CS/Math 240: Introduction to Discrete Mathematics
Reading 3 : Sets

Author: Dieter van Melkebeek (updates by Beck Hasti and Gautam Prakriya)

In this reading we discuss sets which will serve as the building block for other concepts such as
relations, functions, and graphs.

3.1 Sets

We start by defining what a set is.

Definition 3.1. A set is a collection of elements from some domain. A set must be well-defined,
which means that for every element of the domain, we can tell whether it belongs to the set or not.

Let A be a set. We use the notation x € A to mean that z is an element of A. When z is not
an element of the set A, we write x ¢ A.
The next definition captures the notion of containment.

Definition 3.2. If all elements of some set A also belong to another set B, we say that A is a
subset of B. Furthermore, if B contains some element that is not in A, we say that A is a strict
subset of B.

We write A C B to mean that A is a subset of B, and use A C B to say that the containment is
strict. Notice that the set containment symbols C and C resemble the inequality symbols < and <.
This is not a coincidence. Both of these symbols express that one object is, in some sense, “smaller”
than some other object. Saying A C B means that A is “less than” B in terms of containment.

When we list elements of a set, the order in which we list them does not matter. Thus, the set
B = {true, false} is the same as the set {false, true}. The elements of a set are listed between curly
braces and separated by commas.

Sometimes the set has too many elements for us to list them all. In most cases, the set has
some defining property. For example, to describe the set A of all natural numbers between 100 and
1000 inclusive, we could write A = {x € N| 100 < z <1000} or A = {z | z € NA100 < z < 1000}.
The part of such definition before the | symbol tells us what an element is called, and the part after
the | symbol tells us what properties this element must have in order to be in the set. Some ways
to read the | symbol is “such that” or “having the property that”. For example, we could read our
description of A as “the set of integers = such that 100 < z < 1000.”

The sets A and B we just defined are examples of a finite sets. A finite set contains a finite
number of elements, which means that we can write them all down, given enough time.

Let’s now write the set B, which is sometimes called the Boolean domain, in two different
ways. This may sound redundant, but it is often convenient to represent the elements in different
ways. One instance where multiple representations of sets are helpful is when we want to express
operations on their elements in a different way. For example, suppose we represent the Boolean
domain using the set B’ = {0,1} where 0 means false and 1 means true. The conjunction operator
A on elements of B corresponds to multiplication of elements of B’. Yet another way to represent
B is as B” = {—1,1} where —1 represents true and 1 represents false. Multiplication of elements
of Bt now corresponds to exclusive or, which captures the notion that exactly one of two values is
true. Thus, an exclusive or is different from the or we used earlier because an or of two values is
true even if they are both true.
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3.1.1 Cardinality

The cardinality of a set is a measure of its size.
Definition 3.3. The cardinality of a finite set S is the number of distinct elements in S.

We use the notation |S| to denote the cardinality of a set S.

For example, the cardinality of the Boolean domain B defined earlier is 2 because B has two
distinct elements, true and false. Similarly, we have |B'| = |B"| = 2.

It may also happen that a set has no elements. If this is the case, we call it an empty set, and
use the symbol () to denote it. Note that |@] = 0.

3.1.1.1 Countable Sets

In reading 1 we said that discrete structures were the opposite of continuous. We also mentioned
that we could somehow say that something is the first element, something is the second element,
and so on. We now make this notion more precise.

Definition 3.4. A set is countable iff
e it is finite, or

e it is infinite and there is an enumeration consisting exactly of all elements of A. FEvery
position in the enumeration should correspond to a different element of A , and every element
of A should appear in it.

Think of an enumeration as an infinite list of elements of A. This is probably best explained
with examples.

Ezample 3.1: The natural numbers N = {0, 1,2, ...} are countable. One enumeration of the natural
numbersis 0, 1, 2, 3, .... Notice that number i appears in the (i+1)-th position in the enumeration,
and, conversely, the i-th position in the enumeration is ¢ — 1 which is a natural number. Thus,
every position in the enumeration corresponds to a different natural number and all natural numbers
appear in the enumeration. It follows that the natural numbers are a countable set. X

Here we should warn the reader that one should be careful when using ellipsis (...) as part of
a description of a list. It is important that the use of ellipsis is unambiguous and allows for only
one logical way of continuing the sequence. Another problem with ellipsis is if we use them at the
beginning of a list, as is illustrated in the next example.

Ezample 3.2: The integers Z = {...,—2,—1,0,1,2,...} are countable. A first attempt at an
enumeration would be to start by listing the smallest elements first and then keep adding one like
we did with the natural numbers. Unfortunately, the integers have no smallest element, so we
would not know where to start such an enumeration. Instead, we use the enumeration 0, 1, —1, 2,
-2, ...

e If 7 is odd , then the integer that appears at the i-th position is —(i — 1)/2. If i is even,
then the integer that appears at i-th position is i/2. Thus, every position in the enumeration
corresponds to a different integer.

e If x is a positive integer (z > 0) then integer x appears at position 2z in the enumeration. If
x is not a positive integer (x < 0) then integer z appears at position —2z + 1 (note that this
is positive when x < 0). Thus, every integer appears in the enumeration.
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Even in the example above, we used some kind of a “natural ordering” in the sense that we
first listed zero, then one and its additive inverse, then two and its additive inverse, and so on.
We may be tempted to try an ordering like that for rational numbers, i.e., the set Q = {a/b | a €
ZANbe NADb#O0}. Unfortunately, this is not going to work because for any rational numbers z
and y, there is a rational number between them. When this is true for some set, we say that the
set is dense. For example, (z + y)/2 is a rational number, and = < (z + y)/2 < y, so the rational
numbers are dense. Thus, we cannot hope to enumerate all rational numbers in any sort of “natural
ordering”. This may lead us to believe that rational numbers are not countable. However, the next
proposition tells us otherwise.

Proposition 3.5. The set of rational numbers is countable.

Proof. We write the rational numbers in a table. Some table entries may represent the same
number, but that is not a problem. Recall that a rational number has the form a/b where a € Z,
b € N, and b # 0. Our table has one row for each possible value of a, and one column for each
possible value of b. We use the enumeration of integers to decide which order the rows of our table
come in because we need to be able to argue that every integer gets a row in our table. The entry
corresponding to a’s row and b’s column is a/b. We show part of the table as Table 3.1a.

a\b| 1 2 3 4 . a\b| 1 2 3 4
0 0 0 0 0 e 0 1 2 4 7
1 1 1 / 2 1 / 3 1 / 4 e 1 3 5) 8 12
—1 -1 —1/2 —1/3 —1/4 —1 6 9 13

2 2 1 2 / 3 1 / 2 e 2 10 14
(a) Part of the table we use for enumerating all ra- (b) The order in which we traverse Ta-
tional numbers. The rows correspond to integers, ble 3.1a in an attempt to enumerate all
and the columns correspond to positive integers. rational numbers.

Table 3.1: Enumerating all rational numbers

Observe that every entry in the table is a rational number because only integers are present
as row labels, and only positive integers are present as column labels. Now consider any a/b € Q.
Since we have used our earlier enumerations of integers and of positive integers, there is a row of
the table labeled with a and a column labeled with b. The corresponding table entry is a/b. Since
a/b was an arbitrary rational number, it follows that every rational number is present somewhere
in our table.

If we argue that we can traverse our table in a way that eventually visits every table entry, we
will have demonstrated an enumeration of the enumeration . The i-th entry in this enumeration
will be the i-th distinct rational number we visit during our traversal of the table. We cannot
traverse our table row by row or column by column because both rows and columns have infinite
length. Instead, we choose to traverse the table diagonal by diagonal, where our diagonals go in
the “southwest” direction. We show the first few steps of our traversal in Table 3.1b.

Traversing Table 3.1a as shown in Table 3.1b gives us the following list of rationals:

1 1 1
0,0,1,0,=,—-1,0,=-,—=,2,...
) ) ) 727 ) 737 2’ ) )
and we drop all duplicates to get
1 1 1
0,1,=,—1,=,—,...
) 727 737 2’
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as our enumeration of the rational numbers. O

Proposition 3.5 may give us hope that we could somehow enumerate the real numbers as well.
Unfortunately, this is not possible. We do not give a proof of this. At the end of this reading, a
more general argument is presented. This argument when modified appropriately, proves that the
real numbers are not countable.

3.1.2 A Remark about Being Well-defined

We conclude the section on sets about with a remark about self-referential statements along the
line of the sentence “This sentence is not true,” which we introduced in lecture 2. Consider the
collection S = {A | A ¢ A}, that is, the collection of sets that do not contain themselves. Is S € S?
The truth of this statement is actually not defined, which means that we cannot tell whether S € S,
so S is not well-defined. This is known as Russel’s paradoz.

3.2 Operations on Sets

We would like to take old sets and make new sets out of them. For example, suppose you have
three sets of students stored somewhere in a database.

e U: The set of all students at UW-Madison
e FEj: The set of all students enrolled in CS/Math 240
e F5: The set of all students enrolled in CS 367

Now you would like to find all members of other sets, an operation that is commonly done in
databases.

e Si: Students who are taking at least one of CS/Math 240 and CS 367
e Sy: Students who are taking both CS/Math 240 and CS 367

e S3: Students who are not taking CS 367

e S,: Students who are taking CS/Math 240 but not CS 367

In the language of mathematics, we construct these new sets using Boolean operators similar to
the ones we used to make new propositions from old. To get this information out of a database, we
would use a query language such as SQL, and construct database queries from our mathematical
descriptions of the sets we are interested in.

3.2.1 Boolean Operations on Sets

First let’s describe the set S; of students who are taking at least one of CS/Math 240 and CS
367. This set contains all elements of F; and all elements of Fo. We say that S7 is the union
of the sets Fq and Fs, and write S1 = Fq U Es. Using set notation developed earlier, we define
EiUEy; = {z | x € E1 Vz € Ey}. Note the similarity between the union operator U and the
disjunction operator V. In fact, we are using V in the definition of the union E; U Es.

Now let’s describe the set Sy of students who are taking both CS/Math 240 and CS 367. This
set contains only those elements of E; that are also in Fs. We say that Sy is the intersection
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of the sets F7 and FEs, and write So = E1 N Ey. We define the intersection of the two sets by
EiNEy ={z |z € E;1 Nz € Ex}. Again, note the similarity between the intersection operator N
and the conjunction operator A.

We can use Venn diagrams as a convenient way to describe various new sets made out of old
sets. We can view these diagrams as the set analog of truth tables for propositions. A Venn diagram
consists of multiple closed curves whose insides overlap. We label each closed curve with the name
of some set. The inside of the closed curve represents all the elements of the corresponding set,
and the outside represents elements that are not members of the set. In Figure 3.1, the set 57 is
represented by the combination of regions (1), (2) and (3), and the set Sy is represented by region
(2). Elements in region (4) don’t belong to either E; or Es.

4)

Figure 3.1: Venn diagrams

Venn diagrams are convenient, but become way too messy when more than three sets are
involved. However, they are useful when fewer sets are involved. For example, we could use Venn
diagrams to prove the distributive law for the union and intersection operators.

Proposition 3.6. Let A, B, and C be sets. Then
AN(BUC)=(ANnB)U(ANCO). (3.1)

Proof. We draw a Venn diagram for both the left-hand side and the right-hand side of (3.1) and
see that both sides define the same part of the diagram. The Venn diagrams are in Figure 3.2.

In Figure 3.2a, the area shaded with both kinds of shading is A N (B U C). In Figure 3.2b,
the area with any shading is (AN B) U (AN C). We see that the area shaded with both kinds of
shading in Figure 3.2a is the same as the area shaded with some kind of shading in Figure 3.2b,
which means that AN (BUC)=(ANB)U(ANC). O
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(a) The region shaded with both kinds of shad- (b) The region shaded with at least one kind
ingis AN(BUC) of shading is (AN B) U (ANC).

Figure 3.2: Diagram for the proof of the distributive law for union and intersection.

Another way to prove Proposition 3.6 is to show that the statements z € AN (z € BV z € ()
and (r € ANz € B)V (x € AVax € C) are logically equivalent. In fact, even more is true. For any
propositions P, ) and R, the statements PA(QV R) and (PAQ)V (P A R) are logically equivalent.
This is known as the distributive law for the A and V operators. Viewed differently, our proof of
Proposition 3.6 actually proves that distributive law as well.

Let’s return to the four sets from the last section. We are now interested in the set of students
who are not taking CS 367. This set contains all elements of U that are not in Fy. We say that
the set S3 is the complement of Eo in U, and write S3 = E,. Using set notation, we would write
E2:{$’.T¢E2}.

When we talk about complements, we usually have a particular domain in mind. In our case,
the domain is the set of all students at UW-Madison, i.e., the set U. Thus, to be more precise, we
should define the complement of Fy as Ey = {z | # ¢ Ey Az € U}. This means that if Bob studies
at UW-Whitewater, he is not in S3 even though he is not enrolled in CS 367. It is common to omit
the domain when it is understood from context. For example, one could just say that S3 is the
complement of Fs.

Finally, let’s describe the set of students who are taking CS/Math 240 but not CS 367. Such
students belong to £7 but not to Fs. We call the set of such students the set difference of Fq and
Es, and write Sy = E; — Fs. Using our set notation, we have £y — Fs = {z |z € E1 Ax ¢ Es}.

Note that we can describe the complement of a set using set difference. For example, S35 =
U - Es.

3.2.2 Power Sets

Another way to create more sets is to take a set and look at its subsets. The set of all subsets of
a set A is called the power set of A, and we denote it P(A). This is a set containing every single
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subset of A, so P(A) is a set of sets. Formally, we define P(A) = {S | S C A}. This may be
confusing at first, but we can list subsets just like we can list elements, so there is nothing new
here. Let’s see an example.

Ezample 3.3: Consider the set B’ = {0,1} from earlier. Its subsets are the empty set (), the
singleton sets {0} and {1}, and the set {0,1}. Thus, P(B’) = {@, {0}, {1}, 10, 1}} X

As we mentioned earlier, we often want to count how many elements a particular set has. Let’s
do this for the power set. The set P({0, 1,2}) has cardinality 23 = 8. To see this, note that {0,1,2}
has three elements. For each element, we can choose independently whether to place it in a subset
or not, and each set of choices gives us a different subset of {0,1,2}. Thus, we get a total of
2-2-2 =23 = 8 different subsets of {0, 1,2}, so |P({0,1,2})| = 8. In fact, a more general fact is
true.

Proposition 3.7. Let A be a finite set with |A| = k. Then |P(A)| = 2F.

We do not prove Proposition 3.7 formally right now. It can be proved using induction which
we’ll talk about next week.

Proposition 3.7 also explains why we sometimes use the notation 24 instead of P(A) for the
power set of A.

3.2.3 Uncountable Sets

Earlier in this lecture, we stated that the real numbers were not countable. We use power sets to
illustrate the technique for proving this. In particular, we show as Theorem 3.8 that the power set
of the natural numbers is not countable. The proof we present is our first example of a proof by
contradiction. In a proof by contradiction, we assume the negation of what we want to prove, and
show that this assumption leads to a false statement.

Theorem 3.8. The power set of the natural numbers, P(N), is not countable.

Proof. Assume that P(N) is countable. This means that there exists some enumeration Aj, As,
As, ...of all subsets of N. We construct a subset A C N that is not present in this enumeration.

Consider a table whose rows correspond to subsets in our enumeration, and whose columns
correspond to the natural numbers. The table entry in row corresponding to A; and column j tells
us whether 7 — 1 is a member of A;.

Now let’s construct our set A. We put j into A if j ¢ Ajq, and say that j ¢ Aif j € Aj ;.
Hence, we have A = {z | (x — 1) ¢ A, }. This makes A well-defined because membership of j in A
is determined only by membership of j in A;41.

Remember that our enumeration contains all subsets of the natural numbers. This means that
A = Ay, for some k. But by the way we defined A, k—1 € A if and only if k — 1 ¢ Aj. This means
that exactly one of A and Ay contains the element k — 1. Therefore, A is actually not Aj. Since k
was arbitrary, this means that A is not part of our enumeration. This contradicts the assumption
that we had an enumeration of all subsets of the natural numbers, so the assumption must be false.
Furthermore, since we chose an arbitrary enumeration, this means that no enumeration of subsets
of integers enumerates them all. It follows that P(N) is not a countable set. O

In the proof above, we showed that for every enumeration of subsets of natural numbers, there
is a subset of the natural numbers that is not listed in that enumeration. Note that we are not
allowed to make any assumptions about the enumeration besides the fact that it lists all subsets of
the natural numbers. Making any additional assumption would result in a proof of the fact that
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no enumeration satisfying our assumption is an enumeration of all subsets of natural numbers, and
that is not good enough.

To give you a better understanding of why our argument works, let’s illustrate how it constructs
A for one particular enumeration of subsets N. Suppose 41 = 0, Ay = {0}, A3 = {1}, and
Ay = {1,2,3} are the first four sets in some enumeration of the subsets of N. Then since 0 ¢ Ay, we
put 0 in A, which ensures that A # A;. Next, since 1 ¢ Ay, we put 1 in A, and ensure that A # A,.
This process continues on, preventing all sets in the enumeration from being A. We show part of
this process in Table 3.2. We see from Table 3.2 that in order to construct A, we just “flip” the
diagonal entries of that table. For this reason, the technique we used in our proof by contradiction
is called diagonalization.

a\b| 0 1 2 3
A1 N N N N
A, |Y N N N
A [N Y N N
Ay N Y Y Y

AJ|lY Y Y N
Table 3.2: Example of a table used to prove that P(N) is uncountable. A Y in row corresponding
to A; and column corresponding to j indicates that j € A;. An N indicates that j ¢ A;.

Now we have covered all the necessary tools for the proof that the real numbers are not count-
able. We leave the actual proof as an exercise for the reader, and only give you a hint: Write the
numbers in binary and use diagonalization.



