

Support for Relaxed Currency and Consistency
Constraints in MTCache

Hongfei Guo
University of Wisconsin

guo@cs.wisc.edu

Per-Åke Larson
Microsoft

palarson@microsoft.com

Raghu Ramakrishnan
University of Wisconsin

raghu@cs.wisc.edu

Jonathan Goldstein
Microsoft

jongold@microsoft.com

1. INTRODUCTION
A typical e-commerce site such as eBay makes frequent use of
replicated and cached data. When browsing auctions in a
category, the data (e.g., item prices, number of bids) may be a
little out of date. However, most users understand and accept this,
as long as the page they see when they click on an individual
auction is completely current. As a concrete example, consider
the following example query that returns a summary of books with
the specified title:

Different applications (Apps) may have different freshness
requirements for this query. App A needs an up-to-date query
result. App B prefers a quick response time but doesn’ t care if the
reviews are a bit old. App C does not mind if the result is stale but
it requires the entire result to be snapshot consistent, i.e., reflect a
state of the database at a certain point of time. App D is satisfied
with a weaker version of this guarantee, requiring only that all
rows retrieved for a given book reflect the same snapshot, with
different books possibly from different snapshots.

Application designers normally understand when it is acceptable
to use copies and what levels of data staleness and inconsistency
are within the application’s requirements. Currently, such
requirements are only implicitly expressed through the choice of
data sources for queries. For example, if a query does not require
completely up-to-date data, we may design the application to
submit it to a database server C that stores replicated data instead
of submitting it to database server B that maintains the up-to-date
state. The routing decision is hardwired into the application and
cannot be changed without changing the application.

This very much resembles the situation in the early days of
database systems when programmers had to choose what indexes
to use and how to join records. This was remedied by raising the
level of abstraction, expressing queries in SQL and making the
database system responsible for finding the best way to evaluate a
query. We believe the time has come to raise the level of
abstraction on the use of replicated and cached data by allowing
applications to state their data currency and consistency (C&C)
requirements explicitly and have the system take responsibility for
producing results that meet the requirements.

We propose that applications make the requirements known to the
DBMS through explicit C&C constraints in queries and have
developed mechanisms to guarantee that the constraints are
satisfied. This not only provides a solid semantic foundation for
the use of replicated and cached data and increases the robustness
of applications, but it also opens the door for the DBMS to do
C&C-aware cache management and replica maintenance. This
paper provides a brief overview of our proposal and
implementation in MTCache; see [GLRG04] for more detail and a
comparison with related work.

2. SPECIFYING C&C CONSTRAINTS
We first clarify what we mean by the terms currency and
consistency. Suppose we have a database with two tables, Books
and Reviews, as might be used by a small online book store,
which are managed by a back-end database server.

Replicated data or the cached result of a query may not be
completely up to date. Currency simply refers to how current or
up-to-date a set of rows are (a table, a view or a query result). We
define it as the elapsed time since a copy became stale.

Suppose that we have two replicated tables BooksCopy and
ReviewsCopy. The state of each corresponds to some snapshot of
the back-end database. If the states of the two replicas reflect the
same snapshot, we say that they are mutually consistent or that
they belong to the same consistency class.

To express C&C constraints we propose a new currency clause for
SQL queries. We’ ll use Q1 to illustrate and explain different
forms of the currency clause, as shown in Figure 1.

First consider currency clause E1. It expresses two constraints: a)
inputs cannot be more than 10 min out of date and b) the states of
the two input tables must be consistent. Enclosing two or more
tables in parenthesis indicates that they are in the same
consistency class and must be mutually consistent. To be correct,
the result obtained using any replicas must be equivalent to the
result obtained if the query were computed against snapshots of
Books and Reviews taken from the same database state and no
older than 10 min.

E2 relaxes the currency bound on R to 30 min and no longer
requires that the tables be from the same snapshot by placing them
in different consistency groups.

We assume that isbn is a unique key of Books. E3 allows each
row of the Books table to originate from different snapshots. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

Q1: SELECT ...
FROM Books B, Reviews R
WHERE B.isbn = R.isbn and B.title = “Databases“

phrase “R by R.isbn” has the following meaning: if the rows in
Reviews are grouped on isbn, rows within the same group must
originate from the same snapshot. Note that a Books row and the
Review rows it joins with may be from different snapshots
(because Books and Reviews are in different consistency classes).
Compare this with E4, which requires that each Books row be
consistent with the Reviews rows that it joins with. However,
different Books rows may be from different snapshots.

In summary, a C&C constraint consists of a set of triples where
each triple specifies (1) a currency bound; (2) a set of tables
forming a consistency class; and (3) a set of columns defining
how to group the rows of the consistency class into consistency
groups. A SQL query may of course contain multiple SFW
blocks. C&C constraints are not restricted to the outermost block
of a query — any Select-From-Where block can have a C&C
constraint. If a query contains multiple blocks with currency
constraints, all constraints must be satisfied.

3. IMPLEMENTATION IN SQL SERVER
We have extended MTCache, our mid-tier database cache
prototype described in [LGZ04], to support queries with C&C
constraints. To this end, we keep track of which local materialized
views are mutually consistent and how current their data is. We
extended the cost-based optimizer to take into account the query’s
C&C constraints and the C&C properties of applicable local
materialized views during optimization. In contrast to traditional
plans, plans must now include operators for performing runtime
checking of the currency of local data. Depending on the outcome
of this test, the plan switches between using either local data or
remote data.

C&C Tracking Mechanism We group local materialized views
into (logical) currency regions (CRs). The update mechanism used
(transactional replication) propagates changes asynchronously but
ensures that the views within a CR are transactionally and
mutually consistent at all times. The data in a view may be
somewhat out of date but it is always a transactionally correct
snapshot of the underlying database.

We have a global heartbeat table at the back-end containing one
row and one column: the current timestamp, which is updated at
regular intervals by a stored procedure. This table is replicated
into local heartbeat tables, one for each currency region. Each
currency region is associated with a distribution agent that wakes
up at regular intervals and propagates all pending changes,
including changes to the heartbeat table. We can thus guarantee
that a view is up to date as of the time found in its region’s
heartbeat table because all changes up to that time have been
propagated to the views.

Consistency Checking Mechanism We enforce consistency
constraints at optimization time by making use of the optimizer’s
plan property mechanisms. C&C constraints are captured during
parsing, checked and normalized into a single constraint. The
normalized C&C constraint is attached as a required C&C
property to the root and inherited recursively by its children.

As part of delivered plan properties, C&C properties are
computed bottom-up while building a physical plan. Each
physical operator (select, hash join etc.) computes what properties
it delivers given the properties of its inputs. Whenever a new root
operator is added to the plan, we check whether the resulting plan

satisfies all required C&C properties. If not, the new plan, i.e., the
root operator, is discarded. Among the qualifying plans, the one
with the estimated lowest cost is selected.

Currency Checking Mechanism Currency constraints must be
enforced during query execution. The optimizer produces plans
containing SwitchUnion operators that first check whether a local
view is sufficiently up to date and switches between using the
local view and retrieving the data from the back-end server.
Similar two-faced plans are used by DBCache [BAK+03].

We modified the view matching mechanism in SQL Server to add
currency checking for local views. With the original view
matching mechanism, when a matched local view V is found for
expression E, a substitute expression E(V) is built. If a currency
guard is required for V, we create the substitute shown in Figure 2
instead. The local plan is normal substitute E(V) while the remote
plan consists of a remote SQL query created from expression E. If
the currency guard evaluates to true that local plan is executed,
otherwise the remote plan is executed.

The currency guard for a local view that belongs to region R is an
expression equivalent to the following SQL predicate:

EXIST (SELECT 1 FROM Heartbeat_R
 WHERE TimeStamp > getdate()–B)

where Heartbeat_R is the local heartbeat table for region R and B
is the applicable currency bound from the query.

Cost Estimation In most cases, using a local view is cheaper; but
there are times when using remote sources on the back-end server
turns out to be cheaper. For instance, there could be an applicable
index on the back-end server but not locally. The optimizer selects
the best plan (and subplans) based on cost so we need a way to
estimate the cost of a SwitchUnion with a currency guard. We
estimate the cost as

cgremotelocal ccpcpc +∗−+=)1(*

where p is the probability of executing the local branch, clocal /
cremote is the cost of executing the local / remote branch, and ccg
the cost of checking the currency guard. The probability can be
estimated as

p = 0 if B-d � 0
p = (B-d)/h if 0 � B-d � h
p = 1 if B-d � h

where B is the currency bound, d is the average propagation delay
and h is the average propagation interval.

4. REFERENCES
[BAK+03] C. Bornhövd, M. Altinel, S. Krishnamurthy, C.Mohan, H.
Pirahesh, and B. Reinwald. DBCache: Middle-Tier Database Caching For
Highly Scalable E-Business Architectures. In SIGMOD, 2003.

[GLRG04] H. Guo, P. Larson, R. Ramakrishnan and J. Goldstein. Relaxed
Currency and Consistency: How to Say “Good Enough” in SQL. In
SIGMOD, 2004.

[LGZ04] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent
Mid-Tier Database Caching In Sql Server. In ICDE, 2004.

Figure 2: Substitute with SwitchUnion and a currency guard

