
Week 13 (M) Page 1

CS 536 Announcements for Monday, April 22, 2024
Last Time
• wrap up code generation

• tuple access
• control-flow constructs and code generation

• introduce control flow graphs
Today
• optimization overview
• peephole optimization
• loop optimizations

Next Time
• copy propagation

Recall example from last time
MIPS code outline:
 lw $t0, addr_a
 push $t0

 lw $t0, addr_b
 push $t0

 pop $t1
 pop $t0
 sgt $t0, $t0, $t1
 push $t0

 pop $t0
 beq $t0, FALSE, falseLabel
 .
 . # code for true branch
 .
 b doneIfLabel

falseLabel:
 .
 . # code for false branch
 .

doneIfLabel:

Week 13 (M) Page 2

Optimization Overview
Goals
Informally: Produce "better" code that does the "same thing" as the original code.
What are we trying to accomplish?
• faster

• fewer

• lower

• smaller

•

Safety guarantee
Informally: Don't change the program's output (observable behavior)

• the same input produces the same output

• if the original program produces an error on a given input, so will the transformed code

• if the original program does not produce an error on a given input, neither will the
transformed code

However… There's no perfect way to check equivalence of two arbitrary programs
• if there was, we could use it to solve the halting problem
• we'll attempt to perform behavior-preserving transformations

Week 13 (M) Page 3

Program Analysis
A perspective on optimization
• recognize some behavior in a program
• replace it with a "better" version

However, halting problem keeps arising:
• we can only use approximate algorithms to recognize behavior

Two properties of program-analysis/behavior detection algorithms
• soundness : all results that are output are valid
• completeness : all results that are valid are output

Analysis algorithms with these properties are mutually exclusive:
• if an algorithm was sound and complete, it would either:

• solve the halting problem, or
• detect a trivial property

Optimization Overview (cont.)
We want our optimizations to be sound transformations
• they are always valid
• but some opportunities for applying a transformation will be missed

Our techniques
• can detect many practical instances of the behavior
• won't cause any harm
• but we still want to consider efficiency

Peephole optimization
• naïve code generator errs on the side of correctness over efficiency
• use pattern-matching to find the most obvious places where code can be improved
• look at only a few instructions at a time

Week 13 (M) Page 4

Peephole optimization
What can be optimized Replaced with

push followed by pop

pop followed by push

branch to next instruction

jump to a jump

jump around a jump

Week 13 (M) Page 5

Peephole optimization (cont.)
What can be optimized Replaced with

store followed by load

load followed by store

useless operations

multiplication by 2

Do multiple passes?

Week 13 (M) Page 6

Loop-Invariant Code Motion (LICM)
Idea: Don't duplicate effort in a loop
Goal: Pull code out of the loop ("loop hoisting")
Important because of "hot spots"
• most execution time due to small regions of deeply-nested loops

Example
for (i=0; i<100; i++) {
 for (j=0; j<100; j++ {
 for (k=0; k<100; k++) {
 A[i][j][k] = i*j*k;
 }
 }
}

becomes
for (i=0; i<100; i++) {
 for (j=0; j<100; j++ {
 temp = i*j;
 for (k=0; k<100; k++) {
 A[i][j][k] = temp*k;
 }
 }
}

Suppose A is on the stack.
To compute the address of A[i][j][k]:

FP – offset_of_A[0][0][0]
+ (i*10000*4)
+ (j*100*4)
+ (k*4)

Week 13 (M) Page 7

Loop-Invariant Code Motion (cont.)

When should we do LICM?
• at IR level, more candidate operations
• assemby might be too low-level

• need guarantee that the loop is natural

How should we do LICM? Factors to consider
• safety – is the transformation semantics-preserving?

• profitability – is there any advantage to moving the instruction?

Other Loop Optimizations
Strength reduction in for-loops
• replace multiplications with additions

Loop unrolling
• for a loop with a small, constant number of iterations, may actually take less time to

execute by just placing every copy of the loop body in sequence
• may also consider doing multiple iterations within the body

Loop fusion
• merge 2 sequential, independent loops into a single loop body

	CS 536 Announcements for Monday, April 22, 2024
	Recall example from last time
	Optimization Overview
	Goals
	Safety guarantee
	Program Analysis
	Optimization Overview (cont.)
	Peephole optimization
	Peephole optimization (cont.)
	Loop-Invariant Code Motion (LICM)
	Loop-Invariant Code Motion (cont.)
	Other Loop Optimizations

