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ABSTRACT 
Despite the widespread and growing use of asynchronous copies 
to improve scalability, performance and availability, this practice 
still lacks a firm semantic foundation. Applications are written 
with some understanding of which queries can use data that is not 
entirely current and which copies are “good enough”; however, 
there are neither explicit requirements nor guarantees. We propose 
to make this knowledge available to the DBMS through explicit 
currency and consistency (C&C) constraints in queries and de-
velop techniques so the DBMS can guarantee that the constraints 
are satisfied. In this paper we describe our model for expressing 
C&C constraints, define their semantics, and propose SQL syntax. 
We explain how C&C constraints are enforced in MTCache, our 
prototype mid-tier database cache, including how constraints and 
replica update policies are elegantly integrated into the cost-based 
query optimizer. Consistency constraints are enforced at compile 
time while currency constraints are enforced at run time by dy-
namic plans that check the currency of each local replica before 
use and select sub-plans accordingly. This approach makes opti-
mal use of the cache DBMS while at the same time guaranteeing 
that applications always get data that is "good enough" for their 
purpose.  

1. INTRODUCTION 
Many application systems today make use of various forms of 
asynchronously updated replicas to improve scalability, availabil-
ity and performance. We use the term replica broadly to include 
any saved data derived from some underlying source tables, re-
gardless of where and how the data is stored. This covers tradi-
tional replicated data and data cached by various caching mecha-
nisms. “Asynchronously updated”  simply means that the replica is 
not updated as part of a database transaction modifying its source 
tables; the state of the replica does not necessarily reflect the cur-
rent state of the database.  

If an application uses replicas that are not in sync with the source 
data, it is clearly willing to accept results that are not completely 
current, but typically with some limits on how stale the data can 
be. Today, such relaxed currency requirements are not explicitly 
declared anywhere; they can only be inferred from the properties 
of the replicas used. Because requirements are not explicit, the 

system cannot detect when they are not met and take appropriate 
action. For example, the system could return a warning to the ap-
plication or use another data source.  

Suppose an application queries a replicated table where the repli-
cation engine is configured to propagate updates every 30 sec-
onds. The application is then implicitly stating that it is willing to 
accept data that is up to 30 seconds old. Suppose that replication 
is later reconfigured to propagate updates every 5 minutes. Is 5 
minutes still within the application’s currency requirements? For 
some queries 5-minute old data may be perfectly fine but for oth-
ers it may not. The system cannot provide any assistance in find-
ing the queries whose currency requirements are no longer met 
because it does not know what the requirements are.  

Data currency requirements are implicitly expressed through the 
choice of data sources for queries. For example, if a query Q1 does 
not require completely up-to-date data, we may design the appli-
cation to submit it to a database server C that stores replicated 
data instead of submitting it to database server B that maintains 
the up-to-date state. Another query Q2 accesses the same tables 
but requires up-to-date data so the application submits it to data-
base server B. The routing decisions are hardwired into the appli-
cation and cannot be changed without changing the application.  

This very much resembles the situation in the early days of data-
base systems when programmers had to choose what indexes to 
use and how to join records. This was remedied by raising the 
level of abstraction, expressing queries in SQL and making the 
database system responsible for finding the best way to evaluate a 
query. We believe the time has come to raise the level of abstrac-
tion for the use of replicated and cached data by allowing applica-
tions to state their data currency and consistency requirements ex-
plicitly and having the system take responsibility for producing 
results that meet those requirements.  

To this end, we have defined a model for relaxed currency and 
consistency (C&C) constraints, including proposed SQL syntax, 
and defined the semantics of such constraints. We also describe 
how support for C&C constraints is implemented in our mid-tier 
database cache prototype, in particular, integration with the opti-
mizer and the use of dynamic plans to enforce data currency. 

This work was motivated by several usage scenarios where the 
system can provide additional functionality if applications explic-
itly state their C&C requirements.   

Traditional replicated databases: Consider a database contain-
ing replicated data propagated from another database using nor-
mal (asynchronous) replication. The system can easily keep track 
of how current the data is, but today that information is not ex-
ploited. If an application states its currency requirements, the sys-
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tem could detect and take action when the application’s require-
ments are not met. Possible actions include logging the violation, 
returning the data but with an error code, or aborting the request. 

Mid-tier database caching:  This scenario was motivated by cur-
rent work on transparent mid-tier database caching as described in 
[LGZ04, ABK+03, BAK+03]. Suppose we have a back-end data-
base server that is overloaded. To reduce the query load, we repli-
cate part of the database to other database servers that act as 
caches. When a cache DBMS receives a query, it attempts to an-
swer it from the local data and if that is not possible it forwards 
the query transparently to the back-end server. In this scenario, it 
is crucial to know the C&C constraints so that the cache DBMS 
can decide whether local data can be used or not.  

Caching of query results:  Suppose we have a component that 
caches SQL query results (e.g., application level caching) so that 
those results can be reused if the same query is submitted later. 
The cache can easily keep track of the staleness of its cached re-
sults and if a result does not satisfy a query’s currency require-
ments, transparently recompute it. In this way, an application can 
always be assured that its currency requirements are met. 

The rest of the paper is organized as follows. In Section 2 we de-
scribe how to specify C&C constraints. Section 3 illustrates how 
support for C&C constraints is implemented in our prototype mid-
tier database cache. We report some experimental and analytical 
results in Section 4. Finally, Section 5 presents conclusions and 
addresses future work. The semantics of C&C constraints is for-
mally defined in the appendix. 

2. SPECIFYING CURRENCY AND 
CONSISTENCY CONSTRAINTS 

In this section we introduce our model for currency and consis-
tency constraints by means of examples. We propose expressing 
C&C constraints in SQL by a new currency clause and suggest a 
tentative syntax. The semantics of C&C constraints is described 
informally in this section; formal definitions are in the appendix.   

Before proceeding, we need to clarify what we mean by the terms 
currency and consistency. Suppose we have a database with two 
tables, Books and Reviews, as might be used by a small online 
book store.   

Replicated data or the result of a query computed from replicated 
data may not be entirely up-to-date. Currency (staleness) simply 
refers to how current or up-to-date we can guarantee a set of rows 
(a table, a view or a query result) to be. Suppose that we have a 
replicated table BooksCopy that is refreshed once every hour. In 
this scenario, the currency of the BooksCopy is simply the elapsed 
time since this copy became stale (i.e., when the first update was 
committed to Books after the last refresh) to the commit time of 
the latest update transaction on the back-end database. 

Suppose we have another replicated table, ReviewsCopy, that is 
also refreshed once every hour. The state of BooksCopy corre-
sponds to some snapshot of the underlying database and similarly 
for ReviewsCopy. However, the states of the two replicas do not 
necessarily correspond to the same snapshot. If they do, we say 
that they are mutually consistent or that they belong to the same 
consistency group. Whether or not the two replicas are mutually 
consistent depends entirely on how they are updated.   

2.1 Single-Block Queries 
To express C&C constraints we propose a new currency clause for 
SQL queries.  The new clause occurs last in a Select-From-Where 
(SFW)  block and follows the same scoping rules as the WHERE 
clause. Specifically, the new clause can reference tables defined in 
the current or in outer SFW blocks.  We use query Q1 to illustrate 
different forms of the currency clause and their semantics, as 
shown in Figure 2.1. The query is a join of Books and Reviews. 

Currency clause E1 expresses two constraints: a) the inputs cannot 
be more than 10 min out of date and b) the states of the two input 
tables must be consistent, that is, be from the same database snap-
shot.  We say that B and R belong to the same consistency class. 

Suppose that we have cached replicas of Books and Reviews, and 
compute the query from the replicas. To satisfy the C&C con-
straint, the result obtained using the replicas must be equivalent to 
the result that would be obtained if the query were computed 
against some mutually consistent snapshots of Books and Re-
views, that are no older than 10 min (when execution of the query 
begins). 

E2 relaxes the bound on R to 30 min and no longer requires that 
tables be mutually consistent by placing them in different consis-
tency classes. The easiest way to construct a currency clause is to 
first specify a bound for each input and then form consistency 
groups by deciding which inputs must be mutually consistent. 

E1 and E2 require that every Books row be from the same snap-
shot and similarly for Reviews, which may be stricter than neces-
sary. Sometimes it is acceptable if rows or groups of rows from 
the same table are from different snapshots. E3 and E4 illustrate 
how we can express different variants of this requirement. 

We assume that isbn is a unique key of Books. E3 allows each 
row of the Books table to originate from different snapshots (be-
cause B.isbn is unique). The phrase “ (R) by R.isbn”  has the 
following meaning: if the rows in Reviews are grouped on isbn, 
rows within the same group must originate from the same snap-
shot.  Note that a Books row and the Review rows it joins with 
may be from different snapshots (because Books and Reviews are 
in different consistency classes).   

In contrast, E4 requires that each Books row be consistent with 
the Reviews rows that it joins with. However, different Books 
rows may be from different snapshots. 

In summary, a C&C constraint in a query consists of a set of tri-
ples where each triple specifies 

1) a currency bound  
2) a set of tables forming a consistency class 

 

Figure 2.1: Single-block example C&C constraints 
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3) a set of columns defining how to group the rows of the con-
sistency class into consistency groups. 

The query-centric approach we have taken for dealing with asyn-
chronously maintained copies is a fundamental departure from 
maintenance-centric prior work on replica management (see Sec-
tion 5), which concentrates on maintenance policies for guarantee-
ing different kinds of constraints over cached objects. While this 
earlier work can be leveraged by a system in determining what 
constraints hold across a set of cached objects, the user’s C&C re-
quirements in the query determine what copies are acceptable, and 
the system must guarantee that these requirements are met, if nec-
essary by fetching master versions of objects.  This is the focus of 
our paper.  

An important consequence of our approach is a significant differ-
ence in workloads, because C&C constraints influence when and 
how caches need to be updated, necessitating new cache manage-
ment policies and mechanisms. However, this issue is beyond the 
scope of this paper. 

2.2 Multi-Block Queries 
An SQL query may, of course, consist of multiple SFW blocks. 
C&C constraints are not restricted to the outermost block of a 
query — any SFW block can have a C&C constraint. If a query 
contains multiple constraints, all constraints must be satisfied.  

We first consider subqueries in the FROM clause. Suppose we 
have an additional table Sales with one row for each sale of a 
book and consider the query Q2 in Figure 2.2.  Note that such 
queries can arise in a variety of ways. For instance, in this case, 
the original query may have referenced a view and the query in 
the FROM clause is the result of expanding the view. 

Whatever input data the query is computed from, the inputs must 
be such that both constraints are satisfied. The outer currency 
clause states that S must be from the same snapshot as T. But T is 
computed from B and R, which implies that  S, B and R must all 
be from the same snapshot. If they are from the same snapshot, 
they are all equally stale. Clearly, to satisfy both constraints, they  
must be no more than 5 min out of date. In summary, the least re-
strictive constraint that the inputs must satisfy is “5 min (S, B, 
R)” .  

Next we consider subqueries in clauses other than the FROM 
clause. For such subqueries we must also decide whether the in-
puts defined in the subquery need to be consistent with any of the 
inputs in an outer block. We modify our join query Q1 by adding 
a subquery that selects only books with at least one sale during 
2003, see Q3 in Figure 2.2.  

When constructing the currency clause for the subquery, we must  
decide whether S (Sales) needs to be consistent with B and/or R 
(in the outer block).  If S must be consistent with B, we simply 
add B to the consistency class of S, see Q3. Because the outer cur-
rency clause requires that R be consistent with B, it follows that 
B, R, S must all be consistent, that is, they all form a single con-
sistency class.    
 
If S need not be consistent with any tables in the outer block, we 
simply omit the reference to B and change the inner currency 
clause to “10 min on S” . 

2.3 Timeline Consistency 
Until now we have considered each query in isolation. Given a 
sequence of queries in a session, what constraints on the relation-
ships between inputs to different queries are of interest? Even 
though not explicitly stated, current database systems provide an  
important guarantee on sequences of queries within the same ses-
sion: time moves forward. If a user reads a row R twice and row R 
is updated and the change committed between the reads, then the 
second read will see the updated version of R.  

This rather natural behavior follows from the fact that queries use 
the latest committed database state. However, if queries are al-
lowed to use out-of-date replicas and have different currency 
bounds, there is no automatic guarantee that perceived time moves 
forward. Suppose queries Q1 and then Q2 are executed against 
replicas S1 and S2, respectively. S2 is not automatically more cur-
rent than or equal to S2; the ordering has to be explicitly enforced.  

We take the approach that forward movement of time is not en-
forced by default and has to be explicitly specified by bracketing 
the query sequence with “begin timeordered”  and “end timeor-
dered” . This guarantees that later queries use data that is at least 
as fresh as the data used by queries earlier in the sequence.   

This feature is most useful when two or more of the queries in a 
sequence have overlapping input data. In this case, we may get 
very counterintuitive results if a later query were to use older data 
than the first query. Note that users may not even see their own 
changes unless timeline consistency is specified, because a later 
query may use a replica that has not yet been updated.   

3. IMPLEMENTATION  
We have implemented support for explicit C&C constraints as 
part of our prototype mid-tier database cache, MTCache, which is 
based on the following approach. 

1) A shadow database is created on the cache DBMS, contain-
ing the same tables as the back-end database, including con-
straints, indexes, views, and permissions, but with all tables 
empty. However, the statistics maintained on shadow tables, 
indexes and materialized views reflect the data on the back-
end server rather than the cache. 

2) What data to cache is defined by creating materialized views 
on the cache DBMS. These materialized views may be selec-
tions and projections of tables or materialized views on the 
back-end server. 

 

Figure 2.2: Multi-block example C&C constraints 
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3) The materialized views on the cache DBMS are kept up to 
date by SQL Server’s transactional replication. When a view 
is created, a matching replication subscription is automati-
cally created and the view is populated. 

4) All queries are submitted to the cache DBMS, whose opti-
mizer decides whether to compute a query locally, remotely, 
or part locally and part remotely. Optimization is entirely 
cost based. 

5) All inserts, deletes and updates are submitted to the cache 
DBMS, which then transparently forwards them to the back-
end server. 

We have extended the cache prototype to support queries with 
C&C constraints. We keep track of which materialized views are 
mutually consistent (reflect the same database snapshot) and how 
current their data is. We extended the optimizer to select the best 
plan taking into account the query’s C&C constraints and the 
status of applicable local materialized views. In contrast with tra-
ditional plans, the plan includes runtime checking of the currency 
of each local view used. Depending on the outcome of this check, 
the plan switches between using the local view or submitting a 
remote query.  The result returned to the user is thus guaranteed to 
satisfy the query’s consistency and currency constraints.  

Our prototype currently supports only table-level consistency and 
does not allow C&C constraints with grouping columns, such as 
the phrase “by B.isbn”  in E4. They would have no effect in any 
case because all rows within a local view are always mutually 
consistent because views are updated by transactional replication.  

We rely on a new SwitchUnion operator that has recently been 
added to SQL Server. A SwitchUnion operator has N+1 input ex-
pressions. When opening the operator, one of the first N inputs is 
selected and all rows are taken from that input; the other N-1 in-
puts are not touched.  Which input is selected is determined by the 
last input expression, here called the selector expression. The se-
lector must be a scalar expression returning a number in the range 
0 to N-1. The selector expression is first evaluated and the number 
returned determines which one among the first N inputs to use. 
We use a SwitchUnion operator to transparently switch between 
retrieving data from a local view and retrieving it by a query to the 
back-end server. The selector expression checks whether the view 
is sufficiently up-to-date to satisfy the query’s currency constraint.  

3.1 Currency Regions 
To keep track of which materialized views on the cache DBMS 
are mutually consistent and how current they are, we group them 
into logical currency regions. The maintenance mechanisms and 
policies must guarantee that all views within the same region are 
mutually consistent at all times.  

Our prototype relies on SQL Server’s transactional replication 
feature to propagate updates from the back-end database to the 
cache. Updates are propagated by distribution agents. (A distribu-
tion agent is a process that wakes up regularly and checks for 
work to do.) A local view always uses the same agent but an agent 
may be responsible for multiple views. The agent applies updates 
to its target views one transaction at a time, in commit order. This 
means that all cached views that are updated by the same agent are 
mutually consistent and always reflect a committed state. Hence, 

all views using the same distribution agent form a currency re-
gion.   

Our current prototype is somewhat simplified and does not im-
plement currency regions as separate database objects. Instead, we 
added three columns to the catalog data describing views: cid, up-
date_interval, update_delay. Cid is the id of the currency region to 
which this view belongs. Update_interval is how often the agent 
propagates updates to this region. Update_delay is the delay for an 
update to be propagated to the front-end, i.e., the minimal 
currency this region can guarantee. Update_delay and 
update_interval can be estimates because they are used only for 
cost estimation during optimization.  

Our mechanism for tracking data currency is based on the idea of 
a heartbeat. We have a global heartbeat table at the back-end, 
containing one row for each currency region. The table has two 
columns: a currency region id and a timestamp. At regular inter-
vals, say every 2 seconds, the region’s heart beats, that is, the 
timestamp column of the region’s row is set to the current time-
stamp by a stored procedure.  (Another possible design uses a 
heartbeat table with a single row that is common to all currency 
regions, but this precludes having different heartbeat rates for dif-
ferent regions.) 

Each currency region replicates its row from the heartbeat table 
into a local heartbeat table for the region. The agent correspond-
ing to the currency region wakes up at regular intervals and propa-
gates all changes, including updates to the heartbeat table. The 
timestamp value in the local heartbeat table gives us a bound on 
the staleness of the data in that region. Suppose the timestamp 
value found in the region’s local heartbeat table is T and the cur-
rent time is t. Because we are using transactional replication, we 
know that all updates up to time T have been propagated and 
hence  reflect a database snapshot no older than t – T.  

3.2 Enforcing C&C Constraints 
How can we efficiently ensure that a query result meets the stated 
C&C requirements? Our approach is to enforce consistency con-
straints at optimization time and at runtime enforce currency con-
straints. This approach requires re-optimization only if a view’s 
consistency properties change. 

3.2.1 Normalizing C&C Constraints 
We extended the SQL parser to also parse currency clauses. The 
information is captured, table/view names resolved and each 
clause converted into a C&C constraint of the form below.  

Definition: (Currency and consistency constraint) A C&C con-
straint C is a set of tuples, C = { <b1, S1>,…, { <bn, Sn>} , where 
each Si is a set of input operands (table or view instances) and bi 
is a currency bound specifying the maximum acceptable staleness 
of the input operands in Si. 

C&C constraints are sets (of tuples), so constraints from different 
clauses can be combined by taking their union. (After name reso-
lution, all input operands reference unique table or view inputs; 
the block structure of the originating expression affects only name 
resolution.) We union together all constraints from the individual 
clauses into a single constraint, and convert it to a normalized 
form with no redundant or contradictory requirements. 
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Definition: (Normalized C&C constraint) A C&C constraint C = 
{ <b1, S1>,…, { <bn, Sn>}  is in normalized form if all input oper-
ands (in the sets Si) are base tables and the input operand sets 
S1,…, Sn are all non-overlapping. 

The first condition simply ensures that the input sets all reference 
actual input operands of the query (and not views that have disap-
peared as a result of view expansion). The second condition elimi-
nates redundancy and simplifies checking.   

We briefly outline how to transform a set of constraints into nor-
malized form but omit the actual algorithm due to lack of space. 
First, the algorithm recursively expands all references to views 
into references to base tables. Next, it repeatedly merges all tuples 
that have one or more input operands in common. The bound for 
the new tuple is the minimum of the bounds of the two input tu-
ples. Input operands referenced in a tuple must all be from the 
same database snapshot. It immediately follows that if two differ-
ent tuples have any input operands in common, they must all be 
from the same snapshot, and the snapshot must satisfy the tighter 
of the two bounds. The merge step continues until all tuples are 
disjoint. If a query does not specify any currency clause, we chose 
as the default the tightest requirements, namely, that the input op-
erands must be mutually consistent and from the latest snapshots, 
i.e., fetched from the back-end database. This tight default has the 
effect that queries without an explicit currency clause will be sent 
to the back-end server and their result will reflect the latest snap-
shot. In other words, queries without a currency clause retain their 
traditional semantics. 

3.2.2 Compile-Time Consistency Checking  
SQL Server uses a transformation-based optimizer, i.e., the opti-
mizer generates rewritings by applying local transformation rules 
on subexpressions of the query. Applying a rule produces substi-
tute expressions that are equivalent to the original expression. Op-
erators are of two types: logical and physical. A logical operator 
specifies what algebraic operation to perform, for example, a join, 
but not what algorithm to use. A physical operator also specifies 
the algorithm, for example, a hash join or merge join. Conceptu-
ally, optimization proceeds in two phases: an exploration phase 
and an optimization phase. The exploration phase generates new 
logical expressions, that is, alternative algebraic expressions.  The 
optimization phase recursively finds the best physical plan, that is, 
the best way of evaluating the query. Physical plans are built bot-
tom-up, producing plans for larger and larger sub-expressions.  

Required and delivered (physical) plan properties play a very im-
portant role during optimization. There are many plan properties 
but we’ ll illustrate the idea with the sort property. A merge join 
operator requires that its inputs be sorted on the join columns.  To 
ensure this, the merge join passes down to its input a required sort 
property (a sequence of sort columns and associated sort order). 
In essence, the merge join is saying: “Find me the cheapest plan 
for this input that produces a result sorted on these columns.”  
Every physical plan includes a delivered sort property that speci-
fies if the result will be sorted and, if so, on what columns and in 
what order. Any plan whose delivered properties do not satisfy the 
required properties is discarded. Among the qualifying plans, the 
one with the estimated lowest cost is selected. 

To integrate consistency checking into the optimizer we must 
specify and implement required consistency properties, delivered 

consistency properties, and rules for deciding whether a delivered 
consistency property satisfies a required consistency property.  

Required consistency property 
A query’s required consistency property consists precisely of the 
normalized consistency constraint described above that is com-
puted from the query’s currency clauses. The constraint is at-
tached as a required plan property to the root of the query. A 
pointer to this property is inherited recursively by its children.  

Delivered consistency property 
A delivered consistency property consists of a set of tuples { <Ri, 
Si>}  where Ri is the id of a currency region and Si is a set of input 
operands, namely, the input operands of the current expression 
that belong to region Ri.  

Delivered plan properties are computed bottom-up. Each physical 
operator (select, hash join, merge join, etc.) computes what plan 
properties it delivers given the properties of its inputs. We can di-
vide the physical operators into four categories, each using a spe-
cific algorithm to compute the delivered consistency property. We 
briefly outline the algorithm ideas but do not include the actual 
algorithms because of lack of space.  

The leaves of a plan tree are table or index scan operators, possi-
bly with a range predicate. If the input operand is a base table (or 
an index on a base table), we simply return the id of the table and 
the id of its currency region. Consistency properties always refer 
to base tables. Hence, a scan of a materialized view returns the ids 
of the view’s input tables, not the id of the view. 

All operators with a single relational input such as filter, project, 
aggregate, and sort do not affect the delivered consistency prop-
erty and simply copy the property from its relational input.  

Join operators combine two input streams into a single output 
stream. We compute the consistency property of the output from 
the consistency properties of the two (relational) children. If the 
two children have no inputs from the same currency region, the 
output property is simply the union of the two child properties. If 
they have two tuples with the same region id, the input sets of the 
two tuples are merged. 

A SwitchUnion operator has multiple input streams but it does not 
combine them in any way; it simply selects one of the streams. So 
how do we derive the delivered consistency of a SwitchUnion op-
erator? The basic observation is that we can only guarantee that 
two input operands are consistent if they are consistent in all chil-
dren (because any one of the children may be chosen). The algo-
rithm is based on this observation. 

Consistency satisfaction rules 
Plans are built bottom-up, one operator at a time. As soon as a 
new root operator is added to a plan, the optimizer checks whether 
the delivered plan properties satisfy the required plan properties. 
If not, the plan, i.e., the new root operator, is discarded. We in-
clude the new consistency property in this framework. 

Our consistency model does not allow two columns from the same 
input table T to originate from different snapshots. It is possible to 
generate a plan that produces a result with this behavior. Suppose 
we have two (local) projection views of T that belong to different 
currency regions, say R1 and R2, and cover different subsets of 
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columns from T. A query that requires columns from both views 
could then be computed by joining the two views. The delivered 
consistency property for this plan would be { <R1, T>, <R2,T>} , 
which conflicts with our current consistency model. Here is a 
more formal definition. 

Conflicting consistency property: A delivered consistency prop-
erty CPd is conflicting if there exist two tuples <Ri, Si> and <Rj, 
Sj> in CPd such that Si 

�
 S1j �  Ø and Ri �  Rj. 

A consistency constraint specifies that certain input operands 
must belong to the same region (but not which region). We can 
verify that a complete plan satisfies the constraint by checking 
that each required consistency group is fully contained in some 
delivered consistency group. The following rule is based on this 
observation.  

Consistency satisfaction rule: A delivered consistency property 
CPd satisfies a required consistency constraint CCr if and only if 
CPd is not conflicting and, for each tuple <Br, Sr > in CCr, there 
exists a tuple <Rd, Sd > in CPd such that Sr is a subset of Sd. 

While easy to understand, this rule can only be applied to com-
plete plans because a partial plan may not include all input oper-
ands covered by the required consistency property. We need a rule 
that allows us to discard partial plans that do not satisfy the re-
quired consistency property as soon as possible. We use the fol-
lowing rule on partial plans to detect violations early.  

Consistency violation rule: A delivered consistency property 
CPd violates a required consistency constraint CCr if (1) CPd is 
conflicting or (2) there exists a tuple <Rd, Sd> in CPd that inter-
sects more than one consistency class in CCr, that is, there exist 
two tuples <B1r, S1r> and <B2r, S2r> in CCr such that Sd 

�
 S1r �  

Ø and Sd 
�

 S1r �  Ø. 

We also added a simple optimization to the implementation. If the 
required currency bound is less than the minimum delay that the 
currency region can guarantee, we know at compile time that data 
from the region cannot be used to answer the query. In that case, 
the plan is immediately discarded. 

3.2.3 Run-Time Currency Checking 
Consistency constraints can be enforced during optimization, but 
currency constraints must be enforced during query execution. 
The optimizer must thus produce plans that check whether a local 
view is sufficiently up to date and switch between using the local 
view and retrieving the data from the back-end server. We use the 
SwitchUnion operator described earlier for this purpose.  

Recall that all local data is defined by materialized views. Logical 
plans making use of a local view are always created through view 
matching, that is, the view matching algorithm finds an expression 
that can be computed from a local view and produces a new sub-
stitute exploiting the view. More details about the view matching 
algorithm can be found in [GL01]. 

Consider a (logical) expression E and a matching view V from 
which E can be computed. If there are no currency constraints on 
the input tables of E, view matching produces a “normal”  substi-
tute consisting of, at most, a select, a project and a group-by on 
top of V. If there is a currency constraint, view matching produces 
a substitute consisting of a SwitchUnion on top, with a selector 
expression that checks whether V satisfies the currency constraint. 
The SwitchUnion has two input expressions: a local branch and a 
remote branch. The local branch is the “normal”  substitute men-
tioned earlier and the remote plan consists of a remote SQL query 
created from the original expression E. If the selector expression, 
which we call the currency guard, evaluates to true, the local 
branch is chosen, otherwise the remote branch is chosen.  
SwitchUnion operators are generated at the leaf-level but they can 
always be propagated upwards and adjacent SwitchUnion opera-
tors can be merged. However, these and other optimizations in-
volving SwitchUnion are left as future work. 

As mentioned earlier, we track a region’s data currency using a 
heartbeat mechanism. The currency guard for a view in region R 
is an expression equivalent to the following SQL predicate: 

EXISTS ( SELECT 1 FROM Heartbeat_R  
  WHERE TimeStamp > getdate()–B) 

where Heartbeat_R is the local heartbeat table for region R, and B 
is the applicable currency bound from the query. 

The above explanation deliberately ignores the fact that clocks on 
different servers may not be synchronized. This complicates the 
implementation but is not essential to understanding the approach.  

3.2.4 Cost estimation  
For a SwitchUnion with a currency guard we estimate the cost as 

cgremotelocal ccpcpc +∗−+= )1(*  

where p is the probability that the local branch is executed, clocal 
is the cost of executing the local branch, cremote the cost of execut-
ing the remote branch, and ccg the cost of the currency guard. This 
approach is similar to that of [CHS99, DR99]. 

The cost estimates for the inputs are computed in the normal way 
but we need some way to estimate p. We’ ll show how to estimate 
p assuming that updates are propagated periodically, the propaga-
tion interval is a multiple of the heartbeat interval, their timing is 
aligned, and query start time is uniformly distributed.  

Denote the update propagation interval by f and the propagation 
delay as d. The currency of the data in the local view goes through 
a cycle illustrated in Figure 3.2. Immediately after propagation, 
the local data is no more than d out of date (the time it took to de-
liver the data). The currency of the data then increases linearly 

 

Figure 3.1: Substitute with SwitchUnion and a currency guard 

 

Figure 3.2: Sync cycle and data currency 
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with time to d+f when the next propagation event takes place and 
the currency drops to d.  

Suppose the query specifies a currency bound of B. The case 
when d < B < d+f is illustrated in the figure. The execution of the 
query is equally likely to start at any point during a propagation 
cycle. If it starts somewhere in the interval marked “Local” , the 
local view satisfies the currency constraint and the local branch is 
chosen. The length of this interval is B-d and the total length of 
the cycle is f so the probability that the local branch will be cho-
sen is (B-d)/f. 

There are two other cases to consider. If B<d, the local branch is 
never chosen because the local data is never sufficiently fresh so 
p=0. On the other hand, if B > d+f, the local branch is always 
chose because the local data is always sufficiently fresh so p=1. In 
summary, here is the formula used for estimating p: 

p = 0            if B-d � 0 
p = (B-d)/f    if 0 < B-d � f 
p = 1       if B-d > f 

The special case when updates are propagated continuously is cor-
rectly modeled by setting f = 0. Then if B > d, we have p = 1; oth-
erwise, p = 0. 

4. Analysis and Experiments 
This section reports analytical and experimental results using our 
prototype. We show how the choice of query plan is affected as 
the query’s C&C constraint changes. We also analyze the over-
head of plans with currency guards. 

For the experiments we used a single cache DBMS and a back-
end server. The back-end server hosted a TPCD database with 
scale factor 1.0 (about 1GB). The experiments reported here used 
only the Customer and Orders tables, which contained 150,000 
and 1,500,000 rows, respectively. The Customer table was clus-
tered on its primary key, c_custkey, and had a secondary index on 
c_acctbal. The Orders table was clustered on its primary key, 
(o_custkey, o_orderkey). 

The cache DBMS had a shadow TPCD database with empty ta-
bles but with statistics reflecting the database on the back-end 
server. There were two local views: 

cust_prj(c_custkey, c_name, c_nationkey, c_acctbal) 
orders_prj(o_custkey, o_orderkey, o_totalprice), 

which are projections of the Customer and the Orders tables, re-
spectively. Cust_prj had a clustered index on the primary key 
c_custkey and orders_prj had a clustered index on (o_custkey, 
o_orderkey). They had no secondary indexes.  The views were in 
different currency regions and, hence, not guaranteed to be consis-
tent. The propagation intervals and delays are shown in Table 4.1. 

  cid interval delay views 
CR1 1 15 5 cust_prj 
CR2 2 10 5 orders_prj 

Table 4.1: Currency region settings 

4.1 Query Optimization Experiments 
We have fully integrated currency and consistency considerations 
into the cost-based optimizer. The first set of experiments demon-
strate how the optimizer’s choice of plan is affected by a query’s  
currency and consistency requirements, available local views, 
their indexes and how frequently they are refreshed.  

We used different variants of the query schemas in Table 4.2, ob-
tained by varying the parameter $K and the currency clause in S1 
for Q1 to Q5; $A and $B in S2 for the rest. The parameters values 
used and the logical plans generated are shown in Table 4.3 and 
Figure 4.1, respectively. The rightmost column in Table 4.3 indi-
cates which plan was chosen for each query.  

If we do not include a currency clause in the query, the default re-
quirements apply: all inputs mutually consistent and currency 
bound equal to zero. Q1 and Q2 do not include a currency clause. 
Since local data can never satisfy the currency requirement, re-
mote queries were generated. Because of the highly selective 
predicate in Q1, the optimizer selected plan 1, which sends the 
whole query to the back-end. For Q2, plan 2 was selected, which 
contains a local join and two remote queries, each fetching a base 
table. In this case, it is better to compute the join locally because 

 

Table 4.2: Query schemas used for experiment 

 

Table 4.3: Query variants used for experiment 

(1) 

 

Figure 4.1: Generated logical plans — (a)-(d) 
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the join result is significantly larger (72 MB) than the sum of the 
two sources (42 MB). Customers have 10 orders on average so the 
information for a customer is repeated 10 times in the join result.  

A remote plan (plan 1) is also generated for Q3 but for a different 
reason. The applicable local views cust_prj and orders_prj satisfy 
the currency bounds but not the consistency requirement because 
they are in different currency regions. In Q4 we relaxed the con-
sistency requirement between Customer and Orders and         
changed their currency bounds (lower on Customer, higher on 
Orders).  The local views now satisfy the consistency requirement 
and orders_prj also satisfies the currency bound but cust_prj will 
never be current enough to be useful. Thus a mixed plan (plan 4) 
was selected by the optimizer. If we relax the currency bound on 
Customer further as in Q5, both local views became usable and 
plan 5 is selected. Q3, Q4 and Q5 demonstrate how changing the 
currency can drastically change the query plan. 

As we can see in Figure 4.1, every local data access is protected 
by a currency guard, which guarantees that local data that is too 
stale will never be used. 

Optimization is entirely cost based. One consequence of this is 
that the optimizer may choose not to use a local view even though 
it satisfies all requirements if it is cheaper to get the data from the 
back-end server. This is illustrated by the following two queries. 
Even though they differ only in their range predicates, the opti-
mizer chooses different plans for them. 

For Q6, a remote query was chosen even though the local view 
cust_prj satisfied the currency requirement. The reason is the lack 
of a suitable secondary index on cust_prj while there is one at the 
back-end server. The range predicate in Q6 is highly selective (53 
rows returned) so the index on c_acctbal at the back-end is very 
effective, while at the cache the whole view (150,000 rows) would 
have to be scanned. When we increase the range, as in Q7, the 
benefit of an index scan over a sequential scan diminishes and a 
plan exploiting the local view is chosen. 

4.2 Workload Distribution 
Everything else being equal, one would expect that when currency 
requirements are relaxed further, more queries can be computed 
using local data and hence more of the workload is shifted to the 
cache DBMS. We will show how the workload shifts when the 
currency bound B is gradually increased in Q7 (previous section). 

The query plan for Q7 uses either the view cust_prj or a remote 
query. If the query is executed repeatedly, how often can we ex-
pect it to run locally and how does this depend on the currency 
bound B?  

We plotted function (1) from Section 3.2.4 in Figure 4.2. In Fig-
ure 4.2(a) it is plotted as a function of the currency bound B for f 
= 100 and d = 1, 5, 10, respectively. When the currency bound is 
less than the delay, the query is never executed locally. As the 
currency bound is relaxed, the fraction of queries executed locally 
increases linearly until it reaches 100%. This level is reached 
when B = d+f, i.e., when it exceeds the maximal currency of local 
data. When the delay increases, the curve just shifts to the right.  

Figure 4.2(b) shows the effects of varying the refresh interval. We 
fixed B = 10 and chose d = 1, 5, 8, respectively. When the refresh 
interval is sufficiently small, that is, f � B-d, the query can always 
be computed locally. When the refresh interval is increased, more 
of the workload shifts to the back-end. The effect is much more 
significant at the beginning and slows down later.  

4.3 Overhead of Currency Guards 
To guarantee that the result satisfies the query’s currency bounds, 
the optimizer generates plans with a currency guard for every lo-
cal view in the plan. What is the actual overhead of currency 
guards in the current system implementation? Where does time 
go? We ran a series of experiments aimed at answering these 
questions using the queries shown in Table 4.4. 

Q1 is the simplest and fastest type of query but also very common 
in practice. The local cache and the back-end server used the same 
trivial plan: lookup on the clustering index. For Q2, both servers 
used the same plan: a nested loop join with orders_prj (Orders) as 
the (indexed) inner. Again, for Q3, both servers used the same 
plan: a complete table scan. 

 

Figure 4.1: Generated logical plans — (e) 
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Table 4.4: Queries used for experiment 



9 

  Local Remote 
  Q1 Q2 Q3 Q1 Q2 Q3 

cost (ms) 0.11 0.19 2.39 0.24 0.42 0.90 
cost (%) 15.25 21.30 3.66 3.59 4.31 0.41 
# Rows 1 6 5975 1 6 5975 

Table 4.4: Overhead of currency guards 

 
  setup  run  shutdown IdealTotal 
  ms % ms % ms % ms % 
Q1 0.04 27.13 0.06 152.52 0.01 26.56 ~0.07 ~11.51 
Q2 0.06 39.39 0.09 98.52 0.01 29.69 ~0.10 ~14.32 
Q3 0.01 2.98 1.99 3.79 0.04 46.21 ~0.10 ~0.16 

Table 4.5: Local currency guards overhead 

For each query, we generated two traditional plans without cur-
rency checking (one local and one remote) and a plan with cur-
rency checking. We ran the plan with currency checking twice, 
once with the local branches being executed and the other with 
the remote branches being executed. We then compared their exe-
cution times (elapsed time) with the execution times of the plans 
without currency guards.  

In each run, we first warmed up the cache, then executed the cur-
rent query repeatedly (100,000 times for Q1 and Q2 local execu-
tion, 1000 for Q3 remote execution and 1000 for the others) and 
computed the average execution time. Note that we executed ex-
actly the same query in order to reduce buffer pool and cache 
misses, thereby minimizing the execution time (and maximizing 
the relative overhead). Table 4.4 shows the absolute and relative 
cost of currency guards and the number of output rows. 

In absolute terms, the overhead is small, being less than a milli-
second for Q1 and Q2. In the remote cases the relative overhead is 
less than 5% simply due to longer execution times. However, in 
the local case the relative overhead of 15% for Q1 and 21% for 
Q2 seems surprisingly high, even taking into account that their 
very short execution time.   

Where does the extra time go? We investigated further by profil-
ing the execution of local plans. The results are shown in the first 
three columns of Table 4.5 with each column showing an absolute 
overhead and a relative overhead. Each column corresponds to 
one of the main phases during execution of an already-optimized 
query: setup plan, run plan and shutdown plan. The absolute dif-
ference for a phase is the difference between the (estimated) 
elapsed time for the phase in plan with and without currency 
checking. The relative difference is as a percentage of the time of 
that phase in the plan without currency checking. In other words, 
both indicate how much the elapsed time of a phase had increased 
in the plans with currency checking. 

During the setup phase, an executable tree is instantiated from the 
query plan, which also involves schema checking and resource 
binding.  Compared with a traditional plan, a plan with currency 
checking is more expensive to set up because the tree has more 
operators and remote binding is more expensive than local bind-
ing. From Table 4.4, we see that the setup cost of a currency guard 
is independent of the output size but increase with the number of 
currency guards in the plan. For small queries such as Q1 and Q2, 
the overhead for this phase seems high. We found that the over-

head is not inherent but primarily caused by earlier implementa-
tion choices that slow down setup for SwitchUnions with currency 
guards. The problem has been diagnosed but not yet remedied. 

During the run phase, the actual work of processing rows to pro-
duce the result is done. The overhead for Q1 and Q2 is relatively 
high because running the local plans is so cheap (Single indexed 
row retrieval for Q1, and 6-row indexed nested loop join for Q2). 
The overhead for a SwitchUnion operator during this phase con-
sists of two parts: evaluating the guard predicate once and over-
head for each row passing through the operator. Evaluating the 
predicate is done only once and involves retrieving a row from the local 
heartbeat table and applying a filter to it. Q1 just retrieves a single 
row from the Customer table so it is not surprising that the rela-
tive overhead is as high as it is. In Q3, almost 6000 rows pass 
through the SwitchUnion operator so the absolute overhead in-
creases but the relative overhead is small, under 4%. There are 
some (limited) opportunities for speeding up this phase.  

In an ideal scenario (i.e., with possible optimizations in place), it 
should be possible to reduce the overhead of a currency guards to 
the overhead in Q1 plus the shutdown cost. Based on this reason-
ing, we estimated the minimal overhead for our workload. The re-
sults are shown in the IdealLocal column of Table 4.5. 

5. RELATED WORK 
Tradeoffs between data freshness and availability, concurrency 
and maintenance costs have been explored in several areas of da-
tabase systems, such as replica management, distributed data-
bases, warehousing and web caching. Yet no work we know of al-
lows queries to specify fine-grained C&C constraints, provides 
well-defined semantics for such constraints, and produces query 
plans guaranteeing that query results meet the constraints. 

Replica management 
In a typical replica system setting, updates are centralized on a 
back-end server, while read workloads are offloaded to local rep-
licas. Keeping all the copies up to date at all times is neither prac-
tical nor necessary. Can one lower the maintenance overhead at 
the cost of the freshness of the data? Different studies have tack-
led different aspects of this problem.   

Quasi-copies [ABG88] allow an administrator to specify the 
maximum divergence of cached objects, and maintain them ac-
cordingly. A later paper [GN95] formalizes these concepts and 
models the system using a queuing network. The work on “Good 
Enough” Views [SK97] extends these ideas to approximate view 
maintenance; Globe [KKST98] to wide-area distributed systems; 
[LC02] to mobile computing scenario with distributed data 
sources. Identity connection [WQ87] suggests a relationship to 
model the connection between a master and its copies. Research-
ers at Bellcore [SR90] proposed taxonomy for interdependent 
data management.  

The approach taken in these papers is fundamentally different 
from ours: their approach is maintenance centric while ours is 
query centric. They propose different approximate replica mainte-
nance policies, each guaranteeing certain C&C properties on the 
replicas. In contrast, given a query with C&C requirements, our 
work focuses on extending the optimizer to generate a plan ac-
cording to the known C&C properties of the replicas. Thus, C&C 
requirements are enforced by the cache DBMS.  
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TRAPP [OW00] stores intervals instead of exact values in the da-
tabase, combining local bounds and remote data to deliver a 
bounded answer that satisfies the precision requirement. Diver-
gence caching [HSW94], Moving Objects Databases [WXC98] 
and work at Stanford [OLW01] deal with the problem of setting 
optimal bounds for approximate values given queries with preci-
sion bound and an update stream. These earlier query-centric pro-
posals allow a query to specify divergence bounds and guarantee 
that the bounds are met. However, they have several limitations. 
First, they do not guarantee any consistency. Second, they do not 
consider using derived data, e.g., materialized views, to answer 
queries. Third, field-value level currency control limits the scal-
ability of those systems. Fourth, the decision to use local data is 
not cost based, i.e., local data is always used if it satisfies the cur-
rency constraints.  

Distributed databases 
In this area there are many papers focused on improving availabil-
ity and autonomy by allowing local data to diverge from the mas-
ter copy. They differ from each other in divergence metrics, the 
concrete update protocols and corresponding divergence bound 
guaranteed. Read-only Transactions [GW82], the Demarcation 
Protocol [BG92] and TACC [YV00] fall into this category. None 
of them supports queries with divergence bound constraints.   

Epsilon-serializability [PL91] allows queries to specify inconsis-
tency bounds. However, they focus on a different problem, hence 
utilize different techniques: how to achieve higher degree of con-
currency by allowing queries to see database states with bounded 
inconsistency introduced by concurrent update transactions. 

Warehousing and web views 
WebViews [LR03] suggests algorithms for the on-line view selec-
tion problem considering a new constraint--the required average 
freshness of the cached query results. Obsolescent Materialized 
Views [Gal99] determines whether to use local or remote data by 
integrating the divergence of local data into the cost model of the 
optimizer. A later paper [BR02] tackles a similar problem for sin-
gle object accesses. In all these approaches, the models of fresh-
ness are coarse-grained and the use of it is purely heuristic, pro-
viding no guarantees on delivered data currency and consistency. 

The work on distributed materialized views in [SF90] allows que-
ries to specify currency bounds, and they also support local mate-
rialized views. However, it focuses on determining the optimal re-
fresh sources and timing for multiple views defined on the same 
base data. It does not consider consistency constraints, assuming a 
query is always answered from a single view. Furthermore, it is 
not clear how it keeps track of the currency information of local 
views, or how and when it checks the currency constraints.   

FAS [RBSS02] explores some preliminary query-centric ideas by 
allowing queries to specify currency requirements. Working as  
middleware on top of a cluster of multi-versioned replicated data-
bases, FAS provides two major functionalities: (1) routing a query 
to the right database according to its currency requirement, and 
(2) deciding when and which replica database to refresh based on 
the workload with currency requirements. Compared to our work, 
FAS has three major limitations. First, it does not allow queries to 
specify relaxed consistency requirements, i.e., a query result al-
ways has to be consistent. Second, it only supports database level 

currency control. This limits replica maintenance flexibility, re-
sulting in possibly higher overhead. Last but not least, enforcing 
currency requirements at the middleware level instead of inside 
the DBMS, FAS cannot provide transactional currency bound 
guarantees on query results. 

6. CONCLUSIONS AND FUTURE WORK 
This work was motivated by the lack of a rigorous foundation for 
the widespread practice of applications using replicated and 
cached data. To remedy the situation we proposed to allow appli-
cations to explicitly specify currency and consistency constraints 
in queries and have the DBMS enforce the constraints. We devel-
oped a model for C&C constraints and defined their semantics 
rigorously, thereby providing correctness standards for the use of 
replicated and cached data. We showed how C&C constraints can 
be expressed succinctly in SQL through a new currency clause. 
We described how support for C&C constraints is implemented in 
our prototype mid-tier database cache. C&C constraints are fully 
integrated into query optimization and execution.  

This work provides a solid semantic foundation for the use of rep-
licated and cached data but it is by no means complete; it can be 
extended in several directions. Regarding implementation, we 
plan to support timeline consistency and also finer-granularity 
consistency constraints, at the level of groups of rows. In the area 
of cache management, C&C constraints add more dimensions to 
this problem: even in the case of a cache hit, the local data might 
not be used simply because it does not satisfy consistency or cur-
rency constraints. We hope to develop caching mechanisms and 
policies that take these additional dimensions into account.  

7. REFERENCES 
[ABG88] R. Alonso, D. Barbará, H. Garcia-Molina, and S. Abad. 
Quasi-copies: Efficient Data Sharing For Information Retrieval Systems. 
In EDBT, 1988.  

[ABK+03] M. Altinel, C. Bornhövd, S. Krishnamurthy, C.Mohan, H. Pi-
rahesh, and B. Reinwald. Cache Tables: Paving The Way For An Adap-
tive Database Cache. In VLDB, 2003.  

[BAK+03] C. Bornhövd, M. Altinel, S. Krishnamurthy, C.Mohan, H. Pi-
rahesh, and B. Reinwald. DBCache: Middle-Tier Database Caching For 
Highly Scalable E-Business Architectures. In SIGMOD, 2003.  

[BGM92] D.Barbará and H.. Garcia-Molina. The Demarcation Protocol: 
A Technique For Maintaining Linear Arithmetic Constraints In Distrib-
uted Database Systems. In EDBT, 1992.  

[BR02] L. Bright and L. Raschid. Using Latency-Recency Profiles for 
Data Delivery on the Web. In Proc. In VLDB, 2002.  

[CHS99] F. Chu, J. Halpern, and P. Seshadri. Least Expected Cost Query 
Optimization: An Exercise In Utility. In PODS, 1999.  

[DR99] D. Donjerkovic and R. Ramakrishnan. Probabilistic Optimization 
Of Top N Queries. In VLDB, 1999. 

[Gal99] A. Gal. Obsolescent Materialized Views in Query Processing of 
Enterprise Information Systems. In CIKM, 1999.  

[GMW82] H. Garcia-Molina and G. Wiederhold. Read-Only Transactions 
In A Distributed Database. In TODS, 1982.  

[GN95] R. Gallersdörfer and M. Nicola. Improving Performance In Repli-
cated Databases Through Relaxed Coherency. In VLDB, 1995.  

[GL01] J. Goldstein and P. Larson. Optimizing Queries Using Material-
ized Views: A Practical, Scalable Solution. In SIGMOD, 2001.  

[HSW94] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in 
Client Server Architectures. In PDIS, 1994.  

[KKST98] A. Kermarrec, I. Kuz, M. Steen, and A. Tanenbaum. A Frame-
work For Consistent, Replicated Web Objects. In ICDCS, 1998. 



11 

[LC02] S.Weissman L. and P. Chrysanthis. Personalizing Information 
Gathering For Mobile Database Clients. In SAC, 2002. 

[LGZ04] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent 
Mid-Tier Database Caching In Sql Server. In ICDE, 2004.  

[LR03] A. Labrinidis and N. Roussopoulos. Balancing Performance And 
Data Freshness In Web Database Servers. In VLDB, 2003.  

[OLW01] C. Olston, B. Loo, and J. Widom. Adaptive Precision Setting 
for Cached Approximate Values. In SIGMOD, 2001.  

[OW00] C. Olston and J. Widom. Offering A Precision-Performance 
Tradeoff For Aggregation Queries Over Replicated Data. In VLDB, 2000.  

[PL91] C. Pu and A. Leff. Replica Control In Distributed Systems: An 
Asynchronous Approach. In SIGMOD, 1991.  

[RBSS02] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS - a Fresh-
ness-Sensitive Coordination Middleware for a Cluster of OLAP Compo-
nents. In VLDB, 2002.  

[SF90] A. Segev and W. Fang. Currency-based Updates To Distributed 
Materialized Views. In ICDE, 1990.  

[SK97] L. Seligman and L. Kerschberg. A Mediator For Approximate 
Consistency: Supporting ''Good Enough'' Materialized Views. In JIIS, 
8(3):203--225, 1997.  

[SR90] A. Sheth and M. Rusinkiewicz. Management Of Interdependent 
Data: Specifying Dependency And Consistency Requirements. In Work-
shop on the Management of ReplicatedData, pages 133--136, 1990.  

[WQ87] G. Wiederhold and X. Qian. Modeling Asynchrony In Distrib-
uted Databases. In ICDE, 1987.  

[WXCJ98] O.Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Ob-
jects Databases: Issues And Solutions. In Statistical And Scientific Data-
base Management, pages 111--122, 1998.  

[YV00] H. Yu and A. Vahdat. Efficient Numerical Error Bounding For 
Replicated Network Services. In VLDB, 2000. 

8. APPENDIX: C&C SEMANTICS  
8.1 Database Model 
A database is modeled as a collection of database objects organ-
ized into one or more tables. The granularity of an object may be a 
view, a table, a column, a row or even a single cell in a row. Every 
object has a master and zero or more copies. The collection of all 
master objects is called the master database. A cache is any col-
lection of copies, and can include (parts of) one or more database 
tables or materialized views.  

Transactions only modify the master database, and we assume 
Strict 2PL is enforced. Further, for simplicity we assume that 
writers only read from the master database. Copies of modified 
objects are synchronized with the master by the DBMS after the 
writer commits through (system-initiated) copy-transactions, but 
not necessarily in an atomic action as part of the commit.  

A read-only transaction's read requests include currency and con-
sistency constraints, and any copy of the requested object that 
satisfies the constraints can be returned to the transaction. We as-
sume that as transactions commit, the DBMS assigns them an in-
teger id—a timestamp—in increasing order. We denote the his-
tory after n update transactions have committed by Hn, and usu-
ally treat it as Hn = T1 ° T2 ° … ° Tn. A database state produced by 
applying a history Hn on the initial state  is called a snapshot of 
the database. Since each update transaction maps one-to-one with 
a timestamp, as well as with a snapshot of the master database, we 
sometimes use these concepts (update transaction Tn, history Hn, 
snapshot of the master database) interchangeably. 

Next, we extend the database model to allow for the specification 
of currency and consistency constraints. We emphasize that the 

extensions described below are conceptual; how a DBMS sup-
ports these is a separate issue.  

Transaction Timestamps: The function xtime(A) returns the 
transaction timestamp of transaction A. We overload the function 
xtime to apply to objects. The transaction timestamp associated 
with a master copy O, xtime(O, Hn), is equal to xtime(A), where 
A is the latest transaction in Hn that modified O. For a copy C, the 
transaction timestamp xtime(C, Hn), is copied from the master 
object by the DBMS when the copy is synchronized, i.e., when a 
special copy-transaction copies the value of the master to the slave 
object. Note that if C is a copy of master object O, then xtime(O, 
Hn) � xtime(C, Hn).  

Self-Identification: The function master applied to an object 
(master or copy) returns the master version of that object.  

Copy Staleness (Currency): Given a database snapshot Hn, a 
copy C is stale if master(C) is modified in Hn after xtime(C, Hn). 
The time when C became stale, called the stale point, stale(C, Hn), 
is equal to xtime(A), where A is the first transaction that modifies 
master(C) after xtime(C, Hn) in Hn. If C is not stale in Hn 

stale(C, Hn) is defined to be xtime(Tn).  

8.2 The Extended Query 
Intuitively, the C&C requirements of query results should not de-
pend on data objects not used in constructing the result. For a 
given query Q, we construct an extended version

extQ . The con-
struction proceeds block-at-a-time, and ensures that the result of 

extQ includes all objects used in constructing the result of Q (in-
cluding objects used in testing Where clauses, grouping, etc.). We 
refer to the result of 

extQ as the relevant set for Q. (We omit the 
details of the construction for lack of space.) 

8.3 Specifying Currency and Consistency 
We classify currency and consistency requirements into four 
types: per-object, per-group, inter-group, and inter-statement. 
Per-object freshness requirements, which we call currency con-
straints, specify the maximal acceptable deviation for an object 
from its master copy. Group consistency constraints specify the 
relationship among a group of objects, for example the answers to 
a query.  Inter-group consistency constraints specify the rela-
tionships among object groups, for example answer sets to multi-
ple (sub-) queries. Session consistency constraints are essentially 
inter-group consistency constraints, but cover groups of objects 
arising from multiple SQL statements within a session; we do not 
discuss them further.  

Constraints of all four types can be expressed using standard for-
mulas constructed from object variables and constants, using 
comparison operators, quantifiers and Boolean connectives. 

8.4 Currency Constraints 
For a query Q, a user can specify currency requirements for any 
copy C in the complete extended query set 

allextQ −
 by compar-

ing C with its counterpart in the master copy of the results of 
allextQ −

, in terms of either the value of C or the timestamp asso-
ciated with C. In our implementation, we measure the currency of 
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copy C in snapshot Hn by how long it has been stale, i.e., cur-
rency(C, Hn) = xtime(Tn) - stale(C, Hn). 

8.5 Group Consistency of Cached Objects 
The function return(O, s) returns the value of O in database state 
s. We say that object O in scache is snapshot consistent with re-
spect to a database snapshot Hn if return(O, scache) = return(O, 
Hn) and xtime(O, Hn) = xtime(master (O), Hn).  

Given how copies are updated through copy transactions, we ob-
serve that for every object in a cache, there is at least one database 
snapshot (the one with which it was synchronized) with respect to 
which it is snapshot consistent. However, different objects in a 
cache could be consistent with respect to different snapshots. For 
a subset K of the cache, if a snapshot Hn exists such that each ob-
ject in K is snapshot consistent with regards to Hn, then we say K 
is snapshot consistent with respect to Hn. If K is the entire cache, 
we say the cache is snapshot consistent. 

We define the distance between two objects (which could be mas-
ters or copies) A and B in a snapshot Hn as follows. Let xtime(B, 
Hn) = Tm and let xtime(A, Hn) ≤  xtime(B, Hn). Then: 

   distance(A, B, Hn) = currency(A, Hm) 

Since B is current (identical to its master) at time Tm, the distance 
between A and B reflects how close A and B are to being snap-
shot consistent with respect to snapshot Hm. Figure 8.1 illustrates 
the basic concepts. 

Let t be the distance between A and B. We say that A and B are 
�

-consistent with consistency bound t. We also extend the notion 
of 

�
-consistency for a set of objects K, by defining the bound t to 

be the maximum distance between any pair of objects in K. 

Consider a set of objects K cached objects in database snapshot 
Hn. If K is 

�
-consistent with consistency bound  t=0, and O is the 

object with the largest value of xtime(O, Hn) in K, it is easy to 
show that K is snapshot-consistent with respect to the database 
snapshot at xtime(O, Hn). In general, as t increases, the deviation 
from snapshot consistency also increases. 

8.6 Group Consistency for Queries 
Our approach to consistency constraints in a query specification 
reflects two principles: 

1) Consistency of query results should not depend on data ob-
jects not used in constructing the result; this is achieved 
through the use of the extended query

extQ .  

2) It must be possible to require consistency for subsets of the 
data used in a query; we achieve this, naturally, by leverag-
ing the query mechanism to identify the subsets. 

Given a query Q, the relevant set for Q (the result of the extended 
version

extQ ) includes all objects that affect the result of Q.  We 
can apply the concept of 

�
-consistency to this set, and thereby 

impose a consistency constraint on Q.   

In practice, however, we may not care whether the entire relevant 
set is 

�
-consistent, and simply wish to require that certain subsets 

of the relevant set be 
�

-consistent. We leverage the power of SQL 

queries to achieve this, as follows. Given query Q, we allow the 
use of an auxiliary set of queries P over the relevant set of Q to 
identify the subset that must be 

�
-consistent. We illustrate the 

approach by discussing two common cases. 

Consistency Requirements on Input Tables of Query Q: We 
may want to state that one or more input tables must be from a 
single database snapshot. We can do this using a query p that 
simply selects all attributes associated with those tables from 

extQ and requiring 
�

-consistency with respect to the result of p.  

Consistency With Respect to Horizontal Partitions of the Re-
sult of Query Q: Again, we use an auxiliary query p over 

extQ . 
We can use SQL’s Group By clause to divide the result of p hori-
zontally into partitions, and require 

�
-consistency with respect to 

one or more partitions (selected using the Having clause). 

8.7 Inter-Group Consistency  
We have discussed two natural ways in which groups of related 
objects arise, namely as subsets of a cache, or part of the result of 
a query. It is sometimes necessary to impose consistency require-
ments across multiple groups of objects. Examples include: 

• Multiple groups of cached objects, such as all cached Order 
records and all cached Catalog records. 

• Groups of objects from different blocks of a query.  (Observe 
that each subquery has an extended version!) 

• Groups of objects drawn from multiple statements (e.g., dif-
ferent queries) within a session. 

Regardless of the context in which groups arise, let G1, G2, … , 
Gn be the sets of relevant data objects for  groups 1 to n.  

A user can specify two types of consistency requirements over this 
collection:  

�
-consistency: Naturally, we can require that the objects in the 

union or intersection of one or more groups be 
�

-consistent with 
bound t.  

Time-line consistency: Intuitively, we might want to say 
that “time always moves forward” across a certain ordering 
of groups. That is, for any i, j such that nji ≤< , any ob-
jects A ∈ Gi, B ∈ Gj, xtime(A, Hn) ≤  xtime(B, Hn), where 
Hn is the database snapshot after executing all statements 
corresponding to the groups G1, G2, … , Gn.  

 

Figure 8.1: Basic concepts 


