
1

Relaxed Currency and Consistency:
How to Say “ Good Enough” in SQL

Hongfei Guo
University of Wisconsin

guo@cs.wisc.edu

Per-Åke Larson
Microsoft

palarson@microsoft.com

Raghu Ramakrishnan
University of Wisconsin

raghu@cs.wisc.edu

Jonathan Goldstein
Microsoft

jongold@microsoft.com

ABSTRACT
Despite the widespread and growing use of asynchronous copies
to improve scalability, performance and availability, this practice
still lacks a firm semantic foundation. Applications are written
with some understanding of which queries can use data that is not
entirely current and which copies are “good enough”; however,
there are neither explicit requirements nor guarantees. We propose
to make this knowledge available to the DBMS through explicit
currency and consistency (C&C) constraints in queries and de-
velop techniques so the DBMS can guarantee that the constraints
are satisfied. In this paper we describe our model for expressing
C&C constraints, define their semantics, and propose SQL syntax.
We explain how C&C constraints are enforced in MTCache, our
prototype mid-tier database cache, including how constraints and
replica update policies are elegantly integrated into the cost-based
query optimizer. Consistency constraints are enforced at compile
time while currency constraints are enforced at run time by dy-
namic plans that check the currency of each local replica before
use and select sub-plans accordingly. This approach makes opti-
mal use of the cache DBMS while at the same time guaranteeing
that applications always get data that is "good enough" for their
purpose.

1. INTRODUCTION
Many application systems today make use of various forms of
asynchronously updated replicas to improve scalability, availabil-
ity and performance. We use the term replica broadly to include
any saved data derived from some underlying source tables, re-
gardless of where and how the data is stored. This covers tradi-
tional replicated data and data cached by various caching mecha-
nisms. “Asynchronously updated” simply means that the replica is
not updated as part of a database transaction modifying its source
tables; the state of the replica does not necessarily reflect the cur-
rent state of the database.

If an application uses replicas that are not in sync with the source
data, it is clearly willing to accept results that are not completely
current, but typically with some limits on how stale the data can
be. Today, such relaxed currency requirements are not explicitly
declared anywhere; they can only be inferred from the properties
of the replicas used. Because requirements are not explicit, the

system cannot detect when they are not met and take appropriate
action. For example, the system could return a warning to the ap-
plication or use another data source.

Suppose an application queries a replicated table where the repli-
cation engine is configured to propagate updates every 30 sec-
onds. The application is then implicitly stating that it is willing to
accept data that is up to 30 seconds old. Suppose that replication
is later reconfigured to propagate updates every 5 minutes. Is 5
minutes still within the application’s currency requirements? For
some queries 5-minute old data may be perfectly fine but for oth-
ers it may not. The system cannot provide any assistance in find-
ing the queries whose currency requirements are no longer met
because it does not know what the requirements are.

Data currency requirements are implicitly expressed through the
choice of data sources for queries. For example, if a query Q1 does
not require completely up-to-date data, we may design the appli-
cation to submit it to a database server C that stores replicated
data instead of submitting it to database server B that maintains
the up-to-date state. Another query Q2 accesses the same tables
but requires up-to-date data so the application submits it to data-
base server B. The routing decisions are hardwired into the appli-
cation and cannot be changed without changing the application.

This very much resembles the situation in the early days of data-
base systems when programmers had to choose what indexes to
use and how to join records. This was remedied by raising the
level of abstraction, expressing queries in SQL and making the
database system responsible for finding the best way to evaluate a
query. We believe the time has come to raise the level of abstrac-
tion for the use of replicated and cached data by allowing applica-
tions to state their data currency and consistency requirements ex-
plicitly and having the system take responsibility for producing
results that meet those requirements.

To this end, we have defined a model for relaxed currency and
consistency (C&C) constraints, including proposed SQL syntax,
and defined the semantics of such constraints. We also describe
how support for C&C constraints is implemented in our mid-tier
database cache prototype, in particular, integration with the opti-
mizer and the use of dynamic plans to enforce data currency.

This work was motivated by several usage scenarios where the
system can provide additional functionality if applications explic-
itly state their C&C requirements.

Traditional replicated databases: Consider a database contain-
ing replicated data propagated from another database using nor-
mal (asynchronous) replication. The system can easily keep track
of how current the data is, but today that information is not ex-
ploited. If an application states its currency requirements, the sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

2

tem could detect and take action when the application’s require-
ments are not met. Possible actions include logging the violation,
returning the data but with an error code, or aborting the request.

Mid-tier database caching: This scenario was motivated by cur-
rent work on transparent mid-tier database caching as described in
[LGZ04, ABK+03, BAK+03]. Suppose we have a back-end data-
base server that is overloaded. To reduce the query load, we repli-
cate part of the database to other database servers that act as
caches. When a cache DBMS receives a query, it attempts to an-
swer it from the local data and if that is not possible it forwards
the query transparently to the back-end server. In this scenario, it
is crucial to know the C&C constraints so that the cache DBMS
can decide whether local data can be used or not.

Caching of query results: Suppose we have a component that
caches SQL query results (e.g., application level caching) so that
those results can be reused if the same query is submitted later.
The cache can easily keep track of the staleness of its cached re-
sults and if a result does not satisfy a query’s currency require-
ments, transparently recompute it. In this way, an application can
always be assured that its currency requirements are met.

The rest of the paper is organized as follows. In Section 2 we de-
scribe how to specify C&C constraints. Section 3 illustrates how
support for C&C constraints is implemented in our prototype mid-
tier database cache. We report some experimental and analytical
results in Section 4. Finally, Section 5 presents conclusions and
addresses future work. The semantics of C&C constraints is for-
mally defined in the appendix.

2. SPECIFYING CURRENCY AND
CONSISTENCY CONSTRAINTS

In this section we introduce our model for currency and consis-
tency constraints by means of examples. We propose expressing
C&C constraints in SQL by a new currency clause and suggest a
tentative syntax. The semantics of C&C constraints is described
informally in this section; formal definitions are in the appendix.

Before proceeding, we need to clarify what we mean by the terms
currency and consistency. Suppose we have a database with two
tables, Books and Reviews, as might be used by a small online
book store.

Replicated data or the result of a query computed from replicated
data may not be entirely up-to-date. Currency (staleness) simply
refers to how current or up-to-date we can guarantee a set of rows
(a table, a view or a query result) to be. Suppose that we have a
replicated table BooksCopy that is refreshed once every hour. In
this scenario, the currency of the BooksCopy is simply the elapsed
time since this copy became stale (i.e., when the first update was
committed to Books after the last refresh) to the commit time of
the latest update transaction on the back-end database.

Suppose we have another replicated table, ReviewsCopy, that is
also refreshed once every hour. The state of BooksCopy corre-
sponds to some snapshot of the underlying database and similarly
for ReviewsCopy. However, the states of the two replicas do not
necessarily correspond to the same snapshot. If they do, we say
that they are mutually consistent or that they belong to the same
consistency group. Whether or not the two replicas are mutually
consistent depends entirely on how they are updated.

2.1 Single-Block Queries
To express C&C constraints we propose a new currency clause for
SQL queries. The new clause occurs last in a Select-From-Where
(SFW) block and follows the same scoping rules as the WHERE
clause. Specifically, the new clause can reference tables defined in
the current or in outer SFW blocks. We use query Q1 to illustrate
different forms of the currency clause and their semantics, as
shown in Figure 2.1. The query is a join of Books and Reviews.

Currency clause E1 expresses two constraints: a) the inputs cannot
be more than 10 min out of date and b) the states of the two input
tables must be consistent, that is, be from the same database snap-
shot. We say that B and R belong to the same consistency class.

Suppose that we have cached replicas of Books and Reviews, and
compute the query from the replicas. To satisfy the C&C con-
straint, the result obtained using the replicas must be equivalent to
the result that would be obtained if the query were computed
against some mutually consistent snapshots of Books and Re-
views, that are no older than 10 min (when execution of the query
begins).

E2 relaxes the bound on R to 30 min and no longer requires that
tables be mutually consistent by placing them in different consis-
tency classes. The easiest way to construct a currency clause is to
first specify a bound for each input and then form consistency
groups by deciding which inputs must be mutually consistent.

E1 and E2 require that every Books row be from the same snap-
shot and similarly for Reviews, which may be stricter than neces-
sary. Sometimes it is acceptable if rows or groups of rows from
the same table are from different snapshots. E3 and E4 illustrate
how we can express different variants of this requirement.

We assume that isbn is a unique key of Books. E3 allows each
row of the Books table to originate from different snapshots (be-
cause B.isbn is unique). The phrase “ (R) by R.isbn” has the
following meaning: if the rows in Reviews are grouped on isbn,
rows within the same group must originate from the same snap-
shot. Note that a Books row and the Review rows it joins with
may be from different snapshots (because Books and Reviews are
in different consistency classes).

In contrast, E4 requires that each Books row be consistent with
the Reviews rows that it joins with. However, different Books
rows may be from different snapshots.

In summary, a C&C constraint in a query consists of a set of tri-
ples where each triple specifies

1) a currency bound
2) a set of tables forming a consistency class

Figure 2.1: Single-block example C&C constraints

3

3) a set of columns defining how to group the rows of the con-
sistency class into consistency groups.

The query-centric approach we have taken for dealing with asyn-
chronously maintained copies is a fundamental departure from
maintenance-centric prior work on replica management (see Sec-
tion 5), which concentrates on maintenance policies for guarantee-
ing different kinds of constraints over cached objects. While this
earlier work can be leveraged by a system in determining what
constraints hold across a set of cached objects, the user’s C&C re-
quirements in the query determine what copies are acceptable, and
the system must guarantee that these requirements are met, if nec-
essary by fetching master versions of objects. This is the focus of
our paper.

An important consequence of our approach is a significant differ-
ence in workloads, because C&C constraints influence when and
how caches need to be updated, necessitating new cache manage-
ment policies and mechanisms. However, this issue is beyond the
scope of this paper.

2.2 Multi-Block Queries
An SQL query may, of course, consist of multiple SFW blocks.
C&C constraints are not restricted to the outermost block of a
query — any SFW block can have a C&C constraint. If a query
contains multiple constraints, all constraints must be satisfied.

We first consider subqueries in the FROM clause. Suppose we
have an additional table Sales with one row for each sale of a
book and consider the query Q2 in Figure 2.2. Note that such
queries can arise in a variety of ways. For instance, in this case,
the original query may have referenced a view and the query in
the FROM clause is the result of expanding the view.

Whatever input data the query is computed from, the inputs must
be such that both constraints are satisfied. The outer currency
clause states that S must be from the same snapshot as T. But T is
computed from B and R, which implies that S, B and R must all
be from the same snapshot. If they are from the same snapshot,
they are all equally stale. Clearly, to satisfy both constraints, they
must be no more than 5 min out of date. In summary, the least re-
strictive constraint that the inputs must satisfy is “5 min (S, B,
R)” .

Next we consider subqueries in clauses other than the FROM
clause. For such subqueries we must also decide whether the in-
puts defined in the subquery need to be consistent with any of the
inputs in an outer block. We modify our join query Q1 by adding
a subquery that selects only books with at least one sale during
2003, see Q3 in Figure 2.2.

When constructing the currency clause for the subquery, we must
decide whether S (Sales) needs to be consistent with B and/or R
(in the outer block). If S must be consistent with B, we simply
add B to the consistency class of S, see Q3. Because the outer cur-
rency clause requires that R be consistent with B, it follows that
B, R, S must all be consistent, that is, they all form a single con-
sistency class.

If S need not be consistent with any tables in the outer block, we
simply omit the reference to B and change the inner currency
clause to “10 min on S” .

2.3 Timeline Consistency
Until now we have considered each query in isolation. Given a
sequence of queries in a session, what constraints on the relation-
ships between inputs to different queries are of interest? Even
though not explicitly stated, current database systems provide an
important guarantee on sequences of queries within the same ses-
sion: time moves forward. If a user reads a row R twice and row R
is updated and the change committed between the reads, then the
second read will see the updated version of R.

This rather natural behavior follows from the fact that queries use
the latest committed database state. However, if queries are al-
lowed to use out-of-date replicas and have different currency
bounds, there is no automatic guarantee that perceived time moves
forward. Suppose queries Q1 and then Q2 are executed against
replicas S1 and S2, respectively. S2 is not automatically more cur-
rent than or equal to S2; the ordering has to be explicitly enforced.

We take the approach that forward movement of time is not en-
forced by default and has to be explicitly specified by bracketing
the query sequence with “begin timeordered” and “end timeor-
dered” . This guarantees that later queries use data that is at least
as fresh as the data used by queries earlier in the sequence.

This feature is most useful when two or more of the queries in a
sequence have overlapping input data. In this case, we may get
very counterintuitive results if a later query were to use older data
than the first query. Note that users may not even see their own
changes unless timeline consistency is specified, because a later
query may use a replica that has not yet been updated.

3. IMPLEMENTATION
We have implemented support for explicit C&C constraints as
part of our prototype mid-tier database cache, MTCache, which is
based on the following approach.

1) A shadow database is created on the cache DBMS, contain-
ing the same tables as the back-end database, including con-
straints, indexes, views, and permissions, but with all tables
empty. However, the statistics maintained on shadow tables,
indexes and materialized views reflect the data on the back-
end server rather than the cache.

2) What data to cache is defined by creating materialized views
on the cache DBMS. These materialized views may be selec-
tions and projections of tables or materialized views on the
back-end server.

Figure 2.2: Multi-block example C&C constraints

4

3) The materialized views on the cache DBMS are kept up to
date by SQL Server’s transactional replication. When a view
is created, a matching replication subscription is automati-
cally created and the view is populated.

4) All queries are submitted to the cache DBMS, whose opti-
mizer decides whether to compute a query locally, remotely,
or part locally and part remotely. Optimization is entirely
cost based.

5) All inserts, deletes and updates are submitted to the cache
DBMS, which then transparently forwards them to the back-
end server.

We have extended the cache prototype to support queries with
C&C constraints. We keep track of which materialized views are
mutually consistent (reflect the same database snapshot) and how
current their data is. We extended the optimizer to select the best
plan taking into account the query’s C&C constraints and the
status of applicable local materialized views. In contrast with tra-
ditional plans, the plan includes runtime checking of the currency
of each local view used. Depending on the outcome of this check,
the plan switches between using the local view or submitting a
remote query. The result returned to the user is thus guaranteed to
satisfy the query’s consistency and currency constraints.

Our prototype currently supports only table-level consistency and
does not allow C&C constraints with grouping columns, such as
the phrase “by B.isbn” in E4. They would have no effect in any
case because all rows within a local view are always mutually
consistent because views are updated by transactional replication.

We rely on a new SwitchUnion operator that has recently been
added to SQL Server. A SwitchUnion operator has N+1 input ex-
pressions. When opening the operator, one of the first N inputs is
selected and all rows are taken from that input; the other N-1 in-
puts are not touched. Which input is selected is determined by the
last input expression, here called the selector expression. The se-
lector must be a scalar expression returning a number in the range
0 to N-1. The selector expression is first evaluated and the number
returned determines which one among the first N inputs to use.
We use a SwitchUnion operator to transparently switch between
retrieving data from a local view and retrieving it by a query to the
back-end server. The selector expression checks whether the view
is sufficiently up-to-date to satisfy the query’s currency constraint.

3.1 Currency Regions
To keep track of which materialized views on the cache DBMS
are mutually consistent and how current they are, we group them
into logical currency regions. The maintenance mechanisms and
policies must guarantee that all views within the same region are
mutually consistent at all times.

Our prototype relies on SQL Server’s transactional replication
feature to propagate updates from the back-end database to the
cache. Updates are propagated by distribution agents. (A distribu-
tion agent is a process that wakes up regularly and checks for
work to do.) A local view always uses the same agent but an agent
may be responsible for multiple views. The agent applies updates
to its target views one transaction at a time, in commit order. This
means that all cached views that are updated by the same agent are
mutually consistent and always reflect a committed state. Hence,

all views using the same distribution agent form a currency re-
gion.

Our current prototype is somewhat simplified and does not im-
plement currency regions as separate database objects. Instead, we
added three columns to the catalog data describing views: cid, up-
date_interval, update_delay. Cid is the id of the currency region to
which this view belongs. Update_interval is how often the agent
propagates updates to this region. Update_delay is the delay for an
update to be propagated to the front-end, i.e., the minimal
currency this region can guarantee. Update_delay and
update_interval can be estimates because they are used only for
cost estimation during optimization.

Our mechanism for tracking data currency is based on the idea of
a heartbeat. We have a global heartbeat table at the back-end,
containing one row for each currency region. The table has two
columns: a currency region id and a timestamp. At regular inter-
vals, say every 2 seconds, the region’s heart beats, that is, the
timestamp column of the region’s row is set to the current time-
stamp by a stored procedure. (Another possible design uses a
heartbeat table with a single row that is common to all currency
regions, but this precludes having different heartbeat rates for dif-
ferent regions.)

Each currency region replicates its row from the heartbeat table
into a local heartbeat table for the region. The agent correspond-
ing to the currency region wakes up at regular intervals and propa-
gates all changes, including updates to the heartbeat table. The
timestamp value in the local heartbeat table gives us a bound on
the staleness of the data in that region. Suppose the timestamp
value found in the region’s local heartbeat table is T and the cur-
rent time is t. Because we are using transactional replication, we
know that all updates up to time T have been propagated and
hence reflect a database snapshot no older than t – T.

3.2 Enforcing C&C Constraints
How can we efficiently ensure that a query result meets the stated
C&C requirements? Our approach is to enforce consistency con-
straints at optimization time and at runtime enforce currency con-
straints. This approach requires re-optimization only if a view’s
consistency properties change.

3.2.1 Normalizing C&C Constraints
We extended the SQL parser to also parse currency clauses. The
information is captured, table/view names resolved and each
clause converted into a C&C constraint of the form below.

Definition: (Currency and consistency constraint) A C&C con-
straint C is a set of tuples, C = { <b1, S1>,…, { <bn, Sn>} , where
each Si is a set of input operands (table or view instances) and bi
is a currency bound specifying the maximum acceptable staleness
of the input operands in Si.

C&C constraints are sets (of tuples), so constraints from different
clauses can be combined by taking their union. (After name reso-
lution, all input operands reference unique table or view inputs;
the block structure of the originating expression affects only name
resolution.) We union together all constraints from the individual
clauses into a single constraint, and convert it to a normalized
form with no redundant or contradictory requirements.

5

Definition: (Normalized C&C constraint) A C&C constraint C =
{ <b1, S1>,…, { <bn, Sn>} is in normalized form if all input oper-
ands (in the sets Si) are base tables and the input operand sets
S1,…, Sn are all non-overlapping.

The first condition simply ensures that the input sets all reference
actual input operands of the query (and not views that have disap-
peared as a result of view expansion). The second condition elimi-
nates redundancy and simplifies checking.

We briefly outline how to transform a set of constraints into nor-
malized form but omit the actual algorithm due to lack of space.
First, the algorithm recursively expands all references to views
into references to base tables. Next, it repeatedly merges all tuples
that have one or more input operands in common. The bound for
the new tuple is the minimum of the bounds of the two input tu-
ples. Input operands referenced in a tuple must all be from the
same database snapshot. It immediately follows that if two differ-
ent tuples have any input operands in common, they must all be
from the same snapshot, and the snapshot must satisfy the tighter
of the two bounds. The merge step continues until all tuples are
disjoint. If a query does not specify any currency clause, we chose
as the default the tightest requirements, namely, that the input op-
erands must be mutually consistent and from the latest snapshots,
i.e., fetched from the back-end database. This tight default has the
effect that queries without an explicit currency clause will be sent
to the back-end server and their result will reflect the latest snap-
shot. In other words, queries without a currency clause retain their
traditional semantics.

3.2.2 Compile-Time Consistency Checking
SQL Server uses a transformation-based optimizer, i.e., the opti-
mizer generates rewritings by applying local transformation rules
on subexpressions of the query. Applying a rule produces substi-
tute expressions that are equivalent to the original expression. Op-
erators are of two types: logical and physical. A logical operator
specifies what algebraic operation to perform, for example, a join,
but not what algorithm to use. A physical operator also specifies
the algorithm, for example, a hash join or merge join. Conceptu-
ally, optimization proceeds in two phases: an exploration phase
and an optimization phase. The exploration phase generates new
logical expressions, that is, alternative algebraic expressions. The
optimization phase recursively finds the best physical plan, that is,
the best way of evaluating the query. Physical plans are built bot-
tom-up, producing plans for larger and larger sub-expressions.

Required and delivered (physical) plan properties play a very im-
portant role during optimization. There are many plan properties
but we’ ll illustrate the idea with the sort property. A merge join
operator requires that its inputs be sorted on the join columns. To
ensure this, the merge join passes down to its input a required sort
property (a sequence of sort columns and associated sort order).
In essence, the merge join is saying: “Find me the cheapest plan
for this input that produces a result sorted on these columns.”
Every physical plan includes a delivered sort property that speci-
fies if the result will be sorted and, if so, on what columns and in
what order. Any plan whose delivered properties do not satisfy the
required properties is discarded. Among the qualifying plans, the
one with the estimated lowest cost is selected.

To integrate consistency checking into the optimizer we must
specify and implement required consistency properties, delivered

consistency properties, and rules for deciding whether a delivered
consistency property satisfies a required consistency property.

Required consistency property
A query’s required consistency property consists precisely of the
normalized consistency constraint described above that is com-
puted from the query’s currency clauses. The constraint is at-
tached as a required plan property to the root of the query. A
pointer to this property is inherited recursively by its children.

Delivered consistency property
A delivered consistency property consists of a set of tuples { <Ri,
Si>} where Ri is the id of a currency region and Si is a set of input
operands, namely, the input operands of the current expression
that belong to region Ri.

Delivered plan properties are computed bottom-up. Each physical
operator (select, hash join, merge join, etc.) computes what plan
properties it delivers given the properties of its inputs. We can di-
vide the physical operators into four categories, each using a spe-
cific algorithm to compute the delivered consistency property. We
briefly outline the algorithm ideas but do not include the actual
algorithms because of lack of space.

The leaves of a plan tree are table or index scan operators, possi-
bly with a range predicate. If the input operand is a base table (or
an index on a base table), we simply return the id of the table and
the id of its currency region. Consistency properties always refer
to base tables. Hence, a scan of a materialized view returns the ids
of the view’s input tables, not the id of the view.

All operators with a single relational input such as filter, project,
aggregate, and sort do not affect the delivered consistency prop-
erty and simply copy the property from its relational input.

Join operators combine two input streams into a single output
stream. We compute the consistency property of the output from
the consistency properties of the two (relational) children. If the
two children have no inputs from the same currency region, the
output property is simply the union of the two child properties. If
they have two tuples with the same region id, the input sets of the
two tuples are merged.

A SwitchUnion operator has multiple input streams but it does not
combine them in any way; it simply selects one of the streams. So
how do we derive the delivered consistency of a SwitchUnion op-
erator? The basic observation is that we can only guarantee that
two input operands are consistent if they are consistent in all chil-
dren (because any one of the children may be chosen). The algo-
rithm is based on this observation.

Consistency satisfaction rules
Plans are built bottom-up, one operator at a time. As soon as a
new root operator is added to a plan, the optimizer checks whether
the delivered plan properties satisfy the required plan properties.
If not, the plan, i.e., the new root operator, is discarded. We in-
clude the new consistency property in this framework.

Our consistency model does not allow two columns from the same
input table T to originate from different snapshots. It is possible to
generate a plan that produces a result with this behavior. Suppose
we have two (local) projection views of T that belong to different
currency regions, say R1 and R2, and cover different subsets of

6

columns from T. A query that requires columns from both views
could then be computed by joining the two views. The delivered
consistency property for this plan would be { <R1, T>, <R2,T>} ,
which conflicts with our current consistency model. Here is a
more formal definition.

Conflicting consistency property: A delivered consistency prop-
erty CPd is conflicting if there exist two tuples <Ri, Si> and <Rj,
Sj> in CPd such that Si

�
 S1j � Ø and Ri � Rj.

A consistency constraint specifies that certain input operands
must belong to the same region (but not which region). We can
verify that a complete plan satisfies the constraint by checking
that each required consistency group is fully contained in some
delivered consistency group. The following rule is based on this
observation.

Consistency satisfaction rule: A delivered consistency property
CPd satisfies a required consistency constraint CCr if and only if
CPd is not conflicting and, for each tuple <Br, Sr > in CCr, there
exists a tuple <Rd, Sd > in CPd such that Sr is a subset of Sd.

While easy to understand, this rule can only be applied to com-
plete plans because a partial plan may not include all input oper-
ands covered by the required consistency property. We need a rule
that allows us to discard partial plans that do not satisfy the re-
quired consistency property as soon as possible. We use the fol-
lowing rule on partial plans to detect violations early.

Consistency violation rule: A delivered consistency property
CPd violates a required consistency constraint CCr if (1) CPd is
conflicting or (2) there exists a tuple <Rd, Sd> in CPd that inter-
sects more than one consistency class in CCr, that is, there exist
two tuples <B1r, S1r> and <B2r, S2r> in CCr such that Sd

�
 S1r �

Ø and Sd
�

 S1r � Ø.

We also added a simple optimization to the implementation. If the
required currency bound is less than the minimum delay that the
currency region can guarantee, we know at compile time that data
from the region cannot be used to answer the query. In that case,
the plan is immediately discarded.

3.2.3 Run-Time Currency Checking
Consistency constraints can be enforced during optimization, but
currency constraints must be enforced during query execution.
The optimizer must thus produce plans that check whether a local
view is sufficiently up to date and switch between using the local
view and retrieving the data from the back-end server. We use the
SwitchUnion operator described earlier for this purpose.

Recall that all local data is defined by materialized views. Logical
plans making use of a local view are always created through view
matching, that is, the view matching algorithm finds an expression
that can be computed from a local view and produces a new sub-
stitute exploiting the view. More details about the view matching
algorithm can be found in [GL01].

Consider a (logical) expression E and a matching view V from
which E can be computed. If there are no currency constraints on
the input tables of E, view matching produces a “normal” substi-
tute consisting of, at most, a select, a project and a group-by on
top of V. If there is a currency constraint, view matching produces
a substitute consisting of a SwitchUnion on top, with a selector
expression that checks whether V satisfies the currency constraint.
The SwitchUnion has two input expressions: a local branch and a
remote branch. The local branch is the “normal” substitute men-
tioned earlier and the remote plan consists of a remote SQL query
created from the original expression E. If the selector expression,
which we call the currency guard, evaluates to true, the local
branch is chosen, otherwise the remote branch is chosen.
SwitchUnion operators are generated at the leaf-level but they can
always be propagated upwards and adjacent SwitchUnion opera-
tors can be merged. However, these and other optimizations in-
volving SwitchUnion are left as future work.

As mentioned earlier, we track a region’s data currency using a
heartbeat mechanism. The currency guard for a view in region R
is an expression equivalent to the following SQL predicate:

EXISTS (SELECT 1 FROM Heartbeat_R
 WHERE TimeStamp > getdate()–B)

where Heartbeat_R is the local heartbeat table for region R, and B
is the applicable currency bound from the query.

The above explanation deliberately ignores the fact that clocks on
different servers may not be synchronized. This complicates the
implementation but is not essential to understanding the approach.

3.2.4 Cost estimation
For a SwitchUnion with a currency guard we estimate the cost as

cgremotelocal ccpcpc +∗−+=)1(*

where p is the probability that the local branch is executed, clocal
is the cost of executing the local branch, cremote the cost of execut-
ing the remote branch, and ccg the cost of the currency guard. This
approach is similar to that of [CHS99, DR99].

The cost estimates for the inputs are computed in the normal way
but we need some way to estimate p. We’ ll show how to estimate
p assuming that updates are propagated periodically, the propaga-
tion interval is a multiple of the heartbeat interval, their timing is
aligned, and query start time is uniformly distributed.

Denote the update propagation interval by f and the propagation
delay as d. The currency of the data in the local view goes through
a cycle illustrated in Figure 3.2. Immediately after propagation,
the local data is no more than d out of date (the time it took to de-
liver the data). The currency of the data then increases linearly

Figure 3.1: Substitute with SwitchUnion and a currency guard

Figure 3.2: Sync cycle and data currency

7

with time to d+f when the next propagation event takes place and
the currency drops to d.

Suppose the query specifies a currency bound of B. The case
when d < B < d+f is illustrated in the figure. The execution of the
query is equally likely to start at any point during a propagation
cycle. If it starts somewhere in the interval marked “Local” , the
local view satisfies the currency constraint and the local branch is
chosen. The length of this interval is B-d and the total length of
the cycle is f so the probability that the local branch will be cho-
sen is (B-d)/f.

There are two other cases to consider. If B<d, the local branch is
never chosen because the local data is never sufficiently fresh so
p=0. On the other hand, if B > d+f, the local branch is always
chose because the local data is always sufficiently fresh so p=1. In
summary, here is the formula used for estimating p:

p = 0 if B-d � 0
p = (B-d)/f if 0 < B-d � f
p = 1 if B-d > f

The special case when updates are propagated continuously is cor-
rectly modeled by setting f = 0. Then if B > d, we have p = 1; oth-
erwise, p = 0.

4. Analysis and Experiments
This section reports analytical and experimental results using our
prototype. We show how the choice of query plan is affected as
the query’s C&C constraint changes. We also analyze the over-
head of plans with currency guards.

For the experiments we used a single cache DBMS and a back-
end server. The back-end server hosted a TPCD database with
scale factor 1.0 (about 1GB). The experiments reported here used
only the Customer and Orders tables, which contained 150,000
and 1,500,000 rows, respectively. The Customer table was clus-
tered on its primary key, c_custkey, and had a secondary index on
c_acctbal. The Orders table was clustered on its primary key,
(o_custkey, o_orderkey).

The cache DBMS had a shadow TPCD database with empty ta-
bles but with statistics reflecting the database on the back-end
server. There were two local views:

cust_prj(c_custkey, c_name, c_nationkey, c_acctbal)
orders_prj(o_custkey, o_orderkey, o_totalprice),

which are projections of the Customer and the Orders tables, re-
spectively. Cust_prj had a clustered index on the primary key
c_custkey and orders_prj had a clustered index on (o_custkey,
o_orderkey). They had no secondary indexes. The views were in
different currency regions and, hence, not guaranteed to be consis-
tent. The propagation intervals and delays are shown in Table 4.1.

 cid interval delay views
CR1 1 15 5 cust_prj
CR2 2 10 5 orders_prj

Table 4.1: Currency region settings

4.1 Query Optimization Experiments
We have fully integrated currency and consistency considerations
into the cost-based optimizer. The first set of experiments demon-
strate how the optimizer’s choice of plan is affected by a query’s
currency and consistency requirements, available local views,
their indexes and how frequently they are refreshed.

We used different variants of the query schemas in Table 4.2, ob-
tained by varying the parameter $K and the currency clause in S1
for Q1 to Q5; $A and $B in S2 for the rest. The parameters values
used and the logical plans generated are shown in Table 4.3 and
Figure 4.1, respectively. The rightmost column in Table 4.3 indi-
cates which plan was chosen for each query.

If we do not include a currency clause in the query, the default re-
quirements apply: all inputs mutually consistent and currency
bound equal to zero. Q1 and Q2 do not include a currency clause.
Since local data can never satisfy the currency requirement, re-
mote queries were generated. Because of the highly selective
predicate in Q1, the optimizer selected plan 1, which sends the
whole query to the back-end. For Q2, plan 2 was selected, which
contains a local join and two remote queries, each fetching a base
table. In this case, it is better to compute the join locally because

Table 4.2: Query schemas used for experiment

Table 4.3: Query variants used for experiment

(1)

Figure 4.1: Generated logical plans — (a)-(d)

8

the join result is significantly larger (72 MB) than the sum of the
two sources (42 MB). Customers have 10 orders on average so the
information for a customer is repeated 10 times in the join result.

A remote plan (plan 1) is also generated for Q3 but for a different
reason. The applicable local views cust_prj and orders_prj satisfy
the currency bounds but not the consistency requirement because
they are in different currency regions. In Q4 we relaxed the con-
sistency requirement between Customer and Orders and
changed their currency bounds (lower on Customer, higher on
Orders). The local views now satisfy the consistency requirement
and orders_prj also satisfies the currency bound but cust_prj will
never be current enough to be useful. Thus a mixed plan (plan 4)
was selected by the optimizer. If we relax the currency bound on
Customer further as in Q5, both local views became usable and
plan 5 is selected. Q3, Q4 and Q5 demonstrate how changing the
currency can drastically change the query plan.

As we can see in Figure 4.1, every local data access is protected
by a currency guard, which guarantees that local data that is too
stale will never be used.

Optimization is entirely cost based. One consequence of this is
that the optimizer may choose not to use a local view even though
it satisfies all requirements if it is cheaper to get the data from the
back-end server. This is illustrated by the following two queries.
Even though they differ only in their range predicates, the opti-
mizer chooses different plans for them.

For Q6, a remote query was chosen even though the local view
cust_prj satisfied the currency requirement. The reason is the lack
of a suitable secondary index on cust_prj while there is one at the
back-end server. The range predicate in Q6 is highly selective (53
rows returned) so the index on c_acctbal at the back-end is very
effective, while at the cache the whole view (150,000 rows) would
have to be scanned. When we increase the range, as in Q7, the
benefit of an index scan over a sequential scan diminishes and a
plan exploiting the local view is chosen.

4.2 Workload Distribution
Everything else being equal, one would expect that when currency
requirements are relaxed further, more queries can be computed
using local data and hence more of the workload is shifted to the
cache DBMS. We will show how the workload shifts when the
currency bound B is gradually increased in Q7 (previous section).

The query plan for Q7 uses either the view cust_prj or a remote
query. If the query is executed repeatedly, how often can we ex-
pect it to run locally and how does this depend on the currency
bound B?

We plotted function (1) from Section 3.2.4 in Figure 4.2. In Fig-
ure 4.2(a) it is plotted as a function of the currency bound B for f
= 100 and d = 1, 5, 10, respectively. When the currency bound is
less than the delay, the query is never executed locally. As the
currency bound is relaxed, the fraction of queries executed locally
increases linearly until it reaches 100%. This level is reached
when B = d+f, i.e., when it exceeds the maximal currency of local
data. When the delay increases, the curve just shifts to the right.

Figure 4.2(b) shows the effects of varying the refresh interval. We
fixed B = 10 and chose d = 1, 5, 8, respectively. When the refresh
interval is sufficiently small, that is, f � B-d, the query can always
be computed locally. When the refresh interval is increased, more
of the workload shifts to the back-end. The effect is much more
significant at the beginning and slows down later.

4.3 Overhead of Currency Guards
To guarantee that the result satisfies the query’s currency bounds,
the optimizer generates plans with a currency guard for every lo-
cal view in the plan. What is the actual overhead of currency
guards in the current system implementation? Where does time
go? We ran a series of experiments aimed at answering these
questions using the queries shown in Table 4.4.

Q1 is the simplest and fastest type of query but also very common
in practice. The local cache and the back-end server used the same
trivial plan: lookup on the clustering index. For Q2, both servers
used the same plan: a nested loop join with orders_prj (Orders) as
the (indexed) inner. Again, for Q3, both servers used the same
plan: a complete table scan.

Figure 4.1: Generated logical plans — (e)

L
o

ca
l W

o
rk

lo
ad

 (
%

)

Figure 4.2: Workload shift

(a) With relaxed currency
 bound

(b) With increased
 refresh interval

delay-1 delay-5 delay-10 delay-8

0
20
40
60
80

100

0 30 60 90 120

Currency Bound

0
20
40
60
80

100

0 20 40 60 80 100

Refresh Interval

Table 4.4: Queries used for experiment

9

 Local Remote
 Q1 Q2 Q3 Q1 Q2 Q3

cost (ms) 0.11 0.19 2.39 0.24 0.42 0.90
cost (%) 15.25 21.30 3.66 3.59 4.31 0.41
Rows 1 6 5975 1 6 5975

Table 4.4: Overhead of currency guards

 setup run shutdown IdealTotal
 ms % ms % ms % ms %
Q1 0.04 27.13 0.06 152.52 0.01 26.56 ~0.07 ~11.51
Q2 0.06 39.39 0.09 98.52 0.01 29.69 ~0.10 ~14.32
Q3 0.01 2.98 1.99 3.79 0.04 46.21 ~0.10 ~0.16

Table 4.5: Local currency guards overhead

For each query, we generated two traditional plans without cur-
rency checking (one local and one remote) and a plan with cur-
rency checking. We ran the plan with currency checking twice,
once with the local branches being executed and the other with
the remote branches being executed. We then compared their exe-
cution times (elapsed time) with the execution times of the plans
without currency guards.

In each run, we first warmed up the cache, then executed the cur-
rent query repeatedly (100,000 times for Q1 and Q2 local execu-
tion, 1000 for Q3 remote execution and 1000 for the others) and
computed the average execution time. Note that we executed ex-
actly the same query in order to reduce buffer pool and cache
misses, thereby minimizing the execution time (and maximizing
the relative overhead). Table 4.4 shows the absolute and relative
cost of currency guards and the number of output rows.

In absolute terms, the overhead is small, being less than a milli-
second for Q1 and Q2. In the remote cases the relative overhead is
less than 5% simply due to longer execution times. However, in
the local case the relative overhead of 15% for Q1 and 21% for
Q2 seems surprisingly high, even taking into account that their
very short execution time.

Where does the extra time go? We investigated further by profil-
ing the execution of local plans. The results are shown in the first
three columns of Table 4.5 with each column showing an absolute
overhead and a relative overhead. Each column corresponds to
one of the main phases during execution of an already-optimized
query: setup plan, run plan and shutdown plan. The absolute dif-
ference for a phase is the difference between the (estimated)
elapsed time for the phase in plan with and without currency
checking. The relative difference is as a percentage of the time of
that phase in the plan without currency checking. In other words,
both indicate how much the elapsed time of a phase had increased
in the plans with currency checking.

During the setup phase, an executable tree is instantiated from the
query plan, which also involves schema checking and resource
binding. Compared with a traditional plan, a plan with currency
checking is more expensive to set up because the tree has more
operators and remote binding is more expensive than local bind-
ing. From Table 4.4, we see that the setup cost of a currency guard
is independent of the output size but increase with the number of
currency guards in the plan. For small queries such as Q1 and Q2,
the overhead for this phase seems high. We found that the over-

head is not inherent but primarily caused by earlier implementa-
tion choices that slow down setup for SwitchUnions with currency
guards. The problem has been diagnosed but not yet remedied.

During the run phase, the actual work of processing rows to pro-
duce the result is done. The overhead for Q1 and Q2 is relatively
high because running the local plans is so cheap (Single indexed
row retrieval for Q1, and 6-row indexed nested loop join for Q2).
The overhead for a SwitchUnion operator during this phase con-
sists of two parts: evaluating the guard predicate once and over-
head for each row passing through the operator. Evaluating the
predicate is done only once and involves retrieving a row from the local
heartbeat table and applying a filter to it. Q1 just retrieves a single
row from the Customer table so it is not surprising that the rela-
tive overhead is as high as it is. In Q3, almost 6000 rows pass
through the SwitchUnion operator so the absolute overhead in-
creases but the relative overhead is small, under 4%. There are
some (limited) opportunities for speeding up this phase.

In an ideal scenario (i.e., with possible optimizations in place), it
should be possible to reduce the overhead of a currency guards to
the overhead in Q1 plus the shutdown cost. Based on this reason-
ing, we estimated the minimal overhead for our workload. The re-
sults are shown in the IdealLocal column of Table 4.5.

5. RELATED WORK
Tradeoffs between data freshness and availability, concurrency
and maintenance costs have been explored in several areas of da-
tabase systems, such as replica management, distributed data-
bases, warehousing and web caching. Yet no work we know of al-
lows queries to specify fine-grained C&C constraints, provides
well-defined semantics for such constraints, and produces query
plans guaranteeing that query results meet the constraints.

Replica management
In a typical replica system setting, updates are centralized on a
back-end server, while read workloads are offloaded to local rep-
licas. Keeping all the copies up to date at all times is neither prac-
tical nor necessary. Can one lower the maintenance overhead at
the cost of the freshness of the data? Different studies have tack-
led different aspects of this problem.

Quasi-copies [ABG88] allow an administrator to specify the
maximum divergence of cached objects, and maintain them ac-
cordingly. A later paper [GN95] formalizes these concepts and
models the system using a queuing network. The work on “Good
Enough” Views [SK97] extends these ideas to approximate view
maintenance; Globe [KKST98] to wide-area distributed systems;
[LC02] to mobile computing scenario with distributed data
sources. Identity connection [WQ87] suggests a relationship to
model the connection between a master and its copies. Research-
ers at Bellcore [SR90] proposed taxonomy for interdependent
data management.

The approach taken in these papers is fundamentally different
from ours: their approach is maintenance centric while ours is
query centric. They propose different approximate replica mainte-
nance policies, each guaranteeing certain C&C properties on the
replicas. In contrast, given a query with C&C requirements, our
work focuses on extending the optimizer to generate a plan ac-
cording to the known C&C properties of the replicas. Thus, C&C
requirements are enforced by the cache DBMS.

10

TRAPP [OW00] stores intervals instead of exact values in the da-
tabase, combining local bounds and remote data to deliver a
bounded answer that satisfies the precision requirement. Diver-
gence caching [HSW94], Moving Objects Databases [WXC98]
and work at Stanford [OLW01] deal with the problem of setting
optimal bounds for approximate values given queries with preci-
sion bound and an update stream. These earlier query-centric pro-
posals allow a query to specify divergence bounds and guarantee
that the bounds are met. However, they have several limitations.
First, they do not guarantee any consistency. Second, they do not
consider using derived data, e.g., materialized views, to answer
queries. Third, field-value level currency control limits the scal-
ability of those systems. Fourth, the decision to use local data is
not cost based, i.e., local data is always used if it satisfies the cur-
rency constraints.

Distributed databases
In this area there are many papers focused on improving availabil-
ity and autonomy by allowing local data to diverge from the mas-
ter copy. They differ from each other in divergence metrics, the
concrete update protocols and corresponding divergence bound
guaranteed. Read-only Transactions [GW82], the Demarcation
Protocol [BG92] and TACC [YV00] fall into this category. None
of them supports queries with divergence bound constraints.

Epsilon-serializability [PL91] allows queries to specify inconsis-
tency bounds. However, they focus on a different problem, hence
utilize different techniques: how to achieve higher degree of con-
currency by allowing queries to see database states with bounded
inconsistency introduced by concurrent update transactions.

Warehousing and web views
WebViews [LR03] suggests algorithms for the on-line view selec-
tion problem considering a new constraint--the required average
freshness of the cached query results. Obsolescent Materialized
Views [Gal99] determines whether to use local or remote data by
integrating the divergence of local data into the cost model of the
optimizer. A later paper [BR02] tackles a similar problem for sin-
gle object accesses. In all these approaches, the models of fresh-
ness are coarse-grained and the use of it is purely heuristic, pro-
viding no guarantees on delivered data currency and consistency.

The work on distributed materialized views in [SF90] allows que-
ries to specify currency bounds, and they also support local mate-
rialized views. However, it focuses on determining the optimal re-
fresh sources and timing for multiple views defined on the same
base data. It does not consider consistency constraints, assuming a
query is always answered from a single view. Furthermore, it is
not clear how it keeps track of the currency information of local
views, or how and when it checks the currency constraints.

FAS [RBSS02] explores some preliminary query-centric ideas by
allowing queries to specify currency requirements. Working as
middleware on top of a cluster of multi-versioned replicated data-
bases, FAS provides two major functionalities: (1) routing a query
to the right database according to its currency requirement, and
(2) deciding when and which replica database to refresh based on
the workload with currency requirements. Compared to our work,
FAS has three major limitations. First, it does not allow queries to
specify relaxed consistency requirements, i.e., a query result al-
ways has to be consistent. Second, it only supports database level

currency control. This limits replica maintenance flexibility, re-
sulting in possibly higher overhead. Last but not least, enforcing
currency requirements at the middleware level instead of inside
the DBMS, FAS cannot provide transactional currency bound
guarantees on query results.

6. CONCLUSIONS AND FUTURE WORK
This work was motivated by the lack of a rigorous foundation for
the widespread practice of applications using replicated and
cached data. To remedy the situation we proposed to allow appli-
cations to explicitly specify currency and consistency constraints
in queries and have the DBMS enforce the constraints. We devel-
oped a model for C&C constraints and defined their semantics
rigorously, thereby providing correctness standards for the use of
replicated and cached data. We showed how C&C constraints can
be expressed succinctly in SQL through a new currency clause.
We described how support for C&C constraints is implemented in
our prototype mid-tier database cache. C&C constraints are fully
integrated into query optimization and execution.

This work provides a solid semantic foundation for the use of rep-
licated and cached data but it is by no means complete; it can be
extended in several directions. Regarding implementation, we
plan to support timeline consistency and also finer-granularity
consistency constraints, at the level of groups of rows. In the area
of cache management, C&C constraints add more dimensions to
this problem: even in the case of a cache hit, the local data might
not be used simply because it does not satisfy consistency or cur-
rency constraints. We hope to develop caching mechanisms and
policies that take these additional dimensions into account.

7. REFERENCES
[ABG88] R. Alonso, D. Barbará, H. Garcia-Molina, and S. Abad.
Quasi-copies: Efficient Data Sharing For Information Retrieval Systems.
In EDBT, 1988.

[ABK+03] M. Altinel, C. Bornhövd, S. Krishnamurthy, C.Mohan, H. Pi-
rahesh, and B. Reinwald. Cache Tables: Paving The Way For An Adap-
tive Database Cache. In VLDB, 2003.

[BAK+03] C. Bornhövd, M. Altinel, S. Krishnamurthy, C.Mohan, H. Pi-
rahesh, and B. Reinwald. DBCache: Middle-Tier Database Caching For
Highly Scalable E-Business Architectures. In SIGMOD, 2003.

[BGM92] D.Barbará and H.. Garcia-Molina. The Demarcation Protocol:
A Technique For Maintaining Linear Arithmetic Constraints In Distrib-
uted Database Systems. In EDBT, 1992.

[BR02] L. Bright and L. Raschid. Using Latency-Recency Profiles for
Data Delivery on the Web. In Proc. In VLDB, 2002.

[CHS99] F. Chu, J. Halpern, and P. Seshadri. Least Expected Cost Query
Optimization: An Exercise In Utility. In PODS, 1999.

[DR99] D. Donjerkovic and R. Ramakrishnan. Probabilistic Optimization
Of Top N Queries. In VLDB, 1999.

[Gal99] A. Gal. Obsolescent Materialized Views in Query Processing of
Enterprise Information Systems. In CIKM, 1999.

[GMW82] H. Garcia-Molina and G. Wiederhold. Read-Only Transactions
In A Distributed Database. In TODS, 1982.

[GN95] R. Gallersdörfer and M. Nicola. Improving Performance In Repli-
cated Databases Through Relaxed Coherency. In VLDB, 1995.

[GL01] J. Goldstein and P. Larson. Optimizing Queries Using Material-
ized Views: A Practical, Scalable Solution. In SIGMOD, 2001.

[HSW94] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in
Client Server Architectures. In PDIS, 1994.

[KKST98] A. Kermarrec, I. Kuz, M. Steen, and A. Tanenbaum. A Frame-
work For Consistent, Replicated Web Objects. In ICDCS, 1998.

11

[LC02] S.Weissman L. and P. Chrysanthis. Personalizing Information
Gathering For Mobile Database Clients. In SAC, 2002.

[LGZ04] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent
Mid-Tier Database Caching In Sql Server. In ICDE, 2004.

[LR03] A. Labrinidis and N. Roussopoulos. Balancing Performance And
Data Freshness In Web Database Servers. In VLDB, 2003.

[OLW01] C. Olston, B. Loo, and J. Widom. Adaptive Precision Setting
for Cached Approximate Values. In SIGMOD, 2001.

[OW00] C. Olston and J. Widom. Offering A Precision-Performance
Tradeoff For Aggregation Queries Over Replicated Data. In VLDB, 2000.

[PL91] C. Pu and A. Leff. Replica Control In Distributed Systems: An
Asynchronous Approach. In SIGMOD, 1991.

[RBSS02] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS - a Fresh-
ness-Sensitive Coordination Middleware for a Cluster of OLAP Compo-
nents. In VLDB, 2002.

[SF90] A. Segev and W. Fang. Currency-based Updates To Distributed
Materialized Views. In ICDE, 1990.

[SK97] L. Seligman and L. Kerschberg. A Mediator For Approximate
Consistency: Supporting ''Good Enough'' Materialized Views. In JIIS,
8(3):203--225, 1997.

[SR90] A. Sheth and M. Rusinkiewicz. Management Of Interdependent
Data: Specifying Dependency And Consistency Requirements. In Work-
shop on the Management of ReplicatedData, pages 133--136, 1990.

[WQ87] G. Wiederhold and X. Qian. Modeling Asynchrony In Distrib-
uted Databases. In ICDE, 1987.

[WXCJ98] O.Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Ob-
jects Databases: Issues And Solutions. In Statistical And Scientific Data-
base Management, pages 111--122, 1998.

[YV00] H. Yu and A. Vahdat. Efficient Numerical Error Bounding For
Replicated Network Services. In VLDB, 2000.

8. APPENDIX: C&C SEMANTICS
8.1 Database Model
A database is modeled as a collection of database objects organ-
ized into one or more tables. The granularity of an object may be a
view, a table, a column, a row or even a single cell in a row. Every
object has a master and zero or more copies. The collection of all
master objects is called the master database. A cache is any col-
lection of copies, and can include (parts of) one or more database
tables or materialized views.

Transactions only modify the master database, and we assume
Strict 2PL is enforced. Further, for simplicity we assume that
writers only read from the master database. Copies of modified
objects are synchronized with the master by the DBMS after the
writer commits through (system-initiated) copy-transactions, but
not necessarily in an atomic action as part of the commit.

A read-only transaction's read requests include currency and con-
sistency constraints, and any copy of the requested object that
satisfies the constraints can be returned to the transaction. We as-
sume that as transactions commit, the DBMS assigns them an in-
teger id—a timestamp—in increasing order. We denote the his-
tory after n update transactions have committed by Hn, and usu-
ally treat it as Hn = T1 ° T2 ° … ° Tn. A database state produced by
applying a history Hn on the initial state is called a snapshot of
the database. Since each update transaction maps one-to-one with
a timestamp, as well as with a snapshot of the master database, we
sometimes use these concepts (update transaction Tn, history Hn,
snapshot of the master database) interchangeably.

Next, we extend the database model to allow for the specification
of currency and consistency constraints. We emphasize that the

extensions described below are conceptual; how a DBMS sup-
ports these is a separate issue.

Transaction Timestamps: The function xtime(A) returns the
transaction timestamp of transaction A. We overload the function
xtime to apply to objects. The transaction timestamp associated
with a master copy O, xtime(O, Hn), is equal to xtime(A), where
A is the latest transaction in Hn that modified O. For a copy C, the
transaction timestamp xtime(C, Hn), is copied from the master
object by the DBMS when the copy is synchronized, i.e., when a
special copy-transaction copies the value of the master to the slave
object. Note that if C is a copy of master object O, then xtime(O,
Hn) � xtime(C, Hn).

Self-Identification: The function master applied to an object
(master or copy) returns the master version of that object.

Copy Staleness (Currency): Given a database snapshot Hn, a
copy C is stale if master(C) is modified in Hn after xtime(C, Hn).
The time when C became stale, called the stale point, stale(C, Hn),
is equal to xtime(A), where A is the first transaction that modifies
master(C) after xtime(C, Hn) in Hn. If C is not stale in Hn

stale(C, Hn) is defined to be xtime(Tn).

8.2 The Extended Query
Intuitively, the C&C requirements of query results should not de-
pend on data objects not used in constructing the result. For a
given query Q, we construct an extended version

extQ . The con-
struction proceeds block-at-a-time, and ensures that the result of

extQ includes all objects used in constructing the result of Q (in-
cluding objects used in testing Where clauses, grouping, etc.). We
refer to the result of

extQ as the relevant set for Q. (We omit the
details of the construction for lack of space.)

8.3 Specifying Currency and Consistency
We classify currency and consistency requirements into four
types: per-object, per-group, inter-group, and inter-statement.
Per-object freshness requirements, which we call currency con-
straints, specify the maximal acceptable deviation for an object
from its master copy. Group consistency constraints specify the
relationship among a group of objects, for example the answers to
a query. Inter-group consistency constraints specify the rela-
tionships among object groups, for example answer sets to multi-
ple (sub-) queries. Session consistency constraints are essentially
inter-group consistency constraints, but cover groups of objects
arising from multiple SQL statements within a session; we do not
discuss them further.

Constraints of all four types can be expressed using standard for-
mulas constructed from object variables and constants, using
comparison operators, quantifiers and Boolean connectives.

8.4 Currency Constraints
For a query Q, a user can specify currency requirements for any
copy C in the complete extended query set

allextQ −
 by compar-

ing C with its counterpart in the master copy of the results of
allextQ −

, in terms of either the value of C or the timestamp asso-
ciated with C. In our implementation, we measure the currency of

12

copy C in snapshot Hn by how long it has been stale, i.e., cur-
rency(C, Hn) = xtime(Tn) - stale(C, Hn).

8.5 Group Consistency of Cached Objects
The function return(O, s) returns the value of O in database state
s. We say that object O in scache is snapshot consistent with re-
spect to a database snapshot Hn if return(O, scache) = return(O,
Hn) and xtime(O, Hn) = xtime(master (O), Hn).

Given how copies are updated through copy transactions, we ob-
serve that for every object in a cache, there is at least one database
snapshot (the one with which it was synchronized) with respect to
which it is snapshot consistent. However, different objects in a
cache could be consistent with respect to different snapshots. For
a subset K of the cache, if a snapshot Hn exists such that each ob-
ject in K is snapshot consistent with regards to Hn, then we say K
is snapshot consistent with respect to Hn. If K is the entire cache,
we say the cache is snapshot consistent.

We define the distance between two objects (which could be mas-
ters or copies) A and B in a snapshot Hn as follows. Let xtime(B,
Hn) = Tm and let xtime(A, Hn) ≤ xtime(B, Hn). Then:

 distance(A, B, Hn) = currency(A, Hm)

Since B is current (identical to its master) at time Tm, the distance
between A and B reflects how close A and B are to being snap-
shot consistent with respect to snapshot Hm. Figure 8.1 illustrates
the basic concepts.

Let t be the distance between A and B. We say that A and B are
�

-consistent with consistency bound t. We also extend the notion
of

�
-consistency for a set of objects K, by defining the bound t to

be the maximum distance between any pair of objects in K.

Consider a set of objects K cached objects in database snapshot
Hn. If K is

�
-consistent with consistency bound t=0, and O is the

object with the largest value of xtime(O, Hn) in K, it is easy to
show that K is snapshot-consistent with respect to the database
snapshot at xtime(O, Hn). In general, as t increases, the deviation
from snapshot consistency also increases.

8.6 Group Consistency for Queries
Our approach to consistency constraints in a query specification
reflects two principles:

1) Consistency of query results should not depend on data ob-
jects not used in constructing the result; this is achieved
through the use of the extended query

extQ .

2) It must be possible to require consistency for subsets of the
data used in a query; we achieve this, naturally, by leverag-
ing the query mechanism to identify the subsets.

Given a query Q, the relevant set for Q (the result of the extended
version

extQ) includes all objects that affect the result of Q. We
can apply the concept of

�
-consistency to this set, and thereby

impose a consistency constraint on Q.

In practice, however, we may not care whether the entire relevant
set is

�
-consistent, and simply wish to require that certain subsets

of the relevant set be
�

-consistent. We leverage the power of SQL

queries to achieve this, as follows. Given query Q, we allow the
use of an auxiliary set of queries P over the relevant set of Q to
identify the subset that must be

�
-consistent. We illustrate the

approach by discussing two common cases.

Consistency Requirements on Input Tables of Query Q: We
may want to state that one or more input tables must be from a
single database snapshot. We can do this using a query p that
simply selects all attributes associated with those tables from

extQ and requiring
�

-consistency with respect to the result of p.

Consistency With Respect to Horizontal Partitions of the Re-
sult of Query Q: Again, we use an auxiliary query p over

extQ .
We can use SQL’s Group By clause to divide the result of p hori-
zontally into partitions, and require

�
-consistency with respect to

one or more partitions (selected using the Having clause).

8.7 Inter-Group Consistency
We have discussed two natural ways in which groups of related
objects arise, namely as subsets of a cache, or part of the result of
a query. It is sometimes necessary to impose consistency require-
ments across multiple groups of objects. Examples include:

• Multiple groups of cached objects, such as all cached Order
records and all cached Catalog records.

• Groups of objects from different blocks of a query. (Observe
that each subquery has an extended version!)

• Groups of objects drawn from multiple statements (e.g., dif-
ferent queries) within a session.

Regardless of the context in which groups arise, let G1, G2, … ,
Gn be the sets of relevant data objects for groups 1 to n.

A user can specify two types of consistency requirements over this
collection:

�
-consistency: Naturally, we can require that the objects in the

union or intersection of one or more groups be
�

-consistent with
bound t.

Time-line consistency: Intuitively, we might want to say
that “time always moves forward” across a certain ordering
of groups. That is, for any i, j such that nji ≤< , any ob-
jects A ∈ Gi, B ∈ Gj, xtime(A, Hn) ≤ xtime(B, Hn), where
Hn is the database snapshot after executing all statements
corresponding to the groups G1, G2, … , Gn.

Figure 8.1: Basic concepts

