
CS/Math 240: Introduction to Discrete Mathematics

Reading 10 : Asymptotic Analysis

Author: Dieter van Melkebeek (updates by Beck Hasti and Gautam Prakriya)

In the last reading, we analyzed the running times of various algorithms. We expressed the
number of steps an algorithm makes as a function of the input size. In this reading, we introduce
asymptotic analysis. Which is a tool for comparing the the running times of different algorithms.

While analyzing the running time of algorithms in the last reading, we were interested in the
number of elementary steps performed as a function of the input size. For example when analyzing
the powering algorithms in class, we chose the to count the number of multiplications. But this
was by no means the only meaningful choice of an elementary step. We could have instead counted
the number of recursive calls made or the number of lines of code executed. Each choice gives us
a different function. But these functions only differ by constant factors. The dependence on the
input size still remains the same. This suggests that when comparing running times, we should not
be concerned with constant factor differences.

Additionally, when comparing running times, we are concerned only with how the algorithms
behave on large inputs. This is because, differences between the complexities of algorithms may not
be noticeable on small inputs, and any computer could run the two algorithms with different, but
still small running times in a short period of time. But when the inputs get larger, the difference
is more pronounced and the slower algorithm may not have a chance of finishing before the end
of the universe, even on a supercomputer, whereas a slow computer could still execute the faster
algorithm in a few days, or perhaps even seconds.

Asymptotic analysis allows us to achieve both these goals.

10.1 Asymptotic Analysis

In asymptotic analysis, we are interested in the relative growth of two functions f, g from N to
R>0, where by R>0 we mean the positive real numbers. We think of one or both of these functions
as running times of programs. If f represents the running time of a program P , f(n) tells us how
many elementary operations P takes on input (of length) n.

Now let’s forget about the fact that f and g represent running times of programs on various
inputs, and set down some notation and terminology that is generally applicable.

We start with a very restrictive notion of equivalence.

Definition 10.1. Given f : N→ R>0 and g : N→ R>0, we say f(n) and g(n) are asymptotically
equivalent if

(∀ε ∈ R>0)(∃N ∈ N)(∀n ≥ N) 1− ε ≤ f(n)

g(n)
≤ 1 + ε. (10.1)

We use the notation f(n) ∼ g(n) to denote that f(n) and g(n) are asymptotically equivalent.

In words, as n increases, the ratio of f(n) and g(n) approaches 1. Another way to formulate
Definition 10.1 is limn→∞ f(n)/g(n) = 1.

Definition 10.1 captures one of the goals we have set for ourselves. It characterizes the behavior
of two functions as their inputs get large.

Example 10.1: Let Fn denote the n-th fibonacci number. Recall that fibonacci numbers are defined
as follows:

1

10.1 Asymptotic Analysis

F1 = 1, F2 = 1

and for n > 2

Fn = Fn−1 + Fn−2.

Notice that this is slightly different from the stairs problem in Hw 6. The difference is that the
foundation rule corresponds to n = 1 and n = 2 here , instead of n = 0 , n = 1 as in the stairs
problem.

When defined as above, the solution to the recurrence for Fn works out to be:

Fn =
%n − (1− %)n√

5

where % = (1 +
√

5)/2.
Fn ∼ %n√

5
. Consider f(n) = Fn and g(n) = %n√

5
.

Now let’s look at the ratio of f and g.

f(n)

g(n)
=

%n−(1−%)n√
5

%n√
5

=
%n − (1− %)n

%n
= 1− (1− %)n

%n
= 1−

(
1− %
%

)n

. (10.2)

Notice that (1− %)/% < 1, so raising it to a high power yields a number that is close to zero. Thus,
as n increases, the term [(1− %)/%]n gets closer and closer to zero, which means (10.2) gets closer
and closer to one.

To show that f(n) ∼ g(n), consider ε ∈ R>0, and pick an N such that [(1− %)/%]N < ε. Since
1 doesn’t change with n, and [(1− %)/%]n gets closer to zero as n increases, we get that f(n)/g(n)
is bounded between 1− ε and 1 + ε for all n ≥ N . Thus, f(n) ∼ g(n). �

Example 10.2: Consider f(n) = 12n2 + 109n+ 1
n and g(n) = 12n2. Then f(n) ∼ g(n).

To see this, observe that as n increases, 12n2 grows much faster than the other terms in f(n).
Thus, when n is large, 109n becomes negligible compared to 12n2 even though the coefficient in
front of n may look like a giant number. A common expression for this is that 12n2 dominates
109n. Similarly, 12n2 dominates 1

n .
Now we argue more formally. We can write

f(n)

g(n)
=

12n2 + 109n+ 1
n

12n2
= 1 +

109

12
· 1

n
+

1

12
· 1

n3
.

Since both the terms 109/12n and 1/12n3 decrease towards zero as n increases, we can find an N
for which Definition 10.1 is satisfied using the same argument as in the previous example.

Also notice that f(n) 6∼ n2. The ratio of f(n) and n2 approaches 12 as n goes to infinity, and
the ratio won’t get close to one. �

Example 10.3: Fn 6∼ 12n2.
The Fibonacci sequence grows much faster than the quadratic 12n2. Let f(n) = Fn and

g(n) = 12n2. For small values of n, we actually have f(n) < g(n), but that quickly changes
and f(n) starts growing much faster than g(n). One way to see this is that f(n) increases by a
factor of % if n increases by 1, whereas 12n2 increases by a factor that is close to 1 (just write out
12(n+ 1)2/12n2 to see this) if n increases by 1. �

2

10.1 Asymptotic Analysis

We see from the examples above that Definition 10.1 accomplishes some of our goals, but not all
of them. It allows us to capture the behavior of functions as their inputs grow. However, as we saw
in Example 10.2, there is still dependence on constant factors. In particular, we saw f(n) ∼ 12n2,
but f(n) 6∼ n2. Since f(n), 12n2, and n2 grow like quadratics, we would like them to be similar, but
asymptotic equivalence doesn’t allow that. The next definition fixes this shortcoming of asymptotic
equivalence.

Definition 10.2 (Big Theta). Given f : N→ R>0 and g : N→ R>0, we say f(n) is Theta of g(n)
if

(∃c, d ∈ R>0)(∃N ∈ N)(∀n ≥ N) c ≤ f(n)

g(n)
≤ d. (10.3)

We write f(n) = Θ(g(n)) to denote that f(n) is Theta of g(n).

Definition 10.2 no longer requires f and g to approach each other in the limit. Instead, it
requires that their ratio be bounded above and below by some constants as n gets large. This
allows us to ignore constant factors because the Θ notation “absorbs” them.

Let’s see how the examples we used for asymptotic equivalence change. First, if f(n) ∼ g(n),
then certainly f(n) = Θ(g(n)). To see this, pick ε = 1/2 (we can pick any ε > 0 to make this
argument work; ε = 1/2 is just an example). Since f(n) ∼ g(n), there is an N such that for
all n ≥ N , 1/2 ≤ f(n)/g(n) ≤ 3/2. So take that N , and pick c = 1/2 and d = 3/2 to show
f(n) = Θ(g(n)).

Example 10.4: By the previous paragraph, Fn = Θ(%n/
√

5) and 12n2 + 109n+ 1/n = Θ(12n2).
In addition, we also have 12n2 + 109n + 1/n = Θ(n2) because we can pick N = 1, c = 12 and

d = 109 + 13 in order to satisfy Definition 10.2. Another option is c = 12, d = 13, N = 109. This
second choice illustrates that we only care about larger values of n in asymptotic analysis. It also
allowed us to pick c and d that are closer to each other.

Finally, Fn 6= Θ(12n2) because Fn grows exponentially, and we cannot bound the ratio of Fn

and 12n2 by any constant. �

We may also be interested in only one of the bounds in (10.3). For example, if we want to
guarantee that a program terminates within a number of steps that is at most some function of the
input, we only care about the upper bound. On the other hand, if we want to prove to someone
that the number of steps is at least some function of the input, we only care about the lower bound.
Thus, we make the following two definitions.

Definition 10.3 (Big Oh). Given f : N→ R>0 and g : N→ R>0, we say f(n) is Oh of g(n) if

(∃d ∈ R>0)(∃N ∈ N)(∀n ≥ N)
f(n)

g(n)
≤ d. (10.4)

We write f(n) = O(g(n)) to denote that f(n) is Oh of g(n).

Definition 10.4 (Big Omega). Given f : N → R>0 and g : N → R>0, we say f(n) is Omega of
g(n) if

(∃c ∈ R>0)(∃N ∈ N)(∀n ≥ N) c ≤ f(n)

g(n)
. (10.5)

We write f(n) = Ω(g(n)) to denote that f(n) is Omega of g(n).

Observe that if f = Θ(g), then f = O(g) and f = Ω(g). This follows because conditions (10.4)
and (10.5) are weaker than condition (10.3). Also, if both f = O(g) and f = Ω(g) hold, then
f = Θ(g) because combining the inequalities from (10.4) and (10.5) gives us the inequality (10.3).

3

10.1 Asymptotic Analysis

Example 10.5: By the previous paragraph, we have Fn = O(%n/
√

5) and Fn = Ω(%n/
√

5). We also
get 12n2 +109n+1/n = O(12n2) and 12n2 +109n+1/n = Ω(12n2), as well as 12n2 +109n+1/n =
O(n2) and 12n2 + 109n+ 1/n = Ω(n2).

Since Fn grows way faster than 12n2, Fn 6= O(12n2), but it is true that Fn = Ω(12n2). Along
the same vein, 12n2 = O(Fn) and 12n2 6= Ω(Fn). �

Remark : If limn→∞
f(n)
g(n) exists, then we can figure out the relationship between f and g is

using the limit:

1. If ∃c > 0, limn→∞
f(n)
g(n) ≤ c then f(n) = O(g(n)).

2. If ∃c > 0, limn→∞
f(n)
g(n) ≥ c then f(n) = Ω(g(n)).

3. If ∃c > 0, limn→∞
f(n)
g(n) = c then f(n) = Θ(g(n)).

These are not if and only if statements. We could have f(n) = O(g(n)) even if limn→∞
f(n)
g(n) doesn’t

exist. But, if the limit exists, the above gives us a convenient way of figuring out the relationship
between f and g. Here are some additional facts:

• If limn→∞
f(n)
g(n) = 0 then f(n) = O(g(n)) and f(n) 6= Ω(g(n)).

• If limn→∞
f(n)
g(n) =∞ then f(n) = Ω(g(n)) and f(n) 6= O(g(n)).

Practice Problem: For each of the following pairs, relate the functions defined by the expressions
as tightly as possible using O ,Ω Θ and ∼: (assume the logarithms are with base 2.)

• n3 + 15 log n and n3 + 16n2 + 32.

• n log n and n2

• log(n2 + 1) + n2 and n2

• 2n and 4n

• 15n4 and 2n

• 2log
2 n and nlogn

Example 10.6: Let f(n) = log(n!) and g(n) = n log n (n! = n · (n − 1) · · · 1). Assume that the
logarithms are with base 2.

Then f(n) = Θ(g(n)).
We prove this by showing f(n) = O(g(n)) and f(n) = Ω(g(n)).
By basic properties of the logarithm, we have:

log(n!) = log(n) + log(n− 1) + . . . log(1).

Every term on the right hand side is at most log(n) and there are n terms in the sum on the
right hand side. This tells us log(n) + log(n− 1) + . . . log(1) ≤ n · log n.

Therefore ∀n ≥ 1, log(n!) ≤ n · log n. Taking d = 1 and N = 1 in the definition of Big -Oh, we
have log(n!) = O(n log n).

We now show that log(n!) = Ω(n log n). We have log(n!) = log(n) + log(n − 1) + . . . log(1).
Observe that log(n/2) = log(n) − 1. So the first half of the terms in the sum log(n), log(n −

4

10.1 Asymptotic Analysis

1) . . . log(bn/2c+ 1) are all at least log(n)− 1. Which implies log(n!) ≥ n/2 · (log(n)− 1). This is
spelled out in more detail below.

Consider the largest bn/2c+ 1 terms of this sum.

log(n!) = log(n) + log(n− 1) + . . . log(1) ≥ log(n) + log(n− 1) + . . . log((n− bn/2c).

log(n) + log(n− 1) + . . . log(n− bn/2c) = log(n) + log(n− 1) + . . . log(dn/2e).

This is because n = bn/2c + dn/2e. (The ceiling function dxe is the smallest integer ≥ x.
Therefore, if n is even dn/2e = n/2 and if n is odd, dn/2e = n+1

2 .)
Now, regardless of whether n is even/ odd dn/2e ≥ n/2, which implies log(dn/2e) ≥ log(n/2) =

log(n)− 1.
Therefore, each of the bn/2c+ 1 terms in the sum log(n) + log(n− 1) + . . . log(dn/2e) is at least

log(n)− 1.
Which implies log(n) + log(n− 1) + . . . log(dn/2e) ≥ (bn/2c+ 1) · (log(n)− 1).
Since bn/2c+ 1 ≥ n

2 ,

log(n) + log(n− 1) + . . . log(dn/2e) ≥ n

2
· (log(n)− 1).

The above implies that ∀n ≥ 1, log(n!) ≥ n
2 · (log(n) − 1). To show log(n!) = Ω(n log n), it

suffices to prove n−1
2 · (log(n)− 1) = Ω(n log n) (why ?).

We leave this as an exercise for the reader.
�

5

