
Finding Similar or Diverse Solutions
in Answer Set Programming�

Thomas Eiter1, Esra Erdem2, Halit Erdoğan2, and Michael Fink1

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
{eiter,fink}@kr.tuwien.ac.at

2 Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
esraerdem@sabanciuniv.edu, halit@su.sabanciuniv.edu

Abstract. We study finding similar or diverse solutions of a given computational
problem, in answer set programming, and introduce offline methods and online
methods to compute them using answer set solvers. We analyze the computational
complexity of some problems that are related to finding similar or diverse solu-
tions, and show the applicability and effectiveness of our methods in phylogeny
reconstruction.

Keywords: similar/diverse solutions, answer set programming, phylogenies.

1 Introduction

Although, for many computational problems, the main concern is to find a best solu-
tion (e.g., a most preferred product configuration, a shortest plan, a most parsimonious
phylogeny), for some problems, computing a subset of good solutions that are diverse
or similar may be desirable. For instance, in product configuration, one could be inter-
ested in obtaining several diverse configurations of a product instead of checking all
possible configurations, to pick one. In planning, it may be desirable to compute a set
of plans that are similar to each other, so that, when the plan that is being executed fails,
one can switch to a most similar one. Motivated by such applications, we study the
problem of computing similar or diverse solutions in answer set programming (ASP),
and then show the applicability of our approach to another interesting problem: phy-
logeny reconstruction (i.e., computing leaf-labeled trees, called phylogenies, to model
the evolutionary history of a set of species).

Problems related to computing similar or diverse solutions have been studied in
the context of propositional logic [2], and constraint programming [12,13]. On the
other hand, although there are many appealing ASP applications (e.g., product con-
figuration [22], planning [15], phylogeny reconstruction [4]), for which finding simi-
lar/diverse solutions could be useful, such problems have not been studied in ASP. The
methods we develop in this paper fulfill this need in ASP.

Phylogeny reconstruction is important for research areas as disparate as genetics,
historical linguistics, zoology, anthropology, archaeology. For example, a phylogeny

� This work has been supported by TUBITAK Grant 107E229 and the Wolfgang Pauli Institute,
Vienna.

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 342–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finding Similar or Diverse Solutions in Answer Set Programming 343

of parasites may help zoologists to understand the evolution of human diseases [6]; a
phylogeny of languages may help scientists to better understand human migrations [23].
For a given set of taxonomic units, some existing phylogenetic systems, like that of
[5,4], generate more than one phylogeny that explains the evolutionary relationships
between the given taxonomic units. There are phylogenetic systems that compute a
summary of these phylogenies (a consensus tree [1] or a supertree [21]). However, in
such cases, especially when there are too many phylogenies computed by a system, an
expert needs to compare these phylogenies in detail, by analyzing the similar/diverse
ones with respect to some distance measure, to pick the most plausible ones. Although
there are precisely defined measures to find the distance between them [17,3,20,14],
there is no phylogenetic system that helps experts to analyze phylogenies by comparing
them. The methods we develop in this paper fulfill this need in phylogenetics.

In particular, the main contributions of this paper are as follows.

– We describe two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP (Section 2). Both kinds of
problems take as input an ASP program P that describes a problem, a distance
measure Δ that maps a set of solutions of the problem to a nonnegative integer,
and two nonnegative integers n and k. One problem asks for a set S of size n that
contains k-similar (resp. k-diverse) solutions, i.e., Δ(S) ≤ k (resp. Δ(S) ≥ k); the
other problem asks, given a set S of n solutions, for a k-close (k-distant) solution
s (s �∈ S), i.e., Δ(S ∪ {s}) ≤ k (resp. Δ(S ∪ {s}) ≥ k).

– We study the computational complexity of these problems establishing complete-
ness results under reasonable assumptions for the problem parameters (Section 3).

– We introduce an offline method to compute a set of n k-similar (or k-diverse) so-
lutions to a given problem, by computing all solutions in advance and then using
some clustering methods to find the similar (diverse) solutions (Section 4).

– We introduce three online methods to compute a set of n k-similar (or k-diverse)
solutions to a given problem (Section 5). Online Method 1 reformulates the given
program to compute n-distinct solutions and formulates the distance function as an
ASP program, so that all n k-similar (k-diverse) solutions can be extracted from
an answer set for the union of these ASP programs. Online Method 2 does not
modify the given ASP program, but formulates the distance function as an ASP
program, so that a k-close (or k-distant) solution can be extracted from an answer
set for the union of these ASP programs and a previously computed solution; by
iteratively computing k-close (k-distant) solutions, we can compute online a set of
n k-similar (or k-diverse) solutions. Online Method 3 does not modify the given
program, and does not formulate the distance function as an ASP program, but it
modifies the ASP solver, in our case CLASP [10], to compute all n k-similar (or
k-diverse) solutions at once.

– We illustrate the applicability of these approaches on the phylogeny reconstruction
problem, by defining new distance measures for a set of phylogenies (Section 6),
by describing how the offline method and the online methods are applied to find
similar/diverse phylogenies (Section 7). After that, we compare the efficiency and
effectiveness of these methods on the family of Indo-European languages studied
in [4] (Section 8).

344 T. Eiter et al.

ASP programs mentioned below are presented in an extended version
http://people.sabanciuniv.edu/esraerdem/papers/
iclp09-extended.pdf.

2 Computational Problems

We are interested in the following two sorts of problems related to computation of a
diverse/similar collection of solutions:

n k-SIMILAR SOLUTIONS (resp.n k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, decide whether a set S of n solutions for P exists
such that Δ(S) ≤ k (resp. Δ(S) ≥ k).

k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P , and a nonnegative integer k, decide whether a solution s (s �∈ S)
for P exists such that Δ(S ∪ {s}) ≤ k (resp. Δ(S ∪ {s}) ≥ k).

For instance, suppose that P describes the phylogeny reconstruction problem for Indo-
European languages. Then finding three diverse phylogenies is an instance of the former
problem. On the other hand, if we already have picked two phylogenies, then finding
another phylogeny that differs from these two is an instance of the latter.

The first kind of problems above has two parameters, n and k, so we can fix one and
try to minimize (resp. maximize) the distance between solutions to find the most similar
(resp. diverse) solutions.

MAXIMAL k-SIMILAR SOLUTIONS (resp.MAXIMAL k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and a non-
negative integer k, find a maximal set S of solutions for P such that Δ(S) ≤ k
(resp. Δ(S) ≥ k) exists.

n MOST SIMILAR SOLUTIONS (resp.n MOST DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and a nonneg-
ative integer n, find a set S of n solutions for P with the minimum (resp. maximum)
distance Δ(S).

Similarly, in the second class of problems, we can try to minimize (resp. maximize) the
distance k between a solution and a set of solutions, to find the most close (resp. distant)
solution.

MOST CLOSE SOLUTION (resp.MOST DISTANT SOLUTION)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and a set S of
solutions for P , find a solution s (s �∈ S) for P with the minimum (resp. maximum)
distance Δ(S ∪ {s}).

Finding Similar or Diverse Solutions in Answer Set Programming 345

Table 1. Complexity results for computing similar solutions.

Problem Complexity
1 n k-SIMILAR SOLUTIONS NP
2 k-CLOSE SOLUTION NP
3 MAXIMAL k-SIMILAR SOLUTIONS FNP//log
4 n MOST SIMILAR SOLUTIONS FPNP (FNP//log)
5 MOST CLOSE SOLUTION FPNP (FNP//log)
6 k-CLOSE SET NP

We can generalize k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION) problems to sets
of solutions:

k-CLOSE SET (resp.k-DISTANT SET)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P , and a nonnegative integer k, decide whether a set S′ of solutions
for P exists such that |Δ(S) − Δ(S′)| ≤ k (resp. |Δ(S) − Δ(S′)| ≥ k).

3 Complexity Results

In this section, we turn our attention to the computational complexity of the problems
presented in Section 2. In order to do so, we first have to make some reasonable as-
sumptions on some of the problem parameters.

For the remainder of this section, let the ASP program P that formulates a computa-
tional problem P , be a propositional normal logic program. We assume that the given
number n of different solutions to consider (respectively the size of the set S) in in-
stances of the problems n k-SIMILAR SOLUTIONS and n MOST SIMILAR SOLUTIONS

is polynomial in the size of the input.
Furthermore, we consider distance measures Δ that map a set of solutions for P

to a nonnegative integer (which is usually implicitly done when real values have to
be represented for computation). As for computing Δ(S) for a set of solutions S, in
general we assume that deciding whether Δ(S) ≤ k for a given k is in NP. Moreover,
we assume that the value of Δ(S) is bounded by an exponential in the size of S (and
thus has polynomially many bits in the size of S).

Under these assumptions, the computational complexity (cf. [18] for a background
on the subject) of the problems concerning the computation of similar or diverse solu-
tions we are interested in, is given in Table 1. All entries are completeness results (under
usual reductions) and hardness holds even if Δ(S) is computable in polynomial time.
Moreover, the results are the same for the ‘symmetric’ problems, i.e., when SIMILAR is
replaced with DIVERSE, and CLOSE is replaced with DISTANT, respectively.

Membership for problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLU-
TIONS) follows from the fact that we can guess not only a candidate set S (since S
is polynomially bounded) but also a witness for Δ(S) ≤ k (resp. Δ(S) ≥ k), and
check in polynomial time whether every s ∈ S is a solution and that Δ(S) ≤ k (resp.
Δ(S) ≥ k). For hardness, one simply reduces answer-set existence for normal, proposi-
tional programs to this problem, which is an NP-complete problem. However, hardness

346 T. Eiter et al.

holds also for nodal distance of trees (a distance measure introduced in Section 6 for
comparing phylogenies) encoded in a program (which naturally uses auxiliary atoms).

Theorem 1. Problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS) is
NP-complete. Hardness holds even if Δ(S) is computable in polynomial time.

For a hardness result resorting to partial Hamming distance confer [2]. By similar argu-
ments we obtain NP-completeness for problem k-CLOSE SOLUTION (resp. k-DISTANT

SOLUTION).

Theorem 2. Problem k-CLOSE SOLUTION (resp. k-DISTANT SOLUTION) is NP-
complete. Hardness holds even if Δ(S) is computable in polynomial time.

When looking for maximal (wrt. subset inclusion) solutions, we face a function prob-
lem; here we assume that any S of size larger than n is clipped to any subset S′ of S of
size n. In particular, MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-DIVERSE

SOLUTIONS) is solvable in FNP//log. Intuitively, FNP//log is the class of function
problems solvable in polynomial time using a nondeterministic Turing Machine with
output tape that may consult once an oracle that computes the optimal value of an opti-
mization problem solvable in NP. A requirement is that this value has logarithmically
many bits in the size of the input (see, e.g., [7,9] for more information on FNP//log
and other function classes used in this section).

Membership can be shown by computing the cardinality of a maximal set of solutions
S using the oracle. Note that since |S| is polynomially bounded in the size of the input, it
has logarithmically many bits as required. Then, one can nondeterministically compute
a set S of respective size together with a witness for Δ(S) ≤ k, and check in polynomial
time that this is indeed the case.

Hardness can be shown, e.g., for Δ(S) that takes the maximal (resp. minimal) Ham-
ming distance between answer sets in S on a subset of the atoms; note that such a partial
Hamming distance is a natural measure for problem encodings, where the disagreement
on output atoms is measured. This measure is not unrelated to the ones introduced for
comparing phylogenies in Section 6; one can polynomially reduce nodal distance to par-
tial Hamming distance, and vice versa also partial Hamming distance to nodal distance
of trees (allowing auxiliary atoms in the LP encoding).

Theorem 3. Problem MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-DIVERSE

SOLUTIONS) is FNP//log-complete. Hardness holds even if Δ(S) is computable in
polynomial time.

FPNP-membership of n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SOLU-
TIONS) is obtained by first using the NP-oracle to compute the minimum distance us-
ing binary search (deciding polynomially many n k-SIMILAR SOLUTIONS problems).
Then, the oracle is used to compute S in polynomial time. Hardness follows from a
reduction of the Traveling Salesman Problem (TSP). Notably, if the distances are poly-
nomial in the size of the input, i.e., if the value of Δ(S) is polynomially bounded in the
size of S, then the problem is FNP//log-complete.

Theorem 4. Problem n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SOLU-
TIONS) is FPNP-complete, and FNP//log-complete if the value of Δ(S) is polynomial
in the size of S. Hardness holds even if Δ(S) is computable in polynomial time.

Finding Similar or Diverse Solutions in Answer Set Programming 347

Proceeding similarly as before, completeness for FPNP(resp. FNP//log if Δ(S) is
small) is obtained for MOST CLOSE SOLUTION (and for MOST DISTANT SOLUTION).

Theorem 5. Problem MOST CLOSE SOLUTION (resp. MOST DISTANT SOLUTION) is
FPNP-complete, and FNP//log-complete if the value of Δ(S) is polynomial in the size
of S. Hardness holds even if Δ(S) is computable in polynomial time.

For the generalization of k-CLOSE SOLUTION (resp. of k-DISTANT SOLUTION) to sets,
namely k-CLOSE SET (resp. k-DISTANT SET), NP-completeness holds by similar argu-
ments as for the former problem(s).

Theorem 6. Problem k-CLOSE SET (resp. k-DISTANT SET) is NP-complete. Hardness
holds even if Δ(S) is computable in polynomial time.

4 Offline Methods

We introduce an offline method to compute a set of n k-similar (resp. k-diverse) solu-
tions to a given problem, by computing all solutions in advance and then using some
clustering methods to find the similar (diverse) solutions. The idea is to make clusters
of n solutions, measure the distance of the set of solutions in each cluster, and pick the
cluster whose distance is less (resp. greater) than k.

We can solve this problem by means of a graph problem: build a complete graph G
whose nodes correspond to solutions and edges are labeled by distances between the
corresponding solutions; and decide whether there is a clique C of size n in G whose
weight (i.e., the distance of the set of solutions denoted by the clique) is less than k
(resp. greater than k). The set of vertices in the clique represents n k-similar phyloge-
nies. Such a clique can be computed using ASP, or one of the existing exact/approximate
algorithms.

5 Online Methods

We introduce three online methods to compute a set of n k-similar (or k-diverse) solu-
tions to a given problem P , given an ASP program P that represents P and a distance
function Δ that maps a set of solutions of P to a nonnegative integer.

Online Method 1 (Fig. 1) reformulates the given program P to compute n-distinct
solutions, formulates the distance function Δ as an ASP program D, and formulates
constraints on the distance function as an ASP program C, so that all n k-similar (k-
diverse) solutions can be extracted from an answer set for the union of these ASP pro-
grams, P ∪ D ∪ C. Such a reformulation of P can be obtained in two stages. First, we
copy every rule of the program n times: the i’th copy of the rule is obtained from r by
replacing every atom p(t1, t2, ..., tm) in r with p(i, t1, t2, ..., tm). Now we have a pro-
gram that computes n solutions to the problem P . Then, we add a constraint to ensure
that no two solutions are same.

Online Method 2 (Fig. 2) does not modify the given ASP program P , but formulates
the distance Δ(S) of a given set S of solutions as an ASP program D, and constraints

348 T. Eiter et al.

Fig. 1. Computing n k-similar solutions, with Online Method 1

Fig. 2. Computing n k-similar solutions, with Online Method 2. Initially S = ∅. In each run, a
solution is computed and added to S, until |S| = n. The distance function and the constraints in
the program ensures that when we add the computed solution to S, the set stays k-similar.

Fig. 3. Computing n k-similar solutions, with Online Method 3. We implement the distance func-
tion into the ASP reasoner, so that the ASP reasoner becomes biased to compute similar solutions.
Each computed solution is stored by the reasoner until a set of n k-similar solutions is computed.

Finding Similar or Diverse Solutions in Answer Set Programming 349

on the distance function as an ASP program C, so that a k-close (or k-distant) solution
can be extracted from an answer set for P ∪ D ∪ C. By iteratively computing a k-close
(k-distant) solution, we can compute online a set of n k-similar (or k-diverse) solutions.

Online Method 3 (Fig. 3) does not modify the given program, and does not formulate
the distance function as an ASP program, but it modifies the ASP solver CLASP to
compute all n k-similar (or k-diverse) solutions at once.

6 Distance Measures for Similar or Diverse Phylogenies

A phylogenetic tree (phylogeny) for a set of taxonomic units is a finite rooted leaf-
labeled binary tree. To compare a set of phylogenies, and analyze the similar or diverse
ones in this set, we can measure the distance of a set of phylogenies by some function Δ.
In the following, we introduce a distance function to measure the similarity/diversity of
a set of phylogenies, in terms of a distance function for two phylogenies. We present
the trees in the Newick format, where the sister subtrees are enclosed by parentheses.

Two distance functions for two phylogenies Among the existing functions for measur-
ing the distance between two trees [17,3,20,14], we consider the distance function of
[3] based on the nodal distances in trees. The nodal distance NDT (x, y) between two
leaves x and y in a tree T is the number of edges contained in the shortest path from one
leaf to the other. For example, consider the tree (a, (b, c)); the nodal distance between
a and b is 3, whereas the nodal distance between b and c is 2. Intuitively, the nodal
distance between two leaves in a tree represents the degree of their relationship in that
tree. After defining the nodal distance, [3] measures the distance Dn(T, T ′) between
two leaf-labeled trees T and T ′, both with the same set L of leaves, as follows:

Dn(T, T ′) =
∑

(x,y)∈L

|NDT (x, y) − NDT ′(x, y)|.

The difference of the nodal distances of two leaves in two trees represents the con-
tribution of these leaves to the distance between the trees. Let T1 = (a, (b, c)) and
T2 = (c, (a, b)) be two trees. In order to compute the distance between T1 and T2, we
compute the nodal distances of the pairs {a, b}, {a, c} and {b, c} for both trees and take
the sum of the differences. In this case the distance between T1 and T2 is 2.

The second distance function we consider is introduced specifically for languages,
based on our discussions with the historical linguist Don Ringe. For each vertex x of a
tree 〈V, E〉, let desc(x) denote its descendants and depth(x) its depth. To define the sim-
ilarity of two phylogenies 〈V, E〉 and 〈V ′, E′〉, let us first define the similarity of two
vertices v ∈ V and v′ ∈ V ′: f(v, v′) = 1 if desc(v) �= desc(v′); and f(v, v′) = 0 oth-
erwise. Let weight be a function mapping every depth to a nonnegative integer. Then we
can define the similarity of two trees T = 〈V, E〉 and T ′ = 〈V ′, E′〉, with the roots R
and R′ respectively, at depth i (0 ≤ i ≤ min{maxv∈V depth(v), maxv′∈V ′ depth(v′)}),
by the following measure:

g(0, T, T ′) = weight(0) × f(R, R′)
g(i + 1, T, T ′)=g(i, T, T ′)+weight(i + 1)×∑

x∈V,y∈V ′,depth(x)=depth(y)=i+1 f(x, y)

and the similarity of two trees as follows:

350 T. Eiter et al.

Dl(T, T ′) = g(min{max
v∈V

depth(v), max
v′∈V ′

depth(v′)}, T, T ′).

For instance, for T1 = (a, (b, (c, (d, e)))) and T2 = (a, (d, (c, (b, e)))), considering that
weight(i) = 4−i, Dl(T1, T2) = 3×2+2×4+1×3 = 17. The idea is to assign bigger
weights to smaller depths so that two phylogenies are more similar if the diversifications
closer to the root are more similar. This is motivated by that reconstructing the evolution
of languages closer to the root is more important for historical linguists.

A distance function for a set of phylogenies We define a distance function for mea-
suring the distance of a set S of phylogenies, based on a distance function D for two
phylogenies: for similarity (resp. diversity) we take the maximum (resp. minimum) of
the distances between pairs of phylogenies in S

ΔD(S) = max{D(T1, T2) | T1, T2 ∈ S}

In the following, we show the applicability of the offline methods and online methods,
with the distance functions ΔDn and ΔDl

.

7 Computation of Similar or Diverse Phylogenies

We can find n k-similar (resp. k-diverse) phylogenies for a set of taxonomic units,
with an offline method as described in Section 4. Consider, for instance, a family of
languages as the taxonomic units. With the approach of [4], we can compute all the
phylogenies for a given set of languages. Then we build a complete graph G whose
nodes denote these phylogenies, and the edges are labeled by the distances between
phylogenies. Then we can find a clique of size n in G, such that the distance of the set
of phylogenies denoted by this clique is less than or equal to k, as follows: remove each
edge in G whose label is greater than k; and, ignoring the weights of the edges in the
resulting graph, find a clique of size n. The set of vertices in the clique represents n
k-similar phylogenies for the given set of taxonomic units.

In the online methods, we consider the ASP program phylogeny-improved.lp

described in [4], to reconstruct phylogenies.
Online Method 1 suggests finding n k-similar (resp. k-diverse) phylogenies, by refor-

mulating the given ASP program for phylogeny reconstruction, and using an answer set
solver to compute all these solutions. A reformulation of phylogeny-improved.lp,
as suggested by the first online method, can be obtained as follows:

1. We specify the number of solutions: solution(1..n).
2. In each rule of the program, we replace each atom p(T1,T2,...,Tm) (except the

ones specifying the input, like atoms describing the leaves, the labels of the leaves,
characters, and states of characters) with p(N,T1,T2...,Tm), and add to the body
solution(N).

3. Now we have a program that computes n phylogenies. To ensure that they are
distinct, for each atom specifying a solution, in this case atoms describing the edges
of a phylogeny, we add the rules

Finding Similar or Diverse Solutions in Answer Set Programming 351

Algorithm 1. CLASP
Input: An ASP program Π
Output: An answer set A for Π

A← ∅ // current assignment of literals
�← ∅ // set of conflicts
while no answer set found do

UNIT-PROPAGATION(Π,A,�) // propagate according to the current assignment and con-
flicts, and update the current assignment
if there is a conflict in the current assignment then

RESOLVE-CONFLICT(Π,A,�) // learn and update the conflict set and do backtracking
else

if current assignment does not yield an answer set then
SELECT(Π,A,�) // select a literal to continue search

else
return A

end if
end if

end while

different(S1,S2) :- edge(S1,X1,Y), edge(S2,X2,Y),
vertex(X2;X1;Y), solution(S1;S2), S1 != S2, X1 != X2.

:- not different(S1,S2), solution(S1;S2), S1 != S2.

Online Method 2 suggests finding n k-similar (resp. k-diverse) phylogenies, by it-
eratively computing a k-close (resp. k-distant) phylogeny. Here we implement a perl
script that calls the ASP solver repeatedly, with the phylogeny reconstruction program
phylogeny-improved.lp and a distance function program, until we compute all n
k-similar solutions.

Online Method 3 suggests finding n k-similar (resp. k-diverse) phylogenies, by mod-
ifying the ASP solver. Consider for instance the answer set solver CLASP [10]. CLASP

does a conflict-driven DPLL-like [8,16] Branch & Bound search to find an answer set
(solution) of the program: at each level, it does propagation followed by backtracking
or selection of new literals according to the current conflicts. A rough working princi-
ple of CLASP is shown in Algorithm 1. As can be seen, CLASP goes through three main
steps to find an answer set. In the UNIT-PROPAGATION step, it decides the literals that
have to be included in the answer set due to the current assignment and conflicts. In the
RESOLVE-CONFLICT step, it tries to resolve the conflicts encountered in the previous
step. If there is a conflict, then CLASP learns it and does backtracking to an appropriate
level. If there is no conflict and the currently selected literals do not represent an answer
set, then, in SELECT, CLASP selects a new literal (based on BERKMIN’s heuristic [11])
to continue search.

We can modify CLASP as in Algorithm 2, to compute n k-similar phylogenies.
The modified solver, CLASP-NK, has some additional procedures: DISTANCE-ANALYZE

identifies the partial phylogeny formed by the currently selected literals, and then com-
putes a lower bound for the distance between a phylogeny that contains this partial
phylogeny and the previously computed full phylogenies. Computing an exact lower
bound requires enumerating all possible completions of the partial phylogeny, so we

352 T. Eiter et al.

Algorithm 2. CLASP-NK
Input: An ASP program Π , nonnegative integers n, and k, and a set C of atoms considered in

computation of the distance function
Output: A set X of n phylogenies that are k similar (n k-similar phylogenies)

X ← ∅ // computed phylogenies
A← ∅ // current assignment of literals
�← ∅ // set of conflicts
while |X| < n do

PartialSolution← CurSelCon(A, C) // the atoms that are marked as considered and that
are currently selected constitute a partial solution
d← DISTANCE-ANALYZE(X,PartialSolution) // compute a lower bound for the distance
between partial solution and previously computed phylogenies
if d > k then

RESOLVE-CONFLICT(Π,A,�)
end if
UNIT-PROPAGATION(Π,A,�)
if there is a conflict in the current assignment then

RESOLVE-CONFLICT(Π,A,�)
else

if current assignment does not yield an answer set then
SELECT(Π,A,�)

else
X ← X ∪A
A← ∅ // start searching for a new solution

end if
end if

end while
return X

compute an approximate lower bound by a heuristic function LB(T, T ′) that estimates
the distance (from below) between a complete phylogeny T and a complete phylogeny
that contains a partial phylogeny T ′ with leaves L′:

LB(T, T ′) =
∑

(x,y)∈L′
|NDT (x, y) − NDT ′(x, y)|.

Since this heuristic function is admissible (i.e., its value is always less than or equal to
the exact lower bound), CLASP-NK does not miss a solution (n k-similar phylogenies) if
one exists. This function is also monotonic in the number of leaves in partial phylogeny:
if the partial phylogeny grows, then the distance increases also. If the lower bound
LB(T, T ′) is greater than k, then there is no need for CLASP-NK to search for a solution.
In such a case, CLASP-NK marks the currently selected literals as a conflict, learns this
conflict, and does the necessary backtracking. The rest of the algorithm is the same as
that of CLASP except that CLASP-NK searches until it finds n solutions.

We can use other distance functions for CLASP-NK or we can compute similar/diverse
solutions to other problems (e.g., planning, product configuration). For that, we need to
modify CLASP-NK: we need to implement a suitable admissible distance measure, and
change the DISTANCE-ANALYZE function of CLASP-NK.

Finding Similar or Diverse Solutions in Answer Set Programming 353

8 Experimental Results

We applied the computational methods described above (i.e., the offline method, and
the three online methods) to reconstruct similar/diverse phylogenies for Indo-European
languages. We used the dataset assembled by Don Ringe and Ann Taylor [19]. As in [4],
to compute such phylogenies, we considered the language groups Balto-Slavic (BS),
Italo-Celtic (IC), Greco-Armenian (GA), Anatolian (AN), Tocharian (TO), Indo-Iranian
(IIR), Germanic (GE), and the language Albanian (AL). While computing phylogenies,
we also took into account some domain-specific information about these languages.

Let us first examine the results of experiments, considering the distance measures
ΔDn , based on the nodal distance (Table 2). We present the results for the following
computations: 2 most similar solutions, 2 most diverse solutions, 3 most similar solu-
tions, 3 most diverse solutions, 6 most similar solutions. We solve these
optimization problems by iteratively solving the corresponding decision problems (n
k-SIMILAR/DIVERSE SOLUTION). For each method, we present the computation time,1

the size of the memory used in computation, and the optimal value of k.
Let us first compare the online methods. In terms of both computation time and

memory size, Online Method 3 performs the best, and Online Method 2 performs
better than Online Method 1. These results conforms with our expectations: Online
Method 1 requires an ASP representation of computing n k-similar/diverse phyloge-
nies, and such a program may be too large for an answer set solver to compute an
answer set for. Online Method 2 relaxes this requirement a little bit so that the answer
set solver can compute the solutions more efficiently: it requires an ASP representa-
tion of phylogeny reconstruction, and an ASP representation of the distance measure,
and then computes similar/diverse solutions one at a time. However, since the answer
set solver needs to compute the distances between every two solutions, the computa-
tion time and the size of memory do not decrease much, compared to those for Online
Method 1. Online Method 3 deals with the time consuming computation of distances
between solutions, not at the representation level but at the search level; so it does not
require an ASP representation of the distance function but requires a modification of
the solver.

The offline method takes into account the previously computed 8 phylogenies for
Indo-European languages (with at most 17 incompatible characters), and computes sim-
ilar/diverse solutions using ASP as explained in Section 7. The offline method is more
efficient, in terms of both computation time and memory, than Online Methods 1 and 2
since it does not compute phylogenies. On the other hand, the offline method is less
efficient, in terms of both computation time and memory, than Online Method 3, since
it requires both representation and computation of distances between solutions.

Here both the offline method and Online Method 1 guarantee to find an optimal so-
lution, by iteratively solving the corresponding decision problems. On the other hand,
Online Methods 2 and 3 compute similar/diverse solutions with respect to the first
computed solution, and thus may not find the optimal value for k, as observed in the
computation of 3 most similar phylogenies.

1 All CPU times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).

354 T. Eiter et al.

Table 2. Results of experiments, using the distance ΔDn based on the nodal distance

Problem Offline Method Online Method 1 Online Method 2 Online Method 3
2 most similar 12.39 sec. 26.23 sec. 19.00 sec. 1.46 sec.

32MB 430MB 410MB 12MB
k = 12 k = 12 k = 12 k = 12

2 most diverse 11.81 sec. 21.75 sec. 18.41 sec. 1.01 sec.
32MB 430MB 410MB 15MB
k = 32 k = 32 k = 24 k = 32

3 most similar 11.59 sec. 60.20 sec. 43.56 sec. 1.56 sec.
32MB 730MB 626MB 15MB
k = 15 k = 15 k = 15 k = 16

3 most diverse 11.91sec. 46.32 sec. 44.67 sec. 0.96 sec.
32MB 730MB 626MB 15MB
k = 26 k = 26 k = 21 k = 26

6 most similar 11.66sec. 327.28 sec. 178.96 sec. 1.96 sec.
32MB 1.8GB 1.2GB 15MB
k = 25 k = 25 k = 29 k = 25

Table 3. Results of experiments, using the distance ΔDl based on preferred diversifications

Problem Offline Method Online Method 1 Online Method 2

2 most similar 365.16 sec. (4.2GB) 16.11 sec. (236MB) 16.23 sec. (212MB)

3 most diverse 368.59 sec. (4.2GB) 46.11 sec. (659MB) 44.21 sec. (430MB)

6 most similar 368.45 sec. (4.2GB) 137.31 sec. (1.8GB) 212.59 sec. (1.1GB)

Now, let us consider the distance measures ΔDl
, based on preference over diversifi-

cations (Table 3): two phylogenies are more similar if the diversifications closer to the
root are more similar. Here we consider the similarities of diversifications until depth 3
(inclusive). We present the results for the following computations: 2 most similar solu-
tions, 3 most diverse solutions, 6 most similar solutions. In Table 3, for each method,
we present the computation time, the size of the memory used in computation, and the
optimal value of k. Unlike what we have observed in Table 2, the offline method takes
more time/space to compute similar/diverse solutions; this is due to the computation
of distances with respect to ΔDl

which requires summations, and representing sum-
mations in the language of LPARSE is not trivial. Other results are similar to the ones
presented in Table 2.

In [4], after computing all 34 plausible phylogenies, the authors examine them man-
ually and come up with three forms of tree structures, and then “filter” the phylogenies
with respect to these tree structures. For instance, in Group 1, the trees are of the form
(AN, (TO, (AL, (IC, (a tree formed for GE, GA, BS, IIR))))); in Group 2, the trees are
of the form (AN, (TO, (IC, (a tree formed for GE, GA, BS, IIR, AL)))); in Group 3, the
trees are of the form (AN, (TO, ((AL, IC), (a tree formed for GE, GA, BS, IIR)))). The
results of our experiments with the distance measure ΔDl

comply with these group-
ings. For instance, the 2 most similar phylogenies computed by Online Method 1 are in
Group 1; the 3 most diverse phylogenies computed by Online Method 2 are in different
groups. Likewise, the 6 similar phylogenies computed by our methods fall into Group 2.

Finding Similar or Diverse Solutions in Answer Set Programming 355

9 Related Work

Finding similar or diverse solutions has been studied in propositional logic [2], and in
constraint programming [13,12].

In [2], the authors propose two algorithms, DPdistance and DPdistance+lasso, to solve
DISTANCE-SAT—determining that a propositional CNF formula has a model that dis-
agrees with a given partial interpretation on at most d variables. Our modification of
CLASP’s algorithm is similar to the first algorithm in that both algorithms check whether
a partial interpretation computed in the DPLL-like search obeys the given distance con-
straints. On the other hand, unlike DPdistance, CLASP also uses conflict-driven learning:
when it learns a conflicting set of literals, it will never try to select them in the later
stages of the search. DPdistance+lasso offers manipulations while selecting a new variable:
it creates a set of candidate variables with respect to the distance function, computes
weights of these variables relative to the distance function, and selects one with the
maximum weight. On the other hand, in SELECT, CLASP creates a set of candidate
variables, and selects one of the candidates to continue the search. Using the idea of
DPdistance+lasso, we can modify CLASP further to manipulate the selection of variables
with respect to the distance function. However, in the phylogeny reconstruction prob-
lem, since the domain of the distance function consists of the edge atoms which are far
outnumbered by many auxiliary atoms, in SELECT the set of candidate variables gen-
erally consists of only auxiliary variables; due to these cases, the manipulation of the
selection of variables is not expected to improve the computational efficiency.

[13,12] study various computational problems related to finding similar/diverse
solutions, considering Hamming distance as in [2]. They present an offline method
(similar to our method) that applies clustering methods, and two online methods: one
based on reformulation (similar to Online Method 1), the other based on a greedy al-
gorithm (similar to Online Method 2) that iteratively computes a solution that maxi-
mizes similarity to previous solutions. The computation of a k-close solution is due to
a Branch & Bound algorithm (similar to the idea behind Online Method 3) that propa-
gates some similarity/diversity constraints specific to the given distance function. Our
offline/online methods are inspired by these methods of [13,12], but are not confined to
only polynomial-time distance functions with polynomial range.

10 Conclusion

We have studied two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP: one problem asks for a set of
n solutions that are k-similar (resp. k-diverse); the other one asks for a solution that
is k-close (k-distant) to a given set of solutions. We have analyzed the computational
complexity of these problems, and introduced offline/online methods to solve them.
We have applied these methods to the phylogeny reconstruction problem, and observed
their effectiveness in comparing many phylogenies for Indo-European languages.

There are many appealing ASP applications (e.g., product configuration, planning)
for which finding similar/diverse solutions could be useful; on the other hand, no exist-
ing phylogenetic system can analyze phylogenies by comparing them. In this sense, our
methods are useful both for ASP and for phylogenetics.

356 T. Eiter et al.

Acknowledgments. Thanks to Martin Gebser and Benjamin Kaufmann for their help
with CLASP.

References

1. Adams, E.N.: Consensus techniques and the comparison of taxonomic trees. Syst. Zool 21,
390–397 (1972)

2. Bailleux, O., Marquis, P.: DISTANCE-SAT: complexity and algorithms. In: Proc. of AAAI,
pp. 642–647 (1999)

3. Bluis, J., Shin, D.-G.: Nodal distance algorithm: Calculating a phylogenetic tree comparison
metric. In: Proc. of BIBE, p. 87 (2003)

4. Brooks, D.R., Erdem, E., Erdoğan, S.T., Minett, J.W., Ringe, D.: Inferring phylogenetic trees
using answer set programming. JAR 39(4), 471–511 (2007)

5. Brooks, D.R., Erdem, E., Minett, J.W., Ringe, D.: Character-based cladistics and answer set
programming. In: Proc. of PADL, pp. 37–51 (2005)

6. Brooks, D.R., McLennan, D.A.: Phylogeny, Ecology, and Behavior: A Research Program in
Comparative Biology. University of Chicago Press, Chicago (1991)

7. Chen, Z.-Z., Toda, S.: The Complexity of Selecting Maximal Solutions. Information and
Computation 119, 231–239 (1995)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394–397 (1962)

9. Eiter, T., Subrahmanian, V.S.: Heterogeneous active agents, ii: Algorithms and complexity.
Artif. Intell. 108(1-2), 257–307 (1999)

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proc. of IJCAI, pp. 386–392 (2007)

11. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl.
Math. 155(12), 1549–1561 (2007)

12. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in
constraint programming. In: Proc. of AAAI, pp. 372–377 (2005)

13. Hebrard, E., O’Sullivan, B., Walsh, T.: Distance constraints in constraint satisfaction. In:
Proc. of IJCAI, pp. 106–111 (2007)

14. Hon, W.-K., Kao, M.-Y., Lam, T.-W.: Improved Phylogeny Comparisons: Non-shared Edges,
Nearest Neighbor Interchanges, and Subtree Transfers. In: Hon, W.-K., Kao, M.-Y., Lam, T.-
W. (eds.) Algorithms and Computation, pp. 369–382. Springer, Heidelberg (2000)

15. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming
Paradigm: a 25-Year Perspective, pp. 357–373. Springer, Heidelberg (1999)

16. Marques-Silva, J., Sakallah, K.: A search algorithm for propositional satisfiability. IEEE
Trans. Computers 5, 506–521 (1999)

17. Nye, T.M., Lio, P., Gilks, W.R.: A novel algorithm and web-based tool for comparing two
alternative phylogenetic trees. Bioinformatics 22(1), 117–119 (2006)

18. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
19. Ringe, D., Warnow, T., Taylor, A.: Indo-European and computational cladistics. Transactions

of the Philological Society 100(1), 59–129 (2002)
20. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Bio-

sciences 53(1-2), 131–147 (1981)
21. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Mathemat-

ics 105, 147–158 (2000)
22. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product

configuration. In: Proc. of PADL, pp. 305–319 (1998)
23. White, J.P., O’Connell, J.F.: A Prehistory of Australia, New Guinea, and Sahul. Academic,

San Diego (1982)

	Finding Similar or Diverse Solutions in Answer Set Programming
	Introduction
	Computational Problems
	Complexity Results
	Offline Methods
	Online Methods
	Distance Measures for Similar or Diverse Phylogenies
	Computation of Similar or Diverse Phylogenies
	Experimental Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

