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ABSTRACT

SQL extensions that allow queries to explicitly gfedata
quality requirements in terms of currency and cstresicy
were proposed in an earlier paper. This paper dpsea
data quality-aware, finer grained cache model andies
cache design in terms of four fundamental properfiees-
ence, consistency, completen@ssl currency The model
provides an abstract view of the cache to the qpeogess-
ing layer, and opens the door for adaptive cacheage:
ment. We describe an implementation approach thid<
on the MTCache framework for partially materialiagews.
The optimizer checks most consistency constraimsgen-
erates a dynamic plan that includes currency cherics
inexpensive checks for dynamic consistency comgrahat
cannot be validated during optimization. Our solatinot
only supports transparent caching but also provifies
grained data currency and consistency guarantees.

1. INTRODUCTION

Replicated data, in various forms, is widely usedénprove
scalability, availability and performance. Applicats that
use out-of-date replicas are clearly willing to eqicresults
that are not current, but typically have some Bndih how
stale the data can be. SQL extensions that allcsviegito
explicitly specify such data quality requirementgtie form
of consistency and currency (C&C) constraints were-
posed in [GLRGO4]. That work also described howpsup
for C&C constraints is implemented using MTCache
[LGGZ04], a prototype mid-tier database cache baiit
Microsoft SQL Server.

We model cached data as materialized views ovei-a p
mary copy. The work reported in [GLRGO04] considered
only the restricted case where all rows of a cached are
consistent, i.e., from the same database snapShit.re-
guirement severely restricts the cache maintenantieies
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that can be used. pull policy, where the cache explicitly
refreshes data by issuing queries to the sourabdse, of-
fers the option of using query results as the uiitamain-
taining consistency and other cache propertiepatticular,
issuing the same parameterized query with diffepaname-
ter values returns different partitions of a cachiesv, offer-
ing a much more flexible unit of cache maintenafdew
partitions) than using entire views.

The extension to finer granularity cache management
fundamentally changes every aspect of the probiempos-
ing non-trivial challenges: 1) how the cache tradé& qual-
ity; 2) how users specify cache properties; 3) townain-
tain the cache efficiently; and 4) how to do quprgcess-
ing. In this paper, we propose a comprehensiveisalae-
scribed in Section 1.2.

Fig 1.1 shows our running example, where Q1 is-a pa
rameterized query, followed by different paramsgttings.

1.1 Background and M otivation

We now motivate four properties of cached data tedér-
mine whether it can be used to answer a quenhdmtodel
proposed in [GLRGO04], a query’s C&C constraints are
stated in a currency clause. For example, in Q2¢thirency
clause specifies three “quality” constraints on guery re-
sults: 1) “ON (A, B)” means that all Authors and dks
rows returned must beonsistent, i.e., from the same data-
base snapshot. 2) “BOUND 10 min” means that theses r
must becurrent to within 10 minutes, that is, at most 10
minutes out of date. 3) “BY authorld” means thatrabult
rows with the same authorld value must be condistem
answer the query from cached data, the cache rmasaig-

Authors (authorld, name, gender, city, state)
Books (isbn, authorld, publisherld, title, type)

Q1: SELECT * FROM Authors A WHERE authorld in (1,2,3)
CURRENCY BOUND 10 min on (A) BY $key

E1.1: $key =@

E1.2: $key = authorld

E1.3: $key = city

Q2: SELECT * FROM Authors A, Books B
WHERE authorld in (1,2,3) AND A.authorld = B.authorld
CURRENCY BOUND 10 min on (A, B) BY authorld

Q3: SELECT * FROM Authors A WHERE city = “Madison”
CURRENCY BOUND 10 min ON (A) BY authorld

Figure 1.1: Running example



tee that the result satisfies these requiremermtgvam more:
4) the Authors and Books rows for authors 1, 2, &mdust
be present in the cache and 5) they must dmmplete, that
is, no rows are missing.

E1.1 requires that all three authors with id 1nd & be
present in the cache, and that they be mutuallsistant.
Suppose we have in the cache a partial copy oAtlibors
table, AuthorCopy, which contains some frequentigessed
authors, say those with authorld 1-10. We couldiiregthe

C&C constraints in query processing by extending aip-
proach developed in [GLRG04Bection 6)5) We report
analytical and experimental results, providing ghsiinto
various performance trade-offSection 7)

2. CACHE PROPERTIES

The previous work in [GLRGO04] describes the sentanbif
C&C constraints, providing a correctness standardhis
section, we define the properties of the cachegusia same

cache to guarantee thait authors in AuthorCopy be mutu- model, To be self-contained, we summarize the madel

ally consistent, in order to ensure that we cantbeerows
for authors with id 1, 2 and 3 to answer E1.1,hiéy are
present. However, query E1.1 can be answered uhking
cache as long as authors 1, 2 and 3 are mutuatlsistent,
regardless of whether other author rows are camistith
these rows. On the other hand, if the cache previgecon-
sistency guarantees, i.e., different authors ctalde been
copied from a different snapshot of the masteriuztea, the
query cannot be answered using the cache even ie-al
quested authors are present. In contrast, querg, Bd.
which the BY clause only requires rows for a gieethor to
be consistent, can be answered from the cachésindke.
Query Q3 illustrates the completeness propertyasks
for all authors from Madison, but the rows for diffnt au-
thors do not have to be mutually consistent. Suppes
keep track of which authors are in the cache byr the-
thorlds. Even if we have all the authors from Madiswe
cannot use the cached data unless the cache gesahat
it has all the authors from Madison. Intuitivelet cache
guarantees that its contentdaamplete w.r.t. the set of ob-
jects in the master database that satisfy a givedigate.

Regardless of the cache management mechanisms

policies used, as long as cache properties arerdzke
qguery processing can deliver correct results. Tlvashe

property descriptions serve as an abstraction lagéreen

guery processing and cache management, enablingnthe
plementation of the former to be independent ofiditer.

1.2 Our Contributions

We offer a comprehensive solution to finer grarityarache
management while still providing query results thatisfy
the query’s consistency and currency requiremetjtaNe
build a solid foundation for cache description loynfially
defining presence, consistency, completeness arrénay

(Section 2) 2) We introduce a novel cache model that SUpg

ports a specific way of partitioning and translatgch class
of integrity constraints (expressed in extended S0l
syntax) into properties required to hold over difg parti-

list some assumptions specific to this paper irntiSe@.1.

2.1 Basic Concepts

A database is modeled as a collection database objects
organized into one or more tables. Conceptually,gtanu-
larity of an object may be a view, a table, a catumrow or
even a single cell in a row. To be specific, irsthaper an
object is a row. Let identity of objects in a talble estab-
lished by a (possibly composite) key K. When wé& tdout
a key at the database level, we implicitly inclube scope
of that key. Every object has master and zero or more
copies. The collection of all master objects is callee th

master database. We denote the database state after n

committed update transactions;(T,) by H, = (T, ° Tn1 °
... ° T1(Ho)), where H is the initial database state, aridis
the usual notation for functional composition. Eaeltabase
state His called asnapshot of the database. Assuming each
committed transaction is assigned a unique timgstane
sometimes use,fand H, interchangeably.

A cache is a collection of (local) materialized views,

%erlch consisting of a collection of copies (of r@wdl ob-

jects). Although an object can have at most ong to@ny

given view, multiple copies of the same object roayexist
in different cached views. We only consider localtenial-
ized views defined by selection queries that sedestibset
of data from a table or a view of the master degaba

Self-1dentification: master() applied to an object (mas-
ter or copy) returns the master version of thaecotj

Transaction Timestamps: The functionxtime(T) re-
turns the transaction timestamp of transaction E. Wer-
load the function xtime to apply to objects. Thangaction
timestamp associated with a master object O, x@imeét),
is equal to xtime(A), where A is the latest trarngac in
T,..T, that modified O. For a copy C, the transaction time
ampxtime(C, H,) is copied from the master object when
the copy is synchronized.

Copy Staleness: Given a database snapshaqt &lcopy C
is stale if master(C) was modified in, ldfter xtime(C, H).

tions (Section 3) 3) We identify an important property of
cached views, calledafety and show how safety aids in
efficient cache maintenand&ection 4) Further, we for-
mally define cache schemas and characterize whesnatie
safe, offering guidelines for cache schema deé&gttion
5). 4) We show how to efficiently enforce finer gréamity

The time at which O becomes stale, called stade point
stale(C, H,), is equal to xtime(A), where A is the first trans
action in T...T, that modifies master(C) after xtime(C,)H
The currency of C in H, is measured by how long it has
been stale, i.ecurrency(C, H,) = xtime(T,) -stale(C, H).



< Q1(H1)
U1 @
- 0 PERaim)
v2( ey { 5 ? Q2(H,)
U3 ‘) 6)Q3(H:) - C f)
y B 7. JQ3(HD)
Cache Master DB (H 1) Master DB (H 2)

Figure 2.1: Cache property example

2.2 Presence

The simplest type of query asks for an object ifiedt by
its key (e.g., Q1). How to tell that an objectrighe cache?

Intuitively, we require that every object in thecha to
be copied from some valid snapshot. teurn(O, s) return
the value of object O in database state s. Wehsttycopy C
in a cache state.Qneis snapshot consistent w.r.t. a snap-
shot H, of the master database if return(CGgec = re-
turn(master(C), B and xtime(C, H) = xtime(master(C),
H,). We also sagopiedFrom(C, H,) holds.

Defn: (Presence) An object O is present in cachg, & iff

T2 updates (A")
xtime(A2,Hq)

T1 updates(A'B)  |H. Hs s updates(C)) He g
xtime(A1,Hq) currency H1,Q,H4(): ¢
xtime(B,Has) currency({A1,B},Q,Hs)

Figure 2.2: Currency example

l‘;currency({AZB},Q, Hs

Hi currency(Hz,Q,Hs)

»

2.4 Completeness

As illustrated in Q3, a query might ask for a skbbjects
defined by a predicate. How do we know tladit the re-
quired objects are in the cache?
Defn: (Completeness) A subset U of the cache Qe is
complete w.r.t. a query Q and a snapshptoHthe master
database iff CopiedFraftd, H,) holds and U = Q(K}. T
Lemma 2.2: If a subset U of the cache,$.is complete
w.r.t. a query Q and a snapshgi Hhen subset P(U) defined
by any selection query P is complete w.r.t. P°Q ldpd]
The above constraint is rather restrictive. Assgnthmat
objects’ keys are not modified, it is possible lowa subse-
quent updates of some objects in U to be refleatethe

there is a copy C in&nes.t. master(C) = O, and for some cache, while still allowing certain queries (whickquire

master database snapshqtGbpiedFrom(C, k) holds.[

2.3 Consistency

When a query asks for more than one object, itspmtify
mutual consistency requirements on them, as shiowi il.

For a subset U of the cache, we say that bhusually
snapshot consistent (consistent for short) w.r.t. a snapshot
H, of the master database @opiedFrom(O, K holds for
every object O in U. We also say CopiedFrom(l), lblds.

Besides specifying a consistency group by objegs ke
(e.g., authorld in E1.2), a query can also speaifyonsis-
tency group by a selection, as in E1.3. Supposauwhors
with id 1, 2 and 3 are from Madison. The masteabase
might contain other authors from Madison. The castile
can be used to answer this query as long as ak thuthors
are mutually consistent and no more than 10 minatds
Given a query Q and a database state s, let Q(®tal¢he
result of evaluating Q on s.

Defn: (Consistency) For a subset U of the cached, if

completeness, but do not care about the modifiestand
can therefore ignore consistency) to use cachesttshin U.
See [GLRO5] fokey-completenesonstraint.

Fig 2.1 illustrates cache properties, where an ddga
object O to C denotes that C is copied from O. Asag all
objects are modified in £1U1 is consistent but not complete
w.r.t. Q1 and H U2 is complete w.r.t. Q2 and, }and U3 is
key-complete w.r.t. Q3 and both End H.

Lemma 2.3: If a subset U of the cache,$.is complete
w.r.t. a query Q and a database shapshpthegn U is both
key-complete and consistent w.r.t. Q and H1

25 Currency

We have definedtale pointand currencyfor a single ob-
ject. Now we extend the concepts to a set of objestip-
pose that at 1pm, there are only two authors froadisbn
in the master database, and we copy them to theecac
forming set U. At 2pm, a new author moves to Maligit
3pm, how stale is U w.r.t. predicate “city = Madi® Intui-

there is a snapshot,tbf the master database s.t. Copied-tively, the answer should be 1 hour, since U gtike she

From(U, H,) holds, and for some query Q,[UQ(H,), then
U is snapshot consistent (or consistent) w.r.t. Q and | [

U consists of copies from snapshagt &hd Q is a selec-
tion query. Thus the containment of U in Q)tbk well de-
fined. Note that object metadata, e.g., timestaraps,not
used in this comparison.

If a collection of objects is consistent, then afyits
subsets is also consistent. Formally,

Lemma 2.1: If a subset U of the cache,$cis consistent
w.r.t. a query Q and a snapshgi Hhen subset P(U) defined
by any selection query P is consistent w.r.t. PAQ ld,. [

Proof: See [GLRO5] for all proofs omitted in this paper.

moment the new author is added to the master dsgaba
However, we cannot use object currency to deterrthire
since both objects in U are current. For this rease use
the snapshot where U is copied from is used afeeeree.
We overload stale() to apply to a database snapshot
w.rt. a query Qstale(Hn, Q, H) is equal to xtime(A),
where A is the first transaction that changes #wilt of Q
after H, in H,. Similarly, we overload the currency() func-
tion: currency(H,, Q, H,) = xtime(H,) - stale(H,, Q, H,).
Defn: (Currency for complete set) If a subset U of the
cache §¢heis complete w.r.t. a query Q and a snapshgt H
then the currency of U w.r.t. a snapshot ¢ the master
database icurrency(U, Q, H,) = currency(k, Q, H,). O



From the definition, the currency of U depends ba t

we call acache region (or simplyregion). Each view Yin

snapshot K used in the calculation. This can be solved usV can be associated with three types of controk&apt es-

ing a “ghost row” technique, see [GLRO05] for degail

Fig 2.2 illustrates the currency of two completésse
where Al and A2 are two copies of A’ and B is aycop
B, QH) ={A, B}, i=1,2,QH;) ={A,B,C},i=3, 4.
{Al, B} and {A2, B} are complete w.r.t. Q andHH,.

3. DYNAMIC CACHING MODEL

In our model, a cache is a collection of materediziewsV
={Vy, ..., Vi}, where each view Ms defined using a query
expression Q We describe the properties of the cache
terms of integrity constraints defined owérIn this section,
we introduce a class of metadata tables caltedrol tables
that facilitate specification of cache integritynstraints, and
introduce extended SQL DDL syntax for constrairgcsfy-
cation. Fig 3.1 shows the set of DDL examples usdtiis
section. We start by defining two views as showB1n

3.1 View Partitionsand Control tables

Instead of treating all rows of a view uniformlyevallow
them to be partitioned into smaller groups, whewperties
(presence, currency, consistency or completenessyuear-
anteed per group. The same view may be partitiontd
different sets of groups for different propertiésrther, the
cache may provide fall or partial guaranteethat is, it may
guarantee that the property holds for all groupth@éparti-
tioning or only for some of the groups. Althougtfelient
implementation mechanisms might be used for full par-
tial guarantees, conceptually, the former is aigpease of
the latter; we therefore focus on partial guarantee

In this paper, we impose restrictions on how grocas
be defined and consider only groups defined by ldgua
predicates on one or more columns of the viElat is, two
rows belong to the same group if they agree orvéhee of
the grouping columns. For a partial guarantee gtioeiping
values for which the guarantee holds are (concéptua
listed in a separate table calledantrol table. Each value
in the control table corresponds to a group of rofvg; that

D1:CREATE VIEW AuthorCopy AS SELECT * FROM Authors
CREATE VIEW BookCopy AS SELECT * FROM Books

D2: CREATE TABLE AuthorList_PCT (authorld int)
ALTER VIEW AuthorCopy ADD PRESENCE ON authorld IN
(SELECT authorld FROM AuthorList_PCT)

D3: CREATE TABLE CityList_CsCT(city string)
ALTER VIEW AuthorCopy ADD CONSISTENCY ON city IN
(SELECT city FROM CityList_CsCT)

D4: CREATE TABLE CityList_CpCT(city string)
ALTER VIEW AuthorCopy ADD COMPLETE ON city IN
(SELECT city FROM CityList_CpCT)

D5: ALTER VIEW BookCopy ADD PRESENCE ON authorld IN
(select authorld from AuthorCopy)

D6: ALTER VIEW BookCopy ADD CONSISTENCY ROOT

Figure 3.1: DDL examples for adding cache constrain  ts

ence, consistency andcompleteness control tables. We use
presence/consistency/completeness region to refer to
cache regions defined for each type. Note thatrobtables
are conceptual; some might be explicitly maintairsa
others might be implicitly defined in terms of otleached
tables in a given implementation.

3.1.1 Presence Control table (PCT)

Suppose we receive many queries looking for sortteoes)
as in Q1. Some authors are much more popular ttrerso

inand the popular authors change over time, i.e.atleess

pattern is skewed and changes over time. We wakedtd
answer a large fraction of queries locally but rtexiance
costs are too high to cache the complete Authdne t&ur-
ther, we want to be able to adjust cache contestshie
changing workload without changing the view definit
These goals are achieved by presence control tables

A presence control table (PCT) for view V; is a table
with a 1-1 mapping between a subset K of its cokiamd a
subset K’ of s columns. We denote this BBCT[K, K’];
K LJPCT is called theresence control-key (PCK) for V;,
and K'JV; is called thepresence controlled-key (PCdK).
For simplicity, we will use PCK and PCdK interchaafly
under the mapping. A PCK defines the smallest grofip
rows (i.e., an object) that can be admitted tovicted from
the cache in the MTCache “pull” framework. We assum
that the cache maintenance algorithms materialipelate
and evict all rows within such a group together.
Presence Assumption: All rows associated with the same
presence control-key are assumed to be presengjstemt
and complete. That is, for each row s in the preseontrol
table, subset U sy-sk (V;) is complete and thus consistent
w.r.t. (ox=sx ° Q) and H, for some snapshot,Hf the mas-
ter database, where @ the query that definesvV 0O

If Vi has at least one presence control table, itpara
tially materialized view (PMV), otherwise it is a fully ma-
terialized view addressed in [GLRGO04]. See [ZLG®&]
more general types of partial views, partial viewtohing,
and run-time presence checking.

In our motivating example, we cache only the most
popular authors. This scenario can be handled égtiog a
presence control table and addind®’RESENCE constraint
to AuthorCopy, as in D2. AuthorList_PCT acts asrasp
ence control table and contains the ids of theastiwho
are currently present in the view AuthorCopy, ireaterial-
ized in the view.

3.1.2 Consistency Control table (CsCT)

A local view may still be useful even when all itavs are
not kept mutually consistent, e.g., in a scenarien we
receive many queries like E1.3. Suppose AuthorGCapy
tains all the required rows. If we compute the gusym the
view, will the result satisfy the query’s consistgrrequire-
ments? The answer is “not necessarily” becauseytaey
requires all result rows to be mutually consistpet city,




but AuthorCopy only guarantees that the rows faheau-
thor are consistent; nothing is guaranteed abdbhbasifrom
a given city. The consistency control table prosidae
means to specify a desired level of consistency.

A consistency control table (CsCT) for view V, is de-
noted by CsCT[K], where a set of columnd kCsCT is

also a subset of Vand is called theonsistency control-

completeness control table for AuthorCopy. If & @t con-
tained in CityList CpCT, then we know that eithdlr au-
thors from that city are contained in AuthorCopynone of
them are. Note that an entry in the completenessgrao
table does not imply presence. Full completenessds
cated by dropping the clause starting with “IN”.tNpecify-
ing a completeness clause indicates that the defauh-

key (CsCK) for V. For each row s in CsCT, if there is a pleteness implicit in the Presence Assumption fiscgent.

row tinV, s.t. s.K = t.K, then subset Uoz-sk (Vi) must be
consistent w.r.t.dx=sx °© Q) and H, for some snapshottbf
the master database.

In our example, it is desirable to guarantee cterscy
for all authors from the same city, at least fomsoof the
popular cities. We propose an additio@DNSI STENCY

constraint, for specifying this requirement. Wesfficreate a

consistency control table containing a set of si@d then

A similar property is termed “domain completeness”

DBCache [ABK+03]. However, our mechanism provides

more flexibility. The cache admin can specify: i subset
of columns to be complete; 2) to force completermssll
values or just a subset of values for these columns

3.2 Correlated Presence Constraints
In our running example, we may not only receive regpse

add aCONSI STENCY constraint to AuthorCopy, as in D3 looking for some authors, but also follow-up quefigoking
of Fig 3.1. TheCONSI STENCY clause specifies that the for related books. That is, the access patterromkBopy is

cache must keep all rows related to the same oitgistent
if the city is among the ones listed in CityList GJ5 this is
in addition to the consistency requirements impliai the

decided by the access pattern to AuthorCopy. Irerotd
capture this, we allow a view to use another vievaares-
ence control table. To have BookCopy be contrdiigd\u-

Presence Assumption. AuthorCopy can now be usethto thorCopy, we only need to declare AuthorCopy ages{

swer queries like E1.3.

If we want the cache to guarantee consistency ferye
city, we change the clause @@NSI STENCY ON ci ty. If
we want the entire PMV to be consistent, we chathge
clause taCONSI STENCY ON ALL. If we don't specify a
consistency clause, the cache will not provide eomsis-
tency guarantees beyond the minimal consistencliethpy
the presence control table under the Presence Axgum

3.1.3 Completeness Control table (CpCT)

A PMV with a presence control table can only bedute
answer point queries with an equality predicat@&®oontrol
columns. For example, AuthorCopy cannot answer Q3.
It is easy to find the rows in AuthorCopy that sitithe
query but we cannot tell whether the view contaitisre-
quired rows. If we want to answer a query with jcate P

ence control table by BRESENCE constraint in the defini-
tion of BookCopy, as in D5 of Fig 3.1.

If a presence control table is not controlled bypthar
one, we call it aroot presence control table. Let L =
{V m+1 .-, Vii} be the set of root presence control tablas;

=V [0 L. We depict the presence correlation constraints by

a cache graph, denoted by<W, E>. An edge VY

Of9{% . V,means that Ms a PCT[K;, K;; "] of V|.

Circular dependencies require special care in otder
avoid “unexpected loading”, a problem addressed
[ABK+03]. In our model, we don’t allow circular depden-
cies, as stated in Rule 1 in Fig 5.1. Thus we aatlache
graph acache DAG.

Each view in the DAG has two sets of orthogonappre
ties. First, whether it is view-level or group-léeensistent.

on columns other than the control-keys, the cachistm Second, to be explained shortly, whether it is tescy-

guarantee that all rows defined by P appear irctiuhe or

wise correlated to its parent. For illustration poses, we

none appear. Completeness constraints can be egdresUse shapes to represent the former: circles fon-leeel

with completeness control tables.

A completeness control table (CpCT) for view V; is
denoted by CpCT[K]. A completeness control tabla ¢on-
sistency control table with an additional constraihe sub-

complete w.r.t. §x=sx ° Q) and H, for some snapshot,tbf
the master database. We say K isompleteness control-

key (CpCK). Note that all rows within the same complete-

ness region must also be consistent (Lemma 2.3).

We propose to instruct the cache about completamess
guirements using @OVPLETENESS constraint. Continuing
our example, we create a completeness control taibde
then add a completeness clause to the AuthorCofigi-de
tion, as in D4 of Fig 3.1. Table CityList CpCT sesvas the

consistent views and rectangles (default) for #iecs. We
use colors to denote the latter: gray if a viewdasistency-
wise correlated to its parents, white (defaulteotlise.

in

Defn: (Cache schema) A cache schema is a cache DAG
set U in \ defined as before is not only consistent but als<W, E> together with the completeness and consistency

control tables associated with each viewNin [

3.3 Correlated Consistency Constraints

In our running example, we have an edge AuthorCopy

O fefhete BookCopy, meaning if we add a new author

to AuthorCopy, we always bring in all of the autlsdvooks.
The books of an author have to be mutually consistaut
they are not required to be consistent with tha@ut



AuthorList_PCT

authorld

ReviewerList_PCT

reviewerld

CityList_CsCT

AuthorCopy ReviewerCopy
authorld isbn

reviewld

BookCopy Rg;;;a;v

Figure 3.2: Cache schema example

If we wish the dependent view to be consistent \ith
controlling view, we add the consistency clauSenSs| S-
TENCY ROOT, as in D6 of Fig 3.1 A node with such con-

Presence query: Consistency query: Completeness query:

SELECT * FROM Authors SELECT * FROM Authors SELECT * FROM Authors
WHERE authorld = 1 WHERE authorld in K WHERE city = “Madison”

Figure 4.1: Refresh query examples

Presence (Completeness) query:

SELECT * FROM V
WHERE K =k

Consistency query:

SELECT * FROM V
WHERE K; in K;

Figure 4.2: Refresh queries
First, consider the case where AuthorCopy doehaoe

straint is coloredyray; it cannot have its own consistency or any consistency or completeness control table,sandon-

completeness control tables (Rule 2 in Fig 5.1).

For a gray node V, we call its closest white arareis
consistency root. For any of V’s cache regions;,Uf U; is
controlled by a PCK value included in a cache nedipin
its parent, we say that; donsistency-wise controls U;; and
that U and Yareconsistency-wise correlated.

Fig 3.2 illustrates a cache schema example, which ¢
sists of four partially materialized views. Authan®y is
controlled by a presence control table AuthorLi€TPR
likewise for ReviewerCopy and ReviewerList_PCT. i#es
a presence control table, AuthorsCopy has a censigt
control table CityList CsCT on city. BookCopy is tho
presence-wise and consistency-wise correlated tidhoku
sCopy. In contrast, ReviewCopy has two presenceraon
tables: BookCopy and ReviewerCopy; it is view legeh-
sistent and consistency-wise independent fromaitends.

4. SAFE CACHED VIEWS

A cache has to perform two tasks: 1) populate #uhe and
2) reflect updates to the contents of the cachdgewhain-
taining the specified cache constraints. Compleheaon-
straints can lead to unexpected additional fetdhes pull-
based maintenance strategy, causing severe perfoema
problems. We illustrate the problems through aesenf
examples, and quantify the refresh cost for unctst
cache schemas in Theorem 4.1. We then identifyrgo-
tant property of a cached view, calleafetythat allows us to
optimize pull-based maintenance, and summarizegaires it
achieves in Theorem 4.2. We introduce the concéptde
hoc cache regions useful for adaptively refreshingcdehe.

For convenience, we distinguish between the sclerda
the instance of a cache region U. The schema of tet
noted by <V, K, k>, meaning that U is defined cawiV by
a control-key K with value k. We use titalic form U to
denote the instance of U.

4.1 Pull-Based M aintenance

In the “pull” model, we obtain a consistent setaivs using
either a single query to the backend or multiplergs
wrapped in a transaction. As an example, supposieofD-
sopy, introduced in Section 3, does not have aiigireim in
the cache DAG and that the cache needs to refrestv &
(1, Rose, Female, Madison, WI).

sistency follows the presence table. Then all rawshe
presence region identified by authorld 1 need torde
freshed together. This can be done by issuing theepce
query shown in Fig 4.1 to the backend server.

Next, suppose we have CityList CsCT (see Section
3.1.2). If Madison is not found in CityList CsCThet pres-
ence query described above is sufficient. Otherwige
must also refresh all other authors from MadiséK Is the
set of authors in AuthorCopy that are from Madistirg
consistency query in Fig 4.1 is sent to the baclsamder.

Finally, suppose we have CityList CpCT (see Section
3.1.3). If Madison is found in CityList CpCT, th&esides
the consistency query, we must fetch all authasfMadi-
son using the completeness query in Fig 4.1.

Formally, given a cache region U<V, K, k>, let et of
presence control tables of V be, P.., B, with presence
control-keys K, ..., K,. For K, i = 1..n, letK;=TTx;ox=x(V),
the remote queries for U are: 1) the presence qifddyis a
presence region; 2) the consistency queries (im,1if U is
a consistency region; and 3) the consistency ggidfiie=
1..n) (and the completeness querWit @), if U is a com-
pleteness region. (The queries are shown in Fig 4.2

Lemma 4.1: For any cache region U <V, K, k> in the cache,
the results retrieved from the backend server usiegre-
freshing queries in Fig 4.2 not only keeps U’s eacbn-
straints, but also keeps the presence constraintad pres-
ence regions in V that U overlaps.[’

As this example illustrates, when refreshing a each
gion, in order to guarantee cache constraints, &g need
to refresh additional cache regions; the set obatlh “af-
fected” cache regions is defined below.

Defn: (Affected closure) The affected closure of a cache

region U, denoted asC(U), is defined transitively:

1) AC(U) ={U}

2) AC(U) = AC(U)LJ{U, | for Yin AC(U), eitherU; over-
lapsU; or U and U are consistency-wise correlated}.

For convenience, we assume that the calculation of
AC(U) always eliminates consistency regiop Jthere ex-
ists a completeness region id AC(U), s.t. U= U, since
the completeness constraint is stricter (Lemma. Z.B8¢ set
of regions in AC(U) is partially ordered by the sentain-
ment relationship. From Lemma 2.1-2.3, we only n&zd



maintain the constraints of some “maximal” subsét 04.1.1 Ad-hoc Cache Regions
AC(U). LetMax(Q2) denote the set of the maximal elementsalthough the specified cache constraints are theimuim

in the partially ordered sel.

Defn: (Maximal affected closure) The maximal affected
closure of a cache region WM axAC(U), is obtained by the
following two steps: Lef2 = AC(U),

1) Constructing step. Let, B be the set of all consistency

regions and completeness regions {n respectively.
MaxAC(U) = Max@ - 1) LI Max(Q —Bs).

2) Cleaning step. Eliminate any consistency regignnU
MaxAC(U) if there exists a completeness regionirJ
MaxAC(U), s.t., YLl U;. O

M aintenance Rule:
1) We only choose a region to refresh from a whiteenod
2) When we refresh a region U, we do the following:

Step 1: Retrieve every region in MaxAC(U) by segdin

proper remote queries according to its constraint.
Step 2: Delete the old rows covered by AC(U) orréne
trieved tuple set; then insert the retrieved tigge [

constraints that the cache must guarantee, sontefinie
desirable for the cache to provide additional “@d“hguar-
antees. For example, a query workload like E1.1s dsk
authors from a set of popular authors and requiresn to
be mutually consistent. Popularity changes over tifm
order to adapt to such workloads, we want the &t of
grouping and regrouping authors into cache reganshe
fly. For this purpose, we allow the cache to greagions
into “ad-hoc” cache regionsSee [GLRO5] for detail.

4.1.2 Keeping Track of Currency

When using the pull model, we keep the last refitasle-
stamp for each cache region. If its timestam &nd the
current time ig, since all updates unfll are reflected in the
result of the refresh query, the region is no otlant — T.

4.2 SafeViewsand Efficient Pulling
We now introduce the concept sdfe views, motivated by

Theorem 4.1: Assuming the partial order between any twothe potentially high refresh cost of pull-based metiance

cache regions is constant, then given any regiofif We
apply the Maintenance Rule to a cache instancesttiffies
all cache constraints, let newTupleSet be the nesthieved
tuple setA = AC(newTupleSet), then

for unrestricted cache schemas.

Defn: (Safe PMV) A partially materialized view V isafe if
the two following conditions hold for every instanof the
cache that satisfies all integrity constraints:

1) Every region other than those ifv-{2) observes its cache 1) For any pair of regions in V, either they don’t dap or

constraint after the refresh transaction is conaplet

2) If (A-Q) = &, then after the refresh transaction is comﬂz) If V is gray

plete, all cache constraints are preserved.

3) If (A-Q) = @, MaxAC(U) is the minimal set of regions

we have to refresh in order to refresh U while rain
ing all cache constraints for all cache instances.

The last part of the theorem shows that when areyi
is refreshed, every region in MaxAC(U) must be dieme-
ously refreshed. Otherwise, there is some instaricthe
cache that satisfies all constraints, yet runnimg ttefresh
transaction to refresh U will leave the cache stede violat-
ing some constraint. IfACQ)#J, multi-trip to the master
database is needed in order to maintain all cachst@ints.

Given a region U in a white PMV V, how do we get

MaxAC(U)? For an arbitrary cache schema, we neextaiih

with U and add affected regions to it recursivéliiere are

two scenarios that potentially complicate the dalibon of

MaxAC(U), and could cause it to be very large:

1) For any view ¥, adding a region {Urom V; results in
adding all regions from Mhat overlap with U

2) A circular dependency may exist between two views V

and V, i.e., adding new regions from; Yhay result in
adding more regions from;Vwhich in turn results in
adding yet more regions from.V

The potentially expensive calculation and the lssge
of MaxAC(U), and hence the high cost of refreshihg
cache motivate the definition e&fePMVs in Section 4.2.

one is contained in the other.
let X denote the set of presence grgiin

V. X is a partitioning of V and no pair of regiomsX is

contained in any one region defined on.V.

Intuitively, Condition 1 is to avoid unexpectedreshing
because of overlapping regions in V; Condition ®iavoid
unexpected refreshing because of consistency atimel
across nodes in the cache schema.

Lemma 4.2: For a safe white PMV V that doesn’t have any
children, given any cache region U in V, the pdstiar-
dered set AC(U) is a treel

Since AC(U) on V has a regular structure, we camma
tain metadata to find the maximal element effidientvVe
omit the detailed mechanism because of space edmstr

Theorem 4.2: Consider a white PMV V, and letdenote V

and all its gray descendants. If all nodes &re safe, when-

ever any region U defined on V is to be refreshed:

1) AC(U) can be calculated done top-down in one pass.

2) Given the partially ordered set AC(U) on V, theccié-
tion of MaxAC(U) on V can be done in one pass!

5. DESIGN ISSUESFOR CACHES

In this section, we investigate conditions thatl¢éa unsafe
cached views and propose appropriate restrictionallow-

able cache constraints. In particular, we devetope addi-
tional rules to guide cache schema design, and ghatv



Rule 1: A cache graph is a DAG. BookCopy, then we have two overlapping regions:ofpoa,

Rule 2: Only white nodes can have independent completeness or book 2} by Alice, and {book 1, book 3} by publishar
consistency control tables. Defn: (Compatible control tables) For a view V in the

Rule 3: A PMV with more than one parent must be a white circle. cache, let the presence controlled-key of V gead let the

set of its consistency and completeness contra-keiK .

1) For any pair K and K in K, we say that Kand K, are
compatible iff FD K> K, or FD K> K;.

2) We sayK is compatible iff the elements K are pair-
wise compatible, and for any K i1, FD K>K,. 0

Rule 5 is stated in Fig 5.1. We require that a tashe
constraint can only be created in the system ihddition
does not violate Rules 1-5.

5.1 Shared-Row Problem Theorem 5.1: Given a cache schemd@V, E>, if it satisfies

Let's take a closer look at the AuthorCopy and Boogy rules 1-5, then every PMV W is safe. Conversely, if the
example defined in Section 3. Suppose a book cae haschema violates one of these rules, there is d&mios of the

multiple authors. If BookCopy is a rectangle, sinoe cache satisfying all specified integrity constraiimt which

authoring is allowed, a book in BookCopy may cqueesl ~ SOMe PMV is unsafe.

to more than one control-key (authorld) value, tng be-
long to more than one cache region. To reason ahgtlt 6. ENFORCING C&C CONSTRAINTS

situations, we introduce cache-instance DAGs. A traditional distributed query optimizer decidebether to
Defn: (Cache instance DAG) Given an instance of a cache use local data based on data availability and astidcost.
DAG <W, E>, we construct itcache instance DAG as  In our setting, it must also take into account latzta prop-
follows: make each row in each nodeWfa node; and for erties (presence, consistency, completeness amdncyj.
each edge Vo¢p ., V; in E, for each pair of rows s injV  Presence checking is addressed in [ZLGOS]; the sapre
and tin V, if s.K;; = t.K;’ then add an edge-3 t. O proach can be extended to completeness checking s&b-

Defn: (Shared-row problem) For a cache DAGW, E>, a tion describes efficient checking for C&C consttaimn a
view V in W has theshared-row problem if there is an transformation-based optimizer. See [GLRO05] forgiso

instance DAG s.t. a row in V has more than onergiare In comparison to [GLRGO04], the algorithms developed

There are two cases where a PMV V has the shalr/ﬁbd—rohere are more general and support finer granul@&y

i . checking. In [GLRGO04], consistency checking was edon
problem. In the first case (Lemma 5.1), we can tigi- e . .
. . ; . . completely at optimization time and currency chagkat
nate the potential overlap of regions in V defifgddiffer- . ) o -
) o . run time, because view level cache region inforamatis
ent presence control tables if V is view-level dstent. stable and available at ontimization. while curseinforma.
Considering the second condition in the definitafnsafe, P ' 5

we have Rule 3 in Fig 5.1. For the second case (i22) tion is only available at run time. In this papez wtill per-
L2 form as much as possible of the consistency chgckin
we enforce Rule 4 in Fig 5.1.

) . optimization time but part of it may have to beajeld to
Lemma 5.1: Given a cache schemad\s E>, PMV V in W

: run-time. For a view with partial consistency gudess, we
has the shared-row problem if V has more than @merit) o't know at optimization time which actual groupidl be

Lemma 5.2: Given a cache schema\k E>, for any PMV  consistent at run time. Further, ad-hoc cache rsgimay

V, let the parent of V be ¥V has the shared-row problem change over time, also prompting run-time checking.
iff the presence key K in Mor Visnotakeyiny. [

Rule 4: If a PMV has the shared-row problem according to
Lemma 5.2, then it cannot be gray.

Rule 5: A PMV cannot have incompatible control tables.

Figure 5.1: Cache schema design rules

Rules 1-5 are a necessary and sufficient condftior(all
views in) the cache to be safe.

6.1 Normalizing C&C Constraints

A guery may contain multiple currency clauses, asthone
For a white view V in the cache, if it has consiste or  per SFW block. The first task is to combine theiittial
completeness control tables beyond those implitithe  clauses and convert the result to a normal formbdgin the
Presence Assumption, then it may have overlap@g®ns. process, each currency clause is representediassgol

In our running example, suppose BookCopy is a WiEite  pefpy: (Currency and consistency constraint) A C&C
Fangle; an.author may have more than one publishiere  .onstraint CCr is a set of tuples, CCr = {<Ky, Sy, G1>, ...,

is a consistency control table on publisherld, tiwok- ., k o Gy>}, where S is a set of input operands (table
Copy may have overlapping regions. As an exampleeA o \ew instances), s a currency bound specifying the
has books 1 and 2, Bob has book 3, and while bba®l 3 aimum acceptable staleness of the input operamés
are published by publisher A, book 2 is publishgdplb- Giis a grouping key anK; a set of grouping key values.
lisher B. If publisher A is in the consistency aahtable for

5.2 Control table Hierar chy



Each tuple has the following meaning: for any dasa&b
instance, if we group the input operands referericea tu-
ple by the tuple’s grouping keg;, then for those groups

with one of the key values ii;, each group is consistent.
The key value sets; will be used when constructing consis-

tency guard predicates to be checked at run tinote that
the default value for each field is the strongeststraint.

All constraints from individual currency clausese ar

merged together into a single constraint and cdedento
an equivalent or stricter normalized form with malundant
requirements. See [GLRO5] for details.

6.2 Compile-time Consistency Checking

We take the following approach to consistency chrerkAt
optimization time, we proceed as if all consistegoaran-
tees were full. A plan is rejected if it would n@toduce a
result satisfying the query’s consistency requingimesven
under that assumption. Whenever a view with pactiaisis-
tency guarantees is included in a plan, we addistemsy
guards that check at run-time if the guaranteeshéid the
groups actually used.

SQL Server uses a transformation-based optimizen- C
ceptually, optimization proceeds in two phasesegplora-
tion phase and an optimization phase. The formeergges
new logical expressions; the latter recursivelylsithe best
physical plan. Physical plans are built bottom-up.

Required and delivered (physical) plan propertiay p
very important role during optimization. To makes wf the
plan property mechanism for consistency checkireynwst
be able to perform the following three tasks: Bnsform
the query’s consistency constraints into requir@asistency
properties; 2) given a physical plan, derive itbveeed con-
sistency properties from the properties of the llegaws it
refers to; 3) check whether delivered consistenopgrties
satisfy required consistency properties.

6.2.1 Required Consistency Plan Property

A query’s required consistency property consistthefnor-
malized consistency constraint described in se@in

6.2.2 Delivered Consistency Plan Property

A delivered consistency property CPd consists séteof
tuples {<R, S, Q;>} where R is the id of a cache regio§,
is a set of input operands, namely, the input opsaf the
current expression that belong to regigndRd<; is the set
of grouping keys for the input operands. Each dpera
computes its delivered plan properties bottom-ugetdaon
the delivered plan properties of its inputs. Wetdimé algo-
rithms due to space constraints; for details s&d[05].

6.2.3 Satisfaction Rules
Now, given a required consistency property CCr ande-

livered one CPd, how do we know whether CPd sasisfi

CCr? Firstly, our consistency model does not altew col-
umns from the same input table T to originate fdifferent
shapshots, leading to the following property:

Conflicting consistency property: A delivered consistency
property CPd is conflicting if there exist two tapl< R, S,
Q,>and <R 'S, O, >in CPd s.tS; N S, # @ and one of
the following conditions holds: 1) R,, or 2)Q; # Q.. [
This property is conservative in that it assumed tvo
cache regions Jand U from different views can only be
consistent if they have the same set of controbkey
Secondly, a complete plan satisfies the constibedch
required consistency group is fully contained imsadeliv-
ered cache region. We extend the consistency aetif
rule in [GLRGO4] to include finer granularity cacregions.

Consistency satisfaction rule: A delivered consistency
property CPd satisfies a required CCr w.r.t. a easdthema
¥ and functional dependencies F, iff CPd is not lictirig
and, for each tuple sbK,, S;, G,> in CCr, there is a tuple
<Ry, Sy, Q¢ in CPd s.tS IS, and one of the following
conditions holds: 14 = @, or 2) letG," be the attribute
closure w.r.t. F. There existda1Q4s.t.GgUG,". [

For query Q2, suppose we have CCr = {<5, &, {Aushor
Books}, {isbn}>}, and that the cache schema is tre in
Fig 3.2. During view matching, AuthorCopy and Boa®
will match Q2. Thus CPd = {<-1, {Authors, Books}A{-
thors.authorld, city}>}. If AuthorCopy joins with @kCopy
on authorld (as indicated by the presence corogigtiand
the result is R, then from the key constraints afhrs and
Books we know that isbn is a key in R. Therefore
cityI{isbn}"*. CPd satisfies CCr.

While a plan is being constructed, bottom-up, watwa
stop as soon as it is possible when the curremlantran-
not deliver the consistency required by the qu&he con-
sistency satisfaction rule cannot be used for dhgckub-
plans; a check may fail simply because the papteh does
not include all inputs covered by the required @xiracy
property. Instead we apply the followirnglation rules We
prove that a plan cannot satisfy the required plaperties
if a subplan violates any of the three rules [GLR05

Consistency violation rules: A delivered consistency prop-
erty CPd violates a required consistency constrai@r
w.r.t. a cache schent and functional dependencies F, if
one of the following conditions holds:

1) CPd is conflicting,

2) There exists a tuple <,IK,, S, G, > in CCr that inter-
sects more than one consistency group in CPd,ighat
there exist two tuples < R1S1y, Q14 > and < Rg, S2g,
Q2,>in CPd s.tS N Sly# @ andS, N S24# G,

3) There exists <kK,, S, G,> in CCr, and < R S, 4 > in
CPd, s.t.S Sy, Q4 # @ and the following condition
holds: letG,+ be the attribute closure w.rX and F.
There does naxistGyl1Qq, s.t.G4 LI G,". 0

6.3 Run-time C& C Checking

To include C&C checking at runtime, the optimizeusn
produce plans that check whether a local view feadighe



< SwitchUnion

 Local plan |

'Remote plan|

Figure 6.1: SwitchUnion with a C&C guard

required C&C constraints and switch between usiaglo-
cal view and retrieving the data from the backead/eyr.
Such run-time decision-making is built in a planusing a

No
checking

| Ad-hoc checking |

| Assured checking |

Figure 7.2: Generating consistency guard
C_PCT and O_PCT are the presence control tables of

SwitchUnionoperator. A SwitchUnion operator has multiple CustCopy and OrderCopy respectively. C_CsCT isrsise

input streams but only one is selected at run-trased on
the result of a selector expression.

In MTCache, all local data is defined as materaliz
views and logical plans making use of a local vene al-
ways created through view matching [LGZ04, GLO1$nE
sider an (logical) expression E and a matching wefrom
which E can be computed. If C&C checking is requiinee
produce a substitute consisting of a SwitchUniontam,
shown in Fig 6.1, with a selector expression thatcks
whether V satisfies the currency and consistenastraint
and two input expressions: a local branch and aotem
branch. The local branch is a normal substituteresgion
produced by view matching and the remote plan stssif
a remote SQL query created from the original exgioesE.
If the condition, which we call consistency guand cur-
rency guard according to its purpose, evaluatesug the
local branch is chosen, otherwise the remote one.

tency control table on CustCopy. By setting theestamp
field, we can control the outcome of the consisyamneard.

The caching DBMS ran on an Intel Pentium 4CPU 2.4
GHz box with 500 MB RAM. The backend ran on an AMD
Athlon MP Processor 1800+ box with 2GB RAM. Both
machines ran Windows 2000 and were connected by. LAN

7.1 Consistency Guard Overhead

We made the design choice to only support certargpgen-
sive types of run-time consistency guard. A natgrastion
is: what is the overhead of the consistency guaFdsther-
more, how expensive are more complicated guards?

We experimentally evaluate the cost of a spectrdm o
guards by means of emulation. Given a query Q, eveg
ate another query Q’ that includes a consisteneydyfor Q,
and use the execution time difference between @’ @rto
approximate the overhead of the consistency glandeach

The discussion of when and what type of consistencgiuery, depending on the result of the consisten@yrdy it

checking to generate and the inexpensive consistereck-
ing we support is deferred to Section 7.

7. PERFORMANCE STUDY

This section reports experimental results for czirsicy
checking; results for presence and currency chgckhire
reported in [ZLGO5] and [GLRGO04] respectively.

We used a single cache DBMS and a backend serv|
The backend server hosted a TPCD database with feal
tor 1.0 (about 1GB). The experiments reported hesed
only the Customers and Orders tables. The Custotabls
was clustered on its primary key, c_custkey withiralex on
c_nationkey. The Orders table was clustered onugtkey,
o_orderkey). The cache DBMS had a copy of eacletab
CustCopy and OrderCopy, with the same indexes.cbine
trol table settings and queries used are shownmgit &. We
populated the ckey and nkey columns with c_custkey
c_nationkey columns from the views respectively.

CREATE TABLE C_PCT (ckey int PRIMARY, rid int)
CREATE TABLE C_CsCT(nkey int PRIMARY, rid int)
CREATE TABLE O_PCT (ckey int PRIMARY, rid int)

Qa: SELECT * FROM customer C

WHERE c_custkey in $custSet

[CURRENCY BOUND 10 on (C) BY $key]

SELECT * FROM customer C, orders O

WHERE c_custkey=0_custkey and c_custkey in $custSet
[CURRENCY BOUND 10 on (C, O) BY $key]

SELECT * FROM customer C

WHERE c_nationkey in $nationSet

[CURRENCY 10 on (C) BY $key]

Settings:

Qb:

Qc:

Figure 7.1: Settings & Queries used for experiments

can be executed either locally or at the backend.méas-
ure the overhead for both scenarios.
7.1.1 Single Table Case

We first analyze what type of consistency guarthéeded
for Qa when $key differs. The decision making pesces

Alla, Allb: SELECT 1 WHERE NOT EXISTS (
SELECT 1 FROM CustCopy
WHERE c_custkey IN $custSet
GROUP BY c_nationkey
HAVING [COUNT(*)>1 AND] c_nationkey NOT IN
(SELECT nkey FROM C_CSCT) )

SELECT 1 WHERE |$nationSet|
SELECT COUNT(*) FROM C_CsCT
WHERE nkey IN $nationSet)

SELECT 1 WHERE 1 = (
SELECT COUNT(DISTINCT rid) FROM C_PCT
WHERE ckey IN $custSet )

SELECT 1 WHERE 1 =
ALL (SELECT COUNT(DISTINCT rid) FROM C_PCT, CustCopy
WHERE c_custkey IN $custSet AND ckey=c_custkey
GROUP BY c_nationkey)

SELECT 1 FROM(
SELECT COUNT (DISTINCT rid1) AS countl,
SUM (ABS(rid1-rid2)) AS count2

FROM ( SELECT A.rid AS rid1, B.rid AS rid2)

FROM C_PCTA O_PCTB

WHERE Ackey IN $custSet AND

A.ckey = B.ckey) ) AS FinalCount

WHERE countl = 1 AND count2 = 0

SELECT 1 WHERE NOT EXISTS (SELECT 1 FROM

Al2:

S11:

S12:

S21:

S22:

(SELECT  c_custkey,c_nationkey,
Acrid AS rid1, B.rid AS rid2
FROM C_PCT A, O_PCT B, CustCopy C
WHERE  A.ckey IN $custSet AND

) A.ckey = c_custkey AND c_custkey = B.ckey
) AS FinalCount
GROUP BY c_nationkey )
HAVING (MIN(rid1) <> MAX(rid1) OR
MIN(rid2) <> MAX(rid2) OR MIN(rid1) <> MIN(rid2)))

Figure 7.3: A spectrum of consistency guards



Cost Local Remote Cost Local Remote

Qa Qb Qc Qa | Qb | Qc S21 S22 S21 S22
ms .078 .08 1.17 .01 19 113 ms .90 .83 1.00 .98
% 16.56] 14.00 <2 <1 <2 <« % 155.83] 143.82| 24.82| 24.36
# Rows 1 6| 5975 1 6| 5975

) - Table 7.3: Multi-table case overhead
Table 7.1: Simple consistency guard overhead

the guards and measured the overhead for threeretiff

Cost 4i1a A11bLOC/?1I2 S11| s12| Alla A1Fzzem/§)1t§ s11| si2| queries: Qa and Qb with $custSet = (1); Qc withtidnSet

ms | 31| 12| 084 29| 35 33 27| .13 41| 48 = (1). The consistency guard for Qa and Qb is Sidlthe
% | 6285 23.77] 16.98] 58.32| 7141 606 495 233 748 879 one for Qc is AL2.

Table 7.2: Single-table case overhead The results are shown in Table 7.1. As expectelipth

the local and remote case, the absolute cost remairghly

shown in Fig 7.2 and the consistency guards in7E3g the same, the relative cost decreases as the guecytion

Condition A: Is each required consistency group equal tQjme increases. The overhead for remote execusicamiall

or contained in a presence region? (< 2%). In the local case, the overhead for Qcufréng

If Yes, it follows from the Presence ASSUmptionttah ~6000 rows) is less than 2%. A|though the absohwer-
the rows associated with each presence controbk@yon-  head for Qa and Qb is small (<0.1ms), since theiemiare
sistent. No eXpIICIt consistency guard is needexd. é&xam- inexpensive (returning 1 and 6 rows respectiva[}e, rela-

ple, for Qa with $key = c_custkey. tive overhead is ~15%.
Condition B: Is each required consistency group equal to |n experiment 2, we used query Qa with $custSe2,= (
or contained by a consistency region? 12), which returns 2 rows; and compared the ovefhwa
If Yes, we check C, otherwise we check D. different types of consistency guards that invabves con-
Condition C: Is the consistency guarantee full? trol table. The results are shown in Table 7.2.
If Yes, then no run-time consistency checking isese For local execution, if the consistency guard leamtich

sary. Otherwise, we need to probe the consistenoyr@  the data of the PMV (Alla, Allb and S12), the osach
table with the required key values at runtime. Emmple, surges to ~70% for S12, because we |itera||y exetie
for Qa with $key = c_nationkey, we have two sceygari local query twice. Alla and b show the benefit efng
In the first scenario, Qa does not include an e’qzual more precise: the “S|oppy" guard in Alla incurs 68%6r-
predicate on c_nationkey. We have to first caleulahich  head, while the overhead of the more precise g(/tdb)
nations are in the results, then check if theyapplear in the s only 24%, because it is less likely to touch tCapy. The

consistency control table C_CsCT (Alla). A morecis®  simple guard A12 incurs the smallest overhead (917%
guard (Allb) only checks nations with more than ons-

tomer, by adding th€OUNT(*) >1 condition. Such check- /-1-2 Multi-Table Case
ing (e.g., Alla, Allb and A12) is calledsured consis  Different from Qa, the required consistency groub has
tency checking in that it checks if the required consistency OPj€cts from different views. In this case, wetfaseck:
groups are part of the guaranteed cache regions. Condition E : Do they .have the same consistency root?
In the second scenario, the predicate on natioim-is ~If Yes, then the consistency guard generation resitie
cluded in the query as a redundant predicate, whiichvs ~ the single table case, because the guaranteed czgioes
us to simply check if each required nation is inC6CT  are decided by the consistency root. Otherwisehawe to
(A12). It eliminates the need to examine the datfore  Perform ad-hoc checking involving joins of presenoatrol

consistency checking. tables. There are two cases.

Condition D: Can each required consistency group be Casel: $key =@. We check if all the required presence
covered by a collection of cache regions. control-keys point to the same cache region (S21).

If Yes, we have the opportunity to do ad-hoc caesisy Case 2: $key = c_nationkey. We first group the required

checking. For Qa with $key &, we check if all the required TOWs by c_nationkey, and check for each group iéll}he
customers are in the same ad-hoc cache region.(Suth ~ Ccustomers are from the same region; and 2) attters are
checking (e.g., S11, S12 and S21, S22 from Seétib2) is  from the same region as the customers (S22).

calledad-hoc Cons'gency Check|ng In EXperiment 3, we use query Qb with $CUStSet - (2
If $key=c_nationkey and suppose we don't havel2), which returns 7 rows, and measure the overbtadn-
C CsCT, we need to check each group (S12). sistency guards that involve multiple control tabl&he

Experiment 1 is designed to measure the overhegiteof esults are shown in Table 7.3. Guards S21 andrs2le

type of consistency guards supported in our curfiemhe- Mot only accessing the data, but also performimgsjoSuch
work. We choose to support only run-time consistenc complicated checking incurs huge overhead in thallexe-
guards that 1) do not require touching the dat®M\V; 2)  cution case (~150%). Note that if CustCopy and @Zdpy
only require probing a single control table. Todpecific, —are consistency-wise correlated, then the overlfesddr to
we only support the guards shown in A12 and S11fiveel  Single-table case) reduces dramatically.



8. RELATED WORK
The work in [GLRGO04] is the first that addresses C&

performance study to evaluate the effectivenegdiftdrent
design choices in relaxed C&C database caching. &ne
ample is cache management granularity: whole view

aware database caching with a query centric apprde-
laxing data quality is an old concept in replicanagement,
distributed databases and warehousing and web vitorse

authors take a maintenance-centric approach [ABGS88
GN95, SK97], where queries are not allowed to esgpre L

their individual data quality requirements. Othéness have

[GLRGO04] vs. view patrtitions.
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