
. 1 .

 University of Wisconsin Technical Report (TR1520)
Caching with “Good Enough”

Currency, Consistency, and Completeness

Hongfei Guo
University of Wisconsin

guo@cs.wisc.edu

Per-Åke Larson
Microsoft

palarson@microsoft.com

Raghu Ramakrishnan
University of Wisconsin

raghu@cs.wisc.edu

ABSTRACT

SQL extensions that allow queries to explicitly specify data quality
requirements in terms of currency and consistency were proposed
in an earlier paper. This paper develops a data quality-aware, finer
grained cache model and studies cache design in terms of four
fundamental properties: presence, consistency, completeness and
currency. Such a model provides an abstract view of the cache to
the query processing layer, and opens the door for adaptive cache
management. We describe an implementation approach that builds
on the MTCache framework for partially materialized views. The
optimizer checks most consistency constraints and generates a
dynamic plan that includes currency checks and inexpensive
checks for dynamic consistency constraints that cannot be vali-
dated during plan compilation. Our solution not only supports
transparent caching but also provides transactional fine grained
data currency and consistency guarantees.

1. INTRODUCTION
Replicated data, in various forms, is widely used to improve scal-
ability, availability and performance. Applications that use out-of-
date replicas are clearly willing to accept results that are not cur-
rent, but typically have some limits on how stale the data can be.
SQL extensions that allow queries to explicitly specify such data
quality requirements in the form of consistency and currency
(C&C) constraints were proposed in [GLRG04]. That work also
described how support for C&C constraints is implemented using
MTCache [LGGZ04], a prototype mid-tier database cache built on
Microsoft SQL Server.

We model cached data as materialized views over a primary
copy. The work reported in [GLRG04] considered only the re-
stricted case where all rows of a cached view are consistent, i.e.,
from the same database snapshot. This requirement severely re-
stricts the cache maintenance policies that can be used. A pull
policy, where the cache explicitly refreshes data by issuing queries
to the source database, offers the option of using query results as
the units for maintaining consistency and other cache properties. In
particular, issuing the same parameterized query with different
parameter values returns different partitions of a cached view,
offering a much more flexible unit of cache maintenance (view
partitions) than using entire views.

The extension to finer granularity cache management funda-
mentally changes every aspect of the problem, imposing non-trivial
challenges: 1) how the cache tracks data quality; 2) how users
specify cache properties; 3) how to maintain the cache efficiently;

and 4) how to do query processing. In this paper, we propose a
comprehensive solution, as described in Section 1.2.

Figure 1.1 shows our running example, where Q1 is a param-
eterized query, followed by different parameter settings.

1.1 Background and Motivation

We now motivate four properties of cached data that determine
whether it can be used to answer a query. In the model proposed in
[GLRG04], a query’s C&C constraints are stated in a currency
clause. For example, in Q2, the currency clause specifies three
“quality” constraints on the query results: i) “ON (A, B)” means
that any Authors and Books rows joined together must be consis-
tent, i.e., from the same database snapshot. ii) “BOUND 10 min”
means that these rows must be current to within 10 minutes, that
is, at most 10 minutes out of date. iii) “BY authorId” means that
all result rows with the same authorId value must be consistent. To
answer the query from cached data, the cache must guarantee that
the result satisfies these requirements and two more: iv) the Au-
thors and Books rows for authors 1, 2, and 3 must be present in the
cache and v) they must be complete, that is, no rows are missing.

E1.1 requires that all three authors with id 1, 2 and 3 be present
in the cache, and that they be mutually consistent. Suppose we
have in the cache a partial copy of the Authors table, AuthorCopy,
which contains some frequently accessed authors, say those with
authorId 1-10. We could require the cache to guarantee that all
authors in AuthorCopy be mutually consistent, in order to ensure
that we can use the rows for authors with id 1, 2 and 3 to answer
E1.1, if they are present. However, query E1.1 can be answered
using the cache as long as authors 1, 2 and 3 are mutually consis-
tent, regardless of whether other author rows are consistent with
these rows. On the other hand, if the cache provides no consistency
guarantees, i.e., different authors could have been copied from a
different snapshot of the master database, the query cannot be an-
swered using the cache even if all requested authors are present. In
contrast, query E1.2, in which the BY clause only requires rows
for a given author to be consistent, can be answered from the cache
in this case.

Query Q3 illustrates the completeness property. It asks for all
authors from Madison, but the rows for different authors do not
have to be mutually consistent. Suppose we keep track of which
authors are in the cache by their authorIds. Even if we have all the
authors from Madison, we cannot use the cached data unless the
cache guarantees that it has all the authors from Madison. Intui-
tively, the cache guarantees that its contents are complete w.r.t. the
set of objects in the master database that satisfy a given predicate.

. 2 .

No matter what cache management mechanisms or policies are
used, as long as cache properties are accurately maintained, query
processing can deliver correct results. Thus, cache property de-
scriptions serve as an abstraction layer between query processing
and cache management, which enables the implementation of
query processing to be independent of cache maintenance.

1.2 Our Contributions

We offer a comprehensive solution to finer granularity cache man-
agement while still providing query results that satisfy the query’s
consistency and currency requirements. 1) We build a solid foun-
dation for cache description by formally defining presence, consis-
tency, completeness and currency (Section 2). 2) We introduce a
novel cache model that supports a specific way of partitioning and
translate a rich class of integrity constraints (expressed in extended
SQL DDL syntax) into properties required to hold over different
partitions (Section 3). 3) We identify an important property of
cached views, called safety, and show how safety aids in efficient
cache maintenance (Section 4). Further, we formally define cache
schemas and characterize when they are safe, offering guidelines
for cache schema design (Section 5). 4) We show how to effi-
ciently enforce finer granularity C&C constraints in query process-
ing by extending the approach developed in [GLRG04] (Section
6). 5) We report analytical and experimental results, providing
insight into various performance trade-offs (Section 7).

2. CACHE PROPERTIES
The previous work in [GLRG04] describes the semantics of C&C
constraints, providing a correctness standard. In this section, we
define the properties of the cache using the same model. To make
this paper more self-contained, we summarize the model and list
some assumptions specific to this paper in Section 2.1.

2.1 Basic Concepts

A database is modeled as a collection of database objects organ-
ized into one or more tables. Conceptually, the granularity of an
object may be a view, a table, a column, a row or even a single cell
in a row. To be specific, in this paper an object is a row. Let iden-
tity of objects in a table be established by a (possibly composite)
key K. When we talk about a key at the database level, we implic-
itly include the scope of that key. Every object has a master and
zero or more copies. The collection of all master objects is called
the master database. We denote the database state after n commit-
ted update transactions (Ti, i = 1..n) by Hn = (Tn ° Tn-1 ° … °
T1(H0)), where H0 is the initial database state, and “°” is the usual
notation for functional composition. Each database state Hi is
called a snapshot of the database. Assuming each committed
transaction is assigned a unique timestamp, we sometimes use Tn
and Hn interchangeably.

A cache is a collection of materialized views, each consisting
of a collection of copies (of row-level objects). Although an object
can have at most one copy in any given view, multiple copies of
the same object may co-exist in different cached views. We limit
our discussion to selection queries, and we only consider views
defined by selection queries that select a subset of data from a table
or a view of the master database.

Self-Identification: The function master() applied to an object
(master or copy) returns the master version of that object.

Transaction Timestamps: The function xtime(T) returns the
transaction timestamp of transaction T. We overload the function
xtime to apply to objects. The transaction timestamp associated
with a master O, xtime(O, Hn), is equal to xtime(A), where A is the
latest transaction in T1..Tn that modified O. For a copy C, the trans-
action timestamp xtime(C, Hn) is copied from the master object
when the copy is synchronized.

Copy Staleness: Given a database snapshot Hn, a copy C is
stale if master(C) was modified in Hn after xtime(C, Hn). The time
at which O becomes stale, called the stale point, stale(C, Hn), is
equal to xtime(A), where A is the first transaction in T1..Tn that
modifies master(C) after xtime(C, Hn). The currency of copy C in
snapshot Hn is measured by how long it has been stale, i.e., cur-
rency(C, Hn) = xtime(Tn) - stale(C, Hn).

2.2 Presence

The simplest type of query asks for an object identified by its key,
as shown in Q1. How do we know an object is in the cache?

Intuitively, we require that every object in the cache must be
copied from some valid database snapshot. The function return (O,
s) returns the value of object O in database state s. We say that
copy C in a cache state Scache is snapshot consistent w.r.t. a data-
base snapshot Hn if return(C, Scache) = return(master(C), Hn) and
xtime(C, Hn) = xtime(master(C), Hn). We also say CopiedFrom(C,
Hn) holds.

Defn: (Presence) We say an object O is present in cache Scache iff
there is a copy C in Scache such that master(C) = O, and for some
snapshot Hn of the master database CopiedFrom(C, Hn) holds. �

2.3 Consistency

When a query asks for more than one object, it can specify mutual
consistency requirements on them, as shown in E1.1.

For a subset U of the cache, we say that U is mutually snap-
shot consistent (consistent for short) w.r.t. a snapshot Hn of the
master database if and only if CopiedFrom(O, Hn) holds for every
object O in U. We also say CopiedFrom(U, Hn) holds.

Besides specifying a consistency group by object keys (e.g.,
authorId in E1.2), a query can also specify a consistency group by
a selection, as in E.1.3. Suppose all authors with id 1, 2 and 3 are
from Madison. The master database might contain other authors
from Madison. The cache still can be used to answer this query as
long as all three authors are mutually consistent and no more than
10 minutes old. Given a query Q and a database state s, let Q(s)
denote the result of evaluating Q on s.

Defn: (Consistency) For a subset U of the cache Scache, if there is a
snapshot Hn of the master database such that CopiedFrom(U, Hn)
holds, and for some query Q, the following holds: U⊆ Q(Hn), then

U is snapshot consistent (or consistent) w.r.t. Q and Hn.
�

Figure 1.1: Running Example

. 3 .

U consists of copies from snapshot Hn and Q is a selection
query. Thus the containment of U in Q(Hn) is well defined. Note
that object metadata, e.g., timestamps, are not used in this com-
parison.

If a collection of objects is consistent, then any of its subsets is
also consistent. Formally,

Lemma 2.1: Given a subset of objects U in the cache Scache, if U is
consistent w.r.t. a query Q and a snapshot Hn of the master data-
base, then any subset P(U) defined by a selection query P is con-
sistent w.r.t. P°Q and Hn. �

Proof: since U is consistent w.r.t. Q and Hn, we have:
)(nHQU ⊆ (1)

CopiedFrom(U, Hn). (2)
Since (1), for any selection query P,

)()(nHQPUP o⊆ (3)

Since P is a selection query, UUP ⊆)(. Together with (2), we

have
CopiedFrom(P(U), Hn). (4)

From (3) and (4), we know that P(U) is snapshot consistent w.r.t.
P°Q and Hn. �

2.4 Completeness

As illustrated in Q3, a query might ask for a set of objects defined
by a predicate. How do we know that all the required objects are in
the cache?

Defn: (Completeness) A subset U of the cache Scache is complete
w.r.t. a query Q and a snapshot Hn of the master database if and
only if CopiedFrom(U, Hn) holds and U = Q(Hn). �

Lemma 2.2: For a subset U of the cache Scache, if U is complete
w.r.t. a query Q and snapshot Hn, then any subset P(U) defined by
a selection query P is complete w.r.t. P°Q and Hn. �

Proof: from the given, we have
CopiedFrom(U, Hn), (1)
U = Q(Hn) (2)

From (2), for any selection query P,
P(U) = P°Q(Hn) (3)

Since UUP ⊆)(, from (1), we have

CopiedFrom(P(U), Hn) (4)
From (3) and (4), we know P(U) is complete w.r.t. P°Q and Hn. �

The completeness constraint is rather restrictive. If we assume
that objects’ keys are not modified, then it is possible to allow
subsequent updates of some objects in U to be reflected in the
cache, while still allowing certain queries (which require com-
pleteness, but do not care about the modifications and can there-
fore ignore consistency) to use cached objects in U.

Defn: (Associated Objects) We say that a subset U of the cache

Scache is associated with a query Q if for each object C in U, there
exists a snapshot Hn of the master database such that Copied-
From(C, Hn) holds and C is in Q(Hn). �

Defn: (Key-completeness) For a subset U of the cache Scache, we
say U is key-complete w.r.t. Q and a snapshot Hn, iff U is associ-
ated with Q, and

Π
keyQ(Hn) ⊆

Π
key(U). �

Intuitively, U includes (as identified by the keys) all the objects
that appear in the result of Q applied to the master database Hn.
However, the objects in the cache might have been copied from
different earlier snapshots of the master database, and subsequent
changes to these objects might not be reflected in the cache.

Figure 2.1 illustrates cache properties, where an edge from ob-
ject O to C denotes that C is copied from O. Assuming all objects
are modified in H2, U1 is consistent but not complete w.r.t. Q1 and
H1, U2 is complete w.r.t. Q2 and H1, and U3 is key-complete w.r.t.
Q3 and both H1 and H2.

Lemma 2.3: If a subset U of the cache Scache is complete w.r.t. a
query Q and a database snapshot Hn, then U is both key-complete
and consistent w.r.t. Q and Hn. �

Proof: Directly from the definitions. �

2.5 Currency

We have defined stale point and currency for a single object. Now
we extend the concepts to a subset of objects. Suppose that on day
1, there are only two authors from Madison in the master database,
and we copy them to the cache, forming set U. On day 2, a new
author moves to Madison. On day 3, how stale is U w.r.t. predicate
“city = Madison”? Intuitively, the answer should be 1 day, since U
gets stale the moment the new author is added to the master data-
base. However, we cannot use object currency to determine this
since both objects in U continue to be current. To solve this prob-
lem, we use the snapshot where U is copied from as a reference.

We overload the stale() function to apply to a database snap-
shot Hm w.r.t. a query Q: stale(Hm, Q, Hn) is equal to xtime(A),
where A is the first transaction that changes the result of Q after
Hm in Hn. Similarly, we overload the currency() function: cur-
rency(Hm, Q, Hn) = xtime(Hn) - stale(Hm, Q, Hn).

Defn: (Currency for complete set) For a subset U of the cache
Scache, if U is complete w.r.t. a query Q and a database snapshot
Hm, then the currency of U w.r.t. a snapshot Hn of the master data-
base is defined as follows: currency(U, Q, Hn) = currency(Hm, Q,
Hn). �

From the definition, it seems the currency of U depends on
which snapshot Hm we use in the calculation. In order to avoid
such ambiguity, we introduce the following assumption. The as-
sumption can be relaxed by a “ghost row” technique, see [GLR05]
for details.

Non-Shrinking Assumption: For any query Q, any database snap-
shot Hi and Hj, where i≤ j, and

Π
keyQ(Hi) ⊆ Π

keyQ(Hj). �

Currency Property 2.1: Under the assumption above, for any
subset U of the cache Scache, any query Q, and any master database

Figure 2.1: Cache property example

Figure 2.2: Currency example (1)

Figure 2.3: Currency example (2)

. 4 .

snapshot Hi and Hj, if U is complete w.r.t. Q and both Hi and Hj,
then for any n, currency(Hi, Q, Hn) = currency(Hj, Q, Hn). �

Proof: (by contradiction) Since the case i=j is trivial, without loss
of generality, assume i<j. Assume Tk is the first transaction that
modifies Q(Hi) after Hi. We claim that k>j. For the proof by con-
tradiction, assume k≤ j.

From the non-shrinking assumption, Tk either 1) modifies an
object in Q(Hi), say O1 or 2) adds a new object, say O2 to the re-
sult of Q. Further, both O1 and O2 are in Q(Hj).

In case 1), since k≤ j, xtime(O1, Hj)>xtime(O1, Hi), which con-
tradicts the given that U is consistent w.r.t. both Hi and Hj.

In case 2), O2 is not in Q(Hi), which also contradicts the given
that U is complete w.r.t. both Hi and Hj.
Thus k>j, hence currency(Hi, Q, Hn) = currency(Hj, Q, Hn). �

Figure 2.2 illustrates the currency of two complete sets, where A1
and A2 are two copies of A’ and B is a copy of B’, Q(Hi) = {A’,
B’} for i = 1, 2, Q(Hi) = {A’, B’, C’} for i = 3, 4. Thus {A1,
B}and {A2, B} are complete w.r.t. Q and H1, H2 respectively.

How to measure the currency of a key-complete set? Figure 2.3
shares the same assumptions as Figure 2.2, except for T2 and
xtime(B), where {A1, B}and {A2, B} are key-complete w.r.t. Q
and H1 and H2, while the latter is also complete w.r.t. Q and H2. It
is desirable that 1) currency({A1,B}, Q, H4) is deterministic; and
2) Since A1 is older than A2, {A1, B}should be older than {A2,
B}.

We address these problems by firstly identifying a unique ref-
erenced snapshot, and secondly incorporating the currency of the
objects into the currency definition.

Defn: (Max key-complete snapshot) For any subset U of the
cache Scache and a query Q, the max key-complete snapshot of U
w.r.t. Q and a database snapshot Hn, max-snapshot(U, Q, Hn) is
equal to Hk, if there exists k, s.t., for any i≤ k,

∏∏ ⊆
keykey i UHQ)(

And one of the following conditions holds: 1) k=n; 2)
)(1∏∏ +⊂

key kkey
HQU

Otherwise it is Ø. �

Directly from the definition of key-completeness and the non-
shrinking assumption, we have the following lemma.

Lemma 2.4: If there exists a database snapshot Hm, s.t. U is key-
complete w.r.t. Q and Hm, then for any n, max-snapshot(U, Q, Hn)
is not Ø. �

Lemma 2.4 guarantees that the following definition is well de-
fined for a key-complete set.

Defn: (Currency for key-complete set) For a subset U of the
cache Scache, if U is key-complete w.r.t. a query Q and some data-
base snapshot, then the currency of U w.r.t. a snapshot Hn of the
master database is defined as follows. Let Hm = max-snapshot(U,
Q, Hn) and

)),,((max n
UC

HCcurrencyY
∈

=

Then Currency(U, Q, Hn) = max (Y, currency(Hm, Q, Hn)). �

Figure 2.3 shows the currency of a key-complete set {A1. B}
and a complete set {A2, B}.

Now the currency of a key-complete set has some nice proper-
ties that fit in intuition.

Currency Property 2.2: For any subset U of the cache Scache, and
a query Q, if U is key-complete w.r.t. Q and some database snap-
shot, then for any n, currency(U, Q, Hn) is deterministic. �

Proof: Directly from the definition and Lemma 2.4. �

Currency Property 2.3: Given any query Q, and two subsets U1
and U2 of the cache Scache, if max-snapshot(U1, Q, Hn) = max-
snapshot(U2, Q, Hn) ≠ Ø, let

)),,((max n
UO

i HOcurrencyY
i∈

=

where i=1, 2. If Y1
≥

Y2, then currency(U1, Q, Hn)
≥

currency(U2, Q,
Hn). �

Proof: directly from the definition. �

Currency Property 2.4: currency-complete is a special case of
currency-key-complete. �

Proof: Given any subset U of the cache Scache that is complete
w.r.t. a query Q and some database snapshot Hm. For any n

≥
m, let

Hg = max-snapshot(U, Q, Hn). From the definition of max key-
complete snapshot we know g

≥
m. There are two cases:

Case 1: U is complete w.r.t. Hg.
Let Tk be the first transaction in Hn that changes the result of Q
after Hg. From the non-shrinking assumption, again, we have two
cases:
a. Tk touches at least one object, say O1, in U. Since Tk is the first

transaction that touches U,

Since the stale points for O1 and Q(Hg) are both xtime(Tk), cur-
rency(Hg, Q, Hn) = currency(O1, Hn). Thus

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))
 = currency(Hg, Q, Hn) = currency(O1, Hn).

b. Tk adds new objects into the result of Q.
In this case the stale point of any object O in U is later than
xtime(Tk), so currency(Hg, Q, Hn)

≥
 currency(O, Hn).

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))
 = currency(Hg, Q, Hn).
Case 2: U is not complete w.r.t. Hg.

let Tk be the first transaction in Hn that modifies at least an object,
say O1 in U after Hm, then

 currency(Hm, Q, Hn) = currency(O1, Hn) (2)
 (3)

In addition we have k≤ g, otherwise from the non-shrinking as-
sumption, U would be complete w.r.t. Hg. Thus

 Y
≥

 currency(Hg, Q, Hn) (4)
Putting (2), (3) and (4) together,

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))
 = currency(Hg, Q, Hn) = currency(O1, Hn). �

2.6 Dealing with Deletion

Currency properties 2.1 to 2.4 don’t hold without the non-
shrinking assumption. Take Property 2.1 for example. On day 1
there are two customers C1, C2 from WI, which we copied to the
cache, U = {C1, C2}. On day 2, customer C3 moved to WI tempo-
rarily, and moved out of WI on day 5. Then on day 4, the currency
of U is 2 days old. However, on day 6, it goes back to 0!

The reason is that when an object is deleted, we lose its xtime
record. Consequently, given a set of objects K , one cannot

),()),((1max nn
UO

HOcurrencyHOcurrencyY ==
∈

),()),((1max nn
UO

HOcurrencyHOcurrencyY ==
∈

. 5 .

uniquely identify the first snapshot K appears in. To remedy that,
we introduce the concept of ghost object. Conceptually, when an
object is deleted from a region in the master copy, we don’t really
delete it, instead, we mark it as a ghost object and treat it the same
way as a normal object. Thus we keep the xtime timestamp of de-
leted objects. Ghost objects and their timestamps are propagated to
the cache just as normal objects. With this technique, deletion is
modeled as a special modification. Thus the non-shrinking as-
sumption is guaranteed even in the presence of deletions.

Lemma 2.5: With the ghost object technique, given any query Q,
the non-shrinking assumption holds. �

Proof: With the ghost object technique, there are no deletions to
the region defined by Q. �

Note that in practice, we don’t need to record those ghost ob-
jects, since the calculation of currency only needs to be conserva-
tive. How we bound the currency of a complete set is discussed in
Section 4.1.2.

2.7 Derived Data

If the cache only contains (parts of) base tables, then for each ob-
ject in the cache there is a master version in the master database.
This doesn’t apply to derived data, i.e., materialized views in the
cache. An object (row) in a materialized view in the cache doesn’t
have a master copy in the master database. We introduce the con-
cept of virtual master copy to remedy this. Conceptually, for any
view V in the cache, for any snapshot Hi of the master database, we
calculate V(Hi) and include it in the master database. Thus by
comparing two adjacent snapshots, we can record any inser-
tion/deletion/modification on the view. With this technique, any
object in the cache — no matter whether it is from a base table or a
view — has a master copy in the master database. Thus, any query
can be used to define a region in the cache.
Again, in practice, since we only need to bound the currency of a
region conservatively, we don’t need to materialize the virtual
master copies. See Section 4.1.2.

3. DYNAMIC CACHING MODEL
In our model, a cache is a collection of materialized views V =
{V 1, …, Vm}, where each view Vi is defined using a query expres-
sion Qi. We describe the properties of the cache in terms of integ-
rity constraints defined over V. In this section, we introduce a class
of metadata tables called control-tables that facilitate specification
of cache integrity constraints, and introduce extended SQL DDL
syntax for constraint specification. Figure 3.1 shows the set of

DDL examples used in this section. We start by defining two views
as shown in D1.

3.1 View Partitions and Control-tables

Instead of treating all rows of a view uniformly, we allow them to
be partitioned into smaller groups, where properties (presence,
currency, consistency or completeness) are guaranteed per-group.
The same view may be partitioned into different sets of groups for
different properties. Further, the cache may provide a full or par-
tial guarantee, that is, it may guarantee that the property holds for
all groups in the partitioning or only for some of the groups. Al-
though different implementation mechanisms might be used for
full and partial guarantees, conceptually, the former is a special
case of the latter; we therefore focus on partial guarantees.

In this paper, we impose restrictions on how groups can be de-
fined and consider only groups defined by equality predicates on
one or more columns of the view. That is, two rows belong to the
same group if they agree on the value of the grouping columns. For
a partial guarantee, the grouping values for which the guarantee
holds are (conceptually) listed in a separate table called a control-
table. Each value in the control-table corresponds to a group of
rows of Vi that we call a cache region (or simply region). Each
view Vi in V can be associated with three types of control-tables:
presence, consistency and completeness control-tables. We use
presence region, consistency region, and completeness region to
refer to cache regions defined for each type, respectively. Note that
control-tables are conceptual; some might be explicitly maintained
and others might be implicitly defined in terms of other cached
tables in a given implementation.

3.1.1 Presence Control-Table (PCT)

Suppose we receive many queries looking for some authors, as in
Q1. Some authors are much more popular than others and the
popular authors change over time, i.e., the access pattern is skewed
and changes over time. We would like to answer a large fraction of
queries locally but maintenance costs are too high to cache the
complete Authors table. Furthermore, we also want to be able to
adjust cache contents for the changing workload without changing
the view definition. These goals are achieved by presence control-
tables.

A presence control-table (PCT) for view Vi is a table with a
1-1 mapping between a subset K of its columns and a subset K’ of
V i’s columns. We denote this by PCT[K, K’]; K ⊆ PCT is called
the presence control-key (PCK) for Vi, and K’⊆ V i is called the
presence controlled-key (PCdK). For simplicity, we will use
PCK and PCdK interchangeably under the mapping. A PCK de-
fines the smallest group of rows that can be admitted to or evicted
from the cache in the MTCache “pull” framework for cache main-
tenance. We assume that the cache maintenance algorithms materi-
alize, update and evict all rows within such a group together.

Presence Assumption: All rows associated with the same presence
control-key are assumed to be present, consistent and complete.
That is, for each row s in the presence control-table, subset U = σ

K’=s.K (vi) is complete and consistent w.r.t. σ
K’=s.K ◦ Qi and Hn, for

some snapshot Hn of the master database, where Qi is the query
that defines Vi . �

If V i has at least one presence control-table, it is a partially
materialized view (PMV), otherwise it is a fully materialized view
addressed in [GLRG04]. In this paper, we limit our discussion to

Figure 3.1: DDL examples for adding cache constrain ts

. 6 .

only the simplest type of PMVs, namely views with an equality
control-table; more general cases are addressed in [ZLG05].

 In our motivating example, we cache only the most popular
authors. This scenario can be handled by creating a presence con-
trol-table and adding a PRESENCE constraint to AuthorCopy, as in
D2. AuthorList_PCT acts as a presence control-table and contains
the ids of the authors who are currently present in the view Au-
thorCopy, i.e., materialized in the view.

3.1.2 Consistency Control-Table (CsCT)

A local view may still be useful even when all its rows are not kept
mutually consistent. Consider a scenario where we receive many
queries like E1.3. Suppose the view AuthorCopy contains all the
required rows. If we compute the query from the view, will the
result satisfy the query’s consistency requirements or not? The
answer is “not necessarily” because the query requires all result
rows to be mutually consistent per city, but AuthorCopy only
guarantees that the rows for each author are consistent; nothing is
guaranteed about authors from a given city. The consistency con-
trol-table provides the means to specify a desired level of consis-
tency.

A consistency control-table (CsCT) for view Vi is denoted by
CsCT[K], where a set of columns K⊆ CsCT is also a subset of Vi,

and is called the consistency control-key (CsCK) for Vi. For each
row s in CsCT, if there is a row t in Vi, s.t. s.K = t.K, then subset U
= σ

K=s.K (vi) must be consistent w.r.t. (σ
K=s.K ◦ Qi) and Hn for some

snapshot Hn of the master database.
In our example, it is desirable to guarantee consistency for all

authors from the same city, at least for some of the popular cities.
We propose an additional CONSISTENCY constraint, for specify-
ing this requirement. In our example, we first create a consistency
control-table containing a set of cities and then add a CONSIS-
TENCY constraint to AuthorCopy, as in D3 of Figure 3.1. The CON-
SISTENCY clause specifies that the cache must keep all rows re-
lated to the same city consistent if the city is among the ones listed
in CityList_CsCT; this is in addition to the consistency require-
ments implicit in the Presence Assumption. AuthorCopy can now
be used to answer queries like E1.3.

If we want the cache to guarantee consistency for every city,
we change the clause to CONSISTENCY ON city . If we want the
entire PMV to be consistent, we change the clause to CONSIS-
TENCY ON ALL. If we don’t specify a consistency clause, the
cache will not provide any consistency guarantees beyond the
minimal consistency implied by the presence control-table under
the Presence Assumption.

3.1.3 Completeness Control-Table (CpCT)

A PMV with a presence control-table can only be used to answer
point queries with an equality predicate on its control columns. For
example, AuthorCopy cannot answer Q3.

It is easy to find the rows in AuthorCopy that satisfy the selec-
tion query but we cannot tell whether the view contains all re-
quired rows. If we want to answer queries with predicate P on

columns other than the control-keys, the cache must guarantee that
all rows defined by P appear in the cache. Completeness con-
straints can be specified in terms of a completeness control-table.

A completeness control-table (CpCT) for view Vi is denoted
by CpCT[K]. A completeness control-table is a consistency con-
trol-table with an additional constraint: the subset U in Vi defined
as before is not only consistent but also complete w.r.t. (σ

K=s.K ◦ Qi)
and Hn, for some snapshot Hn of the master database. We say K is a
completeness control-key (CpCK). Note that all rows within the
same completeness region must also be consistent (Lemma 2.3).

We propose to instruct the cache about completeness require-
ments using a COMPLETENESS constraint. Continuing our example,
we create a completeness control-table and then add a complete-
ness clause to the AuthorCopy definition, as in D4 of Figure 3.1.
Table CityList_CpCT serves as the completeness control-table for
AuthorCopy. If a city is contained in CityList_CpCT, then we
know that either all authors from that city are contained in Au-
thorCopy or none of them are. Note that an entry in the complete-
ness control-table does not imply presence. Full completeness is
indicated by dropping the clause starting with “IN”. Not specifying
a completeness clause indicates that the default completeness im-
plicit in the Presence Assumption is sufficient.

A similar property is termed “domain completeness” in
DBCache [ABK+03]. However, our mechanism provides more
flexibility in cache management. The cache admin can specify: 1)
which subset of columns should be complete; 2) whether to force
completeness on all values or just a subset of values for these col-
umns.

3.2 Correlated Presence Constraints

In our running example, we may not only receive many queries
looking for some authors, but also follow-up queries looking for
related books. That is, the access pattern to BookCopy is decided
by the access pattern to AuthorCopy. In order to capture this, we
allow a view to use another view as a presence control-table. To
define BookCopy to be controlled by AuthorCopy, we only need
to declare AuthorCopy to be a presence control-table by a PRES-
ENCE constraint in the definition of BookCopy, as in D5 of Figure
3.1.

If a presence control-table is not controlled by another pres-
ence control-table, we call it a root presence control-table. Let L
= {V m+1, …, Vn} be the set of root presence control-tables; W = V
∪ L . We depict the presence correlation constraints by a cache
graph, denoted by <W, E>. If there is an edge Vi  → ', ,, jiji KK Vj,
then Vi is a PCT[Ki,j, Ki,j ’] of V j.

Circular dependencies require special care in order to avoid
“unexpected loading”, a problem addressed in [ABK+03]. In our
model, we don’t allow circular dependencies, as stated in Rule 1 in
Figure 5.1. Thus we call a cache graph a cache DAG.

Each view in the DAG has two sets of orthogonal properties.
First, whether it is view-level or group-level consistent. Second, to
be explained shortly, whether it is consistency-wise correlated to
its parent. For illustration purposes, we use shapes to represent the
first property: circle for view-level consistent views and rectangle
(default) for all others. We use colors to denote the second prop-
erty: gray if a view is consistency-wise correlated to its parents, red
(default) otherwise.

Defn: (Cache schema) A cache schema is a cache DAG <W, E>
together with the completeness and consistency control-tables
associated with each view in W. �

Figure 3.2: C ache schema example

. 7 .

3.3 Correlated Consistency Constraints

In our running example, we have an edge AuthorCopy  →authorId
BookCopy, which means that if we add a new author to Author-
Copy, we always bring in all of the author’s books. The books for
an author have to be mutually consistent, but they are not required
to be consistent with the author.

If we wish the dependent view to be consistent with the con-
trolling view, we add the consistency clause: CONSISTENCY ROOT,
as in D6 of Figure 3.1. A node with a ROOT consistency constraint
is colored gray; it cannot have its own consistency or completeness
control-tables, as stated in Rule 2 in Figure 5.1.

For a gray node V, we call its closest red ancestor its consis-
tency root. For any of V’s cache regions Uj, if Uj is controlled by a
presence control-key value included in a cache region Ui in its
parent, we say that Ui consistency-wise controls Uj; and that Ui
and Uj are consistency-wise correlated.

Figure 3.2 illustrates a cache schema example.

4. SAFE CACHED VIEWS
A cache has to perform two tasks: 1) populate the cache and 2)
reflect updates to the contents of the cache, while maintaining the
specified cache constraints. Complex cache constraints can lead to
unexpected additional fetches in a pull-based maintenance strat-
egy, causing severe performance problems. We illustrate the prob-
lems through a series of examples, and quantify the refresh cost for
unrestricted cache schemas in Theorem 4.1. We then identify an
important property of a cached view, called safety, that allows us
to optimize pull-based cache maintenance, and summarize the
gains it achieves in Theorem 4.2. In the course of the discussion,
we also introduce the concept of ad-hoc currency regions, which is
useful for adaptively refreshing the cache.

For convenience, we distinguish between the schema and the
instance of a cache region U. The schema of U is denoted by <V,
K, k>, meaning that U is defined on view V by a control-key K
with value k. We use the italic form U to denote the instance of U.

4.1 Pull-Based Maintenance

In the “pull” model, we obtain a consistent set of rows using either
a single query to the back-end or multiple queries wrapped in a
transaction. As an example, suppose AuthorCopy, introduced in
Section 3, does not have any children in the cache DAG and that
the cache needs to refresh a row t (1, Rose, Female, Madison, WI).

First, consider the case where AuthorCopy does not have any
consistency or completeness control-table, and so consistency
follows the presence table. Then all rows in the presence region
identified by authorId 1 need to be refreshed together. This can be
done by issuing the presence query shown in Figure 4.1 to the
back-end server.

Next, suppose we have CityList_CsCT (see Section 3.1.2). If
Madison is not found in CityList_CsCT, the presence query de-
scribed above is sufficient. Otherwise, we must also refresh all
other authors from Madison. Let K be the set of authors in Au-
thorCopy that are from Madison, the consistency query in Figure
4.1 is sent to the back-end server.

Finally, suppose we have CityList_CpCT (see Section 3.1.3). If

Madison is found in CityList_CpCT, then besides the consistency
query, we must fetch all authors from Madison using the com-
pleteness query in Figure 4.1.

Formally, given a cache region U<V, K, k>, let the set of pres-
ence control-tables of V be P1, …, Pn, with presence control-keys
K1, …, Kn. For Ki, i = 1..n, let K i=

Π
Ki

σ
K=k(V), the remote queries

for U are: 1) the presence query, if U is a presence region; 2) the
consistency queries (i = 1..n), if U is a consistency region; and 3)
the consistency queries (i = 1..n) (and the completeness query if U ≠ Ø), if U is a completeness region. (The queries are shown in
Figure 4.2.)

Lemma 4.1: For any cache region U <V, K, k> in the cache, the
results retrieved from the back-end server using the above pres-
ence, consistency and completeness queries not only keeps U’s
cache constraints, but also keeps the presence constraints for the
presence regions in V that U overlaps. �

Proof: This directly follows from the presence, consistency and
completeness queries. �

As this example illustrates, when refreshing a cache region, in
order to guarantee cache constraints, we may need to refresh addi-
tional cache regions; the set of all such “affected” cache regions is
defined below.

Defn: (Affected Closure) The affected closure of a cache region
U, denoted as AC(U), is defined transitively as follows:
1) AC(U) = {U}
2) AC(U) = AC(U)∪ {U i | for some Uj in AC(U), either Uj over-

laps Ui or Uj and Ui are consistency-wise correlated}. �

For convenience, we assume that the calculation of AC(U) al-
ways eliminates any consistency region Ui, if there exists a com-
pleteness region Uj in AC(U), s.t., Ui = Uj, since the completeness
constraint is stricter (Lemma 2.3). The set of regions in AC(U) is
partially ordered by the set containment relationship. From Lemma
2.1-2.3, we only need to maintain the constraints of some “maxi-
mal” subset of AC(U). We use Max(

�
) to denote the set of the

maximal elements in the partially ordered set
�

.

Defn: (Maximal Affected Closure) The maximal affected closure
of a cache region U, MaxAC (U), is obtained by the following two
steps: Let

�
 = AC(U),

1) Constructing step. Let д , в be the set of all consistency regions
and completeness regions in

�
 respectively. MaxAC(U) =

Max(
�

 - д) ∪ Max(
�

 – в).
2) Cleaning step. Eliminate any consistency region Ui in

MaxAC(U) if there exists a completeness region Uj in
MaxAC(U), s.t., Ui ⊆ Uj. �

Maintenance Rule:
1) We only choose a region to refresh from a red node.
2) When we refresh a region U, we follow the following steps:

Step 1: Retrieve all regions in MaxAC(U) by sending remote
queries accordingly, let the result be denoted by newTupleSet.

Step 2: Delete the old rows covered by AC(U) or newTupleSet,
then insert newTupleSet into the corresponding views. �

Theorem 4.1: Assuming the partial order between any two cache
regions is constant, then given any region U, if we apply the Main-
tenance Rule to a cache instance that satisfies all cache constraints,

Figure 4.1: Refresh query examples

Figure 4.2: Refresh queries

. 8 .

let newTupleSet be the newly retrieved tuple set, � =
AC(newTupleSet), then
1) Every region other than those in (� -

�
) observes its cache con-

straint after the refresh transaction is complete.
2) If (� -

�
) = Ø, then after the refresh transaction is complete, all

cache constraints are preserved.
3) If (� -

�
) = Ø, MaxAC(U) is the minimal set of regions we have

to refresh in order to refresh U while maintaining all cache
constraints for all cache instances. �

Proof: Let
�

 = AC(U), maxSet=MaxAC(U), newTupleSet be the
tuple set retrieved for maxSet.
1) For any cache region X <V, K, k> in

�
, let V’ be the re-

freshed instance of V, D be the set of rows for V in newRowSet, X
= δ K=k (V), X’ = δ K=k (V’), and X” = δ K=k (D).

We first prove X’ = X” . This is obvious from step2 in the main-
tenance rule, since all the rows in X are deleted and all the rows in
X” are inserted into V’.

Case 1: X is in maxSet. Directly from lemma 4.1.
Case 2: X is in (

�
-maxSet). Then there is a region Y in max-

Set, such that X⊆ Y.
Case 2.1: If X is a present region, then directly from lemma

4.1. Otherwise,
Case 2.2: Y has an equal or stronger constraint than X. Since

Y observes its constraint (from Case 1), it follows from lemma 2.1,
2.2, 2.3 that so does X.

Case 3: X is not in � ∪ �
. We prove that X’ = X. This is so

because from the maintenance rule, those rows in U are not
touched by the refresh transaction.
2) It directly follows from 1).
3) It is obvious if U is the only element in

�
. Otherwise, prove

by constructing counterexamples from AuthorCopy. In Author-
Copy, suppose there is a present control table on authorId with
authorIds 1 and 2; there are two tuples: t1 = <1, Rose, Female,
Madison, WI>, t2 = <2, Mary, Female, Seattle, WA>. Suppose we
want to refresh t1 after an update that touched every row in Au-
thors in the master database.

Prove by contradiction. Suppose there exists X in maxSet that
should not being refreshed.

Case 1: There exists Y in maxSet, such that X⊆ Y. Due to the
definition of the maxSet, X must be a complete region and Y a
consistent region.

In AuthorCopy, suppose it has a complete region defined on
city with value Madison; a consistency region defined on state
with value WI. If a new author from Madison has been added in
the master database, if we only refresh the consistent region by WI,
only t1 will be refreshed, and after refresh, the completeness con-
straint on Madison is no longer preserved.

Case 2: There exists a cache region Y in maxSet, s.t. X over-
laps with Y. In AuthorCopy, suppose it has two consistent regions
on WI and female respectively. If we only refresh the first one,
only t1 will be refreshed, and after refresh, the consistency con-
straint on the latter is no longer preserved. �

The last part of the theorem shows that when a region U is re-
freshed, every region in MaxAC(U) must be simultaneously re-
freshed. Otherwise, there is some instance of the cache that satis-
fies all constraints, yet running the refresh transaction on this state
to refresh U will leave the cache in a state violating some con-
straint. If (� -

�
)≠ Ø, multi-trip to the master database is needed in

order to maintain all cache constraints. A general maintenance
algorithm is sketched below.

Maintenance Algorithm:
INPUT: a cache region U from a red node
{
 � �{U};
 While (TRUE)
 {
 � � AC(�);
 maxSet � MaxAC(�);
 oldRowSet =

,max SetU i ∈
∪ Ui //the instance set

 NewRowSet = retrieve(maxSet);

�
 = AC(NewRowSet);

 If (
� ⊆ �) break;

 � =
�

 ∪ �
}
apply(oldRowSet, newRowSet);

Function retrieve(�) retrieves rows from the master database

by sending a series of remote queries accordingly for each group in � .
Procedure apply() refreshes the cache according to step 2 in the

second part of the Maintenance Rule.

Procedure Apply (S, D)
Input: S - source row set, D - new row set
Algorithm:

for (each view V i involved)
{
 Let the set of rows in S that

belongs to V i be S i ;
Let the set of rows in D that

belongs to V i be D i ;
 Let dkey = Π key (D i);

 Delete S i from V i ;
Delete rows in V i whose keys appear in

dkey;
 Insert D i into V i .
}

Given a region U in a red PMV V, how do we get MaxAC(U)?
For an arbitrary cache schema, we need to start with U and add
affected regions to it recursively. There are two scenarios that po-
tentially complicate the calculation of MaxAC(U), and could cause
it to be very large:
1) For any view Vi, adding a region Uj from Vi results in adding

all regions from Vi that overlap with Uj.
2) A circular dependency may exist between two views Vi and Vj,

i.e., adding new regions from Vi may result in adding more re-
gions from Vj, which in turn results in adding yet more regions
from Vi.
The potentially expensive calculation and the large size of

MaxAC(U), and the correspondingly high cost of refreshing the
cache motivate the definition of safe PMVs in Section 4.2.

4.1.1 Ad-hoc Cache Regions

Although the specified cache constraints are the minimum con-
straints that the cache must guarantee, sometimes it is desirable for
the cache to provide additional “ad-hoc” guarantees. For example,
a query workload like E1.1 asks for authors from a set of popular
authors and requires them to be mutually consistent. Popularity
changes over time. In order to adapt to such workloads, we want
the flexibility of grouping and regrouping authors into cache re-
gions on the fly. For this purpose, we allow the cache to group
regions into “ad-hoc” cache regions.

Defn: (Ad-hoc region) An ad-hoc cache region consists of a union
of one or more regions (which might be from different views) that
are mutually consistent. �

. 9 .

Such “ad-hoc” consistency information is made known to the
query processor by associating the region id of the ad-hoc region
with each region it contains.

4.1.2 Keeping Track of Currency

In order to judge if cached data is fresh enough for a given query,
we need to keep track of its currency. It is straightforward and we
discuss it only briefly. [GLRG04] used a push model for cache
maintenance, and relied on a heartbeat mechanism for this purpose.
To track currency when using the pull model, we keep a timestamp
for every cache region. When a cache region is refreshed, we also
retrieve and record the transaction timestamp of the refresh query.
Assuming that a transaction timestamp is unique, in implementa-
tion we simply use the timestamp as region id. Thus, if the time-
stamp (rid) for a cache region is T and the current time is t, since
all updates until T are reflected in the result of the refresh query,
the region is from a database snapshot no older than (t – T).

4.2 Safe Views and Efficient Pulling

We now introduce the concept of safe views, motivated by the
potentially high refresh cost of pull-based maintenance for unre-
stricted cache schemas.

Defn: (Safe PMV) A partially materialized view V is safe if the
two following conditions hold for every instance of the cache that
satisfies all integrity constraints:
1) For any pair of regions in V, either they don’t overlap or one is

contained in the other.
2) If V is gray, let X denote the set of regions in V defined by

presence control-key values. X is a partitioning of V and no
pair of regions in X is contained in any one region defined on
V. �

Intuitively, Condition 1 is to avoid unexpected refreshing be-
cause of overlapping regions in V; Condition 2 is to avoid unex-
pected refreshing because of consistency correlation across nodes
in the cache schema.

Lemma 4.2: For a safe red PMV V that doesn’t have any children,
given any cache region U in V, the partially ordered set AC(U) is a
tree. �

Proof: (by contradiction) Suppose there is a group X in AC(U),
such that X has two parents Y and Z. Then Y∩ Z ≠ Ø. From the
safe definition, either Y⊆ Z, or Z⊆ Y. Therefore they cannot
both be X’s parents. �

Since AC(U) on V has a regular structure, we can maintain
metadata that makes it possible to find the maximal element effi-
ciently. We omit the detailed mechanism because of space con-
straints.

Theorem 4.2: Consider a red PMV V, and let κ denote V and all
its gray descendants. If all nodes in κ are safe, whenever any re-
gion U defined on V is to be refreshed:
1) The calculation of AC(U) can be done top-down in one pass.
2) Given the partially ordered set AC(U) on V, the calculation of

MaxAC(U) on V can be done in one pass. �

Proof:
1) For any safe gray node V’, given the subset of PCK values K
that is in AC(U) from its parent, we need to put in AC(U) the set of
cache regions � determined by K in V’. � is the exact set of cache
regions in V’ that need to be put into AC(U), because from the

definition of a safe view, � doesn’t overlap or contained by any
consistent or complete region defined on V’, nor does it overlap or
contained by the rest of the present CRs in V’. Further, adding � to
AC(U) doesn’t result in adding additional cache regions from its
parent, because of the first condition of the definition of safe.

2) From 1), the descendents of V don’t affect AC(U) on V. Thus,
let � = AC(U), from Lemma 4.2, � is a tree. Let Γ be empty, we
check the tree recursively top down from the root, let it be Y. If a
node X is a complete region, then we add it to Γ ; Otherwise, we do
the checking on each child of X. If Y is not in Γ , add it to Γ .

We prove that Γ = MaxAC(U). If Y is a complete or a present
region, we are done. Otherwise, let д , в be the set of all consistent
regions and complete regions in � respectively. {Y} = Max (� - в),
since it is the root of the tree. Now we prove Γ -{Y} = Max(� - д)
by contradiction. Suppose there is a complete region Z in � , such
that Γ -{Y} doesn’t cover Z. Then Z doesn’t have any ancestor that
is a complete region. Then from the algorithm, Z must be visited
and put into Γ -{Y}, contradicting the assumption.

Further, the cleaning step doesn’t eliminate Y, since it is the
root. Thus Γ = MaxAC(U). �

5. DESIGN ISSUES FOR CACHES
In this section, we investigate conditions that lead to unsafe cached
views and propose appropriate restrictions on allowable cache
constraints. In particular, we develop three additional rules to
guide cache schema design, and show that Rules 1-5 are a neces-
sary and sufficient condition for (all views in) the cache to be safe.

5.1 Shared-Row Problem

Let’s have a closer look at the AuthorCopy and BookCopy exam-
ple defined in Section 3. Suppose a book can have multiple au-
thors. If BookCopy is rectangle, since co-authoring is allowed, a
book in BookCopy may correspond to more than one control-key
(authorId) value, and thus belong to more than one cache region.
To reason about such situations, we introduce cache-instance
DAGs.

Defn: (Cache Instance DAG) Given an instance of a colored
cache DAG <W, E>, we construct the corresponding cache in-
stance DAG as follows: make each row in each node of W a node;
and for each edge Vi  → ', ,, jiji KK Vj in E, for each pair of rows s in
V i and t in Vj, if s.Ki,j = t.Ki,j’ then add an edge s � t. �

Defn: (Shared-Row Problem) Given a cache DAG <W, E>, a
PMV V in W has the shared-row problem if there exists a cache
instance DAG I containing a row in V with more than one parent.
�

There are two cases where a PMV V has the shared-row prob-
lem. The first case is as follows:

Lemma 5.1: Given a cache schema <W, E>, PMV V in W has the
shared-row problem if V has more than one parent. �

Proof: (by constructing an instance DAG). Suppose V has two
PCTs T1 and T2 on attributes A and B respectively. Suppose val-
ues a1 and b1 are in T1 and T2 respectively. For a row t in V, if
t.A = a1, t.B = b1, then t has two parents: a1 and b1. Thus V has
the shared-row problem. �

In this case, we can only eliminate the potential overlap of re-
gions defined by different presence control-tables if V is view-

. 10 .

level consistent. Considering the second condition in the definition
of safe, we enforce Rule 3 in Figure 5.1.

The second case where a PMV has the shared-row problem is
identified next. For this case, we enforce Rule 4 in Figure 5.1.

Lemma 5.2: Given a cache schema <W, E>, for any PMV V in a
tree, let the parent of V be V1, then V has the shared-row problem
if and only if the presence control-key K in V1 for V is not a key in
V1. �

Proof: (sufficiency) Since K is not a key for V1, there exists an
instance of V1, such that there are two rows t1 and t2 in V1, such
that t1. K = t2. K. Then for a row t in V, s.t. t.K=t1.K, both t1 and
t2 are t’s parents.
(necessity) Because V has the shared-row problem, there is an
instance of V, such that a row t in V has two parents, t1 and t2 in
V1. Since t1.K = t2.K= t.K, K is not a key for V1. �

5.2 Control-table Hierarchy

For a red PMV V in the cache, if it has some consistency or com-
pleteness control-tables beyond those implicit in the Presence As-
sumption, then it might have overlapping regions. In our running
example, suppose BookCopy is a red rectangle; an author may
have more than one publishers. If there is a consistency control-
table on publisherId, then BookCopy may have overlapping re-
gions. As an example, author 1 has books 1 and 2, author 2 has
book 3, and while books 1 and 3 are published by publisher A,
book 2 is published by publisher B. If publisher A is in the consis-
tency control-table for BookCopy, then we have two overlapping
regions: {book 1, book 2} by author 1, and {book 1, book 3} by
publisher A.

Defn: (Compatible Control-tables) For a PMV V with one pres-
ence control-table in the cache, let the presence controlled-key of
V be K0, and let the set of its consistency and completeness con-
trol-keys be K .
1) For any pair K1 and K2 in K , we say that K1 and K2 are com-

patible iff FD K1� K2 or FD K2� K1.
2) We say K is compatible iff the elements in K are pair-wise

compatible, and for any K in K , FD K�K0. �

Rule 5 is stated in Figure 5.1. We require that a new cache
constraint can only be created in the system if its addition does not
violate Rules 1-5.

Theorem 5.1: Given a cache schema <W, E>, if it satisfies rules 1-
5, then every PMV in W is safe. Conversely, if the schema violates
one of these rules, there is an instance of the cache satisfying all
specified integrity constraints in which some PMV is unsafe. �

Proof: (Sufficiency) by contradiction. Suppose there exists a PMV
V that is not safe. There are two cases:

Case 1: There exists a pair of cache regions U1 and U2 in V,
s.t. U1 and U2 overlap.

 This violates Rule 5.
Case 2: V is grey. Let � denote the set of cache regions in V

defined by its presence control-key values. Again, there are two
cases:

 Case 2.1: There are U1 and U2 in � , such that U1 and U2
overlap.

 This implies that V has shared-row problem. Then it
violates rule 3 or 4.

 Case 2.2: There are U1 and U2 in � , and U3 in V, such
that U1 and U2 are contained in U3.
This implies that V has its own consistency control-tables, which
violates rule 2.

(Necessity) We use variations of the cache schema in Fig 3.1 as
counter examples in a proof by contradiction.

Case 1: Rule 1 is violated. Then <W, E> violates the defn of
cache schema.

Case 2: Rule 2 is violated.
Suppose BookCopy is required to be consistent by type; author

a1 has books b1 and b2; a2 has a book b3; and b1, b2, b3 are all of
type paperback. Then BookCopy is not safe because cache regions
{b1, b2} (by a1), {b3} (by a2) are contained in the one defined by
paperback type.

Case 3: Rule 3 is violated.
Suppose ReviewsCopy is a rectangle or gray. If it is a rectan-

gle, suppose book b1 has two reviews r1, and r2, from reviewers x
and y, respectively; x wrote reviews r1 and r3. Since cache regions
{r1, r2} (by b1) and {r1, r3} (by x) overlap, ReviewsCopy is not
safe.

Next, if ReviewsCopy is a circle, suppose author a1 has books
b1 and b2; author a2 has a book b3; books b2, b3 have reviews r2,
r3, respectively. Since cache regions {b1, b2} (by a1) and {b2, b3}
(by correlation with ReviewsCopy), BookCopy is not safe.

Case 4: Rule 4 is violated.
Suppose a book can have multiple authors and BookCopy is

gray. Suppose AuthorsCopy is consistent by city; author a1 has
books b1 and b2; author a2 has books b1 and b3; author a1 and a3
are from WI, a2 is from WA.

First, suppose BookCopy is a rectangle. Since cache regions
{b1, b2} (by a1), {b1, b3} (by a2) overlap, BookCopy is not safe.

Second, suppose BookCopy is a circle. Since cache regions
{a1, a3} (by WI), and {a1, a2} (by consistency correlation with
BookCopy) overlap, AuthorsCopy is not safe.

Case 5: Rule 5 is violated.
Suppose ReviewersCopy is required to be consistent both by gen-
der and by city; reviewers x and y are from WI, z is from WA; x
and z are male, while y is female. Since cache regions: {x, y} (by
WI), {x, z} (by male) overlap, ReviewsCopy is not safe. �

6. ENFORCING C&C CONSTRAINTS
A traditional distributed query optimizer decides whether to use
local data based on data availability and estimated cost. In our
setting, it must also take into account local data properties (pres-
ence, consistency, completeness and currency). Presence checking
is addressed in [ZLG05]; the same approach can be extended to
completeness checking. This section describes efficient checking
for C&C constraints in a transformation-based optimizer. Theo-
rems 6.1-6.3 guarantee the correctness of our algorithms.

Different from SGLRG04], the algorithms developed in this
paper are more general; they support finer granularity C&C check-
ing. In [GLRG04], consistency checking was done at optimization

Figure 5.1: Cache schema design rules

. 11 .

time and currency checking at run-time, because view level cache
region information is stable and available at query compile time,
while currency information is only available at runtime. In con-
trast, in this paper we still perform as much as possible of the con-
sistency checking at optimization time but some checking may
have to be delayed to run-time. If we are using a PMV with partial
consistency guarantees, we don’t know at optimization time which
actual groups will be consistent at run time. Furthermore, ad-hoc
cache regions may change over time, also prompting run-time
checking.

6.1 Normalizing C&C Constraints

A query may contain multiple currency clauses, at most one per
SFW block. The first task is to combine the individual clauses and
convert the result to a normal form. To begin the process, each
currency clause is represented in the following form.

Defn: (Currency and consistency constraint) A C&C constraint
CCr is a set of tuples, CCr = {<b1, K 1, S1, G1>, ..., <bn, K n, Sn,
Gn>}, where each Si is a set of input operands (table or view in-
stances), bi is a currency bound specifying the maximum accept-
able staleness of the input operands in Si, Gi specifies a grouping
key and K i specifies a set of grouping key values. �

Each tuple has the following meaning: for any database in-
stance, if we group the input operands referenced in a tuple by the
tuple’s grouping key Gi, then for those groups with one of the key
values in K i, each group is consistent. The key value sets K i will be
used when constructing consistency guard predicates that will be
checked at run time. Note that the default value for each field is the
strongest constraint.

To enable efficient reasoning, we union together all constraints
from individual currency clauses into a single constraint, and con-
vert the result into an equivalent or stricter normalized form with
no redundant requirements.

Defn: (Normalized C&C constraint) A C&C constraint CCr =
{<b1, K 1, S1, G1>, ..., <bn, Kn, Sn, Gn>} is in normalized form if all
input operands (in the sets Si) are base tables and the input operand
sets S1,…, Sn are all non-overlapping. �

We briefly sketch an algorithm for transforming a set of con-
straints into normalized form. First, recursively expand all refer-
ences to views into references to base tables. Next, repeatedly
merge any two tuples that have one or more input operands in
common using the following rule.

Normalization Rule: Given CCr1 = {<b1, K 1, S1, G1>} and CCr2 =
{<b2, K 2, S2, G2>}, S1 ∩ S2 ≠ Ø, replace the two constraints by CCr
= {<b, K , S, G >}, where b = min (b1, b2), and S = S1 U S2. Given a
set of functional dependencies (FDs) F over the query result rela-
tion Y, let Gi

+ be the attribute closure of Gi w.r.t. F, where i = 1, 2.
Then G = G1

+ ∩ G2
+. Let K i

+ =
Π

G
σ

Gi=ki(Y), i = 1, 2. Then K = K 1
+

∪ K 2
+. �

Given a set of FDs over the base relations, and the equivalence
classes induced by a query, we can infer the set of FDs over the
query result relation. For example, for Q2, let CCr1 = {<10, Ø,
{Authors, Books}, {city}>}, CCr2 = {<5, Ø, { Books}, {isbn}>}.
CCr1 requires that if we group the query result by city, then within
each group, all the rows have to be consistent. CCr2 requires that if
we group the result by isbn, then each book row has to be consis-
tent. From the key constraints in Authors and Books, together with

the join condition in Q2, we know that isbn is a key for the final
relation. Thus CCr = {<5, Ø, {Authors, Books}, {city}>}. If an
instance satisfies CCr, then it must satisfy both CCr1 and CCr2, and
vice versa.

In what follows, we formally define implication and equiva-
lence between any two CCrs, and prove that when K1 and K2 are
set to default, then the outcome of the normalization rule CCr is
equivalent to the inputs CCr1 ∪ CCr2 w.r.t. F. Further, we prove
that not knowing all FDs doesn’t affect the correctness of the rule.

Defn: (Implication, Equivalence) Given two C&C constraints
CCr1 and CCr2, a cache schema Λ , and a set of FDs F over Λ , we
say that CCr1 implies CCr2 w.r.t Λ and F, if every instance of Λ
that satisfies F and CCr1 also satisfies CCr2. If CCr1 implies C2
w.r.t Λ and F and CCr2 implies C1 w.r.t Λ and F, then CCr1 and
CCr2 are equivalent w.r.t Λ and F. �

Lemma 6.1: For any CCr = {<b, K , S, G>}, any instance of Λ , the
consistency constraint in t can be satisfied w.r.t. Λ and F, iff the
grouping key G’ of the cache region partitioning on S in Λ is a
subset of G+ w.r.t. Λ and F. �

Proof: Sufficiency is obvious. Now we prove necessity. Since each
group by grouping key G belongs to one group by grouping key
G’ , G functionally determines G’ . Thus G’ ⊆ G+. �

Theorem 6.1: If K 1 and K 2 are set to default, then the output of the
Normalization Rule CCr is equivalent to its input CCr1 ∪ CCr2
w.r.t. Λ and F. �

Proof: Given any instance of Λ that satisfies {CCr} w.r.t. to F,
from Lemma6.1, the grouping key of its cache region partitioning
is a subset of G+. Since G ⊆ Gi

+, i = 1, 2, G+ ⊆ Gi
+, the consis-

tency constraints in (CCr∪ CCr2} are satisfied. Further, since the
consistency portioning satisfies currency constraint b, and b = min
(b1, b2), b1 and b2 are also satisfied.

From Lemma 6.1, it follows that for any instance that satisfies
both t1 and t2 w.r.t. F, the grouping key of its cache region parti-
tioning has to be a subset of G. Thus, it also satisfies t. Since it
satisfies b1 and b2, and b = min(b1, b2), it also satisfies b. �

Theorem 6.2: Suppose FDs over a cache schema Λ : F+⊂ F’+.
The output of the Normalization Rule {CCr} w.r.t. F implies its
input CCr1 ∪ CCr2 w.r.t. Λ and F’. �

Proof: Let G = G1
+ ∩ G2

+ w.r.t. F, G’ = G1
+ ∩ G2

+ w.r.t. F’. Then
G ⊆ G’ . Thus for any instance of Λ that satisfies CCr, since K =

K 1
+ ∪ K 2

+ w.r.t. F, from Lemma 6.1, it satisfies CCr1 ∪ CCr2. �

6.2 Compile-time Consistency Checking

We take the following approach to consistency checking. At opti-
mization time, we proceed as if all consistency guarantees were
full. A plan is rejected if it would not produce a result satisfying
the query’s consistency requirements even under that assumption.
Whenever a view with partial consistency guarantees is included in
a plan, we add consistency guards to the plan, which check at run-
time whether the guarantee holds for the groups actually used.

We use a transformation-based optimizer. Conceptually, opti-
mization proceeds in two phases: an exploration phase and an
optimization phase. The exploration phase generates new logical
expressions; the optimization phase recursively finds the best
physical plan. Physical plans are built bottom-up.

Required and delivered (physical) plan properties play a very
important role during optimization. There are many plan properties

. 12 .

but we’ll illustrate the idea with the sort property. A merge join
operator requires that its inputs be sorted on the join columns. To
ensure this, the merge join passes down to its input a required sort
property. In essence, the merge join is saying: “Find me the cheap-
est plan for this input that produces a result sorted on these col-
umns.” Every physical plan includes a delivered sort property that
specifies if the result will be sorted and, if so, on what columns
and in what order. Any plan whose delivered properties do not
satisfy the required properties is discarded.

To make use of the plan property mechanism for consistency
checking, we must be able to perform the following three tasks: i)
transform the query’s consistency constraints into required consis-
tency properties; ii) given a physical plan, derive its delivered con-
sistency properties from the properties of the local views it refers
to; iii) check whether delivered consistency properties satisfy re-
quired consistency properties.

6.2.1 Required Consistency Plan Property

A query’s required consistency property consists of the normalized
consistency constraint described in the previous section.

6.2.2 Delivered Consistency Plan Property

A delivered consistency property CPd consists of a set of tuples
{<R i, Si, � i>} where Ri is the id of a cache region, Si is a set of
input operands, namely, the input operands of the current expres-
sion that belong to region Ri, and � i is the set of grouping keys for
the input operands. In what follows, we sketch the algorithm for
computing a plan’s delivered consistency properties but skip the
detailed algorithm due to space constraints.

Delivered plan properties are computed bottom-up for each
physical operator, in terms of the properties of its inputs, according
to the Delivered-Plan Algorithm described below, which treats
the physical operators accordingly as four categories: i) leaves of
the plan tree (e.g., tables or materialized views), ii) single-input
operators, iii) joins, and iv) SwitchUnion.

Delivered-Plan Algorithm (sketch)

The leaves of a plan tree are table, materialized view, or index
scan operators, possibly with a range predicate. If the input oper-
and is a local view, we return the ids of the view’s input tables in
S, not the id of the view, since consistency properties always refer
to base tables. If the whole view is consistent, we simply return the
id of its cache region; otherwise, we return the set of grouping keys
of its consistency root, and a flag, say –1, in the region id field to
indicate row-level granularity. For a remote table or view, we do
the same, except we assume it is consistent with a special region
id, say, 0.

All operators with a single relational input, such as filter, pro-
ject, aggregate and sort do not affect the delivered consistency
property and simply copy the property from their relational input.

Join operators combine two input streams into a single output
stream. We union the input consistency properties and merge
property tuples that are in the same cache region. Formally, given
two delivered C&C property tuples CPd1 = {<R1, S1, � 1>} and
CPd2 = {<R2, S2, � 2>}, we merge them if either of the following
conditions is true:

1) If the input operands are from the same cache region, i.e., R1 =
R2 ≥ 0, then we merge the tables, i.e., we replace CPd1 and
CPd2 by CPd = {<R1, S, Ø >}, where S = S1 U S2.

2) If the input operands are grouped into cache regions by the
same keys (for the same root), i.e., � 1 = � 2, they are group-
wise consistent so we merge them into CPd = {< -1, S, � 1>}
where S = S1 U S2.
A SwitchUnion operator has multiple input streams but it does

not combine them in any way; it simply selects one of the streams.
Thus, the output consistency property is the strongest consistency
property implied by every input. In our context a SwitchUnion
operator has a local and a remote branch. We output the properties
of the local branch. �

6.2.3 Satisfaction Rules

Now, given a required consistency property CCr and a delivered
one CPd, how do we know whether CPd satisfies CCr? Firstly, our
consistency model does not allow two columns from the same
input table T to originate from different snapshots, leading to the
following property:

Conflicting consistency property: A delivered consistency prop-
erty CPd is conflicting if there exist two tuples < R1, S1, � 1 > and
< R2, S2, � 2 > in CPd such that S1 ∩ S2 ≠ Ø and one of the follow-
ing conditions holds: i) R1 ≠ R2, or ii) Ω1 ≠ Ω2. �

This property is conservative in that it assumes that two cache
regions U1 and U2 from different views can only be consistent if
they have the same set of control-keys (the second condition).

Secondly, we can verify that a complete plan satisfies the con-
straint by checking that each required consistency group is fully
contained in some delivered cache region. We extend the consis-
tency satisfaction rule in [GLRG04] to include finer granularity
cache regions.

Consistency satisfaction rule: A delivered consistency property
CPd satisfies a required CCr w.r.t. a cache schema Σ and func-
tional dependencies F, if and only if CPd is not conflicting and, for
each tuple <br, K r, Sr, Gr> in CCr, there exists a tuple <Rd, Sd, Ωd>
in CPd such that Sr ⊆ Sd, and one of the following conditions

holds: i) Ωd = Ø, or ii) let Gr
+ be the attribute closure w.r.t. F.

There exists a Gd∈Ωd such that Gd ⊆ Gr
+. �

For query Q2, suppose we have CCr = {<5, Ø, {Authors,
Books}, {isbn}>}, and that the cache schema is the one in Figure
3.2. During view matching, AuthorCopy and BookCopy will
match Q2. Thus CPd = {<-1, {Authors, Books}, {Au-
thors.authorId, city}>}. If AuthorCopy joins with BookCopy on
authorId (as indicated by the presence correlation), and the result is
R, then from the key constraints of Authors and Books we know
that isbn is a key in R. Therefore city∈ {isbn} +. CPd satisfies CCr.

Not knowing all FDs doesn’t affect the correctness of the satis-
faction rule, it only potentially produces false negatives:

Theorem 6.3: For any two sets of functional dependencies F and
F’ over the cache schema Σ, where F+ ⊆ F’+, if a delivered consis-
tency property CPd satisfies a required CCr w.r.t. F, then it satis-
fies CCr w.r.t. F’. �

Proof: Let Gr
+ be the attribute closure of Gr w.r.t. F+ , Gr’

+ be the
attribute closure of Gr w.r.t. F’+ , then Gr

+ ⊆ Gr’
+. �

. 13 .

Theorem 6.4: Assuming runtime checking is correct, with the
Delivered-Plan Algorithm, for any plan of which CPd satisfies CCr
w.r.t. a cache schema Σ and functional dependencies F, no matter
which data sources are used at execution time, CCr will be satis-
fied w.r.t F. �

Proof: Let the set of C&C properties of the sources be CPd = {<
Rdi, Sdi, Ωdi >}. Let the output of the Delivered-Plan Algorithm be
CPd’.

Case 1: There are no SwitchUnion operators in the plan.
Since operators with a single relational input simply pass the

input property; while join operators simply merge the input proper-
ties with the same cache region, we have CPd = CPd’.

Case 2: There are some SwitchUnions used as C&C guards.
In this case, for each SWU, there are two types of checking:

fullness checking and currency checking. So the branch actually
used satisfies the fullness and currency constraint.

The difference between CPd and CPd’ is that in CPd, for a lo-
cal source with property CPdi = {< Rdi, Sdi, Ωdi>} guarded with a
SWU, we have either CPdi or CPdi’ = {<0, Sdi, Ø>}, depending on
whether the local branch or the remote branch is used during exe-
cution.

For any tuple r = <br, K r, Sr, Gr> in CCr, since CPd’ satisfies
CCr, there exists a row t = <Rd, Sd, Ωd >, such that, Sr ⊆ Sd, and

one of the following conditions holds: i) Ωd = Ø, or ii) let Gr+ be
the attribute closure w.r.t. F. There exists a Gd∈Ωd such that
Gd ⊆ Gr

+.
If t is merged from sources that don’t have a swu, then it also

appears in CPd, otherwise, w/o loss of generality, we can assume it
comes from two local resources with swu operators and with prop-
erty t1 = < Rd1, Sd1, Ωd1> and t2 = < Rd2, Sd2, Ωd2>.

Trivial case: If Sr ⊆ Sd1(or Sd2), then r is satisfied by t1 (or t2)
in CPd.

Otherwise, we claim that for any cache instance, either both lo-
cal branches are used or both remote branches are used. Thus if
CPd’ satisfies CCr, then if we plug in CPd the property of the data
sources actually used, CPd also satisfies CCr.

Case 1: R>0. Since both local resources belong to the same
cache region, they have the same currency, so does the currency
checking result.
Case 2: R= -1. Since the two resources are controlled by the same
set of consistency control-keys, again, the C&C checking results
are the same. �

While a plan is being constructed, bottom-up, we want to stop
as soon as it is possible to tell that the plan cannot deliver the con-
sistency required by the query. Unfortunately, the consistency
satisfaction rule cannot be used for this purpose as soon as a new
root operator is added to a plan; a check may fail simply because
the partial plan does not include all inputs covered by the required
consistency property. Therefore we develop a violation rule.

Consistency violation rule: A delivered consistency property CPd
violates a required consistency constraint CCr w.r.t. a cache
schema Σ and functional dependencies F, if one of the following
conditions holds:
1) CPd is conflicting,
2) There exists a tuple < br, K r, Sr, Gr > in CCr that intersects

more than one consistency group in CPd, that is, there exist

two tuples < R1d, S1d, Ω1d > and < R2d, S2d, Ω2d > in CPd
such that Sr ∩ S1d ≠ Ø and Sr ∩ S2d ≠ Ø,

3) There exists <b, K r, Sr, Gr> in CCr, and < Rd, Sd, Ωd > in CPd,
such that Sr ⊆ Sd, Ωd ≠ Ø and the following condition holds:

let Gr+ be the attribute closure w.r.t. Σ and F. There does not
exist Gd∈Ωd, such that Gd ⊆ Gr

+. �

Theorem 6.5: Using the Delivered-Plan Algorithm, if a partial
plan A violates the required consistency property CCr w.r.t. a
cache schema Σ and functional dependencies F, then no plan that
includes A as a branch can satisfy CCr w.r.t. Σ and F . �

Proof: This is true because from the algorithm, for any tuple < Rd,
Sd, Ωd > in the delivered plan property of P, there is a tuple < Rd,
Sd’ , Ωd > in the delivered plan property of any plan that includes P
as a branch, where Sd ⊆ Sd’ . �

6.3 Run-time C&C Checking

To include C&C checking at runtime, the optimizer must produce
plans that check whether a local view satisfies the required C&C
constraints and switch between using the local view and retrieving
the data from the back-end server. Such run-time decision-making
is built in a plan by using a SwitchUnion operator. A SwitchUnion
operator has multiple input streams but it does not combine them
in any way; it simply selects one of the streams according to the
outcome of a selector expression.

All local data is defined as materialized views and logical plans
making use of a local view are always created through view match-
ing [LGGZ04, LGZ04]. Consider an (logical) expression E and a
matching view V from which E can be computed. If there is no
C&C checking required on the input tables of E, view matching
[GL01] produces a “normal” substitute consisting of, at most, a
select, a project and a group-by on top of V. With C&C checking,
view matching produces a substitute consisting of a SwitchUnion
on top, shown in Figure 6.1, with a selector expression that checks
whether V satisfies the currency and consistency constraint and
two input expressions: a local branch and a remote branch. The
local branch is the “normal” substitute mentioned earlier and the
remote plan consists of a remote SQL query created from the
original expression E. If the condition, which we call consistency
guard or currency guard according to its purpose, evaluates to true,
the local branch is chosen, otherwise the remote branch is chosen.

The discussion of when and what type of consistency checking
to generate and the inexpensive consistency checking we support is
deferred to Section 7.

Currency bound checking: If the required lowest currency
bound on the input tables of E is B, the optimizer generates a cur-
rency guard that checks if any required region is too old for the
query. Given a control-table CT on control-key CK, a set of prob-
ing values K on CK, recall that the timestamp is recorded in the rid
column of each control-table (Section 4.1.2), the check is:

NOT EXIST (SELECT 1 FROM CT
WHERE CK IN K AND rid < getdate()–B)

7. PERFORMANCE STUDY
This section reports analytical and experimental results for consis-
tency checking; results for PMV and currency checking are re-
ported in [ZLG05] and [GLRG04] respectively.

We used a single cache DBMS and a back-end server. The
back-end server hosted a TPCD database with scale factor 1.0

Figure 6.1: SwitchUnion with a C&C guard

. 14 .

(about 1GB). The experiments reported here used only the Cus-
tomers and Orders tables. The Customers table was clustered on its
primary key, c_custkey with an index on c_nationkey. The Orders
table was clustered on (o_custkey, o_orderkey). The cache DBMS
had a copy of each table, CustCopy and OrderCopy, with the same
indexes. The control-table settings and queries used are shown in
Figure 7.1. We populated the ckey and nkey columns with
c_custkey and c_nationkey columns from the views respectively.

C_PCT and O_PCT are the presence control-tables of Cust-
Copy and OrderCopy respectively. C_CsCT is a consistency con-
trol-table on CustCopy. By setting the rid field, we can control the
outcome of the consistency guard.
The caching DBMS ran on an Intel Pentium 4CPU 2.4 GHz box
with 500 MB RAM. The back-end ran on an AMD Athlon MP
Processor 1800+ box with 2GB RAM. Both machines ran Win-
dows 2000 and were connected in a local area network.

7.1 Consistency Guard Overhead

We made the design choice to only support certain inexpensive
types of run-time consistency guard. A natural question is: what is
the overhead of the consistency guards? Furthermore, how expen-
sive are more complicated guards?

We experimentally evaluate the cost of several types of guards
by means of emulation. Given a query Q, we generate another
query Q’ that includes a consistency guard for Q, and use the exe-
cution time difference between Q’ and Q to approximate the over-
head of the consistency guard. For each query, depending on the
result of the consistency guard, it can be executed either locally or
at the back-end. We measure the overhead for both scenarios.

7.1.1 Single Table Case

We first analyze what type of consistency guard is needed for Qa
when $key differs. The decision making process is summarized in
Figure 7.2 and the consistency guards are shown in Figure 7.3.

Condition A: Is each required consistency group equal to or
contained in a region defined by the presence control-table?

If A is true, it follows from the Presence Assumption that all
the rows associated with each presence control-key are consistent.
No explicit consistency guard is needed. For example, for Qa with
$key = c_custkey.

Condition B: Is each required consistency group equal to or
contained by a region defined by a consistency control-table?

If B is true, we check C, otherwise we check D.
Condition C: Is the consistency guarantee full?
If C is true, then no run-time consistency checking is neces-

sary. Otherwise, we need to probe the consistency control-table
with the required key values at runtime. For example, for Qa with
$key = c_nationkey, we have two scenarios:

In the first scenario, Qa does not include an equality predicate
on c_nationkey. We have to first calculate which nations are in the

results, then check if they all appear in the consistency control-
table C_CsCT (A11a). A more precise guard (A11b) only checks
nations with more than one customer, by adding the COUNT(*)>1

condition. Such checking (e.g., A11a, A11b and A12) is called
assured consistency checking in that it checks if the required
consistency groups are part of the guaranteed cache regions.

In the second scenario, the predicate on nation is included in
the query as a redundant predicate, which allows us to simply
check if each required nation is in C_CsCT (A12). It eliminates the
need to examine the data before consistency checking.

Condition D: Each required consistency group can be covered
by a collection of cache regions.

If D is true, we have the opportunity to do ad-hoc consistency
checking. For Qa with $key = Ø, we check if all the required cus-
tomers are in the same ad-hoc cache region (S11). Such checking
(e.g., S11, S12 and S21, S22 from Section 7.1.2) is called ad-hoc
consistency checking.

If $key = c_nationkey and suppose we don’t have C_CsCT, the
ad-hoc checking needs to check each group (S12).

Experiment 1 is designed to measure the overhead of the type
of consistency guards supported in our current framework. We
choose to support only run-time consistency guards that i) do not
require touching the data in a PMV; ii) only require probing a
single control-table. To be specific, we only support the guards
shown in A12 and S11. We fixed the guards and measured the
overhead for three different queries: Qa and Qb with $custSet =
(1); Qc with $nationSet = (1). The consistency guard for Qa and
Qb is S11 and the one for Qc is A12.

The results are shown in Table 7.1. As expected, in both the
local and remote case, the absolute cost remains roughly the same,
the relative cost decreases as the query execution time increases.
The overhead for remote execution is small (less than 2%). In the
local case, the overhead for Qc (returning ~6000 rows) is less than
2%. Although the absolute overhead for Qa and Qb is small

Figure 7.2: Generating consistency guard

Figure 7.1: Settings & Queries used for experiments

Figure 7.3: Consistency guard examples

. 15 .

(<0.1ms), since the queries are inexpensive (returning 1 and 6 rows
respectively), the relative overhead is ~15%.

In experiment 2, we used query Qa with $custSet = (2, 12),
which returns 2 rows; and compared the overhead of different
types of consistency guards that involve one control-table. The
results are shown in Table 7.2.

For local execution, if the consistency guard has to touch the
data of the PMV (as in A11a and A11b and S12), the overhead
surges to ~70% for S12, because we literally execute the local
query twice. A11a and b show the benefit of being more precise:
the “sloppy” guard in A11a incurs 63% overhead, while the over-
head of the more precise guard (A11b) is only 24%, because it is
less likely to touch CustCopy. The simple guard A12 incurs the
smallest overhead (~17%).

7.1.2 Multi-Table Case

Different from Qa, the required consistency group in Qb has ob-
jects from different views. In this case, we first check the condi-
tion:

Condition E : Do they have the same consistency root?
If E is true, then the consistency guard generation reduces to

the single table case, because the guaranteed cache regions are
decided by the consistency root. Otherwise, we have to perform
ad-hoc checking involving joins of presence control-tables. There
are two cases.

Case 1: $key = Ø. We check if all the required presence con-
trol-keys point to the same cache region (S21).

Case 2: $key = c_nationkey. We first group the required rows
by c_nationkey, and check for each group if a) all the customers
are from the same region; and b) all the orders are from the same
region as the customers (S22).

In Experiment 3, we use query Qb with $custSet = (2, 12),
which returns 7 rows, and measure the overhead of consistency
guards that involve multiple control-tables. The results are shown
in Table 7.3. Guards S21 and S22 involve not only accessing the
data, but also performing joins. Such complicated checking incurs
huge overhead in the local execution case (~150%). Note that if
CustCopy and OrderCopy are consistency-wise correlated, then the
overhead (refer to single-table case) reduces dramatically.

It is worth pointing out that in all experiments, even for com-
plicated consistency guards, the overhead of remote execution is
relatively small (<10% for single-table case, <25% for multi-table
case). It raises an interesting point: even if a guard is less likely to
be successful, it might still be preferable to do the check than sim-
ply use a remote plan. Thus the cost-model should bias in favor of
plans with consistency checking instead of remote plans.

7.2 Success Rate of Ad-hoc Checking

Intuitively, everything else being equal, the more relaxed the cur-
rency requirements are, the more queries can be computed locally.
Although less obvious, this is also true for consistency constraints.

Assuming all rows in $custSet are in the cache, a dynamic plan
for Qa will switch between either CustCopy and a remote query,
depending on the outcome of the consistency guard. If there is only
one customer in $custSet, by default the result is consistent. At the
other extreme, if $custSet contains 1000 customers, they are not
likely to be consistent. When the number of customers in $custSet
increases, the likelihood of the result being consistent decreases.
Suppose there are N rows in CustCopy, divided into M cache re-
gions. We assume that the regions are the same size and each row
in $custSet is independently and randomly chosen from CustCopy.
Let the size of $custSet be x, where x ≤ N. The result is consistent
only when all the chosen rows are from the same cache region.
Thus, the probability of an ad-hoc consistency check being suc-
cessful is P(consistent) = (1/M)X-1.

As one would expect and this formula clearly shows, the prob-
ability of success decreases rapidly as the number of consistency
groups and/or number of required rows increase.

8. RELATED WORK
The work in [GLRG04] is the first that addresses C&C aware da-
tabase caching with a query centric approach. Relaxing data qual-
ity is an old concept in replica management, distributed databases
and warehousing and web views etc.. Some of them take a mainte-
nance-centric approach [ABG88, GN95, SK97], where queries are
not allowed to express their individual data quality requirements.
Some authors have taken a query-centric approach [OW00,
HSW94, WXCJ98, OLW01], but they focus on single object
granularity and no consistency guarantee is provided. FAS
[RBSS02] enforces consistency at the level of the complete cache.
In concurrency control, Epsilon-serializability [PL91] allows
higher degree of concurrency by relaxing data quality.

Caching has been used in many areas. Regarding what to
cache, while some works [DFJ+96, APTP03] support arbitrary
query results, others are tailored for certain simple types of queries
[KB96, LN01], or even just base tables [AJL+02, CLL+01,
LKM+02]. In the database caching context, good surveys can be
found in [DDT+01, Moh01].

The closest work to ours are DBCache [ABK+03] and Con-
straint-based Database Caching (CBDC) [HB04]. Similarly to us,
they consider full-fledged DBMS caching; and they define a cache
with a set of constraints. However, there are two fundamental dif-
ferences. First, they don’t consider relaxed data quality require-
ments, nor do they provide currency guarantees from the DBMS.
Our work is more general in the sense that the cache-key and RCC
constraints (an extension to cache groups in [TT02]) they support
can be seen as a subset of ours. Second, in DBCache, local data
availability checking is done outside of the optimizer, while in our
case, local data checking is integrated into query optimization,
which not only allows finer granularity checking, but also leaves
the optimizer the freedom to choose the best plan based on cost.

9. CONCLUSIONS
The goal of our work is to build a solid foundation for fine granu-
larity, C&C-aware adaptive DBMS caching. We formally defined
four fundamental cache properties: presence, consistency, com-
pleteness, and currency. We proposed a cache model in which

Local Remote Cost
Qa Qb Qc Qa Qb Qc

ms .078 .08 1.17 .01 .19 1.13
% 16.5

6
14.0

0
<2 <1 <2 <1

Rows 1 6 5975 1 6 5975

Table 7.1: Simple consistency guard overhead

Local Remote Cost
A11a A11b A12 S11 S12 A11a A12 A12 S11 S12

ms .31 .12 .084 .29 .35 .33 .27 .13 .41 .48
% 62.85 23.77 16.98 58.32 71.41 6.06 4.95 2.33 7.48 8.79

Table 7.2: Single-table case overhead

Local Remote Cost
S21 S22 S21 S22

ms .90 .83 1.00 .98
% 155.83 143.82 24.82 24.36

Table 7.3: Multi-table case overhead

. 16 .

users can specify a cache schema by defining a set of local views,
together with cache constraints that specify what properties the
cache must guarantee. We enforced C&C constraints by integrating
C&C checking into query optimization and evaluation.

We envision two lines of future research. First, in our current
cache model, we only support groups defined by equality condi-
tions. For efficient cache management, we plan to explore other
predicates, e.g., range predicates. Second, we plan to investigate
C&C-aware cache replacement and refresh policies that make deci-
sions adaptively, based on the workload.

10. REFERENCES
[ABG88] R. Alonso, D. Barbará, H. Garcia-Molina, and S. Abad.
Quasi-copies: Efficient Data Sharing For Information Retrieval Systems. In
EDBT, 1988.

[ABK+03] M. Altinel, C. Bornhövd, S. Krishnamurthy, C.Mohan, H.
Pirahesh, and B. Reinwald. Cache Tables: Paving The Way For An Adap-
tive Database Cache. In VLDB, 2003.

[AJL+02] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, T. Zhong. Web
Caching for Database Applications with Oracle Web Cache. In SIGMOD,
2002.

[APTP03] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A
Dynamic Data Cache for Web Applications. In ICDE, 2003.

[CLL+01] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal.
Enabling Dynamic Content Caching for Database-Driven Web Sites. In
SIGMOD, 2001.

[DDT+01] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, K. Ramam-
ritham, D. Fishman. A Comparative Study of Alternative Middle Tier
Caching Solutions to Support Dynamic Web Content Acceleration. In
VLDB, 2001.

[DFJ+96] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan,
Semantic Data Caching and Replacement. In VLDB, 1996.

[GN95] R. Gallersdörfer and M. Nicola. Improving Performance In Repli-
cated Databases Through Relaxed Coherency. In VLDB, 1995.

[GL01] J. Goldstein and P. Larson. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. In SIGMOD, 2001.

[GLRG04] H. Guo, P. Larson, R. Ramakrishnan, J. Goldstein: Relaxed
Currency and Consistency: How to Say "Good Enough" in SQL. In SIG-
MOD, 2004.

[HB04] T. Härder, A. Bühmann. Query Processing in Constraint-Based
Database Caches. In Data Engineering Bulletin 27(2), 2004.

[HSW94] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in
Client Server Architectures. In PDIS, 1994.

[KB96] A. Keller, J. Basu. A Predicate-Based Caching Scheme for Client-
Server Database Architectures. In VLDB J. 5(1):35-57, 1996.

[LGGZ04] P. Larson, J. Goldstein, H. Guo, J. Zhou. MTCache: Mid-tier
Database Cache in SQL Server. In Data Engineering Bulletin, 2004.

[LGZ04] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent
Mid-Tier Database Caching In Sql Server. In ICDE, 2004.

[LKM+02] Q. Luo, S. Krishnamurthy, C.Mohan, H. Woo, H. Pirahesh, B.
G. Lindsay, J. F. Naughton. Middle-tier database caching for e-Business.
In SIGMOD, 2002.

[LN01] Q. Luo and Jeffrey F. Naughton. Form-Based Proxy Caching for
Database-Backed Web Sites”. In VLDB 2001.

[Moh01] C. Mohan. Caching Technologies for Web Applications. In
VLDB, 2001.

[OLW01] C. Olston, B. Loo, and J. Widom. Adaptive Precision Setting for
Cached Approximate Values. In SIGMOD, 2001.

[OW00] C. Olston and J. Widom. Offering A Precision-Performance
Tradeoff For Aggregation Queries Over Replicated Data. In VLDB, 2000.

[TT02] The TimesTen Team. Mid-tier Caching: The FrontTier Approach.
In SIGMOD, 2002.

[PL91] C. Pu and A. Leff. Replica Control In Distributed Systems: An
Asynchronous Approach. In SIGMOD, 1991.

[RBSS02] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS - a Fresh-
ness-Sensitive Coordination Middleware for a Cluster of OLAP Compo-
nents. In VLDB, 2002.

[SK97] L. Seligman and L. Kerschberg. A Mediator For Approximate
Consistency: Supporting ''Good Enough'' Materialized Views. In JIIS,
1997.

[WXCJ98] O.Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving
Objects Databases: Issues And Solutions. In SSDBM, 1998.

[ZLG05] J. Zhou, P. Larson, J. Goldstein. Partially Materialized Views,
submitted to this conference.

