University of Wisconsin Technical Report (TR1520)
Caching with “Good Enough”
Currency, Consistency, and Completeness

Hongfei Guo

University of Wisconsin
guo@cs.wisc.edu

ABSTRACT

SQL extensions that allow queries to explicitlydfyedata quality
requirements in terms of currency and consistenesevproposed
in an earlier paper. This paper develops a dathtgraavare, finer

grained cache model and studies cache design rmstef four

fundamental propertiepresence, consistency, completenasd

currency Such a model provides an abstract view of théeac

the query processing layer, and opens the docadaptive cache
management. We describe an implementation apprtbathouilds

on the MTCache framework for partially materializédws. The
optimizer checks most consistency constraints aadegates a
dynamic plan that includes currency checks and peesive
checks for dynamic consistency constraints thancame vali-

dated during plan compilation. Our solution notyosupports
transparent caching but also provides transactiinal grained
data currency and consistency guarantees.

1. INTRODUCTION

Replicated data, in various forms, is widely usedntprove scal-
ability, availability and performance. Applicatiotisat use out-of-
date replicas are clearly willing to accept restlitst are not cur-
rent, but typically have some limits on how stdie tlata can be.
SQL extensions that allow queries to explicitly gfyesuch data
quality requirements in the form of consistency andrency
(C&C) constraints were proposed in [GLRGO04]. Thairkvalso
described how support for C&C constraints is impeated using
MTCache [LGGZ04], a prototype mid-tier databasehedouilt on
Microsoft SQL Server.

We model cached data as materialized views overinaap/
copy. The work reported in [GLRGO04] considered ottg re-
stricted case where all rows of a cached view aresistent, i.e.,
from the same database snapshot. This requireneertedy re-
stricts the cache maintenance policies that camudsel. Apull
policy, where the cache explicitly refreshes data byingsqueries
to the source database, offers the option of ugimyy results as
the units for maintaining consistency and othehegmroperties. In
particular, issuing the same parameterized queth wdifferent
parameter values returns different partitions ofaghed view,
offering a much more flexible unit of cache mairstece (view
partitions) than using entire views.

The extension to finer granularity cache managenfiamtia-
mentally changes every aspect of the problem, imgason-trivial
challenges: 1) how the cache tracks data qualityh@v users
specify cache properties; 3) how to maintain theheaefficiently;
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and 4) how to do query processing. In this paper,pnopose a
comprehensive solution, as described in Section 1.2

Figure 1.1 shows our running example, where Q1 psram-
eterized query, followed by different parametetisgs.

1.1 Background and Motivation

We now motivate four properties of cached data tletermine
whether it can be used to answer a query. In theehqroposed in
[GLRGO4], a query’'s C&C constraints are stated imusrency
clause. For example, in Q2, the currency clauseifige three
“quality” constraints on the query results: i) “O4, B)” means
that any Authors and Books rows joined togethertrbesonsis-
tent, i.e., from the same database snapshot. ii) “BOUN min”
means that these rows must dugrent to within 10 minutes, that
is, at most 10 minutes out of date. iii) “BY autltti means that
all result rows with the same authorld value mestonsistent. To
answer the query from cached data, the cache masagtee that
the result satisfies these requirements and tweeniey the Au-
thors and Books rows for authors 1, 2, and 3 megtésent in the
cache and v) they must bemplete, that is, no rows are missing.

E1.1 requires that all three authors with id 1n@ 8 be present
in the cache, and that they be mutually consistS8oppose we
have in the cache a partial copy of the AuthortetabuthorCopy,
which contains some frequently accessed authoysthese with
authorld 1-10. We could require the cache to guesathat all
authors in AuthorCopy be mutually consistent, idesrto ensure
that we can use the rows for authors with id 1n@& & to answer
El.1, if they are present. However, query E1.1 lbaranswered
using the cache as long as authors 1, 2 and 3 aitgally consis-
tent, regardless of whether other author rows aresistent with
these rows. On the other hand, if the cache previgeconsistency
guarantees, i.e., different authors could have lweged from a
different snapshot of the master database, theygqaemot be an-
swered using the cache even if all requested asitirerpresent. In
contrast, query E1.2, in which the BY clause omguires rows
for a given author to be consistent, can be angivfeoen the cache
in this case.

Query Q3 illustrates the completeness propertasks for all
authors from Madison, but the rows for differenthaus do not
have to be mutually consistent. Suppose we keefx wé which
authors are in the cache by their authorlds. Ef/areihave all the
authors from Madison, we cannot use the cached ud&ss the
cache guarantees that it has all the authors fradiddn. Intui-
tively, the cache guarantees that its contentsamplete w.r.t. the
set of objects in the master database that satigfiyen predicate.



Authors (authorId, name, gender, city, state)
Books (isbn, authorId, publisherId, title, type)

Ql: SELECT * FROM Authors A WHERE authorId in (1,2,3)
CURRENCY BOUND 10 min on (A) BY $key

El.1l: Skey = &

El.2: Skey = authorId

E1l.3: Skey = city

Q2: SELECT * FROM Authors A, Books B
WHERE authorId in (1,2,3) AND A.authorId = B.authorId
CURRENCY BOUND 10 min on (A, B) BY authorId

SELECT * FROM Authors A WHERE city = “Madison”
CURRENCY BOUND 10 min ON (A) BY authorId

Q3:

Figure 1.1: Running Example
No matter what cache management mechanisms otigsoéce
used, as long as cache properties are accuratéhyained, query
processing can deliver correct results. Thus, cquoperty de-
scriptions serve as an abstraction layer betweenyqorocessing
and cache management, which enables the implermntaf
guery processing to be independent of cache mainten

1.2 Our Contributions

We offer a comprehensive solution to finer grantjtazache man-
agement while still providing query results thatis@ the query’s
consistency and currency requirements. 1) We kaitlid foun-
dation for cache description by formally defininggence, consis-
tency, completeness and curreri®gction 2) 2) We introduce a
novel cache model that supports a specific wayagtitoning and
translate a rich class of integrity constraintgpfessed in extended
SQL DDL syntax) into properties required to holdeowifferent
partitions (Section 3) 3) We identify an important property of
cached views, calledafety and show how safety aids in efficient
cache maintenand&ection 4) Further, we formally define cache
schemas and characterize when they are safe,mffgtiidelines
for cache schema desigBection 5) 4) We show how to effi-
ciently enforce finer granularity C&C constraintsquery process-
ing by extending the approach developed in [GLRG@®Hction
6). 5) We report analytical and experimental resytisviding
insight into various performance trade-aqfection 7)

2. CACHE PROPERTIES

The previous work in [GLRGO04] describes the sentantif C&C
constraints, providing a correctness standardhis section, we
define the properties of the cache using the sao@emTo make
this paper more self-contained, we summarize thdemand list
some assumptions specific to this paper in Se@ibn

2.1 Basic Concepts

A databaseis modeled as a collection database objectrgan-
ized into one or more tables. Conceptually, thengjarity of an
object may be a view, a table, a column, a rowene single cell
in a row. To be specific, in this paper an objscairow. Let iden-
tity of objects in a table be established by a ¢fjg composite)
key K. When we talk about a key at the databasal,lewe implic-
itly include the scope of that key. Every objecs fzamaster and

zero or morecopies The collection of all master objects is called
themaster database We denote the database state after n commit-

ted update transactions;(T = 1..n) by H = (T, ° Thr ° ... °
T1(Ho)), where H is the initial database state, arfd is the usual
notation for functional composition. Each databasate H is

A cacheis a collection of materialized views, each comsist
of a collection of copies (of row-level objects)tifough an object
can have at most one copy in any given view, mieltqopies of
the same object may co-exist in different cachevsi We limit
our discussion to selection queries, and we onhsicier views
defined by selection queries that select a sulisidta from a table
or a view of the master database.

Self-Identification: The functionmaster() applied to an object
(master or copy) returns the master version ofdbgtct.

Transaction Timestamps The functionxtime(T) returns the
transaction timestamp of transaction T. We overlthad function
xtime to apply to objects. The transaction timegtamssociated
with a master O, xtime(O, } is equal to xtime(A), where A is the
latest transaction in;I.T,that modified O. For a copy C, the trans-
action timestampxtime(C, H,) is copied from the master object
when the copy is synchronized.

Copy Staleness Given a database snapshaqt i copy C is
stale if master(C) was modified in, lfter xtime(C, H). The time
at which O becomes stale, called gtale point stalg(C, H,), is
equal to xtime(A), where A is the first transactionT,..T, that
modifies master(C) after xtime(C,,H Thecurrency of copy C in
snapshot Klis measured by how long it has been stale, die-,
rency(C, H,) = xtime(T,) - stalg(C, H,).

2.2 Presence

The simplest type of query asks for an object idfiedtby its key,
as shown in Q1. How do we know an object is indhehe?

Intuitively, we require that every object in thecha must be
copied from some valid database shapshot. Theifumeaturn (O,
s) returns the value of object O in database stat&/e say that
copy C in a cache statg,$is snapshot consistentv.r.t. a data-
base snapshot Hf return(C, Sicnd = return(master(C), bl and
xtime(C, H,) = xtime(master(C), k. We also saygopiedFrom(C,
H,) holds.

Defn: (Presencg¢ We say an object O is present in cachg,Sff
there is a copy C in&nesuch that master(C) = O, and for some
snapshot Hof the master database CopiedFrom(Q),Hdlds.[]

2.3 Consistency

When a query asks for more than one object, itspatify mutual
consistency requirements on them, as shown in E1.1.

For a subset U of the cache, we say that thisually snap-
shot consistent(consistentfor short) w.r.t. a snapshot,tbf the
master database if and onlyGbpiedFrom(O, k) holds for every
object O in U. We also say CopiedFrom({) Holds.

Besides specifying a consistency group by objegs Ke.g.,
authorld in E1.2), a query can also specify a gtascy group by
a selection, as in E.1.3. Suppose all authors iith, 2 and 3 are
from Madison. The master database might contaierotiuthors
from Madison. The cache still can be used to ansiisrquery as
long as all three authors are mutually consistadtrzo more than
10 minutes old. Given a query Q and a database stdet Q(S)
denote the result of evaluating Q on s.

Defn: (Consistency For a subset U of the cachg, if there is a
snapshot Hof the master database such that CopiedFromgy, H
holds, and for some query Q, the following holdd:I\Q(H,), then

called asnapshot of the database. Assuming each committedU is snapshot consistent(or consisten) w.rt. Q and K

transaction is assigned a unique timestamp, we thoe® use |
and H, interchangeably.
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Figure 2.1: Cache property example
U consists of copies from snapshaot &d Q is a selection
query. Thus the containment of U in QJHs well defined. Note
that object metadata, e.g., timestamps, are nat us¢his com-
parison.
If a collection of objects is consistent, then ayts subsets is
also consistent. Formally,

Lemma 2.1: Given a subset of objects U in the cachgn$if U is
consistent w.r.t. a query Q and a snapshpbHhe master data-
base, then any subset P(U) defined by a selectienydP is con-
sistentw.r.t. P°Qandd O

Proof: since U is consistent w.r.t. Q ang, /e have:

UOQH,) @)

CopiedFrom(U, H). 2)
Since (1), for any selection query P,

PU)OP-Q(H,) 3)

Since P is a selection quer(U) OU . Together with (2), we

have

CopiedFrom(P(U), H. 4)
From (3) and (4), we know that P(U) is snapshotsisiant w.r.t.
P°QandH O

2.4 Completeness

As illustrated in Q3, a query might ask for a seolgjects defined
by a predicate. How do we know ttedt the required objects are in
the cache?

Defn: (Completenesy A subset U of the cacheg.is complete
w.rt. a query Q and a snapshat ¢f the master database if and
only if CopiedFronJ, H,) holds and U = Q(}. [

Lemma 2.2: For a subset U of the cachg,&, if U is complete
w.r.t. a query Q and snapshot, then any subset P(U) defined by
a selection query P is complete w.r.t. P°Q apd H

Proof: from the given, we have

CopiedFrom(U, H), 1)

U=0Q(H) (2)
From (2), for any selection query P,

P(U) = P°Q(H) (3)
Since P(U) U , from (1), we have

CopiedFrom(P(U), B 4)

From (3) and (4), we know P(U) is complete wRQ and H. (1

The completeness constraint is rather restrictivere assume
that objects’ keys are not modified, then it is gbke to allow
subsequent updates of some objects in U to becteflein the
cache, while still allowing certain queries (whichquire com-
pleteness, but do not care about the modificatam can there-
fore ignore consistency) to use cached objects in U

Defn: (Associated Objecty We say that a subset U of the cache

(Hy
) >
H, |

Time

T, updates (A')
xtime (A2, Hyq)

LH_2

Figure 2.2: Currency example (1)

currency ({A2,B},Q
currency (H,,Q,H,
H; T3 updates (C")
currency (H;,Q,Hy)
currency ({A1,B},Q,H,)

H;
.

T, updates (A’,B’)
xtime (Al, Hy)
xtime (B, Hy)

ScachelS @ssociated witha query Q if for each object C in U, there
exists a snapshot Hof the master database such that Copied-
From(C, H) holds and Cis in Q(i. [

Defn: (Key-completenesk For a subset U of the cachg,& we
say U is key-complete w.r.t. Q and a snapshgtifHU is associ-
ated with Q, andle,Q(H,) [ My U).

Intuitively, U includes (as identified by the keyd) the objects
that appear in the result of Q applied to the madétabase H
However, the objects in the cache might have beged from
different earlier snapshots of the master datakese,subsequent
changes to these objects might not be reflectélaercache.

Figure 2.1 illustrates cache properties, wheredwe érom ob-
ject O to C denotes that C is copied from O. Assignall objects
are modified in H, U1 is consistent but not complete w.r.t. Q1 and
H,, U2 is complete w.r.t. Q2 and;Hand U3 is key-complete w.r.t.
Q3 and both Hand H.

Lemma 2.3: If a subset U of the cache,$eis complete w.r.t. a
query Q and a database snapshgtthen U is both key-complete
and consistent w.r.t. Q and,.H[J

Proof: Directly from the definitions. [

2.5 Currency

We have definedtale pointandcurrencyfor a single object. Now
we extend the concepts to a subset of objects.Sepihat on day
1, there are only two authors from Madison in trestar database,
and we copy them to the cache, forming set U. On2jaa new
author moves to Madison. On day 3, how stale is.tt.vpredicate
“city = Madison? Intuitively, the answer should theday, since U
gets stale the moment the new author is addedetontister data-
base. However, we cannot use object currency terméie this
since both objects in U continue to be currentsdlve this prob-
lem, we use the snapshot where U is copied fromraerence.
We overload the stale() function to apply to a Has® snap-
shot H, w.r.t. a query Q: staleid Q, H) is equal to xtime(A),
where A is the first transaction that changes #wilt of Q after
Hn, in H,. Similarly, we overload the currency() functiorure

rency(H,, Q, H, = xtime(H,) - stale(H,, Q, H,).

Defn: (Currency for complete sej For a subset U of the cache
Scache If U is complete w.r.t. a query Q and a databssgpshot
Hm, then the currency of U w.r.t. a snapshgqtofithe master data-
base is defined as follows: currency(U, Q) H currency(H, Q,
Hy. O

From the definition, it seems the currency of U elegs on
which snapshot H we use in the calculation. In order to avoid
such ambiguity, we introduce the following assumptiThe as-
sumption can be relaxed by a “ghost row” technigee, [GLRO5]
for details.

Non-Shrinking Assumption: For any query Q, any database snap-
shot Hand H, where &, andIle,Q(H) L IeyQ(H). ©

Currency Property 2.1: Under the assumption above, for any
subset U of the cache.g,. any query Q, and any master database

T, updates (A’B’)
H xtime (A2, Hy), currency ({A2,B}
ot xtime (B, Hq) currency (Hz,Q

,Q,Eﬂ
,Hy) g
Hy, |

Time

H, T; updates (C)
currency (Al ,H

T, updates(A’,B’) )
currency ({Al1,B},Q,H,)

xtime (Al, Hy)

LHj

Figure 2.3: Currency example (2)



snapshot Hand H, if U is complete w.r.t. Q and both; End H,

then for any n, currency(HQ, H,) = currency(il Q, H). [

Proof: (by contradiction) Since the case ij is triviaithout loss
of generality, assume i<j. Assumg iE the first transaction that
modifies Q(H) after H. We claim that k>j. For the proof by con-
tradiction, assumesj.

From the non-shrinking assumption, dither 1) modifies an

object in Q(H), say O1 or 2) adds a new object, say O2 to the re

sult of Q. Further, both O1 and O2 are in Q(H

In case 1), since<f, xtime(O1, H)>xtime(O1, H), which con-
tradicts the given that U is consistent w.r.t. bidtland H.

In case 2), O2 is not in Q(KHwhich also contradicts the given
that U is complete w.r.t. both; lind H.
Thus k>j, hence currency(HQ, H) = currency(fl Q, H). U

Figure 2.2 illustrates the currency of two completés, where Al
and A2 are two copies of A’ and B is a copy of B(H;) = {A’,
B} fori=1,2, Q(H) ={A, B, C}fori=3, 4. Thus {Al,
B}and {A,, B} are complete w.r.t. Q and;HH, respectively.

How to measure the currency of a key-complete Bigire 2.3
shares the same assumptions as Figure 2.2, exaepk, fand
xtime(B), where {Al, B}and {A, B} are key-complete w.r.t. Q
and H and H, while the latter is also complete w.r.t. Q and K
is desirable that 1) currency({Al,B}, Q,sHis deterministic; and
2) Since Al is older than A2, {Al, B}should be oldéian {A2,
B}.

We address these problems by firstly identifyingnéque ref-
erenced snapshot, and secondly incorporating threrary of the
objects into the currency definition.

Defn: (Max key-complete snapshgt For any subset U of the

cache §eand a query Q, the max key-complete snapshot of U

w.r.t. Q and a database snhapshqt Hax-snapshofU, Q, H) is
equal to K, if there exists Kk, s.t., for any <K,

1w @HDO[] VY
And one of the following conditions holds:
I_l keyU a |_I keyQ(Hk+1)

Otherwise itis @. [

1) k=)

Directly from the definition of key-completenessdatihe non-
shrinking assumption, we have the following lemma.

Lemma 2.4:If there exists a database snapshgt $it. U is key-
complete w.r.t. Q and K then for any n, max-snapshot(U, Q) H
is not @.[]

Lemma 2.4 guarantees that the following definitionvell de-
fined for a key-complete set.

Defn: (Currency for key-complete sel For a subset U of the
cache gype if U is key-complete w.r.t. a query Q and som&ada
base snapshot, then the currency of U w.r.t. ashwiH, of the
master database is defined as follows. Lgt=Hmax-snapshot(U,
Q, H) and

Y = max (currency (C,H.)),

cou

Then Currency(U, Q, bl = max (Y, currency(H, Q, H)). [

Figure 2.3 shows the currency of a key-complete{/Agt B}
and a complete set {A2, B}.

Now the currency of a key-complete set has some mioper-
ties that fit in intuition.

Currency Property 2.2: For any subset U of the cachg & and
a query Q, if U is key-complete w.r.t. Q and soragatlase snap-
shot, then for any n, currency(U, Q,)Hk deterministic.  [J

Proof: Directly from the definition and Lemma 2.4.0

Currency Property 2.3: Given any query Q, and two subsets Ul
and U2 of the cache Sy if max-snapshot(Ul, Q, JH= max-
snapshot(U2, Q, bl 3, let

Y, = max (currency (O,H )),

oou,
where i=1, 2. If ¥>Y,, then currency(U1, Q, picurrency(U2, Q,
Hp)- O

Proof: directly from the definition. O

Currency Property 2.4: currency-complete is a special case of
currency-key-complete. [

Proof: Given any subset U of the cachg. S that is complete
w.r.t. a query Q and some database snapsfoEét any gm, let
Hy = max-snapshot(U, Q, ) From the definition of max key-
complete snapshot we knowrmg. There are two cases:
Case 1: U is complete w.r.tyH

Let Ty be the first transaction inHhat changes the result of Q
after H,. From the non-shrinking assumption, again, we Hae
cases:
a. Ty touches at least one object, say O1, in U. Sinds the first

transaction that touches U,

Y = max (currency (O,H )) = currency (O,,H )

oou
Since the stale points for O1 and Q)Hre both xtime(l), cur-
rency(H, Q, H,) = currency(O1, i. Thus
currency(U, Q, i) = max (Y, currency(il Q, Hy)
= currency(il Q, H) = currency(O1, .

b. T, adds new objects into the result of Q.
In this case the stale point of any object O indUldater than
xtime(Ty), so currency(l Q, H,) > currency(O, K).
currency(U, Q, i) = max (Y, currency(il Q, Hy))
= currency{H, H,).

Case 2: U is not complete w.r.tg.H
let Ty be the first transaction inthat modifies at least an object,
say O1 in U after H, then

currency(H, Q, H,) = currency(O1, b
Y = maxcurrencyO, H )) =currencyO,, H, )
o

&)
©)

In addition we have 4g, otherwise from the non-shrinking as-
sumption, U would be complete w.r.ty.H'hus
Y> currency(H, Q, H,)
Putting (2), (3) and (4) together,
currency(U, Q, i) = max (Y, currency(l Q, Hy)
= currency(igl Q, H) = currency(O1, §. O

4

2.6 Dealing with Deletion

Currency properties 2.1 to 2.4 don't hold withotte tnon-
shrinking assumption. Take Property 2.1 for exam@de day 1
there are two customers C1, C2 from WI, which wpied to the
cache, U = {C1, C2}. On day 2, customer C3 moved tdampo-
rarily, and moved out of WI on day 5. Then on dayh# currency
of U is 2 days old. However, on day 6, it goes bach!

The reason is that when an object is deleted, se ks xtime
record. Consequently, given a set of objekts one cannot



uniquely identify the first snapshét appears in. To remedy that,
we introduce the concept ghost object Conceptually, when an
object is deleted from a region in the master cepgydon’t really
delete it, instead, we mark it as a ghost objedttegat it the same
way as a normal object. Thus we keep the xtimesiamp of de-
leted objects. Ghost objects and their timestampg@pagated to
the cache just as normal objects. With this teamigleletion is
modeled as a special modification. Thus the nomkimg as-
sumption is guaranteed even in the presence ofiaiede

DDL examples used in this section. We start byniledj two views
as shown in D1.

3.1 View Partitions and Control-tables

Instead of treating all rows of a view uniformlygallow them to
be partitioned into smaller groups, where propsrijpresence,
currency, consistency or completeness) are guarger-group.
The same view may be partitioned into differens stgroups for
different properties. Further, the cache may prexadull or par-

Lemma 2.5: With the ghost object technique, given any query Q tial guarantee that is, it may guarantee that the property hédds

the non-shrinking assumption holds.

Proof: With the ghost object technique, there are notidele to
the region defined by Q.

Note that in practice, we don’t need to record ¢hgkost ob-
jects, since the calculation of currency only netedbe conserva-
tive. How we bound the currency of a complete satiscussed in
Section 4.1.2.

2.7 Derived Data

If the cache only contains (parts of) base talileeny for each ob-
ject in the cache there is a master version innthster database.
This doesn’t apply to derived data, i.e., matezédi views in the
cache. An object (row) in a materialized view ie tache doesn’t
have a master copy in the master database. Welirtteothe con-
cept ofvirtual master copy to remedy this. Conceptually, for any
view V in the cache, for any snapshqtdflithe master database, we

all groups in the partitioning or only for sometbe groups. Al-
though different implementation mechanisms mightulsed for
full and partial guarantees, conceptually, the farns a special
case of the latter; we therefore focus on partiargntees.

In this paper, we impose restrictions on how grocgs be de-
fined and consider only groups defined by equaligdicates on
one or more columns of the vieWhat is, two rows belong to the
same group if they agree on the value of the graupolumns. For
a partial guarantee, the grouping values for whiah guarantee
holds are (conceptually) listed in a separate tahlied acontrol-
table. Each value in the control-table corresponds tgraup of
rows of V, that we call acache region(or simply region). Each
view V;in V can be associated with three types of controksabl
presence, consistencand completeness control-tablesWe use
presence regionconsistency region andcompleteness regiorno
refer to cache regions defined for each type, aapmdy. Note that
control-tables are conceptual; some might be efglimaintained

calculate V(R and include it in the master database. Thus byand others might be implicitly defined in terms ather cached

comparing two adjacent snapshots, we can record iassr-
tion/deletion/modification on the view. With thiechnique, any
object in the cache — no matter whether it is frobase table or a
view — has a master copy in the master databases, &ny query
can be used to define a region in the cache.

Again, in practice, since we only need to bounddheency of a
region conservatively, we don’t need to materialihe virtual
master copies. See Section 4.1.2.

3. DYNAMIC CACHING MODEL

In our model, a cache is a collection of materadiziewsV =

{V 1, ..., Vm}, where each view Ms defined using a query expres-
sion Q. We describe the properties of the cache in terhisteg-
rity constraints defined ovéf. In this section, we introduce a class
of metadata tables calledntrol-tablesthat facilitate specification
of cache integrity constraints, and introduce edtéehSQL DDL
syntax for constraint specification. Figure 3.1 whathe set of

D1: CREATE VIEW AuthorCopy AS SELECT * FROM Authors

CREATE VIEW BookCopy AS SELECT * FROM Books

CREATE TABLE AuthorList PCT (authorId int)
ALTER VIEW AuthorCopy ADD PRESENCE ON authorId IN
(SELECT authorId FROM AuthorList_PCT)

CREATE TABLE CityList CsCT(city string)
ALTER VIEW AuthorCopy ADD CONSISTENCY ON city IN
(SELECT city FROM CityList_ CsCT)

CREATE TABLE CityList CpCT(city string)
ALTER VIEW AuthorCopy ADD COMPLETE ON city IN
(SELECT city FROM CityList CpCT)

ALTER VIEW BookCopy ADD PRESENCE ON authorId IN
(select authorId from AuthorCopy)

: ALTER VIEW BookCopy ADD CONSISTENCY ROOT

D2:

D3:

D4:

D5:

D6

Figure 3.1: DDL examples for adding cache constrain  ts

tables in a given implementation.

3.1.1 Presence Control-Table (PCT)

Suppose we receive many queries looking for sontigoes} as in
Q1. Some authors are much more popular than otmsisthe
popular authors change over time, i.e., the aquattern is skewed
and changes over time. We would like to answergel&action of
queries locally but maintenance costs are too higleache the
complete Authors table. Furthermore, we also waribe able to
adjust cache contents for the changing workloatiawit changing
the view definition. These goals are achieved las@nce control-
tables.

A presence control-table (PCT)or view V, is a table with a
1-1 mapping between a subset K of its columns asubaet K’ of
Vi's columns. We denote this BBCT[K, K']; K LI PCT is called
the presencecontrol-key (PCK) for V;, and K'L1V; is called the
presence controlled-key (PCdK) For simplicity, we will use
PCK and PCdK interchangeably under the mapping.CK Rle-
fines the smallest group of rows that can be aénitd or evicted
from the cache in the MTCache “pull” framework fmache main-
tenance. We assume that the cache maintenancélatgomateri-
alize, update and evict all rows within such a gréagether.

Presence AssumptionAll rows associated with the same presence
control-key are assumed to be present, consistahtcamplete.
That is, for each row s in the presence contrdetatubset U =
ok=sk (Vi) is complete and consistent w.bl=sx ° Q; and H, for
some snapshot tof the master database, whergifthe query
that defines V. O

If Vi has at least one presence control-table, it paréally
materialized view (PMV), otherwise it is a fully materialized view
addressed in [GLRGO4]. In this paper, we limit discussion to



only the simplest type of PMVs, namely views with equality
control-table; more general cases are addresq&d G05].

In our motivating example, we cache only the nmaspular
authors. This scenario can be handled by creatimgesence con-
trol-table and adding BRESENCEonstraint to AuthorCopy, as in
D2. AuthorList_PCT acts as a presence control-tahl® contains
the ids of the authors who are currently presertheview Au-
thorCopy, i.e., materialized in the view.

3.1.2 Consistency Control-Table (CsCT)

A local view may still be useful even when alliitsvs are not kept
mutually consistent. Consider a scenario where egeive many
queries like E1.3. Suppose the view AuthorCopy aimist all the
required rows. If we compute the query from thewyievill the
result satisfy the query's consistency requiremenrtsiot? The
answer is “not necessarily” because the query reguall result
rows to be mutually consistent per city, but Autbopy only
guarantees that the rows for each author are d¢ensisiothing is
guaranteed about authors from a given city. Thesistency con-
trol-table provides the means to specify a dediegdl of consis-
tency.

A consistency control-table (CsCTJor view V; is denoted by
CsCTI[K], where a set of columns[K CsCT is also a subset of,V
and is called theonsistencycontrol-key (CsCK) for V;. For each
row s in CsCT, if there is a row t in,\6.t. s.K = t.K, then subset U
= ok=sk (Vi) must be consistent w.r.b-s k ° Q) and H, for some
snapshot Hof the master database.

In our example, it is desirable to guarantee ctescy for all
authors from the same city, at least for some efggbpular cities.
We propose an addition@ONSISTENCYtonstraint, for specify-
ing this requirement. In our example, we first tee@ consistency
control-table containing a set of cities and theld @ CONSIS-
TENCYconstraint to AuthorCopy, as in D3 of Figure 3[he CON-
SISTENCY clause specifies that the cache must keep all rews
lated to the same city consistent if the city ioamthe ones listed
in CityList_CsCT; this is in addition to the cortsiscy require-
ments implicit in the Presence Assumption. Authgroan now
be used to answer queries like E1.3.

If we want the cache to guarantee consistency feryecity,
we change the clause GONSISTENCY ON city . If we want the
entire PMV to be consistent, we change the claoseONSIS-
TENCY ON ALL.
cache will not provide any consistency guaranteegoibd the
minimal consistency implied by the presence cortable under
the Presence Assumption.

3.1.3 Completeness Control-Table (CpCT)

A PMV with a presence control-table can only beduseanswer
point queries with an equality predicate on itstomrcolumns. For
example, AuthorCopy cannot answer Q3.

It is easy to find the rows in AuthorCopy that sftithe selec-
tion query but we cannot tell whether the view edm all re-
quired rows. If we want to answer queries with paté P on

AuthorList PCT ReviewerList PCTD
authorId CityList CsCT

reviewerId
Review

reviewId

Figure 3.2: C ache schema example

If we don'’t specify a consistency clause, the

columns other than the control-keys, the cache guatantee that
all rows defined by P appear in the cache. Compést® con-
straints can be specified in terms of a completenestrol-table.

A completeness control-table (CpCTJor view V; is denoted
by CpCT[K]. A completeness control-table is a cetesicy con-
trol-table with an additional constraint: the subdein V; defined
as before is not only consistent but also complete. (ox=sk ° Q)
and H, for some snapshot,tf the master database. We say K is a
completenessontrol-key (CpCK). Note that all rows within the
same completeness region must also be consistemnia 2.3).

We propose to instruct the cache about completaregsre-
ments using £OMPLETENES6&onstraint. Continuing our example,
we create a completeness control-table and thenaactimplete-
ness clause to the AuthorCopy definition, as indd#igure 3.1.
Table CityList_ CpCT serves as the completenessaetable for
AuthorCopy. If a city is contained in CityList CpCthen we
know that either all authors from that city are tzamed in Au-
thorCopy or none of them are. Note that an enthexcomplete-
ness control-table does not imply presence. Futhpteteness is
indicated by dropping the clause starting with “INlot specifying
a completeness clause indicates that the defaoipleteness im-
plicit in the Presence Assumption is sufficient.

A similar property is termed “domain completeneds’
DBCache [ABK+03]. However, our mechanism providesren
flexibility in cache management. The cache admim sgecify: 1)
which subset of columns should be complete; 2) adreto force
completeness on all values or just a subset ofsgalor these col-
umns.

3.2 Correlated Presence Constraints

In our running example, we may not only receive yngoeries
looking for some authors, but also follow-up querieoking for
related books. That is, the access pattern to Bopk@ decided
by the access pattern to AuthorCopy. In order mwa this, we
allow a view to use another view as a presenceraetatble. To
define BookCopy to be controlled by AuthorCopy, amy need
to declare AuthorCopy to be a presence controbtélyl aPRES-
ENCEconstraint in the definition of BookCopy, as in bDbFigure
3.1.

If a presence control-table is not controlled byther pres-
ence control-table, we call itraot presence control-table Let L
={V v ..., Vi} be the set of root presence control-tabléss V
L] L. We depict the presence correlation constraints bgche
graph, denoted by<W, E>. If there is an edge Vg _, Vi
then \{is a PCTIK;, K;;"] of V.

Circular dependencies require special care in otdeavoid
“unexpected loading”, a problem addressed in [ABBH+0On our
model, we don't allow circular dependencies, atesdtin Rule 1 in
Figure 5.1. Thus we call a cache graptaehe DAG

Each view in the DAG has two sets of orthogonalpprtes.
First, whether it is view-level or group-level cistent. Second, to
be explained shortly, whether it is consistencyewésrrelated to
its parent. For illustration purposes, we use shapeepresent the
first property: circle for view-level consistentews and rectangle
(default) for all others. We use colors to dendite second prop-
erty: gray if a view is consistency-wise correlatedts parents, red
(default) otherwise.

Defn: (Cacheschema)A cache schema is a cache DA®/, E>
together with the completeness and consistencyraletables
associated with each viewW. [



3.3 Correlated Consistency Constraints

In our running example, we have an edge AuthorCpppee,
BookCopy, which means that if we add a new autboAuathor-
Copy, we always bring in all of the author’'s bookke books for
an author have to be mutually consistent, but #reynot required
to be consistent with the author.

If we wish the dependent view to be consistent i con-
trolling view, we add the consistency clauS®NSISTENCY ROOT
as in D6 of Figure 3.1A node with &ROOTconsistency constraint

Madison is found in CityList_CpCT, then besides toasistency
query, we must fetch all authors from Madison usihg com-
pleteness query in Figure 4.1.

Formally, given a cache region U<V, K, k>, let gt of pres-
ence control-tables of V be,P..., B, with presence control-keys
Ky, ..., Ky For K, i = 1..n, letK;=TIxok=(V), the remote queries
for U are: 1) the presence query, if U is a presaegion; 2) the
consistency queries (i = 1..n), if U is a consisteregion; and 3)
the consistency queries (i = 1..n) (and the corapkss query i)

# @), if U is a completeness region. (The queries sirown in

is coloredgray; it cannot have its own consistency or completenes Figure 4.2.)

control-tables, as stated in Rule 2 in Figure 5.1.

For a gray node V, we call its closest red ancegsaronsis-
tency root. For any of V’s cache regions, f U; is controlled by a
presence control-key value included in a cacheoredi in its
parent, we say that;ldonsistency-wise controldJ;; and that i
and Yareconsistency-wise correlated

Figure 3.2 illustrates a cache schema example.

4. SAFE CACHED VIEWS

A cache has to perform two tasks: 1) populate #tehe and 2)
reflect updates to the contents of the cache, whdetaining the
specified cache constraints. Complex cache consdraan lead to
unexpected additional fetches in a pull-based remamce strat-
egy, causing severe performance problems. Weriitesthe prob-
lems through a series of examples, and quantifyefiesh cost for
unrestricted cache schemas in Theorem 4.1. We itrentify an
important property of a cached view, calleafety that allows us
to optimize pull-based cache maintenance, and suixenghe
gains it achieves in Theorem 4.2. In the coursthefdiscussion,
we also introduce the conceptaif-hoccurrency regions, which is
useful for adaptively refreshing the cache.

For convenience, we distinguish between the schamdathe
instance of a cache region U. The schema of Unetdd by <V,
K, k>, meaning that U is defined on view V by a tohkey K
with value k. We use thigalic form U to denote the instance of U.

4.1 Pull-Based Maintenance

In the “pull” model, we obtain a consistent set@is using either
a single query to the back-end or multiple quevieapped in a
transaction. As an example, suppose AuthorCopyodnted in
Section 3, does not have any children in the c&xh@& and that
the cache needs to refresh a row t (1, Rose, FeMalgison, WI).

First, consider the case where AuthorCopy doeshawe any
consistency or completeness control-table, and @usistency
follows the presence table. Then all rows in thespnce region
identified by authorld 1 need to be refreshed togetThis can be
done by issuing the presence query shown in Figuteto the
back-end server.

Next, suppose we have CityList CsCT (see Secti@rp. If
Madison is not found in CityList_CsCT, the presemgery de-
scribed above is sufficient. Otherwise, we musb aisfresh all
other authors from Madison. L& be the set of authors in Au-
thorCopy that are from Madison, the consistencyryjire Figure
4.1 is sent to the back-end server.

Finally, suppose we have CityList_ CpCT (see Sec3idn3). If

Lemma 4.1: For any cache region U <V, K, k> in the cache, th
results retrieved from the back-end server usirggahove pres-
ence, consistency and completeness queries notkesys U’s
cache constraints, but also keeps the presencéraiots for the
presence regions in V that U overlaps.]

Proof: This directly follows from the presence, consisieand
completeness queries. 0

As this example illustrates, when refreshing a eadgion, in
order to guarantee cache constraints, we may mesfresh addi-
tional cache regions; the set of all such “affetwathe regions is
defined below.

Defn: (Affected Closure The affected closureof a cache region

U, denoted a&C(V), is defined transitively as follows:

1) AC(U) ={U}

2) AC(U) = AC(U) LI {U; | for some Win AC(U), eitherU; over-
lapsU; or Y and U are consistency-wise correlated}.l]

For convenience, we assume that the calculatiohG{fJ) al-
ways eliminates any consistency regiop) illthere exists a com-
pleteness region;lin AC(U), s.t., Y= U,, since the completeness
constraint is stricter (Lemma 2.3). The set of @agiin AC(U) is
partially ordered by the set containment relatigmshrom Lemma
2.1-2.3, we only need to maintain the constraitfitsoone “maxi-
mal” subset of AC(U). We usklax(Q2) to denote the set of the
maximal elements in the partially ordered Qet

Defn: (Maximal Affected Closure The maximal affected closure
of a cache region WaxAC (U), is obtained by the following two
steps: LeQ = AC(U),

1) Constructing step. Let, B be the set of all consistency regions
and completeness regions & respectively. MaxAC(U) =
Max(Q - n) L] Max(Q —B).

2) Cleaning step. Eliminate any consistency region it
MaxAC(U) if there exists a completeness region i
MaxAC(U), s.t., YL U;. 0

Maintenance Rule:

1) We only choose a region to refresh from a red node.

2) When we refresh a region U, we follow the followistgps:
Step 1: Retrieve all regions in MaxAC(U) by sendnegnote

queries accordingly, let the result be denoteddwTupleSet.
Step 2: Delete the old rows covered by AC(U) or TiepleSet,

then insert newTupleSet into the corresponding siew.]

Theorem 4.1: Assuming the partial order between any two cache
regions is constant, then given any region U, ifapply the Main-
tenance Rule to a cache instance that satisfiesielile constraints,

Presence query: Consistency query: Completeness query:
SELECT * FROM Authors SELECT* FROM Authors SELECT * FROM Authors
WHERE authorId =1 WHERE authorId in K WHERE city = “Madison”

Figure 4.1: Refresh query examples

Presence (Completeness) query:
SELECT * FROM V
WHERE K = k

Consistency query:
SELECT * FROM V
WHERE K; in K;

Figure 4.2: Refresh queries



let newTupleSet be the newly

AC(newTupleSet), then

1) Every region other than those in-{2) observes its cache con-
straint after the refresh transaction is complete.

2) If (A-Q) = @, then after the refresh transaction is coreplell
cache constraints are preserved.

3) If (A-Q) = @, MaxAC(U) is the minimal set of regions wevba
to refresh in order to refresh U while maintainialy cache
constraints for all cache instances.

Proof: Let Q = AC(U), maxSet=MaxAC(U), newTupleSet be the
tuple set retrieved for maxSet.

1) For any cache region X <V, K, k> if2, let V' be the re-
freshed instance of V, D be the set of rows fon\hWewRowSetX

= 3=k (V), X' = k= (V'), and X" = 8=k (D).

We first proveX’ = X”. This is obvious from step2 in the main-
tenance rule, since all the rowsXrare deleted and all the rows in
X" are inserted into V'.

Case 1: X is in maxSet. Directly from lemma 4.1.

retrieved tuple sat, =

Case 2: X is in@-maxSet). Then there is a region Y in max-

Set, such that XJ V.

Case 2.1: If X is a present region, then direatnf lemma
4.1. Otherwise,

Case 2.2: Y has an equal or stronger constraintXh&ince
Y observes its constraint (from Case 1), it folldwsn lemma 2.1,
2.2, 2.3 that so does X.

Case 3: X is not il [J Q. We prove thai’ = X. This is so
because from the maintenance rule, those rows iaréJ not
touched by the refresh transaction.

2) It directly follows from 1).

3) Itis obvious if U is the only element . Otherwise, prove
by constructing counterexamples from AuthorCopy.Author-
Copy, suppose there is a present control tableutmodd with
authorlds 1 and 2; there are two tuples: t1 = <dseR Female,
Madison, WI>, t2 = <2, Mary, Female, Seattle, W/Stppose we
want to refresh t1 after an update that touchedyesmv in Au-
thors in the master database.

Prove by contradiction. Suppose there exists X ax®et that
should not being refreshed.

Case 1: There exists Y in maxSet, such thaf X. Due to the

definition of the maxSet, X must be a complete aagand Y a
consistent region.

In AuthorCopy, suppose it has a complete regionnddfon
city with value Madison; a consistency region definon state
with value WI. If a new author from Madison has beelded in
the master database, if we only refresh the cargisegion by WI,
only t1 will be refreshed, and after refresh, tenpleteness con-
straint on Madison is no longer preserved.

Case 2: There exists a cache region Y in maxSef ®ver-
laps with Y. In AuthorCopy, suppose it has two dstent regions
on WI and female respectively. If we only refreste first one,
only t1 will be refreshed, and after refresh, tlimsistency con-
straint on the latter is no longer preservied.

The last part of the theorem shows that when anredi is re-
freshed, every region in MaxAC(U) must be simultausdy re-
freshed. Otherwise, there is some instance otdobe that satis-
fies all constraints, yet running the refresh teamion on this state
to refresh U will leave the cache in a state vintsome con-
straint. If A-Q)#d, multi-trip to the master database is needed i
order to maintain all cache constraints. A genenaintenance
algorithm is sketched below.

Mai nt enance Al gorithm
INPUT: a cache region U from a red node

Q €«{U}
While (TRUE)

{
Q € AC( Q);
maxSet € MaxAC( Q);

oldRowSet = O
U,;0Omax Set,

NewRowsSet = retrieve(maxSet);

A = AC(NewRowSet);

If( o) break;

o= Ua

}
apply(oldRowSet, newRowSet);

U /lthe instance set

Function retrieve®) retrieves rows from the master database
by sending a series of remote queries accordimglgdch group in
Q.

Procedure apply() refreshes the cache accordistg?2 in the
second part of the Maintenance Rule.

Procedure Apply (S, D)

Input: S - source row set, D - new row set

Algorithm:

for (each view V involved)

Let the set of rows in S that

belongstoV  beS ;
Let the set of rows in D that
belongstoV  beD ;
Let dkey = ., (D,);
Delete S  fromV
Delete rows in V . whose keys appear in
dkey;
Insert D into V

Given a region U in a red PMV V, how do we get M&(Q)?
For an arbitrary cache schema, we need to stant Witand add
affected regions to it recursively. There are twerarios that po-
tentially complicate the calculation of MaxAC(Updcould cause
it to be very large:

1) For any view Y, adding a region rom V; results in adding

all regions from Vthat overlap with U
2) A circular dependency may exist between two viewand V,

i.e., adding new regions from; Yhay result in adding more re-

gions from V, which in turn results in adding yet more regions

from V..

The potentially expensive calculation and the lasjge of
MaxAC(U), and the correspondingly high cost of esfiing the
cache motivate the definition edfePMVs in Section 4.2.

4.1.1 Ad-hoc Cache Regions

Although the specified cache constraints are theimum con-
straints that the cache must guarantee, sometinisedeésirable for
the cache to provide additional “ad-hoc” guarantées example,
a query workload like E1.1 asks for authors froseaof popular
authors and requires them to be mutually consisteapularity
changes over time. In order to adapt to such waddpwe want
the flexibility of grouping and regrouping authdrgo cache re-
gions on the fly. For this purpose, we allow thehmato group
regions into “ad-hoc” cache regions.

Defn: (Ad-hoc region) An ad-hoc cache region consists of a union

"of one or more regions (which might be from diffareiews) that

are mutually consistent. [



Such “ad-hoc” consistency information is made kndwrthe
query processor by associating the region id ofaitidroc region
with each region it contains.

4.1.2 Keeping Track of Currency

In order to judge if cached data is fresh enoughafgiven query,
we need to keep track of its currency. It is stifiyward and we
discuss it only briefly. [GLRGO04] used a push moét® cache

maintenance, and relied on a heartbeat mechanisthi$ogpurpose.
To track currency when using the pull model, wepkadimestamp
for every cache region. When a cache region ieshfd, we also
retrieve and record the transaction timestamp efréfresh query.
Assuming that a transaction timestamp is uniquémiplementa-

tion we simply use the timestamp as region id. Tlifuthe time-

stamp (rid) for a cache regionTsand the current time is since

all updates untill are reflected in the result of the refresh query,

the region is from a database snapshot no oldar(tkaT).

4.2 Safe Views and Efficient Pulling

We now introduce the concept edfe views, motivated by the
potentially high refresh cost of pull-based maiatece for unre-
stricted cache schemas.

Defn: (Safe PMV) A partially materialized view V isafeif the
two following conditions hold for every instance tbe cache that
satisfies all integrity constraints:

1) For any pair of regions in V, either they don’t dae or one is
contained in the other.

2) If V is gray, let X denote the set of regions indéfined by
presence control-key values. X is a partitioningvoind no
pair of regions in X is contained in any one regé@fined on
V. [

Intuitively, Condition 1 is to avoid unexpectedreshing be-
cause of overlapping regions in V; Condition 2dsavoid unex-
pected refreshing because of consistency corralagwoss nodes
in the cache schema.

Lemma 4.2:For a safe red PMV V that doesn't have any chiidre
given any cache region U in V, the partially ordkset AC(U) is a
tree. [

Proof: (by contradiction) Suppose there is a group X @(¥),
such that X has two parents Y and Z. ThehZY# &. From the
safe definition, either Y] Z, or ZL1Y. Therefore they cannot

both be X’s parents. [J

Since AC(U) on V has a regular structure, we carntae
metadata that makes it possible to find the maxiateinent effi-
ciently. We omit the detailed mechanism becausspaice con-
straints.

Theorem 4.2:Consider a red PMV V, and letdenote V and all

its gray descendants. If all nodeswrare safe, whenever any re-

gion U defined on V is to be refreshed:

1) The calculation of AC(U) can be done top-down i @ass.

2) Given the partially ordered set AC(U) on V, theccddtion of
MaxAC(U) on V can be done in one passl

Proof:

1) For any safe gray node V', given the subset ©KRaluesk
that is in AC(U) from its parent, we need to puAG(U) the set of
cache regiona determined b in V'. A is the exact set of cache
regions in V' that need to be put into AC(U), besadrom the

definition of a safe viewA doesn’t overlap or contained by any
consistent or complete region defined on V’, noesli overlap or
contained by the rest of the present CRs in V'ttrar; adding\ to
AC(U) doesn't result in adding additional cacheioeg from its
parent, because of the first condition of the didin of safe.

2) From 1), the descendents of V don't affect AC@n)V. Thus,
let Q@ = AC(U), from Lemma 4.2Q) is a tree. Lel’ be empty, we
check the tree recursively top down from the réettjt be Y. If a
node X is a complete region, then we add if t@therwise, we do
the checking on each child of X. If Y is notlinadd it tol".

We prove thal’ = MaxAC(U). If Y is a complete or a present
region, we are done. Otherwise, fets be the set of all consistent
regions and complete regions(nrespectively. {Y} = Max - B),
since it is the root of the tree. Now we prave{Y} = Max(Q- n)
by contradiction. Suppose there is a complete regiin Q, such
thatT" -{Y} doesn’t cover Z. Then Z doesn’t have any anoeshat
is a complete region. Then from the algorithm, Zstroe visited
and put intd” -{Y}, contradicting the assumption.

Further, the cleaning step doesn’t eliminate Ycsiit is the
root. Thusl' = MaxAC(U). [

5. DESIGN ISSUES FOR CACHES

In this section, we investigate conditions thatleaunsafe cached
views and propose appropriate restrictions on allbes cache
constraints. In particular, we develop three addai rules to
guide cache schema design, and show that Rulear&-& neces-
sary and sufficient condition for (all views in)etleache to be safe.

5.1 Shared-Row Problem

Let's have a closer look at the AuthorCopy and Boofy exam-
ple defined in Section 3. Suppose a book can havépte au-
thors. If BookCopy is rectangle, since co-authons@llowed, a
book in BookCopy may correspond to more than orgrobkey
(authorld) value, and thus belong to more than eawhe region.
To reason about such situations, we introduce ecaxdtence
DAGs.

Defn: (Cache Instance DAG)Given an instance of a colored
cache DAG ¥, E>, we construct the correspondicgche in-
stance DAGas follows: make each row in each nod&\bé node;
and for each edge;\hfyt@ _, V; in E, for each pair of rows s in
Viand tin, if s.K; = t.K; then add an edge-3 t. [J

Defn: (Shared-Row Problem)Given a cache DAG W, E>, a
PMV V in W has theshared-row problemif there exists a cache
instance DAG containing a row in V with more than one parent.

There are two cases where a PMV V has the sharegrab-
lem. The first case is as follows:

Lemma 5.1: Given a cache schem&\k E>, PMV V in W has the
shared-row problem if V has more than one parent.

Proof: (by constructing an instance DAG). Suppose V has t
PCTs T1 and T2 on attributes A and B respectivBlyppose val-
ues al and bl are in T1 and T2 respectively. Fowat in V, if
t.A = al, t.B = b1, then t has two parents: al ahdThus V has
the shared-row problem. [J

In this case, we can only eliminate the potentiadriap of re-
gions defined by different presence control-talife¥ is view-



level consistent. Considering the second conditiaihe definition
of safe, we enforce Rule 3 in Figure 5.1.

The second case where a PMV has the shared-roveprab
identified next. For this case, we enforce Rula &igure 5.1.

Lemma 5.2 Given a cache schem&\k E>, for any PMV V in a
tree, let the parent of V be;Mhen V has the shared-row problem
if and only if the presence control-key K in ¥0r V is not a key in
Vi O

Proof: (sufficiency) Since K is not a key for;Vthere exists an
instance of Y, such that there are two rows t1 and t2 in 8tch

that t1. K= t2. K. Then for arow t in V, s.t. t.K=t1.K, both and

t2 are t's parents.

(necessity) Because V has the shared-row problearetis an
instance of V, such that a row t in V has two pesetl and t2 in
V. Since t1.K = t2.K=t.K, K is not a key for,V [

5.2 Control-table Hierarchy

For a red PMV V in the cache, if it has some cdeaisy or com-
pleteness control-tables beyond those implicithie Presence As-
sumption, then it might have overlapping regiomsour running
example, suppose BookCopy is a red rectangle; démoaumay
have more than one publishers. If there is a ctargiy control-
table on publisherld, then BookCopy may have opgileg re-
gions. As an example, author 1 has books 1 andithpa?2 has
book 3, and while books 1 and 3 are published Byligher A,
book 2 is published by publisher B. If publisheisAn the consis-
tency control-table for BookCopy, then we have wv@rlapping
regions: {book 1, book 2} by author 1, and {book 1ok®} by
publisher A.

Defn: (Compatible Control-tables) For a PMV V with one pres-

ence control-table in the cache, let the presepcgralled-key of

V be K, and let the set of its consistency and complsteicen-

trol-keys beK.

1) For any pair K and K in K, we say that Kand K are com-
patible iff FD K> K, or FD K> K.

2) We sayK is compatible iff the elements K are pair-wise
compatible, and for any K i, FD K>Kq. [J

Rule 5 is stated in Figure 5.1. We require thatew rache
constraint can only be created in the system #digition does not
violate Rules 1-5.

Theorem 5.1 Given a cache schemnsdV, E>, if it satisfies rules 1-

This violates Rule 5.

Case 2: V is grey. Le® denote the set of cache regions in V
defined by its presence control-key values. Ag#iere are two
cases:

Case 2.1: There are Ul and UXinsuch that Ul and U2
overlap.

This implies that V has shared-rowhpean. Then it

violates rule 3 or 4.

Case 2.2: There are Ul and U2Qnand U3 in V, such
that U1 and U2 are contained in U3.
This implies that V has its own consistency contatlles, which
violates rule 2.

(Necessity) We use variations of the cache scharkigi3.1 as
counter examples in a proof by contradiction.

Case 1: Rule 1 is violated. Then <W, E> violates defn of
cache schema.

Case 2: Rule 2 is violated.

Suppose BookCopy is required to be consistent jbg; tguthor
al has books bl and b2; a2 has a book b3; and2bb3kare all of
type paperback. Then BookCopy is not safe becaasgeaegions
{b1, b2} (by al), {b3} (by a2) are contained in theeodefined by
paperback type.

Case 3: Rule 3 is violated.

Suppose ReviewsCopy is a rectangle or gray. B & rectan-
gle, suppose book bl has two reviews rl, and o) fieviewers x
and y, respectively; x wrote reviews rl1 and r3.c8inache regions
{r1, r2} (by b1) and {r1, r3} (by x) overlap, Reviews@wp is not
safe.

Next, if ReviewsCopy is a circle, suppose authohad books
bl and b2; author a2 has a book b3; books b2, 18 tewiews r2,
r3, respectively. Since cache regions {b1, b2} (byaid {b2, b3}
(by correlation with ReviewsCopy), BookCopy is safe.

Case 4: Rule 4 is violated.

Suppose a book can have multiple authors and Bogok@o
gray. Suppose AuthorsCopy is consistent by citth@ual has
books bl and b2; author a2 has books bl and bi3praal and a3
are from WI, a2 is from WA.

First, suppose BookCopy is a rectangle. Since caebens
{b1, b2} (by al), {b1, b3} (by a2) overlap, BookCopyrist safe.

Second, suppose BookCopy is a circle. Since caebmerrs
{al, a3} (by WI), and {al, a2} (by consistency corr@at with
BookCopy) overlap, AuthorsCopy is not safe.

Case 5: Rule 5 is violated.

Suppose ReviewersCopy is required to be consibtetht by gen-

5, then eVery PMV |NV iS Safe. Conversely, if the SChema Vi0|ates der and by C|ty, reviewers X and y are from W|Szfrom W,A\7 X

one of these rules, there is an instance of thbecaatisfying all
specified integrity constraints in which some PMMnsafel]

Proof: (Sufficiency) by contradiction. Suppose there exisPMV
V that is not safe. There are two cases:
Case 1: There exists a pair of cache regions UlUshih V,

s.t. U1 and U2 overlap.

Rule 1: A cache graph is a DAG.

Rule 2: Only red nodes can have independent
completeness or consistency control-tables.

Rule 3: Every PMV with more than one parent must be a
red circle.

Rule 4: If a PMV has the shared-row problem according
to Lemma 5.2, then it cannot be gray.

Rule 5: A PMV cannot have non-compatible control-
tables.

Figure 5.1: Cache schema design rules

and z are male, while y is female. Since cacheoreggi{x, y} (by
WI), {x, z} (by male) overlap, ReviewsCopy is notsaf [J

6. ENFORCING C&C CONSTRAINTS

A traditional distributed query optimizer decidefeather to use
local data based on data availability and estimaiest. In our
setting, it must also take into account local dat@perties (pres-
ence, consistency, completeness and currency)ereshecking
is addressed in [ZLGO5]; the same approach canxtenaed to
completeness checking. This section describesieifichecking
for C&C constraints in a transformation-based opén Theo-
rems 6.1-6.3 guarantee the correctness of ouritiiga.
Different from SGLRGO04], the algorithms developed this

paper are more general; they support finer graityl@&C check-
ing. In [GLRGO04], consistency checking was donepaimization
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time and currency checking at run-time, because \@&¥el cache
region information is stable and available at quesynpile time,
while currency information is only available at time. In con-
trast, in this paper we still perform as much assfige of the con-
sistency checking at optimization time but somecklgy may
have to be delayed to run-time. If we are usindv&/Rvith partial

consistency guarantees, we don’t know at optinmonatime which
actual groups will be consistent at run time. Femtiore, ad-hoc
cache regions may change over time, also promptimgtime

checking.

6.1 Normalizing C&C Constraints

A query may contain multiple currency clauses, astrone per
SFW block. The first task is to combine the induadi clauses and
convert the result to a normal form. To begin tlecpss, each
currency clause is represented in the followingnfor

Defn: (Currency and consistency constraint A C&C constraint
CCr is a set of tuples, CCr = {gbK 4, S;, G>, ..., <h, K, S,,

the join condition in Q2, we know that isbn is a Ker the final
relation. Thus CCr = {<5, @&, {Authors, Books}, {city}>}If an
instance satisfies CCr, then it must satisfy bo@i,@nd CCs, and
vice versa.

In what follows, we formally define implication aretjuiva-
lence between any two CCrs, and prove that whemidLK2 are
set to default, then the outcome of the normabratule CCr is
equivalent to the inputs CCrl CCr, w.r.t. F. Further, we prove
that not knowing all FDs doesn't affect the comests of the rule.

Defn: (Implication, Equivalence) Given two C&C constraints
CCr, and CC;s, a cache schema, and a set of FDs F ovér, we
say that CGrimplies CCr, w.r.t A and F, if every instance of
that satisfies F and CCalso satisfies CGr If CCr; implies C2
w.rt A and F and CGrimplies C1 w.r.tA and F, then CGrand
CCr, areequivalentw.r.t A and F. 0

Lemma 6.1: For any CCr = {<bK, S, G>}, any instance oA\, the
consistency constraint in t can be satisfied wA.tand F, iff the
grouping keyG’ of the cache region partitioning on S Anis a

Gr>}, where eachs is a set of input operands (table or view in- subset of5*w.rt. Aand F. [

stances), bis a currency bound specifying the maximum accept

able staleness of the input operand§irG; specifies a grouping
key andK; specifies a set of grouping key values.

Each tuple has the following meaning: for any dassbin-
stance, if we group the input operands referengedtuple by the

Proof: Sufficiency is obvious. Now we prove necessityicgieach
group by grouping keys belongs to one group by grouping key
G’, Gfunctionally determine&’. ThusG’ UG o

Theorem 6.1:1f K;andK, are set to default, then the output of the

tuple’s grouping keys;, then for those groups with one of the key Normalization Rule CCr is equivalent to its inpu€g] CCr,

values inK;, each group is consistent. The key value Ketsill be
used when constructing consistency guard predicatgswill be
checked at run time. Note that the default valueefzh field is the
strongest constraint.

To enable efficient reasoning, we union togethecahstraints
from individual currency clauses into a single doaiat, and con-
vert the result into an equivalent or stricter nalimed form with
no redundant requirements.

Defn: (Normalized C&C constraint) A C&C constraint CCr =
{<by, K4, S, G>, ..., <h, Ky, Siy G>} is in normalized form if all

w.rt. A and F. O

Proof: Given any instance oh that satisfies {CCr} w.r.t. to F,
from Lemmab.1, the grouping key of its cache regartitioning
is a subset o6*. SinceG LI G*, i=1, 2,G' LG/, the consis-
tency constraints in (C&t CCr)} are satisfied. Further, since the
consistency portioning satisfies currency constrajrand b = min
(b1, ), by and B are also satisfied.

From Lemma 6.1, it follows that for any instancatthatisfies
both § and § w.r.t. F, the grouping key of its cache region part
tioning has to be a subset Gf Thus, it also satisfies t. Since it

input operands (in the se8y are base tables and the input operandsatisfies hand B, and b = min(l by), it also satisfies b.]

setsS; ..., S, are all non-overlappingl]

We briefly sketch an algorithm for transforming et sf con-
straints into normalized form. First, recursivelpand all refer-
ences to views into references to base tables., Nepeatedly
merge any two tuples that have one or more inparams in
common using the following rule.

Normalization Rule: Given CCi = {<b,, K4, S;, G;>} and CCp =

{<b,, K, S,, Go>}, S N S, # @, replace the two constraints by CCr

={<b, K, S, G >}, where b = min (B b,), andS= S, US,. Given a
set of functional dependencies (FDs) F over theyqtesult rela-
tion Y, letG;* be the attribute closure & w.r.t. F, where i =1, 2.
ThenG = Gl+ ﬂG{. LetKi+= HGGGi:ki(Y)i i= 1, 2. TherK = K]_Jr
U K, 0

Given a set of FDs over the base relations, andethévalence
classes induced by a query, we can infer the s&Daf over the
query result relation. For example, for Q2, let CE{<10, @,
{Authors, Books}, {city}>}, CCr, = {<5, &, { Books}, {isbn}>}.
CCr, requires that if we group the query result by,dityen within
each group, all the rows have to be consistent, Guires that if
we group the result by isbn, then each book rowtbde consis-
tent. From the key constraints in Authors and Bobdgether with

Theorem 6.2: Suppose FDs over a cache schemar+ L] F+.
The output of the Normalization Rule {CCr} w.r.t. Fplies its
input CCx LI CCr w.r.t. A and F. O

Proof: LetG = G;" NG, w.rt. F,G’' = G," NG," w.r.t. F.. Then
G UG'. Thus for any instance of that satisfies CCr, sind¢ =

K" UK, w.r.t. F, from Lemma 6.1, it satisfies GEd CCr,. [

6.2 Compile-time Consistency Checking

We take the following approach to consistency chregkAt opti-
mization time, we proceed as if all consistencyrgntees were
full. A plan is rejected if it would not producerasult satisfying
the query’s consistency requirements even underatsgumption.
Whenever a view with partial consistency guaranie@scluded in
a plan, we add consistency guards to the plan,hwtheck at run-
time whether the guarantee holds for the groupsadigtused.

We use a transformation-based optimizer. Concdgiuati-
mization proceeds in two phases: an explorations@hend an
optimization phase. The exploration phase genera®s logical
expressions; the optimization phase recursivelylsfinthe best
physical plan. Physical plans are built bottom-up.

Required and delivered (physical) plan propertiey ja very
important role during optimization. There are maifan properties
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but we’ll illustrate the idea with the sort properA merge join

operator requires that its inputs be sorted onjdmecolumns. To

ensure this, the merge join passes down to itstiapaquired sort
property. In essence, the merge join is sayingidfne the cheap-
est plan for this input that produces a resultesbdn these col-
umns.” Every physical plan includes a delivered pooperty that

specifies if the result will be sorted and, if ®m what columns
and in what order. Any plan whose delivered praperto not

satisfy the required properties is discarded.

To make use of the plan property mechanism for istery
checking, we must be able to perform the followihgee tasks: i)
transform the query’s consistency constraints ietuired consis-
tency properties; ii) given a physical plan, deiitgedelivered con-
sistency properties from the properties of the lledaws it refers
to; iii) check whether delivered consistency praigsr satisfy re-
quired consistency properties.

6.2.1 Required Consistency Plan Property

A query’s required consistency property consistthefnormalized
consistency constraint described in the previousmse

6.2.2 Delivered Consistency Plan Property

A delivered consistency property CPd consists gkefof tuples
{<R;, S, @>} where R is the id of a cache regiof, is a set of
input operands, namely, the input operands of threent expres-
sion that belong to region;,Rind€; is the set of grouping keys for
the input operands. In what follows, we sketch akgorithm for
computing a plan’s delivered consistency propetties skip the
detailed algorithm due to space constraints.

Delivered plan properties are computed bottom-up efach
physical operator, in terms of the properties ®friputs, according
to the Delivered-Plan Algorithm described below, which treats
the physical operators accordingly as four categori) leaves of
the plan tree (e.g., tables or materialized viewy)single-input
operators, iii) joins, and iv) SwitchUnion.

Del i vered- Pl an Al gorithm (sketch)

Theleaves of a plan treare table, materialized view, or index
scan operators, possibly with a range predicatehefinput oper-
and is a local view, we return the ids of the viewiput tables in
S, not the id of the view, since consistency prapsralways refer
to base tables. If the whole view is consistentsimgply return the
id of its cache region; otherwise, we return theo§grouping keys
of its consistency root, and a flag, say —1, inrégon id field to
indicate row-level granularity. For a remote tabteview, we do
the same, except we assume it is consistent wipeaial region
id, say, 0.

All operators with a single relational inputuch as filter, pro-
ject, aggregate and sort do not affect the delivarensistency
property and simply copy the property from thelatienal input.

1) If the input operands are from the same cache meg®e., R =
R, > 0, then we merge the tables, i.e., we replace; GRd
CPd, by CPd ={<R, S, @ >}, whereS= S, U S,.

If the input operands are grouped into cache region the
same keys (for the same root), i8; = Q,, they are group-
wise consistent so we merge them into CPd = {<51Q,>}
whereS=S,US,.

A SwitchUnionoperator has multiple input streams but it does
not combine them in any way; it simply selects ohéhe streams.
Thus, the output consistency property is the seshgonsistency
property implied by every input. In our contextSavitchUnion
operator has a local and a remote branch. We othipytroperties
of the local branch. 0

2)

6.2.3 Satisfaction Rules

Now, given a required consistency property CCr andelivered
one CPd, how do we know whether CPd satisfies ECsHy, our
consistency model does not allow two columns frdra same
input table T to originate from different snapshdésding to the
following property:

Conflicting consistency property: A delivered consistency prop-
erty CPd is conflicting if there exist two tuplesRg, S;, , > and
<R, S,, ©,>in CPd such thé®, N S, # @ and one of the follow-
ing conditions holds: i) RER,, or i) Q; # Q. [

This property is conservative in that it assumed tvo cache
regions Y and U from different views can only be consistent if
they have the same set of control-keys (the secondition).

Secondly, we can verify that a complete plan satghe con-
straint by checking that each required consistegroyp is fully
contained in some delivered cache region. We exteadconsis-
tency satisfaction rule in [GLRGO04] to include fingranularity
cache regions.

Consistency satisfaction rule:A delivered consistency property
CPd satisfies a required CCr w.r.t. a cache schermaad func-
tional dependencies F, if and only if CPd is naifloting and, for
each tuple <hK,, S, G;> in CCr, there exists a tuple 58y, Q4>
in CPd such thas, [1S, and one of the following conditions

holds: i) Qq = @, or ii) letG,” be the attribute closure w.r.t. F.
There exists &4L1Q4 such thaG,[1 G,*. [

For query Q2, suppose we have CCr = {<5, &, {Authors,
Books}, {isbn}>}, and that the cache schema is the omEigure
3.2. During view matching, AuthorCopy and BookCopsil
match Q2. Thus CPd {<-1, {Authors, Books}, {Au-
thors.authorld, city}>}. If AuthorCopy joins with Bd@&opy on
authorld (as indicated by the presence correlatemj the result is
R, then from the key constraints of Authors and Bowe know
that isbn is a key in R. Therefore ditl{isbn}*. CPd satisfies CCr.

Not knowing all FDs doesn't affect the correctnefthe satis-

Join operatorscombine two input streams into a single outputfaction rule, it only potentially produces falsegatives:

stream. We union the input consistency propertied merge
property tuples that are in the same cache regiormally, given
two delivered C&C property tuples CPée {<R;, S;, £,>} and
CPd = {<R,, S,, ©,>}, we merge them if either of the following
conditions is true:

Theorem 6.3: For any two sets of functional dependenciem#

F over the cache scherBawhere F ] F*, if a delivered consis-
tency property CPd satisfies a required CCr wH,tthen it satis-
fies CCrw.r.t. F.00

Proof: Let G, be the attribute closure & w.r.t. F, G,/ " be the
attribute closure of, w.r.t. F*, thenG,” LJG,/*. [
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SwitchUnion H C&C Guard
Local plan Remote plan

Figure 6.1: SwitchUnion with a C&C guard

Theorem 6.4: Assuming runtime checking is correct, with the
Delivered-Plan Algorithm, for any plan of which CBaltisfies CCr
w.r.t. a cache schentand functional dependencies F, no matter
which data sources are used at execution time,v@ICbe satis-
fiedwrtF. [

Proof: Let the set of C&C properties of the sources be ER<
Rai, Sai» Qqi >}. Let the output of the Delivered-Plan Algorithme
CPd'.

Case 1: There are no SwitchUnion operators in k. p

Since operators with a single relational input dimpass the
input property; while join operators simply merge input proper-
ties with the same cache region, we have CPd =.CPd’

Case 2: There are some SwitchUnions used as C&fdgua

In this case, for each SWU, there are two typeshefcking:
fullness checking and currency checking. So thendiraactually
used satisfies the fullness and currency constraint

The difference between CPd and CPd’ is that in G8da lo-
cal source with property CPd {< Ry, Sy, 4>} guarded with a
SWU, we have either CPar CPq = {<0, Sy, &>}, depending on
whether the local branch or the remote branch ésl ukiring exe-
cution.

For any tuple r = <hK,, S, G> in CCr, since CPd’ satisfies
CCr, there exists a row t = §RS;, Q4 >, such thatS [l Sy and

one of the following conditions holds: §4 = @, or ii) letG,+ be
the attribute closure w.rt. F. There existGgl]1Qy such that
GyUG/"

If t is merged from sources that don’t have a sthen it also
appears in CPd, otherwise, w/o loss of generaliycan assume it
comes from two local resources with swu operatacswaith prop-
erty t = < Rys, Sy1, Qar> and §= < Ryz, Sgo Qg2

Trivial case: IfS, [ Sy(or Syp), then r is satisfied by {or t)
in CPd.

Otherwise, we claim that for any cache instandbgeeiboth lo-
cal branches are used or both remote branchessatke Thus if
CPd’ satisfies CCr, then if we plug in CPd the pnayp of the data
sources actually used, CPd also satisfies CCr.

Case 1: R>0. Since both local resources belondeosame
cache region, they have the same currency, so ttieesurrency
checking result.

Case 2: R=-1. Since the two resources are coatrdly the same
set of consistency control-keys, again, the C&Cckhg results
are the same. [1

While a plan is being constructed, bottom-up, watia stop
as soon as it is possible to tell that the plamoadeliver the con-
sistency required by the query. Unfortunately, gansistency
satisfaction rule cannot be used for this purpassomn as a new
root operator is added to a plan; a check maysfaiply because
the partial plan does not include all inputs coudrg the required
consistency property. Therefore we develofiodation rule

Consistency violation rule: A delivered consistency property CPd

violates a required consistency constraint CCrtwa. cache

schemaX and functional dependencies F, if one of the foihgy

conditions holds:

1) CPd is conflicting,

2) There exists a tuple <,bK,, S, G, > in CCr that intersects
more than one consistency group in CPd, that Exetlexist

two tuples < R{, S1y, Q14> and < Rg, S2;, Q24 > in CPd
such that§; N S1y# @ andS, N S2;# G,

There exists <tK,, S, G,>in CCr, and <R S, 4 > in CPd,
such thats, [ Su €q # D and the following condition holds:
let G+ be the attribute closure w.r¥.and F. There does not
existGy4L1Qq, such thaG, L G,*. [

3)

Theorem 6.5: Using the Delivered-Plan Algorithm, if a partial
plan A violates the required consistency properrQv.r.t. a
cache schema and functional dependencies F, then no plan that
includes A as a branch can satisfy CCrwarand F. [J

Proof: This is true because from the algorithm, for aople < R,
Sq Qq > in the delivered plan property of P, there isigle < R,
Sy, Q4 > in the delivered plan property of any plan tinatudes P
as a branch, wheg sy, O

6.3 Run-time C&C Checking

To include C&C checking at runtime, the optimizeushproduce
plans that check whether a local view satisfiesrétpiired C&C
constraints and switch between using the local \d@ad retrieving
the data from the back-end server. Such run-tineésiba-making
is built in a plan by using 8witchUnionoperator. A SwitchUnion
operator has multiple input streams but it doesammhbine them
in any way; it simply selects one of the streamsoading to the
outcome of a selector expression.

All local data is defined as materialized views &gical plans
making use of a local view are always created tiinotiew match-
ing [LGGZ04, LGZ04]. Consider an (logical) expressiE and a
matching view V from which E can be computed. lérthis no
C&C checking required on the input tables of Ewimatching
[GLO1] produces a “normal” substitute consisting af most, a
select, a project and a group-by on top of V. VG#&C checking,
view matching produces a substitute consisting 8iaétchUnion
on top, shown in Figure 6.1, with a selector exgimsthat checks
whether V satisfies the currency and consistenaysttaint and
two input expressions: a local branch and a rerhogech. The
local branch is the “normal” substitute mentionedlier and the
remote plan consists of a remote SQL query creftmu the
original expression E. If the condition, which wallaonsistency
guard or currency guard according to its purposgaluates to true,
the local branch is chosen, otherwise the rematrdbr is chosen.

The discussion of when and what type of consistehegking
to generate and the inexpensive consistency chgekénsupport is
deferred to Section 7.

Currency bound checking: If the required lowest currency
bound on the input tables of E is B, the optimigenerates a cur-
rency guard that checks if any required regionot ald for the
query. Given a control-table CT on control-key GKset of prob-
ing valuesK on CK, recall that the timestamp is recorded &ritl
column of each control-table (Section 4.1.2), theak is:

NOT EXIST (SELECT 1 FROM CT
WHERE CK IN K AND rid < getdate()—B)

7. PERFORMANCE STUDY

This section reports analytical and experimentsililts for consis-
tency checking; results for PMV and currency chegkare re-
ported in [ZLGO05] and [GLRGO04] respectively.

We used a single cache DBMS and a back-end sefer.
back-end server hosted a TPCD database with saaterfl1.0
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(about 1GB). The experiments reported here usey thel Cus-
tomers and Orders tables. The Customers table wsteied on its
primary key, c_custkey with an index on c_nationkBye Orders
table was clustered on (o_custkey, o_orderkey). CEtolie DBMS
had a copy of each table, CustCopy and OrderCofjbly,the same
indexes. The control-table settings and queriesl ase shown in
Figure 7.1. We populated the ckey and nkey columith
c_custkey and c_nationkey columns from the viewpeetively.
C_PCT and O_PCT are the presence control-tableSusf-
Copy and OrderCopy respectively. C_CsCT is a ctersiy con-
trol-table on CustCopy. By setting the rid fielde wan control the
outcome of the consistency guard.
The caching DBMS ran on an Intel Pentium 4CPU 2Hz GBox
with 500 MB RAM. The back-end ran on an AMD AthldAP
Processor 1800+ box with 2GB RAM. Both machines V¢in-
dows 2000 and were connected in a local area nketwor

7.1 Consistency Guard Overhead

We made the design choice to only support certa@gxgensive
types of run-time consistency guard. A natural tjaess: what is
the overhead of the consistency guards? Furtherrhore expen-
sive are more complicated guards?

We experimentally evaluate the cost of severalsygfeguards
by means of emulation. Given a query Q, we genesatather
query Q’ that includes a consistency guard for 83 ase the exe-
cution time difference between Q' and Q to appratarthe over-
head of the consistency guard. For each query,ndiépg on the
result of the consistency guard, it can be execeitstr locally or
at the back-end. We measure the overhead for lsetiasos.

7.1.1 Single Table Case

We first analyze what type of consistency guardesded for Qa
when $key differs. The decision making processuiaraarized in
Figure 7.2 and the consistency guards are showigure 7.3.

Condition A: Is each required consistency group equal to
contained in a region defined by the presence obteble?

If A is true, it follows from the Presence Assunoptithat all
the rows associated with each presence controbkeyonsistent.
No explicit consistency guard is needed. For exafpr Qa with
$key = c_custkey.

Condition B: Is each required consistency group equal to
contained by a region defined by a consistencyrobtable?

If B is true, we check C, otherwise we check D.

Condition C: Is the consistency guarantee full?

If C is true, then no run-time consistency checkimgeces-
sary. Otherwise, we need to probe the consistenoyral-table
with the required key values at runtime. For exanfir Qa with
$key = c_nationkey, we have two scenarios:

In the first scenario, Qa does not include an étyuptedicate
on c_nationkey. We have to first calculate whictiores are in the

Settings: CREATE TABLE C PCT (ckey int PRIMARY, rid int)
CREATE TABLE C CsCT (nkey int PRIMARY, rid int)
CREATE TABLE O_PCT (ckey int PRIMARY, rid int)

SELECT * FROM
RE c custkey in $custSet

[CURRENCY‘BOUND 10 on (C) BY S$key]

SELECT * FROM customer C, orders O

WHERE c stkey=o custkey and c custkey in $custSet

[CURRENCY‘BOUND 10 on (C, O) BY $key]

SELECT * FROM customer C

WHERE ¢ nationkey in $nationSet
[CURRENCY 10 on” (C) BY $key]

Qa: customer C
Qb :

Qc:

Figure 7.1: Settings & Queries used for experiments
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Figure 7.2: Generating consistency guard

results, then check if they all appear in the cgtesicy control-
table C_CsCT (Alla). A more precise guard (A11dy @hecks
nations with more than one customer, by addingcenT(x)>1
condition. Such checking (e.g., Alla, Allb and AlR)alled
assured consistency checkingn that it checks if the required
consistency groups are part of the guaranteed cagmns.

In the second scenario, the predicate on nationcisded in
the query as a redundant predicate, which allowdgousimply
check if each required nation is in C_CsCT (AlRgliminates the
need to examine the data before consistency chgckin

Condition D: Each required consistency group can be covered

by a collection of cache regions.

If D is true, we have the opportunity to do ad-lvoosistency
checking. For Qa with $key &, we check if all the required cus-
tomers are in the same ad-hoc cache region (Sith &hecking
(e.g., S11, S12 and S21, S22 from Section 7.1.23lledad-hoc
consistency checking

If $key = ¢_nationkey and suppose we don't have C_CH@&T
ad-hoc checking needs to check each group (S12).

Experiment 1 is designed to measure the overheddeofype
of consistency guards supported in our current dévaonk. We
choose to support only run-time consistency guénesi) do not
require touching the data in a PMV; ii) only reguiprobing a
single control-table. To be specific, we only suppbe guards
shown in A12 and S11. We fixed the guards and nmedsthe
overhead for three different queries: Qa and Qi BitustSet =
(2); Qc with $nationSet = (1). The consistency dufar Qa and
Qb is S11 and the one for Qc is Al12.

The results are shown in Table 7.1. As expectedhoih the

oflocal and remote case, the absolute cost remairghlpthe same,
the relative cost decreases as the query exectiti@increases.
The overhead for remote execution is small (leas #%0). In the
local case, the overhead for Qc (returning ~600@s)ads less than
2%. Although the absolute overhead for Qa and Qlsnigll

Alla, Allb: SELECT 1 WHERE NOT EXISTS (

or SELECT 1 FROM CustCopy

WHERE c_custkey IN $custSet

GROUP BY c nationkey

HAVING [COUNT (*)>1 AND] c nationkey NOT IN
(SELECT nkey FROM C CsCT) )

SELECT 1 WHERE |$nationSet| = (
SELECT COUNT (*) FROM C CsCT
WHERE nkey IN $nationSet)

SELECT 1 WHERE 1 = (
SELECT COUNT (DISTINCT rid)
WHERE ckey IN $custSet

SELECT 1 WHERE 1 =
ALL (SELECT COUNT (DISTINCT rid) FROM C PCT, CustCopy
WHERE c_custkey IN $custSet AND ckey=c_custkey
GROUP BY c_nationkey)

SELECT 1 FROM (
SELECT COUNT (DISTINCT ridl) AS countl,
SUM (ABS (ridl-rid2)) AS count2
FROM ( SELECT A.rid AS ridl, B.rid AS rid2)
FROM C PCT A, O BCT B
WHERE A ckey IN ScustSet AND
ckey = B. ckey) ) AS FinalCount
WHERE countl = 1 AND count2 = Q)

SELECT 1 WHERE NOT EXISTS (SELECT 1 FROM
(SELECT c custkey,c nationkey,
rid AS ridl, B.rid AS rid2
FROM C PCT A, O pCT B, CustCopy C
WHERE ATckey IN ScustSét AND
A.ckey = c_custkey AND c_custkey = B.ckey
)AS FinalCount
GROUP BY c nationkey
HAVING (MIN(ridl) <> MAX(ridl) OR
MIN (rid2) <> MAX(rid2) OR MIN (ridl)

Al2:

S11:
FROM C_PCT

S12:

S21:

S22:

<> MIN(rid2)))

Figure 7.3: Consistency guard examples
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Cost Local Renot e
Q@ | | & | @
s .078 | .08 |1.17 | 01| .19 113
% 16.5 | 14.0 <2 <1 <2 <1
# Rows 1 6| 5975 1 6| 5975

Table 7.1: Simple consistency guard overhead

Local Renot e
Al2 | S11 | S12 |Alla | Al2 | Al2 | S11 | S12
.084 .29 .35 .33 .27 .13 41 .48
16.98 58.32 [71.41 | 6.06 | 4.95 | 2.33 | 7.48 | 8.79

Alla [Allb
s 31 12
% [62.85 23.77

Table 7.2: Single-table case overhead

(<0.1ms), since the queries are inexpensive (retgrh and 6 rows
respectively), the relative overhead is ~15%.

In experiment 2, we used query Qa with $custSe2,=1@),
which returns 2 rows; and compared the overheadiféérent
types of consistency guards that involve one comatle. The
results are shown in Table 7.2.

For local execution, if the consistency guard lmsotich the
data of the PMV (as in Alla and Allb and S12),aherhead
surges to ~70% for S12, because we literally exethé local
query twice. Alla and b show the benefit of beirgremrecise:
the “sloppy” guard in Alla incurs 63% overhead,lalihe over-
head of the more precise guard (Al1lb) is only 28égause it is
less likely to touch CustCopy. The simple guard Adeurs the
smallest overhead (~17%).

7.1.2 Multi-Table Case

Different from Qa, the required consistency gronpQb has ob-
jects from different views. In this case, we fickteck the condi-
tion:

Condition E : Do they have the same consistency root?

If E is true, then the consistency guard generatémhuces to
the single table case, because the guaranteed cegioms are
decided by the consistency root. Otherwise, we havperform
ad-hoc checking involving joins of presence contatlles. There
are two cases.

Case 1:$key =@. We check if all the required presence con-

trol-keys point to the same cache region (S21).

Local Renot e
oSt o1 s w1 | S22
e 90 83 1.00| .98
% | 155.83 |143.82 | 24.82 | 24.36

Table 7.3: Multi-table case overhead

Assuming all rows in $custSet are in the cachegjreuhic plan
for Qa will switch between either CustCopy and mate query,
depending on the outcome of the consistency glfatttere is only
one customer in $custSet, by default the resubisistent. At the
other extreme, if $custSet contains 1000 custontbey; are not
likely to be consistent. When the number of custsnie $custSet
increases, the likelihood of the result being cstesit decreases.
Suppose there are N rows in CustCopy, divided Mtoache re-
gions. We assume that the regions are the samarsizeach row
in $custSet is independently and randomly chosem f€ustCopy.
Let the size of $custSet be x, whereg N. The result is consistent
only when all the chosen rows are from the saméeaegion.
Thus, the probability of an ad-hoc consistency kheeing suc-
cessful isP(consistent) = (1/My™.

As one would expect and this formula clearly shaWws,prob-
ability of success decreases rapidly as the nurobebnsistency
groups and/or number of required rows increase.

8. RELATED WORK

The work in [GLRGO04] is the first that addresses@&ware da-
tabase caching with a query centric approach. Rejadata qual-
ity is an old concept in replica management, distéd databases
and warehousing and web views etc.. Some of thkenganainte-
nance-centric approach [ABG88, GN95, SK97], whererigs are
not allowed to express their individual data qyatéquirements.
Some authors have taken a query-centric approacdWO[D
HSW94, WXCJ98, OLWO01], but they focus on single embj
granularity and no consistency guarantee is pravidEAS
[RBSS02] enforces consistency at the level of traplete cache.
In concurrency control, Epsilon-serializability [@1] allows
higher degree of concurrency by relaxing data tyali

Caching has been used in many areas. Regarding wwhat
cache, while some works [DFJ+96, APTP03] suppobitrary

Case 2:$key = c_nationkey. We first group the required sow query results, others are tailored for certain sntypes of queries

by c_nationkey, and check for each group if a)ttai customers
are from the same region; and b) all the orderdrara the same
region as the customers (S22).

In Experiment 3, we use query Qb with $custSet =12,
which returns 7 rows, and measure the overheadwsistency
guards that involve multiple control-tables. Theulés are shown
in Table 7.3. Guards S21 and S22 involve not oohessing the
data, but also performing joins. Such complicatieelcking incurs
huge overhead in the local execution case (~1508b)e that if
CustCopy and OrderCopy are consistency-wise caeasléhen the
overhead (refer to single-table case) reduces dizatip

It is worth pointing out that in all experimentsea for com-
plicated consistency guards, the overhead of reme¢eution is
relatively small (<10% for single-table case, <2&% multi-table
case). It raises an interesting point: even if ardus less likely to
be successful, it might still be preferable to de theck than sim-
ply use a remote plan. Thus the cost-model shoialsl ib favor of
plans with consistency checking instead of remttag

7.2 Success Rate of Ad-hoc Checking

Intuitively, everything else being equal, the moetaxed the cur-
rency requirements are, the more queries can beweah locally.
Although less obvious, this is also true for cotesisy constraints.

[KB96, LNO1], or even just base tables [AJL+02, Gi1,
LKM+02]. In the database caching context, good sysvcan be
found in [DDT+01, Moh01].

The closest work to ours are DBCache [ABK+03] armhC
straint-based Database Caching (CBDC) [HB04]. Sirlyilto us,
they consider full-fledged DBMS caching; and thefite a cache
with a set of constraints. However, there are turmdamental dif-
ferences. First, they don't consider relaxed datality require-
ments, nor do they provide currency guarantees flenDBMS.
Our work is more general in the sense that theeskely and RCC
constraints (an extension to cache groups in [T)r6®&y support
can be seen as a subset of ours. Second, in DBClacla¢ data
availability checking is done outside of the optieri, while in our
case, local data checking is integrated into qumstimization,
which not only allows finer granularity checkingjtbalso leaves
the optimizer the freedom to choose the best péeedb on cost.

9. CONCLUSIONS

The goal of our work is to build a solid foundatifam fine granu-
larity, C&C-aware adaptive DBMS caching. We formpadlefined
four fundamental cache properties: presence, densig com-
pleteness, and currency. We proposed a cache niodehich
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users can specify a cache schema by defining af $etal views,
together with cache constraints that specify whafperties the
cache must guarantee. We enforced C&C constraynitstégrating
C&C checking into query optimization and evaluation

We envision two lines of future research. Firstpir current
cache model, we only support groups defined by leguzondi-
tions. For efficient cache management, we planxjaoee other
predicates, e.g., range predicates. Second, wetplémvestigate
C&C-aware cache replacement and refresh policegsntiake deci-
sions adaptively, based on the workload.
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