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CS 536 Announcements for Monday, April 22, 2024 
Last Time 
• wrap up code generation 

• tuple access 
• control-flow constructs and code generation 

• introduce control flow graphs 
Today 
• optimization overview 
• peephole optimization 
• loop optimizations 

Next Time 
• copy propagation 

 
 
 
 
 

Recall example from last time 
MIPS code outline: 
    lw $t0, addr_a 
    push $t0 
 
    lw $t0, addr_b 
    push $t0 
 
    pop $t1 
    pop $t0 
    sgt $t0, $t0, $t1 
    push $t0 
 
    pop $t0 
    beq $t0, FALSE, falseLabel 
    . 
    . # code for true branch 
    . 
    b doneIfLabel 
     
falseLabel: 
    . 
    . # code for false branch 
    . 
     
doneIfLabel: 
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Optimization Overview 
Goals 
Informally: Produce "better" code that does the "same thing" as the original code. 
What are we trying to accomplish? 
• faster  

• fewer  

• lower  

• smaller  

•  

Safety guarantee 
Informally: Don't change the program's output (observable behavior) 

• the same input produces the same output 

• if the original program produces an error on a given input, so will the transformed code 

• if the original program does not produce an error on a given input, neither will the 
transformed code 

 
 
 
 
 
 
 
 
 
 
 
 
However… There's no perfect way to check equivalence of two arbitrary programs 
• if there was, we could use it to solve the halting problem 
• we'll attempt to perform behavior-preserving transformations 
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Program Analysis 
A perspective on optimization 
• recognize some behavior in a program 
• replace it with a "better" version 

However, halting problem keeps arising: 
• we can only use approximate algorithms to recognize behavior 

Two properties of program-analysis/behavior detection algorithms 
• soundness : all results that are output are valid 
• completeness : all results that are valid are output 

Analysis algorithms with these properties are mutually exclusive: 
• if an algorithm was sound and complete, it would either: 

• solve the halting problem, or 
• detect a trivial property 
 

 
 
 
 

Optimization Overview (cont.) 
We want our optimizations to be sound transformations 
• they are always valid 
• but some opportunities for applying a transformation will be missed 

Our techniques 
• can detect many practical instances of the behavior 
• won't cause any harm 
• but we still want to consider efficiency 

Peephole optimization 
• naïve code generator errs on the side of correctness over efficiency 
• use pattern-matching to find the most obvious places where code can be improved 
• look at only a few instructions at a time 
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Peephole optimization 
What can be optimized Replaced with 

push followed by pop 
 
 
 
 
 
 
pop followed by push 
 
 
 
branch to next instruction 
 
 
jump to a jump 
 
 
 
jump around a jump 
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Peephole optimization (cont.) 
What can be optimized Replaced with 

store followed by load 
 
 
 
load followed by store 
 
 
 
useless operations 
 
 
 
 
 
 
 
multiplication by 2 
 
 

Do multiple passes? 
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Loop-Invariant Code Motion (LICM) 
Idea: Don't duplicate effort in a loop 
Goal: Pull code out of the loop ("loop hoisting") 
Important because of "hot spots" 
• most execution time due to small regions of deeply-nested loops 

Example 
for (i=0; i<100; i++) { 
 for (j=0; j<100; j++ { 
  for (k=0; k<100; k++) { 
   A[i][j][k] = i*j*k; 
  } 
 } 
} 

becomes 
for (i=0; i<100; i++) { 
 for (j=0; j<100; j++ { 
  temp = i*j; 
  for (k=0; k<100; k++) { 
   A[i][j][k] = temp*k; 
  } 
 } 
} 

 
Suppose A is on the stack.  
To compute the address of A[i][j][k]: 

FP – offset_of_A[0][0][0]  
+ (i*10000*4)  
+ (j*100*4)  
+ (k*4) 
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Loop-Invariant Code Motion (cont.) 

When should we do LICM? 
• at IR level, more candidate operations 
• assemby might be too low-level 

• need guarantee that the loop is natural 

How should we do LICM? Factors to consider 
• safety – is the transformation semantics-preserving? 
 
 
 
 
• profitability – is there any advantage to moving the instruction? 
 
 
 
 

 
 
 

Other Loop Optimizations 
Strength reduction in for-loops 
• replace multiplications with additions 

Loop unrolling 
• for a loop with a small, constant number of iterations, may actually take less time to 

execute by just placing every copy of the loop body in sequence 
• may also consider doing multiple iterations within the body 

Loop fusion 
• merge 2 sequential, independent loops into a single loop body 
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