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ABSTRACT 

SQL extensions that allow queries to explicitly specify data quality 
requirements in terms of currency and consistency were proposed 
in an earlier paper. This paper develops a data quality-aware, finer 
grained cache model and studies cache design in terms of four 
fundamental properties: presence, consistency, completeness and 
currency. Such a model provides an abstract view of the cache to 
the query processing layer, and opens the door for adaptive cache 
management. We describe an implementation approach that builds 
on the MTCache framework for partially materialized views. The 
optimizer checks most consistency constraints and generates a 
dynamic plan that includes currency checks and inexpensive 
checks for dynamic consistency constraints that cannot be vali-
dated during plan compilation. Our solution not only supports 
transparent caching but also provides transactional fine grained 
data currency and consistency guarantees.  

1. INTRODUCTION 
Replicated data, in various forms, is widely used to improve scal-
ability, availability and performance. Applications that use out-of-
date replicas are clearly willing to accept results that are not cur-
rent, but typically have some limits on how stale the data can be. 
SQL extensions that allow queries to explicitly specify such data 
quality requirements in the form of consistency and currency 
(C&C) constraints were proposed in [GLRG04]. That work also 
described how support for C&C constraints is implemented using 
MTCache [LGGZ04], a prototype mid-tier database cache built on 
Microsoft SQL Server. 

We model cached data as materialized views over a primary 
copy. The work reported in [GLRG04] considered only the re-
stricted case where all rows of a cached view are consistent, i.e., 
from the same database snapshot. This requirement severely re-
stricts the cache maintenance policies that can be used. A pull 
policy, where the cache explicitly refreshes data by issuing queries 
to the source database, offers the option of using query results as 
the units for maintaining consistency and other cache properties. In 
particular, issuing the same parameterized query with different 
parameter values returns different partitions of a cached view, 
offering a much more flexible unit of cache maintenance (view 
partitions) than using entire views.  

The extension to finer granularity cache management funda-
mentally changes every aspect of the problem, imposing non-trivial 
challenges: 1) how the cache tracks data quality; 2) how users 
specify cache properties; 3) how to maintain the cache efficiently; 

and 4) how to do query processing. In this paper, we propose a 
comprehensive solution, as described in Section 1.2.  

Figure 1.1 shows our running example, where Q1 is a param-
eterized query, followed by different parameter settings.  

1.1 Background and Motivation 

We now motivate four properties of cached data that determine 
whether it can be used to answer a query. In the model proposed in 
[GLRG04], a query’s C&C constraints are stated in a currency 
clause. For example, in Q2, the currency clause specifies three 
“quality” constraints on the query results: i) “ON (A, B)” means 
that any Authors and Books rows joined together must be consis-
tent, i.e., from the same database snapshot.  ii) “BOUND 10 min” 
means that these rows must be current to within 10 minutes, that 
is, at most 10 minutes out of date.  iii) “BY authorId” means that 
all result rows with the same authorId value must be consistent. To 
answer the query from cached data, the cache must guarantee that 
the result satisfies these requirements and two more: iv) the Au-
thors and Books rows for authors 1, 2, and 3 must be present in the 
cache and v) they must be complete, that is, no rows are missing. 

E1.1 requires that all three authors with id 1, 2 and 3 be present 
in the cache, and that they be mutually consistent. Suppose we 
have in the cache a partial copy of the Authors table, AuthorCopy, 
which contains some frequently accessed authors, say those with 
authorId 1-10. We could require the cache to guarantee that all 
authors in AuthorCopy be mutually consistent, in order to ensure 
that we can use the rows for authors with id 1, 2 and 3 to answer 
E1.1, if they are present. However, query E1.1 can be answered 
using the cache as long as authors 1, 2 and 3 are mutually consis-
tent, regardless of whether other author rows are consistent with 
these rows. On the other hand, if the cache provides no consistency 
guarantees, i.e., different authors could have been copied from a 
different snapshot of the master database, the query cannot be an-
swered using the cache even if all requested authors are present. In 
contrast, query E1.2, in which the BY clause only requires rows 
for a given author to be consistent, can be answered from the cache 
in this case. 

Query Q3 illustrates the completeness property. It asks for all 
authors from Madison, but the rows for different authors do not 
have to be mutually consistent. Suppose we keep track of which 
authors are in the cache by their authorIds. Even if we have all the 
authors from Madison, we cannot use the cached data unless the 
cache guarantees that it has all the authors from Madison. Intui-
tively, the cache guarantees that its contents are complete w.r.t. the 
set of objects in the master database that satisfy a given predicate.  
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No matter what cache management mechanisms or policies are 
used, as long as cache properties are accurately maintained, query 
processing can deliver correct results. Thus, cache property de-
scriptions serve as an abstraction layer between query processing 
and cache management, which enables the implementation of 
query processing to be independent of cache maintenance.  

1.2 Our Contributions 

We offer a comprehensive solution to finer granularity cache man-
agement while still providing query results that satisfy the query’s 
consistency and currency requirements. 1) We build a solid foun-
dation for cache description by formally defining presence, consis-
tency, completeness and currency (Section 2). 2) We introduce a 
novel cache model that supports a specific way of partitioning and 
translate a rich class of integrity constraints (expressed in extended 
SQL DDL syntax) into properties required to hold over different 
partitions (Section 3). 3) We identify an important property of 
cached views, called safety, and show how safety aids in efficient 
cache maintenance (Section 4). Further, we formally define cache 
schemas and characterize when they are safe, offering guidelines 
for cache schema design (Section 5). 4) We show how to effi-
ciently enforce finer granularity C&C constraints in query process-
ing by extending the approach developed in [GLRG04] (Section 
6). 5) We report analytical and experimental results, providing 
insight into various performance trade-offs (Section 7). 

2. CACHE PROPERTIES 
The previous work in [GLRG04] describes the semantics of C&C 
constraints, providing a correctness standard. In this section, we 
define the properties of the cache using the same model. To make 
this paper more self-contained, we summarize the model and list 
some assumptions specific to this paper in Section 2.1. 

2.1 Basic Concepts 

A database is modeled as a collection of database objects organ-
ized into one or more tables. Conceptually, the granularity of an 
object may be a view, a table, a column, a row or even a single cell 
in a row. To be specific, in this paper an object is a row. Let iden-
tity of objects in a table be established by a (possibly composite) 
key K. When we talk about a key at the database level, we implic-
itly include the scope of that key. Every object has a master and 
zero or more copies. The collection of all master objects is called 
the master database. We denote the database state after n commit-
ted update transactions (Ti, i = 1..n) by Hn = (Tn ° Tn-1 ° … ° 
T1(H0)), where H0 is the initial database state, and “°” is the usual 
notation for functional composition. Each database state Hi is 
called a snapshot of the database. Assuming each committed 
transaction is assigned a unique timestamp, we sometimes use Tn 
and Hn interchangeably. 

A cache is a collection of materialized views, each consisting 
of a collection of copies (of row-level objects). Although an object 
can have at most one copy in any given view, multiple copies of 
the same object may co-exist in different cached views. We limit 
our discussion to selection queries, and we only consider views 
defined by selection queries that select a subset of data from a table 
or a view of the master database.  

Self-Identification: The function master() applied to an object 
(master or copy) returns the master version of that object. 

Transaction Timestamps: The function xtime(T) returns the 
transaction timestamp of transaction T. We overload the function 
xtime to apply to objects. The transaction timestamp associated 
with a master O, xtime(O, Hn), is equal to xtime(A), where A is the 
latest transaction in T1..Tn that modified O. For a copy C, the trans-
action timestamp xtime(C, Hn) is copied from the master object 
when the copy is synchronized.  

Copy Staleness: Given a database snapshot Hn, a copy C is 
stale if master(C) was modified in Hn after xtime(C, Hn). The time 
at which O becomes stale, called the stale point, stale(C, Hn), is 
equal to xtime(A), where A is the first transaction in T1..Tn that 
modifies master(C) after xtime(C, Hn). The currency of copy C in 
snapshot Hn is measured by how long it has been stale, i.e., cur-
rency(C, Hn) = xtime(Tn) - stale(C, Hn). 

2.2 Presence 

The simplest type of query asks for an object identified by its key, 
as shown in Q1. How do we know an object is in the cache?  

Intuitively, we require that every object in the cache must be 
copied from some valid database snapshot. The function return (O, 
s) returns the value of object O in database state s. We say that 
copy C in a cache state Scache is snapshot consistent w.r.t. a data-
base snapshot Hn if return(C, Scache) = return(master(C), Hn) and 
xtime(C, Hn) = xtime(master(C), Hn). We also say CopiedFrom(C, 
Hn) holds.  
 

Defn: (Presence) We say an object O is present in cache Scache iff 
there is a copy C in Scache such that master(C) = O, and for some 
snapshot Hn of the master database CopiedFrom(C, Hn) holds. � 

2.3 Consistency 

When a query asks for more than one object, it can specify mutual 
consistency requirements on them, as shown in E1.1.  

For a subset U of the cache, we say that U is mutually snap-
shot consistent (consistent for short) w.r.t. a snapshot Hn of the 
master database if and only if CopiedFrom(O, Hn) holds for every 
object O in U. We also say CopiedFrom(U, Hn) holds. 

Besides specifying a consistency group by object keys (e.g., 
authorId in E1.2), a query can also specify a consistency group by 
a selection, as in E.1.3. Suppose all authors with id 1, 2 and 3 are 
from Madison. The master database might contain other authors 
from Madison. The cache still can be used to answer this query as 
long as all three authors are mutually consistent and no more than 
10 minutes old. Given a query Q and a database state s, let Q(s) 
denote the result of evaluating Q on s. 
 

Defn: (Consistency) For a subset U of the cache Scache, if there is a 
snapshot Hn of the master database such that CopiedFrom(U, Hn) 
holds, and for some query Q, the following holds: U⊆ Q(Hn), then 

U is snapshot consistent (or consistent) w.r.t. Q and Hn.                  
� 

 

Figure 1.1: Running Example   
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U consists of copies from snapshot Hn and Q is a selection 
query. Thus the containment of U in Q(Hn) is well defined. Note 
that object metadata, e.g., timestamps, are not used in this com-
parison. 

If a collection of objects is consistent, then any of its subsets is 
also consistent. Formally, 
 

Lemma 2.1:  Given a subset of objects U in the cache Scache, if U is 
consistent w.r.t. a query Q and a snapshot Hn of the master data-
base, then any subset P(U) defined by a selection query P is con-
sistent w.r.t. P°Q and Hn. � 
 

Proof: since U is consistent w.r.t. Q and Hn, we have:    
)( nHQU ⊆  (1)    

CopiedFrom(U, Hn). (2) 
Since (1), for any selection query P, 

)()( nHQPUP o⊆  (3) 

Since P is a selection query, UUP ⊆)( . Together with (2), we 

have  
CopiedFrom(P(U), Hn). (4) 

From (3) and (4), we know that P(U) is snapshot consistent w.r.t. 
P°Q and Hn.   � 

2.4 Completeness 

As illustrated in Q3, a query might ask for a set of objects defined 
by a predicate. How do we know that all the required objects are in 
the cache? 
 

Defn: (Completeness) A subset U of the cache Scache is complete 
w.r.t. a query Q and a snapshot Hn of the master database if and 
only if CopiedFrom(U, Hn) holds and U = Q(Hn). � 
 

Lemma 2.2:  For a subset U of the cache Scache, if U is complete 
w.r.t. a query Q and snapshot Hn, then any subset P(U) defined by 
a selection query P is complete w.r.t. P°Q and Hn.   � 
 

Proof: from the given, we have  
CopiedFrom(U, Hn), (1)  
U = Q(Hn) (2) 

From (2), for any selection query P,  
P(U) = P°Q(Hn) (3) 

Since UUP ⊆)( , from (1), we have  

CopiedFrom(P(U), Hn) (4) 
From (3) and (4), we know P(U) is complete  w.r.t. P°Q and Hn.  � 
 

The completeness constraint is rather restrictive. If we assume 
that objects’ keys are not modified, then it is possible to allow 
subsequent updates of some objects in U to be reflected in the 
cache, while still allowing certain queries (which require com-
pleteness, but do not care about the modifications and can there-
fore ignore consistency) to use cached objects in U.   
 

Defn: (Associated Objects) We say that a subset U of the cache 

Scache is associated with a query Q if for each object C in U, there 
exists a snapshot Hn of the master database such that Copied-
From(C, Hn) holds and C is in Q(Hn). � 
 

Defn: (Key-completeness) For a subset U of the cache Scache, we 
say U is key-complete w.r.t. Q and a snapshot Hn, iff U is associ-
ated with Q, and 

Π
keyQ(Hn) ⊆  

Π
key(U).     � 

 

Intuitively, U includes (as identified by the keys) all the objects 
that appear in the result of Q applied to the master database Hn. 
However, the objects in the cache might have been copied from 
different earlier snapshots of the master database, and subsequent 
changes to these objects might not be reflected in the cache. 

Figure 2.1 illustrates cache properties, where an edge from ob-
ject O to C denotes that C is copied from O. Assuming all objects 
are modified in H2, U1 is consistent but not complete w.r.t. Q1 and 
H1, U2 is complete w.r.t. Q2 and H1, and U3 is key-complete w.r.t. 
Q3 and both H1 and H2. 
 

Lemma 2.3:  If a subset U of the cache Scache is complete w.r.t. a 
query Q and a database snapshot Hn, then U is both key-complete 
and consistent w.r.t. Q and Hn.   � 
 

Proof: Directly from the definitions.   � 

2.5 Currency 

We have defined stale point and currency for a single object. Now 
we extend the concepts to a subset of objects. Suppose that on day 
1, there are only two authors from Madison in the master database, 
and we copy them to the cache, forming set U. On day 2, a new 
author moves to Madison. On day 3, how stale is U w.r.t. predicate 
“city = Madison”? Intuitively, the answer should be 1 day, since U 
gets stale the moment the new author is added to the master data-
base. However, we cannot use object currency to determine this 
since both objects in U continue to be current. To solve this prob-
lem, we use the snapshot where U is copied from as a reference.  

We overload the stale() function to apply to a database snap-
shot Hm w.r.t. a query Q: stale(Hm, Q, Hn) is equal to xtime(A), 
where A is the first transaction that changes the result of Q after 
Hm in Hn. Similarly, we overload the currency() function: cur-
rency(Hm, Q, Hn) = xtime(Hn) - stale(Hm, Q, Hn). 
 

Defn: (Currency for complete set) For a subset U of the cache 
Scache, if U is complete w.r.t. a query Q and a database snapshot 
Hm, then the currency of U w.r.t. a snapshot Hn of the master data-
base is defined as follows: currency(U, Q, Hn) = currency(Hm, Q, 
Hn).  � 
 

From the definition, it seems the currency of U depends on 
which snapshot Hm we use in the calculation. In order to avoid 
such ambiguity, we introduce the following assumption. The as-
sumption can be relaxed by a “ghost row” technique, see [GLR05] 
for details. 
 

Non-Shrinking Assumption: For any query Q, any database snap-
shot Hi and Hj, where i≤ j,  and 

Π
keyQ(Hi) ⊆ Π

keyQ(Hj).   � 
 

Currency Property 2.1: Under the assumption above, for any 
subset U of the cache Scache, any query Q, and any master database 

 

Figure 2.1: Cache property example 

 

Figure 2.2: Currency example (1) 

 

Figure 2.3: Currency example (2) 
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snapshot Hi and Hj, if U is complete w.r.t. Q and both Hi and Hj, 
then for any n, currency(Hi, Q, Hn) = currency(Hj, Q, Hn).   � 
 

Proof: (by contradiction) Since the case i=j is trivial, without loss 
of generality, assume i<j. Assume Tk is the first transaction that 
modifies Q(Hi) after Hi. We claim that k>j. For the proof by con-
tradiction, assume k≤ j.  

From the non-shrinking assumption, Tk either 1) modifies an 
object in Q(Hi), say O1 or 2) adds a new object, say O2 to the re-
sult of Q. Further, both O1 and O2 are in Q(Hj). 

In case 1), since k≤ j, xtime(O1, Hj)>xtime(O1, Hi), which con-
tradicts the given that U is consistent w.r.t. both Hi and Hj.  

In case 2), O2 is not in Q(Hi), which also contradicts the given 
that U is complete w.r.t. both Hi and Hj.   
Thus k>j, hence currency(Hi, Q, Hn) = currency(Hj, Q, Hn).     � 
 

Figure 2.2 illustrates the currency of two complete sets, where A1 
and A2 are two copies of A’ and B is a copy of B’, Q(Hi) = {A’, 
B’} for i = 1, 2,  Q(Hi) = {A’, B’, C’} for i = 3, 4. Thus {A1, 
B}and {A2, B} are complete w.r.t. Q and H1, H2 respectively. 

How to measure the currency of a key-complete set? Figure 2.3 
shares the same assumptions as Figure 2.2, except for T2 and 
xtime(B), where {A1, B}and {A2, B} are key-complete w.r.t. Q 
and H1 and H2, while the latter is also complete w.r.t. Q and H2. It 
is desirable that 1) currency({A1,B}, Q, H4) is deterministic; and 
2) Since A1 is older than A2, {A1, B}should be older than {A2, 
B}. 

We address these problems by firstly identifying a unique ref-
erenced snapshot, and secondly incorporating the currency of the 
objects into the currency definition. 
 

Defn: (Max key-complete snapshot) For any subset U of the 
cache Scache and a query Q, the max key-complete snapshot of U 
w.r.t. Q and a database snapshot Hn, max-snapshot(U, Q, Hn) is 
equal to Hk, if there exists k, s.t., for any i≤ k, 

∏∏ ⊆
keykey i UHQ )(  

 

And one of the following conditions holds:  1) k=n; 2) 
)( 1∏∏ +⊂

key kkey
HQU  

 

Otherwise it is Ø.       � 
 

Directly from the definition of key-completeness and the non-
shrinking assumption, we have the following lemma. 
 

Lemma 2.4: If there exists a database snapshot Hm, s.t. U is key-
complete w.r.t. Q and Hm, then for any n, max-snapshot(U, Q, Hn) 
is not Ø. � 
 

Lemma 2.4 guarantees that the following definition is well de-
fined for a key-complete set.  
 

Defn: (Currency for key-complete set) For a subset U of the 
cache Scache, if U is key-complete w.r.t. a query Q and some data-
base snapshot, then the currency of U w.r.t. a snapshot Hn of the 
master database is defined as follows. Let Hm = max-snapshot(U, 
Q, Hn) and  

                       )),,((max n
UC

HCcurrencyY
∈

=  

Then Currency(U, Q, Hn) = max (Y, currency(Hm, Q, Hn)).     �  
 

Figure 2.3 shows the currency of a key-complete set {A1. B} 
and a complete set {A2, B}. 

Now the currency of a key-complete set has some nice proper-
ties that fit in intuition. 
 

Currency Property 2.2: For any subset U of the cache Scache, and 
a query Q, if U is key-complete w.r.t. Q and some database snap-
shot, then for any n, currency(U, Q, Hn) is deterministic.       � 
 

Proof: Directly from the definition and Lemma 2.4.     � 
 

Currency Property 2.3: Given any query Q, and two subsets U1 
and U2 of the cache Scache, if max-snapshot(U1, Q, Hn) = max-
snapshot(U2, Q, Hn) ≠  Ø, let 

)),,((max n
UO

i HOcurrencyY
i∈

=  

where i=1, 2. If Y1
≥

Y2, then currency(U1, Q, Hn)
≥

currency(U2, Q, 
Hn).                  � 
 

Proof: directly from the definition.                                    � 
 

Currency Property 2.4: currency-complete is a special case of 
currency-key-complete.      � 
 

Proof: Given any subset U of the cache Scache that is complete 
w.r.t. a query Q and some database snapshot Hm. For any n

≥
m, let 

Hg = max-snapshot(U, Q, Hn). From the definition of max key-
complete snapshot we know g

≥
m. There are two cases:  

Case 1: U is complete w.r.t. Hg.   
Let Tk be the first transaction in Hn that changes the result of Q 
after Hg. From the non-shrinking assumption, again, we have two 
cases: 
a. Tk touches at least one object, say O1, in U. Since Tk is the first 

transaction that touches U,  
 
 

Since the stale points for O1 and Q(Hg) are both xtime(Tk),  cur-
rency(Hg, Q, Hn) = currency(O1, Hn). Thus  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))  
       = currency(Hg, Q, Hn) = currency(O1, Hn). 
 

b. Tk adds new objects into the result of Q.  
In this case the stale point of any object O in U is later than 
xtime(Tk), so currency(Hg, Q, Hn) 

≥
 currency(O, Hn).  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn)) 
                               = currency(Hg, Q, Hn).    
Case 2: U is not complete w.r.t. Hg.  

let Tk be the first transaction in Hn that modifies at least an object, 
say O1 in U after Hm, then 

     currency(Hm, Q, Hn) = currency(O1, Hn) (2) 
                                                                           (3) 
 

In addition we have k≤ g, otherwise from the non-shrinking as-
sumption, U would be complete w.r.t. Hg. Thus  

           Y 
≥

 currency(Hg, Q, Hn) (4) 
Putting (2), (3) and (4) together,  

currency(U, Q, Hn) = max (Y, currency(Hg, Q, Hn))  
       = currency(Hg, Q, Hn) = currency(O1, Hn).      � 

2.6 Dealing with Deletion 

Currency properties 2.1 to 2.4 don’t hold without the non-
shrinking assumption. Take Property 2.1 for example. On day 1 
there are two customers C1, C2 from WI, which we copied to the 
cache, U = {C1, C2}. On day 2, customer C3 moved to WI tempo-
rarily, and moved out of WI on day 5. Then on day 4, the currency 
of U is 2 days old. However, on day 6, it goes back to 0!  

The reason is that when an object is deleted, we lose its xtime 
record. Consequently, given a set of objects K , one cannot 

),()),(( 1max nn
UO

HOcurrencyHOcurrencyY ==
∈

),()),(( 1max nn
UO

HOcurrencyHOcurrencyY ==
∈
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uniquely identify the first snapshot K  appears in. To remedy that, 
we introduce the concept of ghost object. Conceptually, when an 
object is deleted from a region in the master copy, we don’t really 
delete it, instead, we mark it as a ghost object and treat it the same 
way as a normal object. Thus we keep the xtime timestamp of de-
leted objects. Ghost objects and their timestamps are propagated to 
the cache just as normal objects. With this technique, deletion is 
modeled as a special modification. Thus the non-shrinking as-
sumption is guaranteed even in the presence of deletions. 
 

Lemma 2.5: With the ghost object technique, given any query Q, 
the non-shrinking assumption holds. � 
 

Proof: With the ghost object technique, there are no deletions to 
the region defined by Q.   � 
 

Note that in practice, we don’t need to record those ghost ob-
jects, since the calculation of currency only needs to be conserva-
tive. How we bound the currency of a complete set is discussed in 
Section 4.1.2.   

2.7 Derived Data 

If the cache only contains (parts of) base tables, then for each ob-
ject in the cache there is a master version in the master database. 
This doesn’t apply to derived data, i.e., materialized views in the 
cache. An object (row) in a materialized view in the cache doesn’t 
have a master copy in the master database. We introduce the con-
cept of virtual master copy to remedy this. Conceptually, for any 
view V in the cache, for any snapshot Hi of the master database, we 
calculate V(Hi) and include it in the master database. Thus by 
comparing two adjacent snapshots, we can record any inser-
tion/deletion/modification on the view. With this technique, any 
object in the cache — no matter whether it is from a base table or a 
view — has a master copy in the master database. Thus, any query 
can be used to define a region in the cache.  
Again, in practice, since we only need to bound the currency of a 
region conservatively, we don’t need to materialize the virtual 
master copies. See Section 4.1.2. 

3. DYNAMIC CACHING MODEL 
In our model, a cache is a collection of materialized views V = 
{V 1, …, Vm}, where each view Vi is defined using a query expres-
sion Qi. We describe the properties of the cache in terms of integ-
rity constraints defined over V. In this section, we introduce a class 
of metadata tables called control-tables that facilitate specification 
of cache integrity constraints, and introduce extended SQL DDL 
syntax for constraint specification. Figure 3.1 shows the set of 

DDL examples used in this section. We start by defining two views 
as shown in D1.  

3.1 View Partitions and Control-tables 

Instead of treating all rows of a view uniformly, we allow them to 
be partitioned into smaller groups, where properties (presence, 
currency, consistency or completeness) are guaranteed per-group. 
The same view may be partitioned into different sets of groups for 
different properties. Further, the cache may provide a full or par-
tial guarantee, that is, it may guarantee that the property holds for 
all groups in the partitioning or only for some of the groups. Al-
though different implementation mechanisms might be used for 
full and partial guarantees, conceptually, the former is a special 
case of the latter; we therefore focus on partial guarantees. 

In this paper, we impose restrictions on how groups can be de-
fined and consider only groups defined by equality predicates on 
one or more columns of the view. That is, two rows belong to the 
same group if they agree on the value of the grouping columns. For 
a partial guarantee, the grouping values for which the guarantee 
holds are (conceptually) listed in a separate table called a control-
table. Each value in the control-table corresponds to a group of 
rows of Vi that we call a cache region (or simply region). Each 
view Vi in V can be associated with three types of control-tables: 
presence, consistency and completeness control-tables. We use 
presence region, consistency region, and completeness region to 
refer to cache regions defined for each type, respectively. Note that 
control-tables are conceptual; some might be explicitly maintained 
and others might be implicitly defined in terms of other cached 
tables in a given implementation. 

3.1.1 Presence Control-Table (PCT) 

Suppose we receive many queries looking for some authors, as in 
Q1. Some authors are much more popular than others and the 
popular authors change over time, i.e., the access pattern is skewed 
and changes over time. We would like to answer a large fraction of 
queries locally but maintenance costs are too high to cache the 
complete Authors table. Furthermore, we also want to be able to 
adjust cache contents for the changing workload without changing 
the view definition. These goals are achieved by presence control-
tables. 

A presence control-table (PCT) for view Vi is a table with a 
1-1 mapping between a subset K of its columns and a subset K’ of 
V i’s columns. We denote this by PCT[K, K’]; K ⊆ PCT is called 
the presence control-key (PCK) for Vi, and K’⊆ V i  is called the 
presence controlled-key (PCdK). For simplicity, we will use 
PCK and PCdK interchangeably under the mapping. A PCK de-
fines the smallest group of rows that can be admitted to or evicted 
from the cache in the MTCache “pull” framework for cache main-
tenance. We assume that the cache maintenance algorithms materi-
alize, update and evict all rows within such a group together. 
 

Presence Assumption: All rows associated with the same presence 
control-key are assumed to be present, consistent and complete. 
That is, for each row s in the presence control-table, subset U = σ

K’=s.K (vi) is complete and consistent w.r.t. σ
K’=s.K ◦  Qi and Hn, for 

some snapshot Hn of the master database, where Qi is the query 
that defines Vi . � 
 

If V i has at least one presence control-table, it is a partially 
materialized view (PMV), otherwise it is a fully materialized view 
addressed in [GLRG04]. In this paper, we limit our discussion to 

 

Figure 3.1: DDL examples for adding cache constrain ts  
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only the simplest type of PMVs, namely views with an equality 
control-table; more general cases are addressed in [ZLG05].    

 In our motivating example, we cache only the most popular 
authors. This scenario can be handled by creating a presence con-
trol-table and adding a PRESENCE constraint to AuthorCopy, as in 
D2. AuthorList_PCT acts as a presence control-table and contains 
the ids of the authors who are currently present in the view Au-
thorCopy, i.e., materialized in the view.  

3.1.2 Consistency Control-Table (CsCT) 

A local view may still be useful even when all its rows are not kept 
mutually consistent. Consider a scenario where we receive many 
queries like E1.3. Suppose the view AuthorCopy contains all the 
required rows. If we compute the query from the view, will the 
result satisfy the query’s consistency requirements or not? The 
answer is “not necessarily” because the query requires all result 
rows to be mutually consistent per city, but AuthorCopy only 
guarantees that the rows for each author are consistent; nothing is 
guaranteed about authors from a given city. The consistency con-
trol-table provides the means to specify a desired level of consis-
tency.  

A consistency control-table (CsCT) for view Vi is denoted by 
CsCT[K], where a set of columns K⊆ CsCT is also a subset of Vi, 

and is called the consistency control-key (CsCK) for Vi. For each 
row s in CsCT, if there is a row t in Vi, s.t. s.K = t.K, then subset U 
= σ

K=s.K (vi) must be consistent w.r.t. (σ
K=s.K ◦  Qi) and Hn for some 

snapshot Hn of the master database.  
In our example, it is desirable to guarantee consistency for all 

authors from the same city, at least for some of the popular cities. 
We propose an additional CONSISTENCY constraint, for specify-
ing this requirement. In our example, we first create a consistency 
control-table containing a set of cities and then add a CONSIS-
TENCY constraint to AuthorCopy, as in D3 of Figure 3.1. The CON-
SISTENCY clause specifies that the cache must keep all rows re-
lated to the same city consistent if the city is among the ones listed 
in CityList_CsCT; this is in addition to the consistency require-
ments implicit in the Presence Assumption. AuthorCopy can now 
be used to answer queries like E1.3. 

If we want the cache to guarantee consistency for every city, 
we change the clause to CONSISTENCY ON city . If we want the 
entire PMV to be consistent, we change the clause to CONSIS-
TENCY ON ALL. If we don’t specify a consistency clause, the 
cache will not provide any consistency guarantees beyond the 
minimal consistency implied by the presence control-table under 
the Presence Assumption.  

3.1.3 Completeness Control-Table (CpCT) 

A PMV with a presence control-table can only be used to answer 
point queries with an equality predicate on its control columns. For 
example, AuthorCopy cannot answer Q3. 

It is easy to find the rows in AuthorCopy that satisfy the selec-
tion query but we cannot tell whether the view contains all re-
quired rows. If we want to answer queries with predicate P on 

columns other than the control-keys, the cache must guarantee that 
all rows defined by P appear in the cache. Completeness con-
straints can be specified in terms of a completeness control-table. 

A completeness control-table (CpCT) for view Vi is denoted 
by CpCT[K]. A completeness control-table is a consistency con-
trol-table with an additional constraint: the subset U in Vi defined 
as before is not only consistent but also complete w.r.t. (σ

K=s.K ◦  Qi) 
and Hn, for some snapshot Hn of the master database. We say K is a 
completeness control-key (CpCK ). Note that all rows within the 
same completeness region must also be consistent (Lemma 2.3). 

We propose to instruct the cache about completeness require-
ments using a COMPLETENESS constraint. Continuing our example, 
we create a completeness control-table and then add a complete-
ness clause to the AuthorCopy definition, as in D4 of Figure 3.1. 
Table CityList_CpCT serves as the completeness control-table for 
AuthorCopy. If a city is contained in CityList_CpCT, then we 
know that either all authors from that city are contained in Au-
thorCopy or none of them are. Note that an entry in the complete-
ness control-table does not imply presence. Full completeness is 
indicated by dropping the clause starting with “IN”. Not specifying 
a completeness clause indicates that the default completeness im-
plicit in the Presence Assumption is sufficient. 

A similar property is termed “domain completeness” in 
DBCache [ABK+03]. However, our mechanism provides more 
flexibility in cache management. The cache admin can specify: 1) 
which subset of columns should be complete; 2) whether to force 
completeness on all values or just a subset of values for these col-
umns.  

3.2 Correlated Presence Constraints 

In our running example, we may not only receive many queries 
looking for some authors, but also follow-up queries looking for 
related books. That is, the access pattern to BookCopy is decided 
by the access pattern to AuthorCopy. In order to capture this, we 
allow a view to use another view as a presence control-table. To 
define BookCopy to be controlled by AuthorCopy, we only need 
to declare AuthorCopy to be a presence control-table by a PRES-
ENCE constraint in the definition of BookCopy, as in D5 of Figure 
3.1. 

If a presence control-table is not controlled by another pres-
ence control-table, we call it a root presence control-table. Let L  
= {V m+1, …, Vn} be the set of root presence control-tables; W = V 
∪  L . We depict the presence correlation constraints by a cache 
graph, denoted by <W, E>. If there is an edge Vi   → ', ,, jiji KK  Vj, 
then Vi is a PCT[Ki,j, Ki,j ’] of V j.  

Circular dependencies require special care in order to avoid 
“unexpected loading”, a problem addressed in [ABK+03]. In our 
model, we don’t allow circular dependencies, as stated in Rule 1 in 
Figure 5.1. Thus we call a cache graph a cache DAG. 

Each view in the DAG has two sets of orthogonal properties. 
First, whether it is view-level or group-level consistent. Second, to 
be explained shortly, whether it is consistency-wise correlated to 
its parent. For illustration purposes, we use shapes to represent the 
first property: circle for view-level consistent views and rectangle 
(default) for all others. We use colors to denote the second prop-
erty: gray if a view is consistency-wise correlated to its parents, red 
(default) otherwise.   
 

Defn: (Cache schema) A cache schema is a cache DAG <W, E> 
together with the completeness and consistency control-tables 
associated with each view in W.    � 

 

Figure 3.2: C ache schema example   
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3.3 Correlated Consistency Constraints 

In our running example, we have an edge AuthorCopy  →authorId  
BookCopy, which means that if we add a new author to Author-
Copy, we always bring in all of the author’s books. The books for 
an author have to be mutually consistent, but they are not required 
to be consistent with the author. 

If we wish the dependent view to be consistent with the con-
trolling view, we add the consistency clause: CONSISTENCY ROOT, 
as in D6 of Figure 3.1.  A node with a ROOT consistency constraint 
is colored gray; it cannot have its own consistency or completeness 
control-tables, as stated in Rule 2 in Figure 5.1. 

For a gray node V, we call its closest red ancestor its consis-
tency root. For any of V’s cache regions Uj, if Uj is controlled by a 
presence control-key value included in a cache region Ui in its 
parent, we say that Ui consistency-wise controls Uj; and that Ui 
and Uj are consistency-wise correlated. 

Figure 3.2 illustrates a cache schema example. 

4. SAFE CACHED VIEWS  
A cache has to perform two tasks: 1) populate the cache and 2) 
reflect updates to the contents of the cache, while maintaining the 
specified cache constraints. Complex cache constraints can lead to 
unexpected additional fetches in a pull-based maintenance strat-
egy, causing severe performance problems. We illustrate the prob-
lems through a series of examples, and quantify the refresh cost for 
unrestricted cache schemas in Theorem 4.1. We then identify an 
important property of a cached view, called safety, that allows us 
to optimize pull-based cache maintenance, and summarize the 
gains it achieves in Theorem 4.2. In the course of the discussion, 
we also introduce the concept of ad-hoc currency regions, which is 
useful for adaptively refreshing the cache. 

For convenience, we distinguish between the schema and the 
instance of a cache region U. The schema of U is denoted by <V, 
K, k>, meaning that U is defined on view V by a control-key K 
with value k. We use the italic form U to denote the instance of U.  

4.1 Pull-Based Maintenance 

In the “pull” model, we obtain a consistent set of rows using either 
a single query to the back-end or multiple queries wrapped in a 
transaction. As an example, suppose AuthorCopy, introduced in 
Section 3, does not have any children in the cache DAG and that 
the cache needs to refresh a row t (1, Rose, Female, Madison, WI). 

First, consider the case where AuthorCopy does not have any 
consistency or completeness control-table, and so consistency 
follows the presence table. Then all rows in the presence region 
identified by authorId 1 need to be refreshed together. This can be 
done by issuing the presence query shown in Figure 4.1 to the 
back-end server. 

Next, suppose we have CityList_CsCT (see Section 3.1.2). If 
Madison is not found in CityList_CsCT, the presence query de-
scribed above is sufficient. Otherwise, we must also refresh all 
other authors from Madison. Let K  be the set of authors in Au-
thorCopy that are from Madison, the consistency query in Figure 
4.1 is sent to the back-end server. 

Finally, suppose we have CityList_CpCT (see Section 3.1.3). If 

Madison is found in CityList_CpCT, then besides the consistency 
query, we must fetch all authors from Madison using the com-
pleteness query in Figure 4.1. 

Formally, given a cache region U<V, K, k>, let the set of pres-
ence control-tables of V be P1, …, Pn, with presence control-keys 
K1, …, Kn. For Ki, i = 1..n, let K i=

Π
Ki

σ
K=k(V), the remote queries 

for U are: 1) the presence query, if U is a presence region; 2) the 
consistency queries (i = 1..n), if U is a consistency region; and 3) 
the consistency queries (i = 1..n) (and the completeness query if U ≠  Ø), if U is a completeness region. (The queries are shown in 
Figure 4.2.)  
 

Lemma 4.1:  For any cache region U <V, K, k> in the cache, the 
results retrieved from the back-end server using the above pres-
ence, consistency and completeness queries not only keeps U’s 
cache constraints, but also keeps the presence constraints for the 
presence regions in V that U overlaps.     � 
 

Proof: This directly follows from the presence, consistency and 
completeness queries.                                              � 
 

As this example illustrates, when refreshing a cache region, in 
order to guarantee cache constraints, we may need to refresh addi-
tional cache regions; the set of all such “affected” cache regions is 
defined below. 
 

Defn: (Affected Closure) The affected closure of a cache region 
U, denoted as AC(U), is defined transitively as follows: 
1) AC(U) = {U} 
2) AC(U) = AC(U)∪ {U i | for some Uj in AC(U), either Uj over-

laps Ui or Uj and Ui are consistency-wise correlated}.     � 
 

For convenience, we assume that the calculation of AC(U) al-
ways eliminates any consistency region Ui, if there exists a com-
pleteness region Uj in AC(U), s.t., Ui = Uj, since the completeness 
constraint is stricter (Lemma 2.3). The set of regions in AC(U) is 
partially ordered by the set containment relationship. From Lemma 
2.1-2.3, we only need to maintain the constraints of some “maxi-
mal” subset of AC(U). We use Max(

�
) to denote the set of the 

maximal elements in the partially ordered set 
�

. 
 

Defn: (Maximal  Affected Closure) The maximal affected closure 
of a cache region U, MaxAC (U), is obtained by the following two 
steps: Let 

�
 = AC(U),  

1) Constructing step. Let д , в  be the set of all consistency regions 
and completeness regions in 

�
 respectively. MaxAC(U) = 

Max(
�

 - д ) ∪ Max(
�

 – в ). 
2) Cleaning step. Eliminate any consistency region Ui in 

MaxAC(U) if there exists a completeness region Uj in 
MaxAC(U), s.t., Ui ⊆ Uj.          � 

 

Maintenance Rule:  
1) We only choose a region to refresh from a red node. 
2) When we refresh a region U, we follow the following steps: 

Step 1: Retrieve all regions in MaxAC(U) by sending remote 
queries accordingly, let the result be denoted by newTupleSet.  

Step 2: Delete the old rows covered by AC(U) or newTupleSet, 
then insert newTupleSet into the corresponding views.     � 
 

Theorem 4.1: Assuming the partial order between any two cache 
regions is constant, then given any region U, if we apply the Main-
tenance Rule to a cache instance that satisfies all cache constraints, 

 

Figure 4.1: Refresh query examples  

 

Figure 4.2: Refresh queries  
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let newTupleSet be the newly retrieved tuple set, �  = 
AC(newTupleSet), then  
1) Every region other than those in (� -

�
) observes its cache con-

straint after the refresh transaction is complete. 
2) If ( � -

�
) = Ø, then after the refresh transaction is complete, all 

cache constraints are preserved.   
3) If ( � -

�
) = Ø, MaxAC(U) is the minimal set of regions we have 

to refresh in order to refresh U while maintaining all cache 
constraints for all cache instances.  �  

 

Proof: Let 
�

 = AC(U), maxSet=MaxAC(U), newTupleSet be the 
tuple set retrieved for maxSet. 
1) For any cache region X <V, K, k> in 

�
, let V’ be the re-

freshed instance of V, D be the set of rows for V in newRowSet, X 
= δ K=k (V), X’ = δ K=k (V’), and X” = δ K=k (D).  

We first prove X’ = X” . This is obvious from step2 in the main-
tenance rule, since all the rows in X are deleted and all the rows in 
X”  are inserted into V’.  

Case 1: X is in maxSet. Directly from lemma 4.1. 
Case 2: X is in (

�
-maxSet). Then there is a region Y in max-

Set, such that X⊆ Y.  
Case 2.1: If X is a present region, then directly from lemma 

4.1. Otherwise, 
Case 2.2: Y has an equal or stronger constraint than X. Since 

Y observes its constraint (from Case 1), it follows from lemma 2.1, 
2.2, 2.3 that so does X. 

Case 3: X is not in � ∪ �
. We prove that X’ = X. This is so 

because from the maintenance rule, those rows in U are not 
touched by the refresh transaction.  
2) It directly follows from 1). 
3) It is obvious if U is the only element in 

�
. Otherwise, prove 

by constructing counterexamples from AuthorCopy. In Author-
Copy, suppose there is a present control table on authorId with 
authorIds 1 and 2; there are two tuples: t1 = <1, Rose, Female, 
Madison, WI>, t2 = <2, Mary, Female, Seattle, WA>. Suppose we 
want to refresh t1 after an update that touched every row in Au-
thors in the master database.  

Prove by contradiction. Suppose there exists X in maxSet that 
should not being refreshed.  

Case 1: There exists Y in maxSet, such that X⊆ Y. Due to the 
definition of the maxSet, X must be a complete region and Y a 
consistent region.  

In AuthorCopy, suppose it has a complete region defined on 
city with value Madison; a consistency region defined on state 
with value WI. If a new author from Madison has been added in 
the master database, if we only refresh the consistent region by WI, 
only t1 will be refreshed, and after refresh, the completeness con-
straint on Madison is no longer preserved. 

Case 2:  There exists a cache region Y in maxSet, s.t. X over-
laps with Y. In AuthorCopy, suppose it has two consistent regions 
on WI and female respectively. If we only refresh the first one, 
only t1 will be refreshed, and after refresh, the consistency con-
straint on the latter is no longer preserved. � 
 

The last part of the theorem shows that when a region U is re-
freshed, every region in MaxAC(U) must be simultaneously re-
freshed.  Otherwise, there is some instance of the cache that satis-
fies all constraints, yet running the refresh transaction on this state 
to refresh U will leave the cache in a state violating some con-
straint. If (� -

�
)≠ Ø, multi-trip to the master database is needed in 

order to maintain all cache constraints. A general maintenance 
algorithm is sketched below. 

 

Maintenance Algorithm:  
INPUT: a cache region U from a red node 
{ 
  �  �{U}; 
  While (TRUE) 
 {  
 �  � AC( � ); 
 maxSet � MaxAC( � ); 
 oldRowSet =

,max SetU i ∈
∪ Ui //the instance set 

 NewRowSet = retrieve(maxSet); 
 

�
 = AC(NewRowSet); 

 If (
� ⊆ � ) break; 

 �  = 
�

 ∪ �  
} 
apply(oldRowSet, newRowSet);   
 
Function retrieve(� ) retrieves rows from the master database 

by sending a series of remote queries accordingly for each group in � .  
Procedure apply() refreshes the cache according to step 2 in the 

second part of the Maintenance Rule.  
 

Procedure Apply (S, D) 
Input: S - source row set, D - new row set 
Algorithm: 

for (each view V i  involved) 
{ 
 Let the set of rows in S that  

belongs to V i  be S i ; 
Let the set of rows in D that  

belongs to V i  be D i ; 
    Let dkey = Π key (D i ); 

   Delete S i  from V i ; 
Delete rows in V i  whose keys appear in 

dkey; 
   Insert D i  into V i . 
}      

 

Given a region U in a red PMV V, how do we get MaxAC(U)? 
For an arbitrary cache schema, we need to start with U and add 
affected regions to it recursively. There are two scenarios that po-
tentially complicate the calculation of MaxAC(U), and could cause 
it to be very large: 
1) For any view Vi, adding a region Uj from Vi results in adding 

all regions from Vi that overlap with Uj. 
2) A circular dependency may exist between two views Vi and Vj, 

i.e., adding new regions from Vi may result in adding more re-
gions from Vj, which in turn results in adding yet more regions 
from Vi.  
The potentially expensive calculation and the large size of 

MaxAC(U), and the correspondingly high cost of refreshing the 
cache motivate the definition of safe PMVs in Section 4.2.  

4.1.1 Ad-hoc Cache Regions 

Although the specified cache constraints are the minimum con-
straints that the cache must guarantee, sometimes it is desirable for 
the cache to provide additional “ad-hoc” guarantees. For example, 
a query workload like E1.1 asks for authors from a set of popular 
authors and requires them to be mutually consistent. Popularity 
changes over time. In order to adapt to such workloads, we want 
the flexibility of grouping and regrouping authors into cache re-
gions on the fly. For this purpose, we allow the cache to group 
regions into “ad-hoc” cache regions.  
 

Defn: (Ad-hoc region) An ad-hoc cache region consists of a union 
of one or more regions (which might be from different views) that 
are mutually consistent.  � 
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Such “ad-hoc” consistency information is made known to the 
query processor by associating the region id of the ad-hoc region 
with each region it contains.  

4.1.2 Keeping Track of Currency 

In order to judge if cached data is fresh enough for a given query, 
we need to keep track of its currency. It is straightforward and we 
discuss it only briefly. [GLRG04] used a push model for cache 
maintenance, and relied on a heartbeat mechanism for this purpose. 
To track currency when using the pull model, we keep a timestamp 
for every cache region. When a cache region is refreshed, we also 
retrieve and record the transaction timestamp of the refresh query. 
Assuming that a transaction timestamp is unique, in implementa-
tion we simply use the timestamp as region id. Thus, if the time-
stamp (rid) for a cache region is T and the current time is t, since 
all updates until T are reflected in the result of the refresh query, 
the region is from a database snapshot no older than (t – T). 

4.2 Safe Views and Efficient Pulling 

We now introduce the concept of safe views, motivated by the 
potentially high refresh cost of pull-based maintenance for unre-
stricted cache schemas.  
 

Defn: (Safe PMV) A partially materialized view V is safe if the 
two following conditions hold for every instance of the cache that 
satisfies all integrity constraints: 
1) For any pair of regions in V, either they don’t overlap or one is 

contained in the other.  
2) If V is gray, let X denote the set of regions in V defined by 

presence control-key values. X is a partitioning of V and no 
pair of regions in X is contained in any one region defined on 
V.  � 

 

Intuitively, Condition 1 is to avoid unexpected refreshing be-
cause of overlapping regions in V; Condition 2 is to avoid unex-
pected refreshing because of consistency correlation across nodes 
in the cache schema. 
 

Lemma 4.2: For a safe red PMV V that doesn’t have any children, 
given any cache region U in V, the partially ordered set AC(U) is a 
tree.  � 
 

Proof: (by contradiction) Suppose there is a group X in AC(U), 
such that X has two parents Y and Z. Then Y∩ Z ≠  Ø. From the 
safe definition, either Y⊆  Z, or Z⊆ Y. Therefore they cannot 
both be X’s parents.    � 
 

Since AC(U) on V has a regular structure, we can maintain 
metadata that makes it possible to find the maximal element effi-
ciently. We omit the detailed mechanism because of space con-
straints. 
 

Theorem 4.2: Consider a red PMV V, and let κ  denote V and all 
its gray descendants. If all nodes in κ  are safe, whenever any re-
gion U defined on V is to be refreshed:  
1) The calculation of AC(U) can be done top-down in one pass. 
2) Given the partially ordered set AC(U) on V, the calculation of 

MaxAC(U) on V can be done in one pass.    � 
 

Proof:  
1) For any safe gray node V’, given the subset of PCK values K 
that is in AC(U) from its parent, we need to put in AC(U) the set of 
cache regions �  determined by K  in V’. �  is the exact set of cache 
regions in V’ that need to be put into AC(U), because from the 

definition of a safe view, �  doesn’t overlap or contained by any 
consistent or complete region defined on V’, nor does it overlap or 
contained by the rest of the present CRs in V’. Further, adding �  to 
AC(U) doesn’t result in adding additional cache regions from its 
parent, because of the first condition of the definition of safe.   
 

2) From 1), the descendents of V don’t affect AC(U) on V. Thus, 
let �  = AC(U), from Lemma 4.2, �  is a tree. Let Γ  be empty, we 
check the tree recursively top down from the root, let it be Y. If a 
node X is a complete region, then we add it to Γ ; Otherwise, we do 
the checking on each child of X. If Y is not in Γ , add it to Γ . 

We prove that Γ  = MaxAC(U). If Y is a complete or a present 
region, we are done. Otherwise, let д , в  be the set of all consistent 
regions and complete regions in �  respectively. {Y} = Max (� - в ), 
since it is the root of the tree. Now we prove Γ  -{Y} = Max( � - д ) 
by contradiction. Suppose there is a complete region Z in � , such 
that Γ  -{Y} doesn’t cover Z. Then Z doesn’t have any ancestor that 
is a complete region. Then from the algorithm, Z must be visited 
and put into Γ  -{Y}, contradicting the assumption. 

Further, the cleaning step doesn’t eliminate Y, since it is the 
root. Thus Γ  = MaxAC(U).   � 

5. DESIGN ISSUES FOR CACHES  
In this section, we investigate conditions that lead to unsafe cached 
views and propose appropriate restrictions on allowable cache 
constraints. In particular, we develop three additional rules to 
guide cache schema design, and show that Rules 1-5 are a neces-
sary and sufficient condition for (all views in) the cache to be safe.  

5.1 Shared-Row Problem 

Let’s have a closer look at the AuthorCopy and BookCopy exam-
ple defined in Section 3. Suppose a book can have multiple au-
thors. If BookCopy is rectangle, since co-authoring is allowed, a 
book in BookCopy may correspond to more than one control-key 
(authorId) value, and thus belong to more than one cache region. 
To reason about such situations, we introduce cache-instance 
DAGs. 
 

Defn: (Cache Instance DAG) Given an instance of a colored 
cache DAG <W, E>, we construct the corresponding cache in-
stance DAG as follows: make each row in each node of W a node; 
and for each edge Vi  → ', ,, jiji KK  Vj in E, for each pair of rows s in 
V i and t in Vj, if s.Ki,j = t.Ki,j’ then add an edge s � t.  � 
 

Defn: (Shared-Row Problem) Given a cache DAG <W, E>, a 
PMV V in W has the shared-row problem if there exists a cache 
instance DAG I  containing a row in V with more than one parent. 
� 

There are two cases where a PMV V has the shared-row prob-
lem. The first case is as follows: 
 

Lemma 5.1: Given a cache schema <W, E>, PMV V in W has the 
shared-row problem if V has more than one parent. � 
 

Proof: (by constructing an instance DAG). Suppose V has two 
PCTs T1 and T2 on attributes A and B respectively. Suppose val-
ues a1 and b1 are in T1 and T2 respectively. For a row t in V, if 
t.A = a1, t.B = b1, then t has two parents: a1 and b1. Thus V has 
the shared-row problem.       � 
 

In this case, we can only eliminate the potential overlap of re-
gions defined by different presence control-tables if V is view-
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level consistent. Considering the second condition in the definition 
of safe, we enforce Rule 3 in Figure 5.1. 

The second case where a PMV has the shared-row problem is 
identified next. For this case, we enforce Rule 4 in Figure 5.1. 
 

Lemma 5.2: Given a cache schema <W, E>, for any PMV V in a 
tree, let the parent of V be V1, then V has the shared-row problem 
if and only if the presence control-key K in V1 for V is not a key in 
V1.  � 
 

Proof: (sufficiency) Since K is not a key for V1, there exists an 
instance of V1, such that there are two rows t1 and t2 in V1, such 
that t1. K = t2. K. Then for a row t in V, s.t. t.K=t1.K, both t1 and 
t2 are t’s parents.   
(necessity) Because V has the shared-row problem, there is an 
instance of V, such that a row t in V has two parents, t1 and t2 in 
V1. Since t1.K = t2.K= t.K, K is not a key for V1.    � 

5.2 Control-table Hierarchy 

For a red PMV V in the cache, if it has some consistency or com-
pleteness control-tables beyond those implicit in the Presence As-
sumption, then it might have overlapping regions. In our running 
example, suppose BookCopy is a red rectangle; an author may 
have more than one publishers. If there is a consistency control-
table on publisherId, then BookCopy may have overlapping re-
gions. As an example, author 1 has books 1 and 2, author 2 has 
book 3, and while books 1 and 3 are published by publisher A, 
book 2 is published by publisher B. If publisher A is in the consis-
tency control-table for BookCopy, then we have two overlapping 
regions: {book 1, book 2} by author 1, and {book 1, book 3} by 
publisher A. 
 

Defn: (Compatible Control-tables) For a PMV V with one pres-
ence control-table in the cache, let the presence controlled-key of 
V be K0, and let the set of its consistency and completeness con-
trol-keys be K . 
1) For any pair K1 and K2 in K , we say that K1 and K2 are com-

patible iff FD K1� K2 or FD K2� K1.  
2) We say K  is compatible iff the elements in K  are pair-wise 

compatible, and for any K in K , FD K�K0.  � 
 

Rule 5 is stated in Figure 5.1. We require that a new cache 
constraint can only be created in the system if its addition does not 
violate Rules 1-5. 
 

Theorem 5.1: Given a cache schema <W, E>, if it satisfies rules 1-
5, then every PMV in W is safe. Conversely, if the schema violates 
one of these rules, there is an instance of the cache satisfying all 
specified integrity constraints in which some PMV is unsafe. � 
 

Proof: (Sufficiency) by contradiction. Suppose there exists a PMV 
V that is not safe. There are two cases: 

Case 1: There exists a pair of cache regions U1 and U2 in V, 
s.t. U1 and U2 overlap. 

   This violates Rule 5.  
Case 2: V is grey. Let �  denote the set of cache regions in V 

defined by its presence control-key values. Again, there are two 
cases: 

      Case 2.1: There are U1 and U2 in � , such that U1 and U2 
overlap. 

             This implies that V has shared-row problem. Then it 
violates rule 3 or 4. 

      Case 2.2: There are U1 and U2 in � , and U3 in V, such 
that U1 and U2 are contained in U3.   
This implies that V has its own consistency control-tables, which 
violates rule 2. 

(Necessity) We use variations of the cache schema in Fig 3.1 as 
counter examples in a proof by contradiction. 

Case 1: Rule 1 is violated. Then <W, E> violates the defn of 
cache schema. 

Case 2: Rule 2 is violated.  
Suppose BookCopy is required to be consistent by type; author 

a1 has books b1 and b2; a2 has a book b3; and b1, b2, b3 are all of 
type paperback. Then BookCopy is not safe because cache regions 
{b1, b2} (by a1), {b3} (by a2) are contained in the one defined by 
paperback type.  

Case 3: Rule 3 is violated.  
Suppose ReviewsCopy is a rectangle or gray. If it is a rectan-

gle, suppose book b1 has two reviews r1, and r2, from reviewers x 
and y, respectively; x wrote reviews r1 and r3. Since cache regions 
{r1, r2} (by b1) and {r1, r3} (by x) overlap, ReviewsCopy is not 
safe. 

Next, if ReviewsCopy is a circle, suppose author a1 has books 
b1 and b2; author a2 has a book b3; books b2, b3 have reviews r2, 
r3, respectively. Since cache regions {b1, b2} (by a1) and {b2, b3} 
(by correlation with ReviewsCopy), BookCopy is not safe.  

Case 4: Rule 4 is violated.  
Suppose a book can have multiple authors and BookCopy is 

gray. Suppose AuthorsCopy is consistent by city; author a1 has 
books b1 and b2; author a2 has books b1 and b3; author a1 and a3 
are from WI, a2 is from WA.  

First, suppose BookCopy is a rectangle. Since cache regions 
{b1, b2} (by a1), {b1, b3} (by a2) overlap, BookCopy is not safe.  

Second, suppose BookCopy is a circle. Since cache regions 
{a1, a3} (by WI), and {a1, a2} (by consistency correlation with 
BookCopy) overlap, AuthorsCopy is not safe.  

Case 5:  Rule 5 is violated. 
Suppose ReviewersCopy is required to be consistent both by gen-
der and by city; reviewers x and y are from WI, z is from WA; x 
and z are male, while y is female. Since cache regions: {x, y} (by 
WI), {x, z} (by male) overlap, ReviewsCopy is not safe.    � 

6. ENFORCING C&C CONSTRAINTS  
A traditional distributed query optimizer decides whether to use 
local data based on data availability and estimated cost. In our 
setting, it must also take into account local data properties (pres-
ence, consistency, completeness and currency). Presence checking 
is addressed in [ZLG05]; the same approach can be extended to 
completeness checking. This section describes efficient checking 
for C&C constraints in a transformation-based optimizer. Theo-
rems 6.1-6.3 guarantee the correctness of our algorithms. 

Different from SGLRG04], the algorithms developed in this 
paper are more general; they support finer granularity C&C check-
ing. In [GLRG04], consistency checking was done at optimization  

Figure 5.1: Cache schema design rules  
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time and currency checking at run-time, because view level cache 
region information is stable and available at query compile time, 
while currency information is only available at runtime. In con-
trast, in this paper we still perform as much as possible of the con-
sistency checking at optimization time but some checking may 
have to be delayed to run-time. If we are using a PMV with partial 
consistency guarantees, we don’t know at optimization time which 
actual groups will be consistent at run time. Furthermore, ad-hoc 
cache regions may change over time, also prompting run-time 
checking.   

6.1 Normalizing C&C Constraints 

A query may contain multiple currency clauses, at most one per 
SFW block. The first task is to combine the individual clauses and 
convert the result to a normal form. To begin the process, each 
currency clause is represented in the following form. 
 

Defn: (Currency and consistency constraint) A C&C constraint 
CCr is a set of tuples, CCr = {<b1, K 1, S1, G1>, ..., <bn, K n, Sn, 
Gn>}, where each Si is a set of input operands (table or view in-
stances), bi is a currency bound specifying the maximum accept-
able staleness of the input operands in Si, Gi specifies a grouping 
key and K i specifies a set of grouping key values. � 
 

Each tuple has the following meaning: for any database in-
stance, if we group the input operands referenced in a tuple by the 
tuple’s grouping key Gi, then for those groups with one of the key 
values in K i, each group is consistent. The key value sets K i will be 
used when constructing consistency guard predicates that will be 
checked at run time. Note that the default value for each field is the 
strongest constraint. 

To enable efficient reasoning, we union together all constraints 
from individual currency clauses into a single constraint, and con-
vert the result into an equivalent or stricter normalized form with 
no redundant requirements.  
 

Defn: (Normalized C&C constraint) A C&C constraint CCr = 
{<b1, K 1, S1, G1>, ..., <bn, Kn, Sn, Gn>} is in normalized form if all 
input operands (in the sets Si) are base tables and the input operand 
sets S1,…, Sn are all non-overlapping.  � 
 

We briefly sketch an algorithm for transforming a set of con-
straints into normalized form. First, recursively expand all refer-
ences to views into references to base tables. Next, repeatedly 
merge any two tuples that have one or more input operands in 
common using the following rule.  
 

Normalization Rule: Given CCr1 = {<b1, K 1, S1, G1>} and CCr2 = 
{<b2, K 2, S2, G2>}, S1 ∩  S2 ≠  Ø, replace the two constraints by CCr 
= {<b, K , S, G >}, where b = min (b1, b2), and S = S1 U S2. Given a 
set of functional dependencies (FDs) F over the query result rela-
tion Y, let Gi

+ be the attribute closure of Gi w.r.t. F, where i = 1, 2. 
Then G = G1

+ ∩ G2
+. Let K i

+ = 
Π

G
σ

Gi=ki(Y), i = 1, 2. Then K  = K 1
+ 

∪ K 2
+.        � 

 

Given a set of FDs over the base relations, and the equivalence 
classes induced by a query, we can infer the set of FDs over the 
query result relation. For example, for Q2, let CCr1 = {<10, Ø, 
{Authors, Books}, {city}>}, CCr2 = {<5, Ø, { Books}, {isbn}>}. 
CCr1 requires that if we group the query result by city, then within 
each group, all the rows have to be consistent. CCr2 requires that if 
we group the result by isbn, then each book row has to be consis-
tent. From the key constraints in Authors and Books, together with 

the join condition in Q2, we know that isbn is a key for the final 
relation. Thus CCr = {<5, Ø, {Authors, Books}, {city}>}. If an 
instance satisfies CCr, then it must satisfy both CCr1 and CCr2, and 
vice versa.  

In what follows, we formally define implication and equiva-
lence between any two CCrs, and prove that when K1 and K2 are 
set to default, then the outcome of the normalization rule CCr is 
equivalent to the inputs CCr1 ∪ CCr2 w.r.t. F. Further, we prove 
that not knowing all FDs doesn’t affect the correctness of the rule.  
 

Defn: (Implication, Equivalence) Given two C&C constraints 
CCr1 and CCr2, a cache schema Λ , and a set of FDs F over Λ , we 
say that CCr1 implies CCr2 w.r.t Λ  and F, if every instance of Λ  
that satisfies F and CCr1 also satisfies CCr2. If CCr1 implies C2 
w.r.t Λ  and F and CCr2 implies C1 w.r.t Λ  and F, then CCr1 and 
CCr2 are equivalent w.r.t Λ  and F. � 
 

Lemma 6.1: For any CCr = {<b, K , S, G>}, any instance of Λ , the 
consistency constraint in t can be satisfied w.r.t. Λ  and F, iff the 
grouping key G’  of the cache region partitioning on S in Λ  is a 
subset of G+ w.r.t. Λ  and F.    � 
 

Proof: Sufficiency is obvious. Now we prove necessity. Since each 
group by grouping key G belongs to one group by grouping key 
G’ , G functionally determines G’ . Thus G’ ⊆  G+.     � 
 

Theorem 6.1: If K 1 and K 2 are set to default, then the output of the 
Normalization Rule CCr is equivalent to its input CCr1 ∪ CCr2 
w.r.t. Λ  and F.                 � 
 

Proof: Given any instance of Λ  that satisfies {CCr} w.r.t. to F, 
from Lemma6.1, the grouping key of its cache region partitioning 
is a subset of G+. Since G ⊆ Gi

+,  i = 1, 2, G+ ⊆ Gi
+, the consis-

tency constraints in (CCr∪ CCr2} are satisfied. Further, since the 
consistency portioning satisfies currency constraint b, and b = min 
(b1, b2), b1 and b2 are also satisfied.   

From Lemma 6.1, it follows that for any instance that satisfies 
both t1 and t2 w.r.t. F, the grouping key of its cache region parti-
tioning has to be a subset of G. Thus, it also satisfies t. Since it 
satisfies b1 and b2, and b = min(b1, b2), it also satisfies b.   � 
 

Theorem 6.2: Suppose FDs over a cache schema Λ : F+⊂ F’+. 
The output of the Normalization Rule {CCr} w.r.t. F implies its 
input CCr1 ∪ CCr2 w.r.t. Λ  and F’.                 � 
 

Proof: Let G = G1
+ ∩ G2

+ w.r.t. F, G’  = G1
+ ∩ G2

+ w.r.t. F’. Then 
G ⊆ G’ . Thus for any instance of Λ  that satisfies CCr, since K  = 

K 1
+ ∪ K 2

+ w.r.t. F, from Lemma 6.1, it satisfies CCr1 ∪ CCr2. � 

6.2 Compile-time Consistency Checking 

We take the following approach to consistency checking. At opti-
mization time, we proceed as if all consistency guarantees were 
full. A plan is rejected if it would not produce a result satisfying 
the query’s consistency requirements even under that assumption. 
Whenever a view with partial consistency guarantees is included in 
a plan, we add consistency guards to the plan, which check at run-
time whether the guarantee holds for the groups actually used. 

We use a transformation-based optimizer. Conceptually, opti-
mization proceeds in two phases: an exploration phase and an 
optimization phase. The exploration phase generates new logical 
expressions; the optimization phase recursively finds the best 
physical plan. Physical plans are built bottom-up.  

Required and delivered (physical) plan properties play a very 
important role during optimization. There are many plan properties 
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but we’ll illustrate the idea with the sort property. A merge join 
operator requires that its inputs be sorted on the join columns. To 
ensure this, the merge join passes down to its input a required sort 
property. In essence, the merge join is saying: “Find me the cheap-
est plan for this input that produces a result sorted on these col-
umns.” Every physical plan includes a delivered sort property that 
specifies if the result will be sorted and, if so, on what columns 
and in what order. Any plan whose delivered properties do not 
satisfy the required properties is discarded.  

To make use of the plan property mechanism for consistency 
checking, we must be able to perform the following three tasks: i) 
transform the query’s consistency constraints into required consis-
tency properties; ii) given a physical plan, derive its delivered con-
sistency properties from the properties of the local views it refers 
to; iii) check whether delivered consistency properties satisfy re-
quired consistency properties.  

6.2.1 Required Consistency Plan Property 

A query’s required consistency property consists of the normalized 
consistency constraint described in the previous section.    

6.2.2 Delivered Consistency Plan Property 

A delivered consistency property CPd consists of a set of tuples 
{<R i, Si, � i>} where Ri is the id of a cache region, Si is a set of 
input operands, namely, the input operands of the current expres-
sion that belong to region Ri, and � i is the set of grouping keys for 
the input operands. In what follows, we sketch the algorithm for 
computing a plan’s delivered consistency properties but skip the 
detailed algorithm due to space constraints. 

Delivered plan properties are computed bottom-up for each 
physical operator, in terms of the properties of its inputs, according 
to the Delivered-Plan Algorithm described below, which treats 
the physical operators accordingly as four categories: i) leaves of 
the plan tree (e.g., tables or materialized views), ii) single-input 
operators, iii) joins, and iv) SwitchUnion.  
 

Delivered-Plan Algorithm (sketch) 

The leaves of a plan tree are table, materialized view, or index 
scan operators, possibly with a range predicate. If the input oper-
and is a local view, we return the ids of the view’s input tables in 
S, not the id of the view, since consistency properties always refer 
to base tables. If the whole view is consistent, we simply return the 
id of its cache region; otherwise, we return the set of grouping keys 
of its consistency root, and a flag, say –1, in the region id field to 
indicate row-level granularity. For a remote table or view, we do 
the same, except we assume it is consistent with a special region 
id, say, 0. 

All operators with a single relational input, such as filter, pro-
ject, aggregate and sort do not affect the delivered consistency 
property and simply copy the property from their relational input.  

Join operators combine two input streams into a single output 
stream. We union the input consistency properties and merge 
property tuples that are in the same cache region. Formally, given 
two delivered C&C property tuples CPd1 = {<R1, S1, � 1>} and 
CPd2 = {<R2, S2, � 2>}, we merge them if either of the following 
conditions is true:  

1) If the input operands are from the same cache region, i.e., R1 = 
R2 ≥ 0, then we merge the tables, i.e., we replace CPd1 and 
CPd2 by CPd = {<R1, S, Ø >}, where S = S1 U S2. 

2) If the input operands are grouped into cache regions by the 
same keys (for the same root), i.e., � 1 = � 2, they are group-
wise consistent so we merge them into CPd = {< -1, S, � 1>} 
where S = S1 U S2.  
A SwitchUnion operator has multiple input streams but it does 

not combine them in any way; it simply selects one of the streams. 
Thus, the output consistency property is the strongest consistency 
property implied by every input. In our context a SwitchUnion 
operator has a local and a remote branch. We output the properties 
of the local branch.          � 

6.2.3 Satisfaction Rules 

Now, given a required consistency property CCr and a delivered 
one CPd, how do we know whether CPd satisfies CCr? Firstly, our 
consistency model does not allow two columns from the same 
input table T to originate from different snapshots, leading to the 
following property: 
 

Conflicting consistency property: A delivered consistency prop-
erty CPd is conflicting if there exist two tuples < R1, S1, � 1 > and  
< R2, S2, � 2 > in CPd such that S1 ∩ S2 ≠ Ø and one of the follow-
ing conditions holds: i) R1 ≠ R2, or ii) Ω1 ≠ Ω2. � 
 

This property is conservative in that it assumes that two cache 
regions U1 and U2 from different views can only be consistent if 
they have the same set of control-keys (the second condition).  

Secondly, we can verify that a complete plan satisfies the con-
straint by checking that each required consistency group is fully 
contained in some delivered cache region. We extend the consis-
tency satisfaction rule in [GLRG04] to include finer granularity 
cache regions.  
 

Consistency satisfaction rule: A delivered consistency property 
CPd satisfies a required CCr w.r.t. a cache schema Σ and func-
tional dependencies F, if and only if CPd is not conflicting and, for 
each tuple <br, K r, Sr, Gr> in CCr, there exists a tuple <Rd, Sd, Ωd> 
in CPd such that Sr ⊆ Sd, and one of the following conditions 

holds: i) Ωd = Ø, or ii) let Gr
+ be the attribute closure w.r.t. F. 

There exists a Gd∈Ωd such that Gd ⊆ Gr
+.   � 

 

For query Q2, suppose we have CCr = {<5, Ø, {Authors, 
Books}, {isbn}>}, and that the cache schema is the one in Figure 
3.2. During view matching, AuthorCopy and BookCopy will 
match Q2. Thus CPd = {<-1, {Authors, Books}, {Au-
thors.authorId, city}>}. If AuthorCopy joins with BookCopy on 
authorId (as indicated by the presence correlation), and the result is 
R, then from the key constraints of Authors and Books we know 
that isbn is a key in R. Therefore city∈ {isbn} +. CPd satisfies CCr. 

Not knowing all FDs doesn’t affect the correctness of the satis-
faction rule, it only potentially produces false negatives: 
 

Theorem 6.3: For any two sets of functional dependencies F and 
F’ over the cache schema Σ, where F+ ⊆  F’+, if a delivered consis-
tency property CPd satisfies a required CCr w.r.t. F, then it satis-
fies CCr w.r.t. F’. � 
 

Proof: Let Gr
+  be the attribute closure of Gr w.r.t. F+ , Gr’

+  be the 
attribute closure of Gr w.r.t. F’+ , then Gr

+ ⊆ Gr’
+.      � 
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Theorem 6.4: Assuming runtime checking is correct, with the 
Delivered-Plan Algorithm, for any plan of which CPd satisfies CCr 
w.r.t. a cache schema Σ and functional dependencies F, no matter 
which data sources are used at execution time, CCr will be satis-
fied w.r.t F.      � 
 

Proof: Let the set of C&C properties of the sources be CPd = {< 
Rdi, Sdi, Ωdi >}. Let the output of the Delivered-Plan Algorithm be 
CPd’. 

Case 1: There are no SwitchUnion operators in the plan.  
Since operators with a single relational input simply pass the 

input property; while join operators simply merge the input proper-
ties with the same cache region, we have CPd = CPd’.  

Case 2: There are some SwitchUnions used as C&C guards. 
In this case, for each SWU, there are two types of checking: 

fullness checking and currency checking. So the branch actually 
used satisfies the fullness and currency constraint.  

The difference between CPd and CPd’ is that in CPd, for a lo-
cal source with property CPdi = {< Rdi, Sdi, Ωdi>} guarded with a 
SWU, we have either CPdi or CPdi’ = {<0, Sdi, Ø>}, depending on 
whether the local branch or the remote branch is used during exe-
cution. 

For any tuple r = <br, K r, Sr, Gr> in CCr, since CPd’ satisfies 
CCr, there exists a row t = <Rd, Sd, Ωd >, such that, Sr ⊆ Sd, and 

one of the following conditions holds: i) Ωd = Ø, or ii) let Gr+ be 
the attribute closure w.r.t. F. There exists a Gd∈Ωd such that 
Gd ⊆ Gr

+. 
If t is merged from sources that don’t have a swu, then it also 

appears in CPd, otherwise, w/o loss of generality, we can assume it 
comes from two local resources with swu operators and with prop-
erty t1 = < Rd1, Sd1, Ωd1> and t2 = < Rd2, Sd2, Ωd2>.  

Trivial case: If Sr ⊆ Sd1(or Sd2), then r is satisfied by t1 (or t2) 
in CPd.  

Otherwise, we claim that for any cache instance, either both lo-
cal branches are used or both remote branches are used. Thus if 
CPd’ satisfies CCr, then if we plug in CPd the property of the data 
sources actually used, CPd also satisfies CCr. 

Case 1: R>0. Since both local resources belong to the same 
cache region, they have the same currency, so does the currency 
checking result. 
Case 2: R= -1. Since the two resources are controlled by the same 
set of consistency control-keys, again, the C&C checking results 
are the same.      � 
 

While a plan is being constructed, bottom-up, we want to stop 
as soon as it is possible to tell that the plan cannot deliver the con-
sistency required by the query. Unfortunately, the consistency 
satisfaction rule cannot be used for this purpose as soon as a new 
root operator is added to a plan; a check may fail simply because 
the partial plan does not include all inputs covered by the required 
consistency property. Therefore we develop a violation rule. 
 

Consistency violation rule: A delivered consistency property CPd 
violates a required consistency constraint CCr w.r.t. a cache 
schema Σ and functional dependencies F, if one of the following 
conditions holds: 
1) CPd is conflicting, 
2) There exists a tuple < br, K r, Sr, Gr > in CCr that intersects 

more than one consistency group in CPd, that is, there exist 

two tuples  < R1d, S1d, Ω1d > and  < R2d, S2d, Ω2d > in CPd 
such that Sr ∩ S1d ≠ Ø and Sr ∩ S2d ≠ Ø,  

3) There exists <b, K r, Sr, Gr> in CCr, and < Rd, Sd, Ωd > in CPd, 
such that Sr ⊆ Sd, Ωd ≠ Ø and the following condition holds: 

let Gr+ be the attribute closure w.r.t. Σ and F. There does not 
exist Gd∈Ωd, such that Gd ⊆ Gr

+. � 
 

Theorem 6.5: Using the Delivered-Plan Algorithm, if a partial 
plan A violates the required consistency property CCr w.r.t. a 
cache schema Σ and functional dependencies F, then no plan that 
includes A as a branch can satisfy CCr w.r.t. Σ and F .     � 
 

Proof: This is true because from the algorithm, for any  tuple < Rd, 
Sd, Ωd > in the delivered plan property of P, there is a tuple < Rd, 
Sd’ , Ωd > in the delivered plan property of any plan that includes P 
as a branch, where Sd ⊆ Sd’ .       � 

6.3 Run-time C&C Checking 

To include C&C checking at runtime, the optimizer must produce 
plans that check whether a local view satisfies the required C&C 
constraints and switch between using the local view and retrieving 
the data from the back-end server. Such run-time decision-making 
is built in a plan by using a SwitchUnion operator. A SwitchUnion 
operator has multiple input streams but it does not combine them 
in any way; it simply selects one of the streams according to the 
outcome of a selector expression. 

All local data is defined as materialized views and logical plans 
making use of a local view are always created through view match-
ing [LGGZ04, LGZ04]. Consider an (logical) expression E and a 
matching view V from which E can be computed. If there is no 
C&C checking required on the input tables of E, view matching 
[GL01] produces a “normal” substitute consisting of, at most, a 
select, a project and a group-by on top of V. With C&C checking, 
view matching produces a substitute consisting of a SwitchUnion 
on top, shown in Figure 6.1, with a selector expression that checks 
whether V satisfies the currency and consistency constraint and 
two input expressions: a local branch and a remote branch. The 
local branch is the “normal” substitute mentioned earlier and the 
remote plan consists of a remote SQL query created from the 
original expression E. If the condition, which we call consistency 
guard or currency guard according to its purpose, evaluates to true, 
the local branch is chosen, otherwise the remote branch is chosen.  

The discussion of when and what type of consistency checking 
to generate and the inexpensive consistency checking we support is 
deferred to Section 7.  

Currency bound checking: If the required lowest currency 
bound on the input tables of E is B, the optimizer generates a cur-
rency guard that checks if any required region is too old for the 
query. Given a control-table CT on control-key CK, a set of prob-
ing values K  on CK, recall that the timestamp is recorded in the rid 
column of each control-table (Section 4.1.2), the check is:  
 

NOT EXIST (SELECT 1 FROM CT  
WHERE CK IN K AND rid < getdate()–B) 

7. PERFORMANCE STUDY 
This section reports analytical and experimental results for consis-
tency checking; results for PMV and currency checking are re-
ported in [ZLG05] and [GLRG04] respectively.  

We used a single cache DBMS and a back-end server. The 
back-end server hosted a TPCD database with scale factor 1.0 

 

Figure 6.1: SwitchUnion with a C&C guard 
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(about 1GB). The experiments reported here used only the Cus-
tomers and Orders tables. The Customers table was clustered on its 
primary key, c_custkey with an index on c_nationkey. The Orders 
table was clustered on (o_custkey, o_orderkey). The cache DBMS 
had a copy of each table, CustCopy and OrderCopy, with the same 
indexes. The control-table settings and queries used are shown in 
Figure 7.1. We populated the ckey and nkey columns with 
c_custkey and c_nationkey columns from the views respectively. 

C_PCT and O_PCT are the presence control-tables of Cust-
Copy and OrderCopy respectively. C_CsCT is a consistency con-
trol-table on CustCopy. By setting the rid field, we can control the 
outcome of the consistency guard. 
The caching DBMS ran on an Intel Pentium 4CPU 2.4 GHz box 
with 500 MB RAM. The back-end ran on an AMD Athlon MP 
Processor 1800+ box with 2GB RAM. Both machines ran Win-
dows 2000 and were connected in a local area network. 

7.1 Consistency Guard Overhead 

We made the design choice to only support certain inexpensive 
types of run-time consistency guard. A natural question is: what is 
the overhead of the consistency guards? Furthermore, how expen-
sive are more complicated guards?  

We experimentally evaluate the cost of several types of guards 
by means of emulation. Given a query Q, we generate another 
query Q’ that includes a consistency guard for Q, and use the exe-
cution time difference between Q’ and Q to approximate the over-
head of the consistency guard. For each query, depending on the 
result of the consistency guard, it can be executed either locally or 
at the back-end. We measure the overhead for both scenarios.  

7.1.1 Single Table Case 

We first analyze what type of consistency guard is needed for Qa 
when $key differs. The decision making process is summarized in 
Figure 7.2 and the consistency guards are shown in Figure 7.3. 

Condition A: Is each required consistency group equal to or 
contained in a region defined by the presence control-table? 

If A is true, it follows from the Presence Assumption that all 
the rows associated with each presence control-key are consistent. 
No explicit consistency guard is needed. For example, for Qa with 
$key = c_custkey. 

Condition B: Is each required consistency group equal to or 
contained by a region defined by a consistency control-table?  

If B is true, we check C, otherwise we check D.  
Condition C: Is the consistency guarantee full? 
If C is true, then no run-time consistency checking is neces-

sary. Otherwise, we need to probe the consistency control-table 
with the required key values at runtime. For example, for Qa with 
$key = c_nationkey, we have two scenarios: 

In the first scenario, Qa does not include an equality predicate 
on c_nationkey. We have to first calculate which nations are in the 

results, then check if they all appear in the consistency control-
table C_CsCT (A11a). A more precise guard (A11b) only checks 
nations with more than one customer, by adding the COUNT(*)>1 

condition. Such checking (e.g., A11a, A11b and A12) is called 
assured consistency checking in that it checks if the required 
consistency groups are part of the guaranteed cache regions. 

In the second scenario, the predicate on nation is included in 
the query as a redundant predicate, which allows us to simply 
check if each required nation is in C_CsCT (A12). It eliminates the 
need to examine the data before consistency checking. 

Condition D: Each required consistency group can be covered 
by a collection of cache regions. 

If D is true, we have the opportunity to do ad-hoc consistency 
checking. For Qa with $key = Ø, we check if all the required cus-
tomers are in the same ad-hoc cache region (S11). Such checking 
(e.g., S11, S12 and S21, S22 from Section 7.1.2) is called ad-hoc 
consistency checking.  

If  $key = c_nationkey and suppose we don’t have C_CsCT, the 
ad-hoc checking needs to check each group (S12). 

Experiment 1 is designed to measure the overhead of the type 
of consistency guards supported in our current framework. We 
choose to support only run-time consistency guards that i) do not 
require touching the data in a PMV; ii) only require probing a 
single control-table. To be specific, we only support the guards 
shown in A12 and S11. We fixed the guards and measured the 
overhead for three different queries: Qa and Qb with $custSet = 
(1); Qc with $nationSet = (1). The consistency guard for Qa and 
Qb is S11 and the one for Qc is A12.  

The results are shown in Table 7.1. As expected, in both the 
local and remote case, the absolute cost remains roughly the same, 
the relative cost decreases as the query execution time increases. 
The overhead for remote execution is small (less than 2%). In the 
local case, the overhead for Qc (returning ~6000 rows) is less than 
2%. Although the absolute overhead for Qa and Qb is small 

 

Figure 7.2: Generating consistency guard  

 

Figure 7.1: Settings & Queries used for experiments   

 

Figure 7.3: Consistency guard examples   
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(<0.1ms), since the queries are inexpensive (returning 1 and 6 rows 
respectively), the relative overhead is ~15%. 

In experiment 2, we used query Qa with $custSet = (2, 12), 
which returns 2 rows; and compared the overhead of different 
types of consistency guards that involve one control-table. The 
results are shown in Table 7.2. 

For local execution, if the consistency guard has to touch the 
data of the PMV (as in A11a and A11b and S12), the overhead 
surges to ~70% for S12, because we literally execute the local 
query twice. A11a and b show the benefit of being more precise: 
the “sloppy” guard in A11a incurs 63% overhead, while the over-
head of the more precise guard (A11b) is only 24%, because it is 
less likely to touch CustCopy. The simple guard A12 incurs the 
smallest overhead (~17%). 

7.1.2 Multi-Table Case 

Different from Qa, the required consistency group in Qb has ob-
jects from different views. In this case, we first check the condi-
tion: 

Condition E : Do they have the same consistency root? 
If E is true, then the consistency guard generation reduces to 

the single table case, because the guaranteed cache regions are 
decided by the consistency root. Otherwise, we have to perform 
ad-hoc checking involving joins of presence control-tables. There 
are two cases. 

Case 1: $key = Ø. We check if all the required presence con-
trol-keys point to the same cache region (S21). 

Case 2: $key = c_nationkey. We first group the required rows 
by c_nationkey, and check for each group if a) all the customers 
are from the same region; and b) all the orders are from the same 
region as the customers (S22). 

In Experiment 3, we use query Qb with $custSet = (2, 12), 
which returns 7 rows, and measure the overhead of consistency 
guards that involve multiple control-tables. The results are shown 
in Table 7.3. Guards S21 and S22 involve not only accessing the 
data, but also performing joins. Such complicated checking incurs 
huge overhead in the local execution case (~150%). Note that if 
CustCopy and OrderCopy are consistency-wise correlated, then the 
overhead (refer to single-table case) reduces dramatically. 

It is worth pointing out that in all experiments, even for com-
plicated consistency guards, the overhead of remote execution is 
relatively small (<10% for single-table case, <25% for multi-table 
case). It raises an interesting point: even if a guard is less likely to 
be successful, it might still be preferable to do the check than sim-
ply use a remote plan. Thus the cost-model should bias in favor of 
plans with consistency checking instead of remote plans. 

7.2 Success Rate of Ad-hoc Checking   

Intuitively, everything else being equal, the more relaxed the cur-
rency requirements are, the more queries can be computed locally. 
Although less obvious, this is also true for consistency constraints.  

Assuming all rows in $custSet are in the cache, a dynamic plan 
for Qa will switch between either CustCopy and a remote query, 
depending on the outcome of the consistency guard. If there is only 
one customer in $custSet, by default the result is consistent. At the 
other extreme, if $custSet contains 1000 customers, they are not 
likely to be consistent. When the number of customers in $custSet 
increases, the likelihood of the result being consistent decreases. 
Suppose there are N rows in CustCopy, divided into M cache re-
gions. We assume that the regions are the same size and each row 
in $custSet is independently and randomly chosen from CustCopy. 
Let the size of $custSet be x, where x ≤ N. The result is consistent 
only when all the chosen rows are from the same cache region. 
Thus, the probability of an ad-hoc consistency check being suc-
cessful is P(consistent) = (1/M)X-1. 

As one would expect and this formula clearly shows, the prob-
ability of success decreases rapidly as the number of consistency 
groups and/or number of required rows increase.  

8. RELATED WORK 
The work in [GLRG04] is the first that addresses C&C aware da-
tabase caching with a query centric approach. Relaxing data qual-
ity is an old concept in replica management, distributed databases 
and warehousing and web views etc.. Some of them take a mainte-
nance-centric approach [ABG88, GN95, SK97], where queries are 
not allowed to express their individual data quality requirements. 
Some authors have taken a query-centric approach [OW00, 
HSW94, WXCJ98, OLW01], but they focus on single object 
granularity and no consistency guarantee is provided. FAS 
[RBSS02] enforces consistency at the level of the complete cache. 
In concurrency control, Epsilon-serializability [PL91] allows 
higher degree of concurrency by relaxing data quality. 

Caching has been used in many areas. Regarding what to 
cache, while some works [DFJ+96, APTP03] support arbitrary 
query results, others are tailored for certain simple types of queries 
[KB96, LN01], or even just base tables [AJL+02, CLL+01, 
LKM+02]. In the database caching context, good surveys can be 
found in [DDT+01, Moh01].    

The closest work to ours are DBCache [ABK+03] and Con-
straint-based Database Caching (CBDC) [HB04]. Similarly to us, 
they consider full-fledged DBMS caching; and they define a cache 
with a set of constraints. However, there are two fundamental dif-
ferences. First, they don’t consider relaxed data quality require-
ments, nor do they provide currency guarantees from the DBMS. 
Our work is more general in the sense that the cache-key and RCC 
constraints (an extension to cache groups in [TT02]) they support 
can be seen as a subset of ours. Second, in DBCache, local data 
availability checking is done outside of the optimizer, while in our 
case, local data checking is integrated into query optimization, 
which not only allows finer granularity checking, but also leaves 
the optimizer the freedom to choose the best plan based on cost. 

9. CONCLUSIONS 
The goal of our work is to build a solid foundation for fine granu-
larity, C&C-aware adaptive DBMS caching. We formally defined 
four fundamental cache properties: presence, consistency, com-
pleteness, and currency. We proposed a cache model in which 

Local Remote Cost 
Qa Qb Qc Qa Qb Qc 

ms  .078  .08  1.17  .01  .19  1.13  
% 16.5

6 
14.0

0 
<2 <1 <2 <1 

# Rows 1 6 5975  1 6 5975  

Table 7.1: Simple consistency guard overhead  
 

Local Remote Cost 
A11a A11b A12 S11 S12 A11a A12 A12 S11 S12 

ms .31  .12  .084  .29  .35  .33  .27  .13  .41  .48  
% 62.85  23.77  16.98  58.32  71.41  6.06  4.95  2.33  7.48  8.79  

Table 7.2: Single-table case overhead 

 

Local Remote Cost 
S21 S22 S21 S22 

ms .90  .83  1.00  .98  
% 155.83  143.82  24.82  24.36  

Table 7.3: Multi-table case overhead 
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users can specify a cache schema by defining a set of local views, 
together with cache constraints that specify what properties the 
cache must guarantee. We enforced C&C constraints by integrating 
C&C checking into query optimization and evaluation.  

We envision two lines of future research. First, in our current 
cache model, we only support groups defined by equality condi-
tions. For efficient cache management, we plan to explore other 
predicates, e.g., range predicates. Second, we plan to investigate 
C&C-aware cache replacement and refresh policies that make deci-
sions adaptively, based on the workload. 
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