. We extend the single-site model to a cache-master configuration, 

capturing the interaction between the cache and the master. In addition, we refine the single-

site model to reflect the characteristics of cache organization and maintenance.  

Based on this framework, we examine the effects of alternative assumptions and system 

configurations. In particular, we critically examine the common assumption that performance 

improves as the number of caches increases. The use of a cache is not free; workload 

offloading is achieved at the cost of update propagation. We show under what conditions the 

performance can be improved by adding more caches, and when the overhead of maintaining 

a cache exceeds the benefit it can bring. 

Allowing queries to express their C&C requirements gives the cache freedom in 

maintenance, because if local data does not meet the specified data quality requirements, the 

cache can simply shift the query to the master, thus providing desired data quality 
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guarantees. Obviously, the tradeoff is between workload offloading and maintenance 

overhead. We quantify the performance differences with different tradeoffs. 

In addition to these experiments quantifying the effectiveness in relaxing C&C 

requirements and local data quality, we examine the impact of the push maintenance and the 

pull maintenance. The push maintenance uses incremental update propagation; but can only 

be applied to view-level cache regions, thus not providing support for finer granularity 

caching. In contrast, the pull mode is more flexible, supporting finer-grained (hence smaller) 

cache regions, but requires recalculation. By experimentally showing which alternatives 

work best for what workload, we provide insights into choosing appropriate system 

configurations. 

The rest of the chapter is organized as follows. Section 6.2 describes the push and pull 

maintenance. We implement the model of cache-master architecture using the CSIM discrete 

event simulation package [Sch86, Mesquite] for our performance studies, which is based on 

a closed queuing model. The structure and characteristics of our model are described in 

Section 6.3. Section 6.4 discusses the performance metrics and statistical methods used for 

the experiments, and how a number of our parameter values were chosen. We present the 

experimental results and analysis in Section 6.5 and conclude in Section 6.6. 

6.2 Push vs. Pull Maintenance 

In Chapter 4 we briefly described the push maintenance for view level granularity cache 

regions, where Microsoft SQL Server’s transactional replication feature [Ise01, Hen04] is 
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used to propagate changes to the cache. With this model, the master database can specify a 

set of materialized views as publications. A cache can subscribe to views from one or more 

publications. Each subscriber corresponds to a distribution agent (an OS process). Changes to 

a publication are recorded to a separate database, called distribution database using a log 

sniffing technique. Periodically, a dispatch agent wakes up and propagates relevant changes 

to its subscriber. After all the subscribers of the publication have received the changes, the 

records are deleted from the distribution database. 

Such maintenance is efficient, since the cache is updated incrementally. However, it 

imposes two restrictions on the cache organization: 1) only view level cache regions are 

supported; 2) only limited types of views, i.e., selection and projection views are supported. 

In comparison, the pull maintenance we introduced in Chapter 4 employs a re-

computation approach. For a cache region, the cache periodically refreshes it by sending 

queries to the master. The newly retrieved data calculated from the current state of the master 

is then used to replace the stale data in the cache. This model offers maximal flexibility in 

cache region organization, since we can choose to refresh any part of a view by sending a 

remote query. Although re-computation can be expensive, this approach can be useful in 

cases where skewed data quality requirements to a view are observed. 

6.3 Performance Model 

Our model is built on top of the Agrawal model, which is an extended version of the model 

used in [CS84], which in turn has its origins in the models of [RS77, RS79a]. Although the 
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Agrawal model is developed to evaluate the performance of a set of locking protocols, since 

it models a database system in a fairly detailed and complete fashion, we were able to adopt 

it for our own purpose. 

We begin by explaining the Agrawal model in Section 6.3.1. For a cache-master 

configuration, we extend this model in three aspects. Firstly, we extend the single-site 

database model to the cache-master configuration. This is achieved by modeling interactions 

between the cache and the master during query processing as well as during cache 

maintenance (Section 6.3.2). Secondly, we capture C&C related characteristics for a cache-

master configuration, for instance, workload with C&C constraints, cache region concept, 

and C&C-aware transaction processing at the cache (Section 6.3.3). Finally, we refine the 

model to differentiate sequential access from random access, which is critical for our study, 

because “pull” maintenance tends to be sequential, and “push” maintenance random. (Section 

6.2). 

6.3.1 Single Site Database Management Systems 

In this section, we describe the Agrawal model for single site database management systems. 

There are three main parts to the performance model: a database system model, a user model, 

and a transaction model. The database system model captures the relevant characteristics of 

the system’s hardware and software, including the physical resources (CPUs and disks) and 

their associated schedulers, the characteristics of the database (e.g., its size and granularity), 

the load control mechanism for controlling the number of active transactions, and the 
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concurrency control algorithm. The user model captures the arrival process for users, 

assuming a closed system with terminals, batch-style (non-interactive) in nature. Finally, the 

transaction model captures the reference behavior and processing requirements of the 

transactions in the workload. A transaction submitted at the master can be described via two 

characteristic strings with C&C components. There is a logical reference string, which 

contains concurrency control level read and write requests; and a physical reference string, 

which contains requests for accesses to physical items on disk and the associated CPU 

processing time for each item accessed. In addition, if there is more than one class of 

transactions in the workload, the transaction model must specify the mix of transaction 

classes. 

The closed queuing model of a single-site database system is shown in Figure 6.1. There 

are a fixed number of terminals from which transactions originate. There is a limit to the 

number of transactions allowed to be active at any time in the system, depicted by the 

multiprogramming level mpl. A transaction is considered active if it is either receiving 

service or waiting for service inside the database system. When a new transaction is 

generated, if the system already has a full set of active transactions, it enters the ready queue, 

where it waits for a currently active transaction to complete or abort. (Transactions in the 

ready queue are not considered active.) The transaction then enters the cc queue 

(concurrency control queue) and makes the first of its lock requests. If the lock request is 

granted, the transaction proceeds to the object queue and accesses its first object. It is 

assumed for modeling convenience that a transaction performs all of its reads before 

performing any writes.  
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If the result of a lock request is that the transaction must block, it enters the blocked 

queue until it is once again able to proceed. If a request leads to a decision to restart the 

transaction due to deadlock, it goes to the back of the ready queue, after a randomly 

determined restart delay period of the observed response time. It then begins making all of 

the same concurrency control requests and object accesses over again. Eventually, the 

transaction may complete and the concurrency control algorithm may choose to commit the 

Figure 6.1  Logical queuing model (From [ACL87]) 
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transaction. If the transaction is read-only, it is finished. If it has written one or more objects 

during its execution however, it first enters the update queue and writes its deferred updates 

into the database. Locks are released together at the end-of-transaction (after the deferred 

updates have been performed). Wait queues for locks and a wait-for graph are maintained by 

a resource manager. 

Underlying the logical model of Figure 6.1 are two physical resources, the CPU and the 

I/O (i.e., disk) resources. The amounts of CPU and I/O time per logical service are specified 

as model parameters. The physical queuing model is depicted in Figure 6.2, and Table 6.1 

summarizes the associated model parameters for the whole system. As shown, the physical 

Figure 6.2  Physical queuing model (From [ACL87]) 
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model is a collection of terminals, multiple CPU servers, and multiple I/O servers. The delay 

paths for the think and restart delays are also reflected in the physical queuing model. Model 

parameters specify the number of CPU servers, the number of I/O servers, and the number of 

terminals for the model. When a transaction needs CPU service, it is assigned a free CPU 

server; otherwise the transaction waits until one becomes free. Thus, the CPU servers may be 

thought of as a pool of servers, all identical and serving one global CPU queue. Requests in 

the CPU queue are serviced FCFS (first come, first served). The I/O model is a probabilistic 

model of a database that is spread out across all of the disks. There is a queue associated with 

each of the I/O servers. When a transaction needs service, it chooses a disk (at random, with 

all disks being equally likely) and waits in an I/O queue associated with the selected disk. 

The service discipline for the I/O requests is also FCFS. 

The parameters obj_io and obj_cpu are the amounts of I/O and CPU time associated with 

reading or writing an object. Reading an object takes resource time equal to obj_io followed 

by obj_cpu. Writing an object takes resources equal to obj_cpu at the time of the write 

request and obj_io at deferred update time, since it is assumed that transactions maintain 

deferred update lists in buffers in main memory. For simplicity, these parameters represent 

constant service time requirements rather than stochastic ones. The ext_think_time parameter 

is the mean time delay between the completion of a transaction and the initiation of a new 

transaction from a terminal. We assume it is exponentially distributed.  
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Parameter Meaning 
db_size Number of objects in database 
num_terms_total Total number of terminals 
num_terms_cache Number of terminals at a cache 
mpl Multiprogramming level 
max_size Size of largest transaction 
min_size Size of smallest transaction 
write_prob Pr (write X | read X) 
read_only_percentage Percentage of read-only transactions 
ext_think_time Mean transaction think time 
obj_io Disk time for accessing an object 
obj_io_seek Disk seeking time 
obj_io_transfer Disk transfer time for an object 
obj_cpu CPU time for accessing an object 
num_cpus Number of CPUs  
num_disks Number of disks  
num_caches Number of caches 
network_delay_query Network delay for sending a query 
network_delay_transfer Network delay for sending an object  
log_sniffing_fixed_cpu Fixed part of CPU time for log sniffing a transaction 
log_sniffing_unit_cpu Unit CPU time for log sniffing a write action 
log_sniffing_fixed_disk Fixed part of Disk time for log sniffing a transaction 
log_sniffing_unit_disk Unit Disk time for log sniffing a write action 
distribution_fixed_cpu Fixed part of CPU time for distributing updates 
distribution_unit_cpu Unit CPU time for distributing a write action 
distribution_fixed_disk Fixed part of Disk time for distributing updates 
distribution_unit_disk Unit disk time for distributing a write action 
seq_prob_copier Pr (copier reads are sequential) 
seq_prob_refresh Pr (copier writes are sequential) 
num_regions  Number of cache regions at each cache 
max_num_classes Maximal number consistency classes per  Xact 
min_num_classes Minimal number of consistency classes per Xact 
num_classes Number of consistency classes of the database 
refresh_interval Refresh interval 
currency_bound Currency bound 

 

Table 6.1  Model parameters 
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A transaction is modeled according to the number of objects that it reads and writes. The 

number of objects read by a transaction is chosen from a uniform distribution between 

min_size and max_size (inclusive). These objects are randomly chosen (without replacement) 

from all of the objects in the database. The probability that an object read by a transaction 

will also be written is determined by the parameter write_prob. The size of the database is 

db_size.  

6.3.2 Cache-Master Configuration 

In this section, we describe the extension to the Agrawal model that reflects the C&C-aware 

features for a cache-master configuration. The modified logical queuing model is shown in 

Figure 6.3. 

6.3.2.1 Cache Region Concept 

A cache has the same set of objects as the master. Objects in a cache are logically partitioned 

into cache regions. All the objects from the same cache region are mutually consistent at all 

times. Currency information is managed, and update propagation is carried out at the 

granularity of cache region. For simplicity, we assume equal size cache regions. The number 

of regions in a cache is controlled by model parameter num_regions. Objects are mapped to 

regions by a default mapping: object i belongs to cache region ((i*num_regions)/db_size). 

Each cache region is associated with the following metadata: 

1) Cache region ID: a unique identifier of the region. 
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2) Synchronization timestamp: the timestamp of the last synchronization point, which is 

used for approximating the currency of this cache region. Suppose the timestamp is 

t1, and current time is t, then the currency of the region is less than (t – t1). 

3) Refresh interval: the refresh interval for this cache region. 

6.3.2.2 Transaction Model 

In our setting, there are transactions generated by the terminals as well as transactions 

generated by the system (which will be explained shortly). To differentiate, we call them 

user transactions and system transactions respectively. In comparison to the Agrawal model, 

user transactions have richer semantics in our setting. Besides the basic characteristics, a user 

transaction also includes C&C requirements. To reflect that, we partition the objects in a user 

Figure 6.3  Queuing model for a cache-master config uration 
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transaction into consistency classes, each with a currency bound. Recall from Chapter 4 that 

the C&C constraints mean that all the objects in the same consistency class have to be 

mutually consistent, and no older than the currency bound. 

For simplicity, we assume the cache is partitioned into equal length consistency classes. 

The number of classes in a cache is controlled by model parameter num_classes. Objects are 

mapped to consistency classes by a default mapping: object i belongs to class 

((i*num_classes)/db_size). We also assume a consistency class can be mapped to one and 

only one cache region. That is, the cache always satisfies the consistency requirement of the 

user transactions. The number of consistency classes a user transaction accesses is uniformly 

distributed between min_num_classes and max_num_classes (inclusive). The consistency 

classes are randomly chosen (without replacement) from among all consistency classes in the 

cache. Assuming n classes are accessed by a user transaction, for a chosen class, the number 

of objects the user transaction reads is uniformly distributed between min_size/n and 

max_size/n. Those objects are chosen (without replacement) from among all of the objects 

contained in this region. Thus the minimal and maximal sizes of the read set of a transaction 

continue to be min_size and max_size. Similar to the Agrawal model, the probability that an 

object read by a transaction will also be written is determined by the parameter write_prob. 

Unless otherwise noted, the currency bound associated with a consistency class is 

currency_Bound, and the refresh interval for a cache region is refresh_interval. 
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6.3.2.3 Cache Maintenance 

In our cache model, all read-write user transactions are processed at the master and we 

propagate changes to the cache periodically at the granularity of a cache region. To reflect 

that, we associate each cache region with a distribution agent that wakes up periodically 

according to the refresh interval of this cache region and propagates changes from the master 

to the cache.  

In the “pull” model, each time a distribution agent wakes up, it first generates a remote 

transaction that reads all the objects of this cache region, which we call a copier transaction. 

The agent enters the remote queue and waits for the return of the remote transaction. Then it 

generates a transaction consisting of writes to all the objects of the cache region, called a 

refresh transaction. 

In the “push” model, the master maintains a delta queue for each cache region, which 

stores the delta changes relevant to that cache region. After a read-write transaction at the 

master commits, we enter each of its writes into its corresponding delta queues. The 

transactional boundary and commit order for the writes in each delta queue are preserved. In 

SQL Server’s Transactional Replication, such delta queues are produced using a log sniffing 

technique. To model the cost of log sniffing, each time we put a write into the delta queues, 

we charge a CPU cost followed by a disk cost. The CPU cost has an amortized fixed 

component logSniffing_fixed_cpu and a unit component for each object written out 

logSniffing_unit_cpu. Likewise, the disk cost has two components: logSniffing_fixed_disk 

and logSniffing_unit_disk.  
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When a distribution agent wakes up, it empties the corresponding delta queue, ships all 

the actions to the cache, and executes a batch of refresh transactions one by one. The 

distribution cost is charged similar to the sniffing cost with model parameters 

distribution_fixed_cpu, distribution_unit_cpu, distribution_fixed_disk, and 

distribution_unit_disk. Each refresh transaction consists of all writes from the same user 

transaction, and the refresh transactions are executed in the commit order of their 

corresponding user transactions.  

Note that in our model, the distribution agents consume the resources (i.e., CPUs and 

disks) of the master site. In reality the distribution database can sit on a separate machine, 

which is similar to adding more resources dedicated to the distribution agents to the master. 

This is valid for our study since our focus is to examine the performance with a fixed number 

of resources assigned to the master.  

6.3.2.4 Keeping Track of Currency 

In the “pull” model, after each refresh, the timestamp of the corresponding copier 

transaction is used as the current timestamp of the cache region.   

In the “push” model, we record the timestamp of a user transaction along with its writes 

in a delta queue. After each refresh transaction, we use the timestamp of the corresponding 

user transaction as the current timestamp of the cache region. Supposing the system clock is 

t1 when a distribution agent wakes up, we assume that all the changes up to t1 have already 

been added to its delta queue. Thus, after the whole batch of refresh transactions finishes, we 
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set the timestamp of the cache region to t1. Note that this timestamp is set to t1 when the 

agent wakes up even in case the delta queue is empty (i.e., no changes till t1).       

6.3.2.5 Transaction Processing 

There are two types of transactions in our system: user transactions generated by the 

terminals and system transactions generated by the distribution agents. We give system 

transactions higher priority over user transactions: as soon as a system transaction is 

generated, it becomes active immediately. We achieve that by bypassing the ready queue for 

system transactions. That is, the multiprogramming level only restricts user transactions, not 

the system transactions.  

The master executes transactions in the same way as in the Agrawal model; it simply 

ignores any C&C components of a query, since all C&C requirements will be satisfied at the 

master. 

A cache differentiates three types of transactions and handles them differently: read-write 

transactions, read-only transactions, and refresh transactions. While the first two are user 

transactions, the last one is of the system transactions type. Read-write transactions are 

directly forwarded to the master; C&C checking is enforced for read-only transactions; and 

refresh transactions are processed in the same manner as in the single-site case. In what 

follows, we describe each type of user transactions in more detail.  
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For a read-write transaction A, the moment it becomes active, we send a separate 

transaction A’ (identical to A) to the master, and put A into the remote queue. After A’ 

finishes and returns from the master, A simply commits. 

For a read-only transaction B, if B has mismatched consistency classes, we treat it the 

same way as a read-write transaction. Otherwise, we model two alternatives in currency 

checking: cache region level and query level. For the former, we process each consistency 

class specified in B in turn. Before requesting any read lock for a cache region, we first 

check the timestamp of the region against the currency bound specified in the query. If the 

checking succeeds, reads to this consistency class will be performed locally; otherwise, all 

the reads in the same consistency class are sent in a separate transaction B’ to the master and 

B enters the remote queue. B will proceed again only if B’ finishes and returns from the 

master. It commits when all the reads are finished. 

6.3.2.6 Network Cost 

In addition to CPU and disk, we model a third physical resource: the network. Each remote 

query to the master uses a roundtrip of the network resource. Assuming infinite bandwidth, 

when a transaction needs the network resource, it immediately gets it. We assume the 

network delay for sending a remote query is the same for all queries, which is specified as 

model parameter network_delay_query. The network transfer time per object is specified as 

model parameter network_delay_obj. Suppose the number of reads in a remote query is n, 

then the total round-trip delay of the remote query is calculated by:  
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network_delay_query + n * network_delay_obj 

6.3.3 Model Refinement 

In this section, we refine the model to capture characteristics that are critical for our purpose, 

but not for the Agrawal model. In particular, Agrawal et al. did not use workloads containing 

several classes of transactions; neither did they model sequential vs. random accesses, since 

neither is necessary for their specific goal. Both characteristics are critical in our model given 

the asymmetric nature of the cache and the master in transaction handling, and the significant 

difference in access patterns using the pull or push maintenance alternatives.  

6.3.3.1 Locking 

For the master, strict two-phase locking is used to guarantee serializability. For the cache, 

since it only guarantees consistency within each cache region, we apply strict two-phase 

locking for the duration of each region access. That is, all the locks on objects in a region are 

released together at the point when accesses to the region finish. 

We check for deadlock upon each lock request. If a lock request is to cause a deadlock, 

we abort the transaction which makes the request. To avoid it causing deadlocks repeatedly, 

before it restarts, we hold the aborted transaction for an exponential delay with a mean equal 

to the running average of the transaction response time — that is, the duration of the delay is 

adaptive, depending on the observed average response time.  
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6.3.3.2 Sequential vs. Random Access 

With a pull model, reads/writes will most likely be sequential, since a copier needs to read 

from the master all the objects in the whole cache region, and write them back into the cache. 

In contrast, with a push model, the writes to the cache are more likely to be random, since 

only updates are propagated to the cache. We differentiate these two access patterns in our 

model in the following way. 

Firstly, instead of assuming that objects are spread among the disks uniformly, we 

assume that cache regions are spread among the disks uniformly. For all experiments, we 

keep a fixed mapping between cache regions and disks. Suppose there are N disks, then the 

i th cache region belongs to disk (i mod N). If the number of regions is less than the disks, we 

bypass this mapping and apply the disk assignment approach described in Section 6.3.1 

Secondly, instead of having a single parameter obj_io to model the IO cost, we use two 

model parameters obj_io_seek and obj_io_ transfer. The IO cost of sequentially reading m 

objects is (seeking_cost + m * transfer_cost).  

In addition, we adjust the locking protocol as follows. If a transaction reads/writes a set 

of objects sequentially, it has to lock them all before it accesses them, because otherwise the 

sequential access pattern cannot be guaranteed. 

Accordingly, in our transaction model, we add one more characteristic to a system 

transaction, a flag indicating whether the reads in this transaction can be proceeded 

sequentially. The probability that the reads/writes of a system transaction are sequential is 
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represented by a model parameter seq_prob_copier/seq_ prob_refresh. Intuitively, these two 

probabilities are much greater for the pull maintenance than for the “push” one. 

We could have added the sequential vs. random access characteristics to user transactions 

in a similar way. We chose not to because the focus of this study is not the absolute 

performance of the system, rather, the comparison between different configurations. The 

behavior of user transactions does not change under those configurations. 

6.4 General Experiment Information 

The remainder of this chapter presents results from a number of experiments designed to 

investigate system performance with the alternative configurations discussed in Section 6.2. 

In this section we look at the performance metrics and statistical methods used in the rest of 

this study, and how we chose many of the parameter settings used in the experiments.  

6.4.1 Performance Metrics 

The primary performance metric used throughout the study is the user transaction throughput 

rate, which is the number of user transactions completed per second. We used Condor 

[Condor] to run all our experiments. Each simulation was run for 20 batches with a large 

batch time to produce sufficiently tight 90 percent confidence intervals. The actual batch 

time was 100,000 seconds (simulation time). Our throughput confidence intervals were 

typically in the range of plus or minus a few percentage points of the mean value, more than 

sufficient for our purposes. We omit confidence interval information from our graphs for 
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clarity, but we discuss only the statistically significant performance differences when 

summarizing our results. 

In analyzing the experiment results, we divide the system throughput into three 

categories, and measure them separately:  

1) Throughput for read-only transactions submitted to the master. 

2) Throughput for read-only transactions submitted to the caches. Parts of the reads 

might actually be executed at the master depending on the result of currency 

checking. 

3) Throughput for read-write transactions. All read-write transactions are executed at the 

master, regardless where they are submitted. This metric helps to understand the 

number of updates that need to be propagated per synchronization.  

We also measure the throughput for system transactions. Again, we measure it separately 

for copier transactions and refresh transactions.   

Response times, expressed in seconds, are also given in some cases. These are measured 

as the difference between when a transaction is generated and when the transaction returns 

following its successful completion, including any time spent waiting in the ready queue, 

time spent before (and while) being restarted, and so forth. We measure the response time 

separately for each category in the same way as for throughput. 

To understand the effectiveness of replication, we measure the local workload ratio, 

which is the ratio of the number of reads completed at the caches to the total number of reads 

submitted to the cache. 
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Several additional performance-related metrics are used in analyzing the results of our 

experiments. We measure the average batch size (measured in actions) per synchronization, 

which determines the minimal time needed for executing the batch of transactions, hence 

indicates the effectiveness of synchronization. 

In monitoring the effects of data contention, two conflict-related metrics are employed. 

The first metric is the blocking ratio, which gives the average number of times that a 

transaction has to block per commit (computed as the ratio of the number of transaction-

blocking events to the number of transaction commits). The other conflict-related metric is 

the restart ratio, which gives the average number of times that a transaction has to restart per 

commit (computed similarly). We measure the conflict for both the master and the caches. 

Another set of metrics used in our analysis is the workload shift percentage measured at the 

object level, which gives the ratio of reads that pass currency checking to the total reads 

generated from a cache.  

The last set of metrics used in our analysis is the average disk utilization, which gives the 

fraction of time during which a disk is busy. Again, we measure it both for the master and for 

the caches. Note that disk utilization is used instead of CPU utilization because the disks turn 

out to be the bottleneck resource with our parameter settings (discussed next). 

6.4.2 Parameter Settings 

Table 6.2 gives the values of the simulation parameters that all of our experiments have in 

common (except where otherwise noted). Parameters that vary from experiment to 
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experiment are not listed there, but will instead be given with the description of the relevant 

experiments. 

The total number of terminals is set to 300, and the number of terminals assigned to each 

cache is set to 20. When we increase the number of caches from 0 to 15, the number of 

terminals at the master decreases from 300 to 0. This gives the full spectrum of workload 

origination. Following [ACL87], we use 1 CPU and 2 disks as 1 resource unit and then vary 

the number of resources for the master and a cache. This balances the CPUs and disks, 

making the utilization of these resources about equal, as opposed to being either strongly 

CPU bound or strongly I/O bound. We set the number of resource units at the master and a 

cache to 2 and 1 respectively. We did not use larger numbers of terminals or resources units, 

because our preliminary experiments showed that the chosen setting provides reliable results 

while not requiring excessive simulation time.  
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Parameter Value 
db_size 10,000 pages 
num_terms_total 300 
num_terms_cache 15 
mpl 50 
max_size 12-page readset (maximum) 
min_size 4-page readset (minimum) 
write_prob 0.25 
read_only_percentage 90 
ext_think_time 1 second 
obj_io 35 milliseconds 
obj_io_seek 30 milliseconds 
obj_io_transfer 5 milliseconds 
obj_cpu 15 milliseconds 
num_cpus (master) 2 CPUs at the master 
num_disks (master) 4 disks at the master 
num_cpus (cache) 1 CPUs at a cache 
num_disks (cache) 2 disks at a cache 
num_caches 0, 1, 3, 5, 8, 10, 13, and15 
network_delay_query 20 milliseconds 
network_delay_transfer 5 milliseconds 
log_sniffing_fixed_cpu 15 milliseconds 
log_sniffing_unit_cpu 5 milliseconds 
log_sniffing_fixed_disk 20 milliseconds 
log_sniffing_unit_disk 5 milliseconds 
distribution_fixed_cpu 200 milliseconds 
distribution_unit_cpu 5 milliseconds 
distribution_fixed_disk 200 milliseconds 
distribution_unit_disk 5 milliseconds 
seq_prob_copier 1 
seq_prob_refresh 0 for push, 1 for pull 
num_regions  1 

 

Table 6.2  Simulation parameter setting 

 

We set the database size to 10,000 pages, the average size of a read-only transaction to 8 

reads, and the write probability is set to 0.25. Thus in average, there are 8 reads and 2 writes 
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in a read-write transaction. The multiprogramming level is set to 50. Our preliminary 

experiments showed that this setting causes significant resource contention with minimal 

data contention (due to locking). This is desirable since we are not interested in locking 

performance, but rather system behavior due to limited resources. Note that the 

multiprogramming level is internal to the database system, which controls the number of 

transactions that may concurrently compete for data, CPU and I/O services (as opposed to 

the number of users that may be attached to the system). We could have chosen a higher 

number, which causes even more resource contention. However, we then would lose control 

of the frequency of system transactions, because of the long average response time due to 

extremely high resource contention.   

We set low amortized log sniffing cost (roughly 1/5 of the average transaction execution 

time), assuming log sniffing is always sequential and does not involve much CPU cost. The 

amortized distribution cost is set to roughly the average transaction execution time, since it 

involves waking up the distribution agent, and setting up a remote connection to the cache, 

which is costly. 

For the first three experiments, the whole cache forms the largest cache region, and the 

whole database forms the largest consistency class. Thus each read-only transaction only has 

1 consistency class.  

It is worth pointing out that there are a number of parameters that we could have varied 

but did not. For example, we could have varied the size of databases, transactions, 

distribution of transaction sizes, or the database granularity; we also could have varied the 

number of resource units, total number of terminals and number of terminals at a cache. For 
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the purposes of this study, such variations were not of interest. Our goal was to see how 

certain basic assumptions affect the system behaviors.  

6.5 Experiments and Analysis 

The high level goal of the experiments is to answer the following questions: 

1) the impact of writes, 

2) the impact of relaxing refresh intervals, 

3) the impact of relaxing currency requirements and 

4) the impact of push vs. pull. 

The push model incurs log sniffing overhead and distribution overhead at the master. 

Such overhead increases as the number of caches increases. At a certain point, the refresh 

cost becomes the bottleneck of the system. We address this problem in Section 6.5.1. A 

natural response to this problem is to relax the refresh interval and hence reduce the 

propagation cost. The question then is if that will help? Section 6.5.2 answers this question. 

Even if it does help, what if we also want to provide data quality guarantees to each query? 

In this case, reducing refresh interval may bring a side effect: workload being shifted back to 

the master. In Section 6.5.3, we study the impact of relaxation of currency requirements. The 

first three experiments adopt a traditional setting, where the cache is always consistent. 

Finally, we want to examine how the system can benefit from even more relaxed cache 

maintenance, i.e., at the granularity of cache regions. Push and pull maintenance have 

different implications in the allowed granularity. First, we expect that the use of caches is not 
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free. Although the pull model is generally more costly, it is useful for certain cases. Section 

6.5.4 sheds light on different performance tradeoffs between push and pull.  

Note that for illustration purpose, we include in this section only graphs that present the 

main results. For graphs that help to analyze and understand the system behavior, instead, we 

put them into the Appendix. 

6.5.1 Experiment 1: Impact of Writes 

We performed two sets of simulation experiments to study the system behavior under various 

workloads with a spectrum of read-only percentages: 100, 95, 90, 80, 70, and 50. With a 

lower read-only percentage, one can expect less performance improvement when the number 

of caches increases, because less workload can be shifted to the caches. Recall that a cache in 

our framework directly forwards read-write transactions to the master. The results confirm 

our intuition.  

In the first set of experiments, we set the refresh interval to infinity. The system 

throughput is shown in Figure 6.4. In general, the system throughput increases as the number 

of caches increases. When the read-only percentage is high (100, 95, and 90), the system 

throughput improves roughly 6-fold. Note that a cache is only half as powerful as the master. 

When the read-only percentage is low (80, 70, and 50), however, the improvement becomes 

marginal (less than 2-fold for 0.8, less than 50% for 0.5). The difference between different 

curves is purely the number of read-only transactions assigned (and executed) at the caches. 

This is so because 1) the currency bounds are set to infinity, hence all read-only transactions 
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submitted to the caches can be executed locally; and 2) there is no maintenance overhead 

since the refresh interval is infinity. From Figure 6.4, we see that the difference between the 

curves increases as the number of caches increases. This is because the difference in 

percentage of workload executed at the cache increases with the number of caches, as 

obvious from the following formula:  

cache workload = num_caches * num_terms_cache  *      
   (read_only_percentage/100)   

And this is confirmed by the throughput of the master (Figure 8.3) and that of the cache 

(Figure 8.1), from which we can see that the difference in cache throughput component 

dominates the difference in system throughput. In Figure 8.3, each curve goes down because 

the percentage of read-write (longer) transactions increases, as shown in Figure 8.4. For the 

last segment, a curve with a high read-only percentage (i.e., 100, 95 and 90) drops greatly, 

because from the above formula, the workload on the master drops greatly. In Figure 8.1, the 

curves are not linear. This is because the transaction generation rate is affected by the master 

response time. Recall that after generating a transaction, a terminal has to wait until that 

transaction returns before generating a new one. For the curve with read-only percentage 95, 

there is a bigger leap for the last segment, which is a consequence of the greater decrease in 

master response time (Figure 8.2).  

In Figure 6.4, we see a flat segment when the number of caches increases from 13 to 15. 

The reason is as follows. From our parameter settings, the total number of terminals in the 

system is 300 and each cache is assigned 20 terminals. 13 caches leave 40 terminals at the 
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master, while 15 caches leave none. Since the master is twice as powerful as the cache, it 

does not make much difference to have the 40 terminals at the master or at two more caches. 

In the second set of experiments, we set the refresh interval to 0. That is, the cache is 

continuously refreshed, and the system throughput is shown in Figure 6.5. The behavior of 

the system is similar to the first case where the refresh interval is infinity, but with every 

curve shifted down except for the special case of a read-only percentage of 100. Cache 

maintenance overhead contributes to the difference. With a read-only percentage of 90 and 

15 caches, the improvement reduces dramatically from 7-fold to less than 2-fold.  

Last but not least, we claimed that our setting causes significant resource contention but 

minimal data contention. To show that this is true, we plotted the disk utilization and 

blocking ratio for the master and the caches respectively. We only show the results for the 

first setting (Figure 8.5, Figure 8.6, Figure 8.7 and Figure 8.8), but similar results are 

observed for the second setting. For the master, the disk utilization is above 0.95 till the 

number of caches reaches 13. Then the utilization drops because the master is no longer 

saturated. For the cache, the utilization ranges from ~0.11 to ~0.95 when the read-only 

percentage increases from 50 to 100, as the cache becomes saturated. The blocking ratio is 

less than 0.09 even for a read-only percentage of 50. That is, on average a transaction waits 

for less than 0.09 times before it completes. For the cache, the blocking ratio is 0. We did not 

show the restart ratios here since they are indistinguishable from the horizontal axis.  



   154 

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15

T
h

ro
u

g
h

p
u

t 
(p

e
r 

S
e

c
)

Number of Caches

ReadOnly(100)
ReadOnly(95)

ReadOnly(90)
ReadOnly(80)

ReadOnly(70)
ReadOnly(50)  

 
 

Figure 6.4  System throughput ( ∞ currency bound, ∞ refresh interval) 
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Figure 6.5  System throughput ( ∞ currency bound, 0 refresh interval) 
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6.5.2 Experiment 2: Impact of Relaxing Refresh Interval 

The first set of experiments showed that the cache maintenance overhead may jeopardize the 

performance improvement we get by using more caches, even for a fairly high read-only 

percentage of 90 when we refresh the cache continuously. In this set of experiments, we 

examine the difference in system performance when we reduce the refresh intervals. 

Intuitively, when we refresh the caches less frequently, we incur less maintenance overhead, 

and hence get better system performance.  

We fix the workload with a read-only percentage of 90 and infinite currency bound (the 

same setting as the curve with read-only percentage of 90 in the previous section). The 

refresh intervals are set to 0, 5, 10, 50 and 100 respectively, and the result is shown in Figure 

6.6. Surprisingly, there is no significant difference between these settings for most cases 

except when there are 15 caches. When the number of caches is 15, with a refresh interval of 

5 seconds, the performance improves about 50%; larger refresh intervals improve the 

performance by about 80%. To better understand the results, we plotted the throughput at the 

master (Figure 8.9) and the caches (Figure 8.10), and throughput of read-write transactions at 

the cache (Figure 8.11). 

The system throughput is dominated by the cache throughput, since the system is 

dominated by read-only transactions. The throughput of the master shows a similar trend as 

that the system. The master directly benefits from less frequent refreshes, because in our 

model the distribution costs are charged to the master for each refresh. There is no significant 

difference when the number of caches is less than 15. The difference is more significant 
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when the number of caches increases, because of the increase in the number of distribution 

agents. The throughput of the cache shown in Figure 8.10 reflects the throughput of the read-

write transactions at the master, as confirmed by the similarity (except for the scale) between 

Figure 8.10 and Figure 8.11, for the same reason as described in the previous section: a 

terminal at a cache waits for a read-write transaction to return before generating a new one. 

We suspected that the reason we do not see significant changes when the number of 

caches is less than 15 is that in our setting, the distribution costs are rather low. To verify 

that, we repeated the set of experiments with a heavier charge for distribution cost (4 times 

for distribution_fixed_io) and the results (Figure 6.7) confirm our conjecture. The difference 

between different refresh intervals is significant in this setting. By changing the refresh 

interval from 0 to 100, the system performance almost doubles even with only 5 caches.  
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Figure 6.6  System throughput ( ∞ currency bound) 
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Figure 6.7  System throughput  
(∞ currency bound, heavy distribution overhead) 
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6.5.3 Experiment 3: Impact of Refresh Interval vs. Data Quality 
Requirement 

In the previous section, we showed that by relaxing local data quality, we can potentially 

improve the system performance, even when the distribution cost is relatively low. At one 

extreme, if we never refresh the caches, we totally avoid the maintenance overhead. 

However, the observed performance improvement was under the assumption that the data 

quality requirements from the read-only transactions are extremely relaxed (infinity). In our 

framework, the cache needs to satisfy data quality requirements from read-only transactions. 

If local data is too old for a consistency class specified in the transaction, all the reads from 

that class will be sent to execute at the master. Intuitively, the longer the refresh interval, the 

poorer the local data quality, and hence less read-only transactions can be answered from the 

caches. Thus, there is a trade-off between refresh overhead and workload shifted to the 

master. We examine this tradeoff in this section. 

We conducted 4 sets of experiments, each with a different refresh interval (0, 5, 50 and 

infinity, measured in seconds). For each experiment, we measured the performance of 

workloads with different mean currency bounds (0, 5, 10, 50, 100 and infinity, measured in 

seconds). We first examine the results of the first set of experiments in detail, and then we 

compare the impact of the 4 refresh interval settings. 
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6.5.3.1 Experiments with Refresh Interval of zero 

Figure 6.8 shows the throughput of the first set of experiments with a refresh interval of 0. 

The throughput of currency bound 0 and infinity serve as the lower and upper bounds 

respectively. When the currency bound is 0, the whole workload is executed at the master. 

Increasing the number of caches does not bring any benefit; worse, it imposes cache 

maintenance overhead and network cost to the system. Thus, the throughput decreases (from 

~13 to ~8). When the currency bound is infinity, since all read-only transactions are executed 

at the cache, the cache can share the maximal workload from the master. (Note that there is a 

crossover point, which will be discussed shortly.) For most cases, relaxing currency bound 

significantly improves system performance. With 10 caches, for example, the system 

throughput is roughly 9 for currency bound 0. It increases to roughly 31, 42 and 52 when 

relaxing the currency bound to 5, 10 and 50 seconds respectively, giving the relative 

improvements of 2.4, 4.7 and 5.8-fold.  

However, some characteristic of this figure is less intuitive. For the remaining settings of 

currency bounds, the performance first increases and then decreases. Why does it not keep 

increasing?  

The system behavior is the result of rather complex interactions of several factors: 

currency bound, refresh interval, response time of copier transactions and workload at the 

master. (1) After each refresh, the timestamp of the cache is updated. The effectiveness of 

updating this timestamp depends on how often this timestamp is set, which is the refresh 

interval when the copier batch execution time is less than the refresh interval. Otherwise, it is 
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the execution time, which is determined by the size of the batch, which in turn is determined 

by the throughput of read-write transactions at the master. (2) On the other hand, the 

throughput of read-write transactions at the master is influenced by the number of read-only 

transactions executed at the master. (3) The throughput of a cache is affected by the 

throughput of the master because the response time from the remote transactions it sends 

affects the speed of transaction generation. 

We plotted the local workload ratio at the cache (Figure 6.9), throughput of the cache 

(Figure 8.12), and throughput of read-write transactions at the master (Figure 8.13) for 

analysis. 

From Figure 6.9, the local workload ratio is well above 90% for all currency bounds. 

When the currency bound relaxes, the ratio comes even closer to and finally reaches 1. 

Differences between the curves are tiny. Note that given the high percentage of read-only 

transactions, even small changes result in a significant amount of workload shifted to the 

master. For example, for 15 caches, 1% workload shifted to the master equals to (300 * 0.9 * 

0.01 = 2.7) read-only terminals shifted to the master. 

After the number of caches reaches 13, the master is no longer saturated. Together with 

the fact that the master is slightly more powerful than a cache, this explains the unusual 

characteristics of Figure 6.8, which are shared by both Figure 8.12 and Figure 8.13. When 

the master is not overly burdened, the benefit of shifting more workload to new caches might 

be diminished by the cost of maintaining more caches. Thus the system performance may 

decrease.  
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Figure 6.8  System throughput ( 0 refresh interval) 
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Figure 6.9  Local workload ratio for the caches ( 0 refresh interval) 
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6.5.3.2 Comparison of Different Refresh Interval Settings 

The system throughput for the other sets of experiments, with refresh intervals of 5, 50 and 

infinity is shown in Figure 6.10, Figure 6.11 and Figure 6.12 respectively. The local 

workload ratio is shown in Figure 6.13, Figure 6.14 and Figure 6.15.  

The figures clearly show a tradeoff in refresh interval setting w.r.t. the currency bound. 

To one extreme, when the refresh interval is sufficiently tight compared to the currency 

bound, almost all read-only transactions are executed locally at the caches. Thus the 

throughput is roughly the same as that of infinite currency bound. In this case, tightening the 

refresh interval further can only hamper system performance due to unnecessary refresh. For 

example, for a currency bound of 100, with 15 caches, the system throughput is roughly 56, 

46 and 30 for refresh interval of 50, 5 and 0.  

To the other extreme, when the refresh interval is sufficiently large compared to the 

currency bounds, almost all read-only transactions are shifted to the master. Thus the 

throughput is close to that of 0 currency bound. In this case, refreshing the caches does not 

help. For example, for a currency bound of 5, with 10 caches, the system throughput is 

roughly 13 and 16 for a refresh interval of 100 and infinity.  

For the best performance, the refresh interval needs to be set appropriately according to 

the currency bound, in order to balance the refresh overhead and local workload ratio. In Fig 

? and Fig ?, we fix the currency bound to 5 and 10, respectively, and plot the system 

throughput for our setting of refresh intervals. While in the former case the best performance 

is reached with refresh interval of 0, for the latter it is with refresh interval of 5.  
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Figure 6.10  System throughput ( 5 refresh interval) 
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Figure 6.11  System throughput ( 50 refresh interval) 
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Figure 6.12  System throughput ( ∞ refresh interval) 
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Figure 6.13  Local workload ratio for the caches ( 5 refresh interval) 
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Figure 6.14  Local workload ratio for the caches ( 50 refresh interval) 
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Figure 6.15  Local workload ratio for the caches ( ∞ refresh interval) 
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Figure 6.16  System throughput ( 5 currency bound) 
 
 
 

 
 
 

Figure 6.17  System throughput ( 10 currency bound) 
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6.5.4 Experiment 4: Impact of Push vs. Pull  

In the previous experiments, we assume that the workload has the same average currency 

bounds for all the cache regions. In this set of experiments we study the impact of cache 

region granularity for workloads with skewed currency bounds. For comparison, we also use 

a workload with the same currency bound as a reference. For all the experiments the seed 

currency bound is set to 5 seconds. We first describe the experiments for the skewed setting. 

Then we compare that with the reference setting.  

6.5.4.1 Skewed Setting 

In generating the workload, we partitioned the database into 1,000 uniformly sized 

consistency classes. Object n belongs to consistency class with id n/10. For a skewed 

workload, the distribution of the average currency bounds for the regions increases 

quadratically. That is, region i’s average currency bound is given by (i^2)*currency_bound. 

Regardless of the actual number of cache regions, the refresh interval of a cache region is set 

to the tightest average currency bound of the consistency classes that fall into this region. 

Thus the refresh frequency follows a Zipfian(2) distribution. Because adaptive caching was 

not the focus of this study, this setting assumes that the cache is tuned for the workload. 

For the push model, we assign the number of cache regions to be 1, 20, 40 and 100, 

because it can only support view level (relatively big) cache regions. For the pull model, it is 
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the opposite. We assign the number of cache regions to be 100, 200, 500 and 1000, because 

it can support fine-grained cache regions.  

The skewed setting affects the system behavior under different cache region granularity 

mainly in two ways. Firstly, given our simulation time, according to the decaying function, 

out of the total 1,000 consistency classes there are 141 with non-infinity currency bound. 

That is, only about 14% consistency classes have non-infinity currency bounds. Secondly, as 

a consequence, the ratio of data at the caches that is actively maintained varies for different 

settings. Using some simple calculation, we compute that the numbers of active regions for 

the push model are 1, 3, 6, and 15, while those for the pull model are 15, 36, 71 and 141. 

From these numbers, the percentage of data at the caches being actively maintained is 100% 

for 1 with 1 cache region, 15% with 20, 40 and 100 regions, and about 14% for the rest of 

our settings.  

Figure 6.18 shows the system throughput for the push model. Better performance is 

observed with more cache regions. With 10 caches, the relative improvements (compared to 

1 region) are roughly 15%, 40% and 60%, for 20, 40 and 100 regions, respectively. Two 

factors contribute to this difference. With more cache regions, more data can be maintained 

exponentially less frequently and hence there is a lower distribution overhead and higher 

throughput for read-write transactions at the master, as shown in Figure 8.14, which in turn 

leads to higher throughput at the cache, as shown in Figure 8.15. Although at the same time, 

more regions require more distribution agents, for our settings, the difference in the number 

of regions is not much (1, 3, 6 and 15) compared to the difference (exponential) in refresh 

intervals.  
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For this experiment, the difference in local workload ratio at the caches is tiny, as shown 

in Figure 6.19. For most cases, local workload ratio is well above 0.98. Even the lowest point 

is still ~0.94 (1 region setting with 1 cache).  

Figure 6.20 shows the throughput for the pull model with the skewed setting. For the 

chosen granularities, comparable throughputs are observed. Interestingly, when there are 

more than 10 caches, the setting with 100 regions is slightly better than that with more than 

100 regions. This is because the master is burdened with the copier transactions when the 

number of regions increases and hence has lower throughput, as shown in Figure 8.16, which 

again leads to lower output to the cache (Figure 8.17). Figure 6.21 shows that in all cases 

almost all read-only transactions at the caches are executed locally. Thus, the difference 

between the throughputs is purely due to the difference in refresh cost. 

Comparing the pull with the push model, there is no obvious difference with small 

number of caches, due to our low push maintenance overhead setting. From 10 to 15 caches, 

however, both with 100 cache regions, the pull model performs about 15%-60% better than 

the push model, where the push maintenance overhead exceeds the pull overhead.   
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Figure 6.18  System throughput (skewed, push) 
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Figure 6.19  Local workload ratio at the caches (sk ewed, push) 
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Figure 6.20  System throughput (skewed, pull) 
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Figure 6.21  Local workload ratio for the caches (s kewed, pull) 
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6.5.4.2 Reference Setting 

For the reference workload, the refresh interval for every cache region is the same as 

currency_bound.  

As expected, the results for the reference setting are distinct from that of the skewed 

setting. For the push model, as shown in Figure 6.22, the performance with 1 region 

improves from about 12 to 22, while that of the other settings decreases. The local workload 

ratio is shown in Figure 6.23. In this setting, increasing the number of regions negatively 

affects the performance, because it does not save any work but incurs more distribution costs. 

As shown in Figure 8.18 and Figure 8.19, for 20, 40 and 100 cache regions, the master 

throughput dominates the total throughput.  

For the pull model, as shown in Figure 6.24 the performance dramatically drops below 2 

when there are 3 or more caches, with all our chosen numbers of regions. This is what we 

expected, because with pull and 100 cache regions, it is similar to 100 more terminals that 

together read the whole database from the master and write to the cache. This workload 

makes the master the bottleneck. Because of the average high response time (above 200 

seconds) of copier transactions, as shown in Figure 6.25, more than 70% of the read-only 

transactions are shifted back to the master, as shown in Figure 6.26, which worsens the 

bottleneck situation.  
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Figure 6.22  System throughput (non-skewed, push) 
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Figure 6.23  Local workload ratio for the caches (n on-skewed, push) 
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Figure 6.24  System throughput (non-skewed, pull) 
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Figure 6.25  Response time for copier batch (non-sk ewed, pull) 
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Figure 6.26  Local workload ratio for the caches (n on-skewed, pull) 
 
 

6.6 Conclusions 

The previous chapters of this dissertation have developed a flexible data quality-aware cache 

management framework. We have implemented a prototype in SQL Server’s code base for a 

simple case. In this chapter, we built a reasonable model, which allows us to explore the 

cache design space, and examine the system behavior in such a complex system under 

different assumptions.   

Starting with the single-site database model from [ACL87], we extended it to cache-

master configuration, and refined it to model the characteristics specific to our study. Our 

model includes a model of the database system and its resources, a model of the user 

population, a model of data transaction behavior, a cache model, a cache-master interaction 
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model and a cache maintenance model. Except for the user model, all the others have a data 

quality-aware component. We built the simulation framework using the CSIM package, and 

included in it all of these models. We used it to study alternative assumptions about the 

transaction behavior and system configurations.  

The first conclusion is that a detailed model is crucial in understanding the system 

behavior. The interaction between the user transaction data quality requirements, local data 

refresh policy, resource utilization and the cache maintenance overhead etc. is complex. 

Under different situations, different components might dominate the system performance. 

Only a detailed model can realistically reflect such a complex system behavior.  

Specific to our setting, the first set of experiments shows that not all workload can benefit 

from adding more caches to the system. Even when the cache is never refreshed, we only 

observe reasonable performance improvement (about 6-fold with 15 caches) when the read-

only percentage is above 90; with a read-only percentage of 80, for example, the 

performance only improves 2-fold. This is because read-write transactions cannot be 

processed at the caches. When the caches are refreshed continuously using the push model, 

even with low maintenance overhead, the performance improvement stops at 10 caches even 

with a read-only percentage of 90. 

The second set of experiments examines the effect of different refresh intervals. 

Although the gap between two extreme cases with refresh interval of 0 and infinity increases 

with more caches, there is not much difference among the intermediate refresh intervals 

when the number of caches is less than 15 because of the low amortized distribution cost.  
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In the second set of experiments, the currency bounds are set to infinity, so the refresh 

interval only affects the propagation cost. Together with the low distribution cost, refresh 

interval does not affect system throughput that much. However, when we also provide data 

quality guarantees, the situation changes dramatically. The third set of experiments shows the 

tradeoff in refresh interval setting and its significant impact on system performance. 

Relaxing the refresh interval causes less refresh overhead, but more workload is shifted to 

the master due to poorer local data quality. Tightening the refresh interval has the opposite 

effects. 

Thus, for best performance, the refresh interval should be carefully chosen according to 

queries’ data quality requirements. Potential performance improvement is only possible by 

tightening the refresh interval if it significantly increases the local workload ratio. In our 

setting where distribution overhead is low, it is better to refresh the cache continuously for a 

workload with tight currency bounds. For a currency bound of 5, the local workload 

percentages are in the 90s and 70s for refresh intervals of 0 and 5, respectively, but they drop 

close to 0 for refresh intervals of 50 and infinity. Consequently, with 10 caches, the system 

throughput is 27, 19, 13 and 16 for the four refresh interval settings, respectively. 

In the first three sets of experiments, we assume that the workload has the same average 

currency bound for the whole cache. Our last set of experiments studies the impact of cache 

region granularity for workloads with skewed currency bounds. For the push model, better 

performance is observed with more cache regions. With 10 caches, the relative 

improvements (compared to 1 region) are roughly 15%, 40% and 60%, for 20, 40 and 100 

regions, respectively. Two factors contribute to this difference. With more cache regions, 
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more data can be maintained exponentially less frequently and hence there is a lower 

distribution overhead and higher throughput for read-write transactions at the master, which 

in turn leads to higher throughput at the cache.  

For the pull model, for the chosen granularities, comparable throughputs are observed. 

Peak performance is obtained with 100 cache regions when there are more than 10 caches. 

This is because the master is burdened with the copier transactions when the number of 

regions increases and hence has lower throughput, which again leads to lower output to the 

caches.  

Comparing the pull with the push model, for a read-dominated workload with similar 

currency bounds, the push model with 1 cache region is more efficient. The pull model with 

fine granularity of cache regions excels for a skewed workload where only a small part of the 

cache is accessed with high data quality requirements. There is no obvious difference with a 

small number of caches, due to our low push maintenance overhead setting. From 10 to 15 

caches, however, both with 100 cache regions, the pull model performs about 15%-60% 

better than the push model, where the push maintenance overhead exceeds the pull overhead. 

A more general conclusion is that synchronization delay may lead to a drop in local 

workload ratio; hence special care has to be given to the copier and refresh transactions. It is 

not a good practice to combine many small refresh transactions into one, because of the 

longer lock waiting time and the higher chance of lock failure and hence surged response 

time. Further, it is necessary to give refresh transactions higher priority over user 

transactions. Otherwise, even for a workload with a low write probability, the response time 

of a refresh transaction may surge due to resource contention. 
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Chapter 7  

Related Work 

We classify work related to ours into two main categories: work on relaxing data quality and 

work on caching. In comparison with them, our approach is unique in the following ways: 1) 

we allow individual queries to specify fine-grained consistency and currency requirements; 

2) we allow flexible local data quality control in terms of granularity and cache properties; 

and 3) we provide transactional C&C guarantees for individual queries.  

7.1 Relaxing Data Quality 

Tradeoffs between data freshness and availability, concurrency and maintenance overhead 

have been explored in several areas of database systems, such as replica management, 

distributed databases, warehousing and web caching. Yet no work we know of allows queries 

to specify fine-grained C&C constraints, provides well-defined semantics for such 

constraints, and produces query plans guaranteeing that query results meet the constraints. 
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7.1.1 Replica management 

In a typical replica system setting, updates are centralized on a back-end server, while read 

workloads are offloaded to local replicas. Keeping all the copies up to date at all times is 

neither practical nor necessary. Can one lower the maintenance overhead at the cost of lower 

data quality? Different studies have tackled different aspects of this problem.  

Quasi-copies [ABGMA88] allow an administrator to specify the maximum divergence of 

cached objects, and maintain them accordingly. A later paper [GN95] formalizes these 

concepts and models the system using a queuing network. The work on “Good Enough” 

Views [SK97] extends these ideas to approximate view maintenance; Globe [KKST98] to 

wide-area distributed systems; [LC02] to mobile computing with distributed data sources. 

Identity connection [WQ87] suggests a relationship to model the connection between a 

master and its copies. Researchers at Bellcore [SR90] proposed taxonomy for interdependent 

data management.  

The approach taken in these papers is fundamentally different from ours: their approach 

is maintenance centric while ours is query centric. They propose different approximate 

replica maintenance policies, each guaranteeing certain C&C properties on the replicas. In 

contrast, given a query with C&C requirements, our work focuses on extending the optimizer 

to generate a plan according to the known C&C properties of the replicas. Thus, C&C 

requirements are enforced by the cache DBMS.  

TRAPP [OW00] stores intervals instead of exact values in the database, combining local 

bounds and remote data to deliver a bounded answer that satisfies the precision requirement. 
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Divergence caching [HSW94], Moving Objects Databases [WXCJ98] and work at Stanford 

[OLW01] deal with the problem of setting optimal bounds for approximate values given 

queries with precision bound and an update stream. These earlier query-centric proposals 

allow a query to specify divergence bounds and guarantee that the bounds are met. However, 

they have several limitations. First, they do not guarantee any consistency. Second, they do 

not consider using derived data, e.g., materialized views, to answer queries. Third, field-

value level currency control limits the scalability of those systems. Fourth, the decision to 

use local data is not cost based, i.e., local data is always used if it satisfies the currency 

constraints.  

7.1.2 Distributed databases 

In this area there are many papers focused on improving availability and autonomy by 

allowing local data to diverge from the master copy. They differ from each other in 

divergence metrics, the concrete update protocols and corresponding guaranteed divergence 

bound. Read-only Transactions [GMW82], the Demarcation Protocol [BGM92], TACC 

[YV00a, YV00b], and ASPECT [Len96] fall into this category. These researches are all 

maintenance centric. None of them supports queries with data quality requirements.  

Epsilon-serializability [PL91] allows queries to specify inconsistency bounds. However, 

they focus on a different problem, hence utilize different techniques: how to achieve higher 

degree of concurrency by allowing queries to see database states with bounded inconsistency 

introduced by concurrent update transactions. 
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7.1.3 Warehousing and web views 

WebViews [LR03] suggests algorithms for the on-line view selection problem considering a 

new constraint — the required average freshness of the cached query results. Obsolescent 

Materialized Views [Gal99] determines whether to use local or remote data by integrating 

the divergence of local data into the cost model of the optimizer. A later paper [BR02] 

tackles a similar problem for single object accesses. In all these approaches, the models of 

freshness are coarse-grained and its use is purely heuristic, providing no guarantees on 

delivered data currency and consistency. 

The work on distributed materialized views in [SF90] allows queries to specify currency 

bounds, and they also support local materialized views. However, it focuses on determining 

the optimal refresh sources and timing for multiple views defined on the same base data. It 

does not consider consistency constraints, assuming a query is always answered from a 

single view. Furthermore, it is not clear how it keeps track of the currency information of 

local views, or how and when it checks the currency constraints.  

FAS [RBSS02] explores some preliminary query-centric ideas by allowing queries to 

specify currency requirements. Working as middleware on top of a cluster of multi-versioned 

replicated databases, FAS provides two major functionalities: (1) routing a query to the right 

database according to its currency requirement, and (2) deciding when and which replica 

database to refresh based on the workload with currency requirements. Compared to our 

work, FAS has three major limitations. First, it does not allow queries to specify relaxed 

consistency requirements, i.e., a query result always has to be consistent. Second, it only 
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supports database level currency control. This limits replica maintenance flexibility, possibly 

resulting in higher overhead. Last but not least, enforcing currency requirements at the 

middleware level instead of inside the DBMS, FAS cannot provide transactional currency 

guarantees on query results. 

7.2 Semantic Caching 

Data-shipping at page level have been studied primarily in the context of object-oriented 

database systems, detailed discussion regarding this body of research can be found in 

[Fra96]. The work in [DFJ+96] proposes a semantic caching model, in which the cache is 

organized into semantic regions. Usage information and replacement policies are maintained 

for semantic regions. In general, a semantic caching system needs to address the following 

three fundamental questions: 1) Replacement / admission policies? 2) How to map a query to 

the cached data? 3) How to maintain the cache in the presence of updates? We first 

summarize related work from each of the above perspectives respectively. Then we address 

the work most closely related to ours in the middle tier caching context. To the best of our 

knowledge, there is no previous work on semantic caching that is tailored for workload with 

relaxed C&C constraints. 

Caching has been used in many areas. Regarding what to cache, while some works 

[DFJ+96, APTP03] support arbitrary query results, others are tailored for certain simple 

types of queries [KB96, BPK02, LN01], or even just base tables [AJL+02, CLL+01, 



   184 

LKM+02]. In the database caching context, good surveys can be found in [DDT+01, 

Moh01]. 

7.2.1 Replacement and Admission Policy 

From a cache admission and replacement policy perspective, quite a few policies are 

proposed in the literature, each of which tries to maximize a certain optimization goal under 

a given space budget. Least Recently Used (LRU) is probably the most widely used cache 

replacement policy. As an extension, LRU-K [OOW93] intends to discriminate between 

objects that have frequent references and objects that are rarely accessed by looking at a 

longer history. However, LRU-based schemes are not suited for a semantic cache because 

they assume that all objects are of the same size, same miss penalty and same replacement 

cost. As a remedy, size-adjusted LRU (SLRU) [AWY99] is designed to generalize LRU to 

objects of varying sizes and varying replacement costs. 

The work in [DFJ+96] uses semantic distance for the replacement policy. However, this 

metric is only proper when the semantic regions have well defined geometric meaning.  

In [SJGP90], a cache management system is described for Postgres. The proposed 

admission and eviction policies take into account several properties of the cached views: 

size, cost to materialize, cost to access it from the cache, update cost, access frequency, and 

update frequency. These parameters are combined in a formula that estimates the benefit per 

unit size of caching a view. A similar cache management mechanism is used by [KB96], but 

in a different context, namely, semantic caching in a client-server architecture.  
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DynaMat [KR99], a dynamic view selection and maintenance system is proposed in the 

OLAP context. Several "goodness" functions are evaluated. Two constraints are considered: 

time bound for update and space bound for admission and replacement.  

WATCHMAN [SSV96] is a warehouse caching system. The proposed profit function 

combines average rate of reference, size, and cost of execution of a query. Their admission 

and eviction policies are similar to the Postgres policies. Similar to LRU-K, they also retain, 

for some time, information about results that have been evicted from the cache. A follow-up 

work [SSV99] includes partial reuse and considers updates.  

The cache investment idea is introduced in [KFDA00] for a distributed database system. 

Different from our work, they consider caching base tables and indices, hence different 

techniques are used to gather statistics and to generate candidates. 

In [SS02], in a multi-version caching system, a future access frequency is estimated from 

the frequency and recency of past references. In the cost/benefit function, they consider cost 

of aborts due to a miss of an object version that is not re-fetchable.  

7.2.2 Matching Cached Results 

In the semantic caching scenario, the proposed matching algorithms for cached results are 

mostly tailored to certain knowledge of the cached data. In [LC99] knowledge-based rules 

are used as an addition to the match algorithms. Matching algorithms for conjunctive queries 

are proposed in [CB00]. The form-based caching scheme [LN01] describes containments test 

for queries from a simple top-n selection on a single table view with a keyword predicate.  



   186 

The improved version of WATCHMAN [SSV99] recognizes two concepts of 

derivability, namely, 1) a data cube is derivable from a compatible but less aggregated data 

cube and b) a slice query is derivable from its underlying data cube query. For all other 

queries, exact match is required. The system maintains query derivability information in a 

directed graph. Similarly, DynaMat [KR99] also keeps the data cube lattice for derivability 

information. In addition, they use a Directory Index for each node to further prune the search 

space. 

In a chunk-based caching scheme for OLAP systems [DRSN98], a level defined by a 

group by is divided into uniform chunks, which are the unit of caching. A query can be 

answered only from the same level of chunks. A follow-up work [DN00] relaxes this 

constraint by allowing a query to use chunks from lower levels of aggregation. They 

associate a Virtual Count with each chunk that records the derivability information of the 

chunk. The algorithm also maintains cost-based information that can be used to figure out the 

best possible option for computing a query result from the cache.  

7.2.3 Cache Maintenance 

From a cache maintenance policy perspective, existing works on update propagation and 

cache invalidation can be in turn classified into two categories: shared-storage and shared-

nothing based. As an example of the former, [APTP00] and [ATPP02] conceptually 

decompose the query results and store the tuples in the base tables they are from. The idea is 

that to maintain base tables is cheaper than to maintain a set of views. However, with this 
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approach, queries sent to the back-end have to be rewritten and the eviction becomes 

expensive. Furthermore, we lose the flexibility to maintain the cache according to different 

C&C requirements. 

Algorithms in the second category are complementary to our approach. We focus on how 

to reduce maintenance frequency with the knowledge of relaxed C&C constraints, while they 

focus on how to propagate updates or calculate invalidation efficiently. [LR01] proposed 

view updates scheduling algorithms for the back-end server to maximize QoD (Quality of 

Data) based on the cost of updating and popularity of views. [CDI99] used the DUP 

algorithm to maintain data dependence information between cached objects and the 

underlying data, and built a hash table index to efficiently invalidate or update highly 

obsolete cached objects. [CLL+01] shows an example of using popular components in the 

industry to support invalidation of front-end cached web pages. [CAL+02] suggests using 

polling queries to reduce server invalidation workload at the cost of over-invalidation.  

7.2.4 Middle-tier Database Caching 

In the context of middle-tier caching, the closest work to ours are DBCache [ABK+03] and 

Constraint-based Database Caching (CBDC) [HB04]. Similarly to us, they consider full-

fledged DBMS caching; and they define a cache with a set of constraints. However, there are 

two fundamental differences. First, they don’t consider relaxed data quality requirements, nor 

do they provide currency guarantees from the DBMS. Our work is more general in the sense 

that the cache-key and RCC constraints (an extension to cache groups in [Tea02]) they 
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support can be seen as a subset of ours. Second, in DBCache, local data availability checking 

is done outside of the optimizer, while in our case, local data checking is integrated into 

query optimization, which not only allows finer granularity checking, but also gives the 

optimizer the freedom to choose the best plan based on cost. 
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Chapter 8  

Conclusion and Future Directions 

This work was motivated by the lack of a rigorous foundation for the widespread practice of 

applications using replicated and cached data. This dissertation remedied the situation by 

extending DBMS support for weak consistency, realizing our vision: applications are 

allowed to explicitly express relaxed currency and consistency (C&C) requirements in SQL; 

an administrator can explicitly express the desired local data C&C level in the cache schema; 

and query processing provides transactional guarantees for the C&C requirements of a query. 

In Chapter 2, we showed how C&C constraints can be expressed succinctly in SQL 

through a new currency clause. We developed a formal model that strictly defines the 

semantics of general C&C constraints, providing correctness standards for the use of 

replicated and cached data.  

In Chapter 3, we presented a fine-grained C&C-aware database caching model, enabling 

a flexible cache administration in terms of granularity and desired local data quality. We 

formally defined four fundamental cache properties: presence, consistency, completeness, 

and currency. We proposed a cache model in which administrator can specify a cache 

schema by defining a set of local views, together with cache constraints that define what 

properties the cache must guarantee.  
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In Chapter 4, we demonstrated for a simplified case, where all the rows in a view are 

consistent, how support for C&C constraints can be implemented in MTCache, our prototype 

mid-tier database cache built on the Microsoft SQL Server codebase. We not only fully 

integrated C&C checking into query optimization and execution, enabling transactional 

guarantees, but also provide cost estimation, giving the optimizer the freedom to choose a 

best plan based on cost. 

In Chapter 5, we extended the framework developed in Chapter 4 to enforce C&C 

checking for a finer-grained cache model, where cache properties are defined at the unit of 

partition of a view.  

Chapter 2 - Chapter 5 presented a comprehensive solution for a flexible data quality 

aware cache management. In Chapter 6, we built a cache-master simulator based on a closed 

queuing model, and conducted a series of experiments, systematically evaluating and 

comparing the effectiveness of different design choices, offering insights into performance 

tradeoffs. 

To conclude, this dissertation built a solid foundation for supporting weak consistency in 

a database caching system, and we have demonstrated the feasibility of the proposed solution 

by implementing a prototype in the Microsoft SQL Server codebase. We envision three 

directions of future research:  

To improve the current prototype. Firstly, now we only process read-only transactions at 

the cache. One possible future work is to handle read-write transactions at the cache. A 

possible extension is to process the read part of a read-write transaction at the cache, and 

send the write part to the master. However, it is not unusual for an application to require 
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seeing its own changes, which imposes time-line constraints on the transaction. How do we 

efficiently support such constraints? Secondly, in our current cache model, we only support 

groups defined by equality conditions. For efficient cache management, it would be useful to 

include other predicates, e.g., range predicates.  

Adaptive data quality-aware caching policies. This dissertation developed mechanisms 

for a flexible fine-grained cache model, but not the policies. How do we adaptively decide 

the contents of the control tables? What refresh intervals to set for each cache region? 

Allowing queries to specify relaxed C&C constraints fundamentally changes the traditional 

semantic caching problem in two ways. First, hit ratio is no longer a good indicator of cache 

usage. The fact that a query can be semantically answered from the cached data does not 

necessarily mean that the cache can be used, because local data might not be good enough 

for the query’s C&C constraints. Second, update workload on the backend database no 

longer directly decides the maintenance overhead of the cache. For instance, even if the 

backend database is updated frequently, we do not have to propagate updates to the cache as 

often if the query workload allows extremely relaxed C&C constraints.  

Automatic/aided cache schema design and tuning. Given a query workload with C&C 

constraints and an update workload at the master, how to generate a good cache schema? 

How to adjust a cache schema when the workload changes? Currently the cache admin is 

burdened with this task. To devise algorithms to aid or even automate this process remains 

challenging. 
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Appendix    

Supporting Graphs 

Experiment 1: 
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 Figure 8.1  Throughput for all the caches 
 (∞ currency bound, ∞ refresh interval) 
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Figure 8.2  Response time for read-write transactio ns at the Master 
 (∞ currency bound, ∞ refresh interval) 
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Figure 8.3  Master throughput ( ∞ currency bound, ∞ refresh interval) 
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Figure 8.4  Read-write transaction ratio at the mas ter  
(∞ currency bound, ∞ refresh interval) 
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Figure 8.5  Disk utilization for the master  
(∞ currency bound, ∞ refresh interval) 
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Figure 8.6  Disk utilization for the caches  
(∞ currency bound, ∞ refresh interval) 
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Figure 8.7  Blocking ratio for the master  
(∞ currency bound, ∞ refresh interval) 
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Figure 8.8  Blocking ratio for the caches  
(∞ currency bound, ∞ refresh interval) 

 

Experiment 2: 
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Figure 8.9  Master throughput ( ∞ currency bound) 
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Figure 8.10  Throughput  for all caches ( ∞ currency bound) 
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Figure 8.11  Throughput for read-write transactions  at the Master 
(∞ currency bound) 
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Experiment 3: 
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Figure 8.12  Throughput for all caches ( 0 refresh interval) 
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Figure 8.13  Throughput for read-write transactions  at the master 
 (0 refresh interval) 
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Experiment 4: 
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Figure 8.14  Throughput for read-write transactions  at the master 

 (skewed, push) 
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Figure 8.15  Throughput for all caches (skewed, pus h) 
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Figure 8.16  Master throughput (skewed, pull) 
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Figure 8.17  Throughput for all caches (skewed, pul l) 
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Figure 8.18  Master throughput (non-skewed, push) 
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Figure 8.19  Throughput for all caches (non-skewed,  push) 
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