
Operator Precedence in the Java™
Programming Language

handout for CS 302 by Will Benton (willb@cs)

Operator precedence defines the
order in which various operators
are evaluated. (In fact, you may
remember "order of operations"
from secondary school algebra.)

As an example, let's say we have
the following line of Java code:

int x = 4 + 3 * 5;

The variable x gets the value of
evaluating the expression
4 + 3 * 5. There are a couple
of ways to evaluate that
expression, though: We can
either perform the addition first
or perform the multiplication
first.

By choosing which operation to
perform first, we are actually
choosing between two different
expressions:

1. (4 + 3) * 5 == 35
2. 4 + (3 * 5) == 19

In the absence of parentheses,
which choice is appropriate?
Programming languages answer
this question by defining
precedence levels for each
operator, indicating which is to
be performed first. In the case of
Java, multiplication takes
precedence over addition;
therefore, x will get the value 19.

For arithmetic expressions,
multiplication and division are
evaluated before addition and
subtraction, just like in
mathematics. Of course, just as
you might in a math class, you
can always parenthesize Java
expressions to indicate which
are to be evaluated first.

 Sensible use of parentheses
will make your programs
easier to read even if your
expressions all use the
standard evaluation order.

This sheet shows the operator
precedences for the Java
operators you'll be using most
frequently in CS 302. On the
reverse of this sheet is a chart of
the precedence levels for every
operator in the Java language,
provided in case you're curious!

postfix increments and decrements (e.g. x++)

unary positive (+x), unary negative (-x), and
logical negation (!x)

prefix increments and decrements (e.g. ++x)

binary arithmetic operators

binary comparison operators

binary logical operators

assignment operators

Multiply (*), divide (/), and
modulus (%) operations are
evaluated before add (+)
and subtract operations (-).

Comparison operations (e.g. <,
>, <=) are evaluated before
equality operators (e.g. ==, !=).

AND operations (&&) are
evaluated before OR (||)
operations

ev
al

ua
te

d
la

te
r

ev
al

ua
te

d
so

on
er

java-operator-precedence.graffle: Created on Fri Jan 20 2006; modified on Wed Feb 14 2007; page 1 of 2Copyright © 2006 Will C. Benton

[] . ,

x++ x-- ~x

++x --x +x -x !x

(X) new X

subscript, member selection, comma
(only in for loop headers)

postfix increment, postfix
decrement, bitwise negation

prefix increment, prefix
decrement, unary positive,

unary negative, logical
negation

typecasting, object creation

left-associative

right-associative

* / % multiplication, division,
modulus

addition, subtraction, string
concatenationx+y x-y x+"x"

<< >> >>> bitwise shift

comparison< <= > >=

instanceof runtime type compatibility

== != equality and inequality

bitwise AND&

bitwise XOR^

bitwise OR|

logical AND&&

logical OR

left-associative

||

right-associative

x ? y : z ternary (conditional)

=
+= -= *= /= %=

<<= >>= >>>=
&= ^= |=

assignment and compound
assignment

hi
gh

er
 p

re
ce

de
nc

e
lo

w
er

 p
re

ce
de

nc
e

T
h

is
 c

h
ar

t
(c

)
20

0
5-

20
0

7
W

il
li

am
 C

. B
en

to
n

.
so

u
rc

e
s:

C

h
an

, P
at

ri
ck

.
T

he
 J

a
va

 D
ev

el
op

er
s

A
lm

a
n

a
c

1.
4.

 A
d

d
is

on
-W

es
le

y,
 2

0
0

2.
G

os
li

n
g,

 J
am

es
, e

t
al

.
T

he
 J

a
va

 L
a

n
g

u
a

g
e

Sp
ec

if
ic

a
ti

on
, 3

e.
 A

d
d

is
on

-W
es

le
y,

 2
0

0
5.

Note: operators with the same precedence level in an expression are evaluated based on their associativity. For example,
left-associative operators group from left to right. Therefore, the expression x * y % z is equivalent to (x * y) % z.

java-operator-precedence.graffle: Created on Fri Jan 20 2006; modified on Wed Feb 14 2007; page 2 of 2

