
33

Chapter 3

Background

The work in this dissertation builds directly on existing work in the area of motion synthe-

sis. This chapter describes in more detail some of the techniques and concepts unique to motion

synthesis that are used extensively throughout the rest of the document. In particular, this chapter

briefly describes how motions in this dissertation are represented, the metric used to measure the

similarity between two pieces of motion, the method used to append two motions together, the

process for aligning two motions in time, and the blending-based parametric synthesis method em-

ployed. It should be noted that none of the methods presented in this chapter are novel. All of the

described techniques are well described elsewhere. They are reviewed here to provide explanation

and motivation for the methods I build upon and to introduce important terms and notation that are

used throughout the rest of this document. Please refer to the original papers on these techniques

for more details.

3.1 Motion Representation

The raw data collected by a standard motion capture system consists of the 3D locations of a set

of points that are rigidly attached to the actor’s body. Because of the ease of animating a character

using a set of hierarchically organized joints, called askeleton, the raw data from a motion capture

shoot usually goes through the process of being skeletonized (see [BRRP97, OBBH00, ZH03] for

more information on how this process is accomplished).

While the work presented in Chapter 5 uses raw motion capture data directly, I primarily rep-

resent the human body as a rigid-body skeleton. Each joint of the skeleton has exactly one parent



34

Pelvis

Shoulder

Root

Elbow

Neck

HeadHead End

Wrist

Fingers
Knee

Ankle

Toes EndToes

Heel

Hip

Lower Spine

Upper Spine

Figure 3.1 Standard Skeleton Hierarchy



35

joint, with the exception of theroot joint that has no parent. A skeleton can be defined by its

joint hierarchy and initial pose, or the offset of each joint from its parent in local coordinates.

Figure 3.1 shows the standard skeleton hierarchy used in all of the experiments presented in this

dissertation. Note that the articulated skeleton can only control the body motion of the character;

the skeleton does not include joints that represent fingers, toes, or facial features. In general, this

dissertation is only concerned with a character’s overall body motion, with the notable exception

of eye movement as discussed in Chapter 5.

Given a character’s skeleton, a motion is defined as a continuous function over time:

M(t) = {p(t),q1(t), . . . ,qk(t)} [3.1]

wherep is the position of the root with respect to the origin andqj is the relative orientation of the

jth joint with respect to its parent. In the case of the root, which does not have a parent joint, the

orientation is denoted with respect to the global coordinate system at the origin.

In practice, the continuous functionM(t) is represented as a set of samples, orframes, taken

at regular time increments,M(t1), . . . ,M(tn). Values ofM in between frames are computed

by using linear interpolation of the root position and spherical linear interpolation on the joint

orientations represented as unit quaternions [Sho85]. While there are a number of other ways to

represent rotations, unit quaternions are particularly well-suited for interpolation (see [Gra98]),

making them the rotation representation of choice for many motion researchers.

3.2 Motion Similarity

Much of my work depends on computing the similarity between two frames of motion, or,

conversely, to compute the difference between two frames of motion. One could compute the

difference between two frames of motion,M(t) andM′(t′), by directly comparing the sampled

motion vectors,{p(t),q1(t), . . . ,qk(t)} and{p′(t′),q′1(t′), . . . ,q′k(t′)}, a method employed by

others studying human motion [LZWP03] as well as by researchers in other domains with high-

dimensional spaces [BBK01]. There are two problems with this type of direct comparison:



36

a b

Figure 3.2 Point Cloud Representation of a Frame of Motion. (a) shows a frame of running
motion in skeletal form. (b) shows the same frame of motion in point cloud form. Notice how the
point cloud representation contains information about where each of the joints of the skeleton are

located in 3D space on the frame in question as well as the frames surrounding it.

1. It fails to account for differences introduced solely due to a motion’s global orientation in

the environment.

2. It does not take into account differences between the dynamics of the two motions.

Thus, I compute the difference between two frames of motion,D(M(t),M′(t′)), using a metric

originally introduced by Kovar et al. [KGP02]. I chose to use this algorithm for two reasons, each

of which addresses one of the two problems associated with direct motion vector comparison:

1. The metric is invariant to translations along the ground plane and rotations about the up-axis.

2. The metric can take into account joint velocities and accelerations using finite differences.

The metric works by first representing each frame of motion as a cloud of points, henceforth

called apoint cloud. The points of a point cloud correspond to the locations of relevant skeletal

joints over a small window of time surrounding the frame. Figure 3.2 shows an example of a

point cloud generated from a frame of running motion. Using the following closed-form solution

from [KGP02], I can compute the rotation about the vertical axis,θ, and translation along the floor



37

plane,(x0, z0), that best aligns corresponding points,pi andp′i, in the two point clouds.

θ = arctan

∑
i wi(xiz

′
i − x′izi)− 1∑

i
wi

(xz′ − x′z)
∑

i wi(xix′i + ziz′i)− 1∑
i
wi

(xx′ + zz′)
[3.2]

x0 =
1∑
i wi

(x− x′ cos(θ)− z′ sin θ) [3.3]

z0 =
1∑
i wi

(z + x′ sin(θ)− z′ cos θ) [3.4]

wherei is an index over the number of points in each cloud,wi is a weighting term for pointpi in

the point cloud,xi andzi are the x and z coordinates of pointpi, and all barred terms correspond

to the weighted sum of the barred variables over the indexi.

Using this optimal alignment, the distance between the two frames is computed as:

D(M(t),M′(t′)) =
∑

i

(pi −Φθ,x0,z0(p
′
i))

2 [3.5]

where the functionΦθ,x0,z0(p) applies the optimal point cloud alignment transform,{θ, x0, z0}, to

the pointp.

Depending on the length of the window over which the point cloud is built, this distance metric

can implicitly take into account relative joint positions, joint velocities, and joint accelerations

when measuring similarity. Refer to [KGP02] for a more detailed description of this point cloud

distance metric.

3.3 Transitioning Between Two Motions

It is often useful to append two motions together with a transition. Unfortunately, appending

motions together by simply appending motion frame vectors is likely to cause discontinuities in

the motion. Instead, as described in Section 2.2.1, it is common to append two motions together by

using a linear blend transition between the two motions over a small window of frames centered at

the transition point.

Appending a motion,M2, to another motion,M1, using a linear blend consists of three steps:



38

Possible Transition Region for Motion 1

P
o

ss
ib

le
 T

ra
n

si
ti

o
n

 R
e

g
io

n
 f

o
r 

M
o

ti
o

n
 2

0

Figure 3.3 A distance grid. Darker regions denote greater similarity between frames. The light
red dot marks the optimal transition point.



39

1. Choosing a transition point between the two motions.While a transition point can be

chosen arbitrarily between the two motions, linear blend transitioning works best if the mo-

tions look as similar as possible. For this reason, my methods choose a transition point

between the two motions by locating the point where the two motions look the most similar

to each other over the possible transition region. The point cloud distance metric presented

in Section 3.2 is used to rate the similarity of different frame pairs to determine the transition

point. My method for finding the transition point starts by calculating the distance between

every pair of frames in the possible transition regions, forming a grid. The pair of frames

corresponding to the grid cell with the minimum distance value,(t1o, t
2
o), is called the optimal

transition point. Figure 3.3 shows an example of this distance grid computation between two

motions.

2. Aligning the two motions at the transition point. Because the global position and orienta-

tion differs betweenM1 andM2, it is necessary to alignM2(t
2
o) toM1(t

1
o). This can be done

by applying the optimal alignment transform associated withD(M1(t
1
o),M2(t

2
o)), Φθ,x0,z0,

to the motionM2.

3. Synthesizing the appended motion through blending.The final step necessary to append

motionM2 to motionM1 is to blend the motions over time to produce the final appended

motion,M1+2:

M1+2(t) =





M1(t) if t < t1o − w
2

M2(t
2
o + t− t1o) if t > t1o + w

2

(1− α(t)) ∗M1(t) + α(t) ∗M2(t
2
o + t− t1o) otherwise





α(t) =
t− t1o

w

This blending process is illustrated in Figure 3.4.

I chose to use this method for appending two motions together using a linear blend transition

because it is a simple method. The limitation is that linear blend transitions only work reliably

when the motions that are being appended are already close to one another in terms of the similarity



40

Motion 1

Motion 2

Transition Point

Transition Window

Figure 3.4 Appending two motions through linear blend transitioning. The green bar (top) and
red bar (bottom) correspond to the original two motions. The thinner, light blue bar shows the

weighting for the blend of the motions over time. Notice how the weights go from being fully on
motion 1 to fully on motion 2 over the transition window centered at the transition point.



41

metric presented in Section 3.2. Rather than developing a more complex method for appending or

transitioning between motions, I use this simple method but ensure that I only transition between

motions with sufficient similarity.

3.4 Motion Time Alignment

Two motions,M1 andM2, may be logically similar in that they represent different motions of

the same action. For instance, both motions might be instances of a person walking, following the

same footstep pattern. Yet, these logically similar motions might have very different timing details.

For instance, each step inM1 might take twice as long as each step inM2. For some applications,

it is desirable to find a time alignment between logically similar motions such that frames in one

motion can be mapped to time-corresponding frames in the other motion. This continuous, strictly

increasing mapping is called atime alignment curve.

When computing a time alignment curve between two motions,M1 andM2, the goal is to find

a mapping between frames ofM1 and frames ofM2 that minimizes the average distance between

corresponding frames, where distance is computed using the algorithm in Section 3.2. First, the

distance between every pair of frames is calculated, forming a grid as in Section 3.3. Then using

the dynamic programming method of Kovar and Gleicher [KG03], a continuous, monotonic, and

non-degenerate path is computed for every cell in the grid that connects to the lower-left corner,

while minimizing the sum of its cells. This optimal path from the lower-left corner to the upper-

right corner of the grid provides a discrete, monotonically increasing time alignment, as shown in

Figure 3.5. To generate the final time alignment curve, a strictly increasing, endpoint-interpolating

B-spline is fit to the optimal path. See [Kov04] for more information on how to increase the speed

of this time alignment algorithm.

The dynamic timewarping method that I use in this dissertation to compute time alignment

curves is based on the work of Kovar and Gleicher [KG03], but there are several other pub-

lished methods that would work as well. In particular, the timewarping methods of Bruderlin

and Williams [BW95], Dontcheva et al. [DYP03], and Hsu et al. [HPP05] also use dynamic pro-

gramming to find a temporal alignment between motions. Hsu et al.’s method [DYP03] builds on



42

0 Motion 1

0
M

o
ti

o
n

 2
 

Figure 3.5 A grid depicting the difference between Motion1 and Motion2. Dark areas denote
similarity between the corresponding frames. An optimal time alignment is shown by the path

through the grid.



43

Horizontal Punch Location

V
e

rt
ic

a
l P

u
n

ch
 L

o
ca

ti
o

n
Parameterized Motion Space

Figure 3.6 A parametric motion space representing punching motions, parameterized on the
location of a punch. Each point in this parametric motion space maps to an entire punching

motion, not just a single pose.

dynamic timewarping to iteratively converge on a time alignment that explicitly takes into account

pose variations. This technique can be used to improve timewarping results but requires a consid-

erable increase in computation time. A simple, greedy timewarping algorithm can also work in

cases where the motions are very similar. But I have found that greedy search does not work well

for many of the more complex cases of timewarping in this dissertation, and I recommend using a

method based on dynamic programming.

3.5 Blending-Based Parametric Synthesis

Many different types of motion are easily described using a small number ofparameters. For

instance, a punching motion might be described by the location of a punch, or a stair climbing

motion might be described by the height of the steps. It can be convenient to use these high-level

parameters as a way of describing what motions are requested by a user or application.Parametric

synthesisdescribes the set of techniques that can generate motions based solely on these high-level

parameter vectors. The infinite set of motions that can be generated using a parametric synthesis

method can be mapped to the parameter space, forming aparametric motion space. Each point



44

in a parametric motion space maps from a parameter vector to an entire motion that meets those

parameters (see Figure 3.6).

One popular method for parametric synthesis is to synthesize new motions that meet requested

parameters by blending together example motions from that space (see Section 2.1.2.2 for a review

of these techniques). In this dissertation, I perform blending-based parametric synthesis using the

method of Kovar and Gleicher [KG04]. Because Kovar and Gleicher’s method is so essential to

my work on gaze control (Chapter 5) and parametric motion graphs (Chapter 6), I will use this

section to provide an in depth overview of their approach.

In [KG04], Kovar and Gleicher described how to:

1. Automatically find and extract logically similar motions, or motions where the character is

performing the same basic action, from a motion database. Their technique uses an iterative

method that locates motions that look similar to a query motion, where similarity is defined

by the metric presented in Section 3.2, and then repeats the process on each of the similar

looking motions.

2. Map these logically similar motions to a parametric motion space. Each of the logically

similar motions are registered to each other in both time and space using methods similar to

those presented in Sections 3.3 and 3.4. These registered motions become example motions

in the motion parameter space by mapping the motion to its relevant parameter vector. For

instance, the algorithm might identify the location in space where the character punches.

Figure 3.7a shows these example motions mapped in parametric motion space for a space of

punching motions.

3. Sample blends from the space to build a parametric motion. New logically similar motions

can be generated by blending together the base example motions. Yet, because of the non-

linearity of human motion, the parameter vectors associated with these new blended motions

are unlikely to be a similarly proportioned blend of the base example parameter vectors. So,

Kovar and Gleicher sampled the set of motions that can be blended together from these base



45

Horizontal Punch Location

V
e

rt
ic

a
l P

u
n

ch
 L

o
ca

ti
o

n

Parameterized Motion Space

Horizontal Punch Location

V
e

rt
ic

a
l P

u
n

ch
 L

o
ca

ti
o

n

Parameterized Motion Space

a b

Figure 3.7 A sampled parametric motion space of punching motions, parameterized on the
location where a character punches. (a) Logically similar punching motions from a motion

database are mapped to the parametric motion space (shown with dark, red circles) (b) Blends
between the example punching motions are sampled, producing additional data points (shown

with light, gray circles) in parametric motion space.



46

example motions. Each of these sampled blends is then analyzed, just as the original exam-

ples were, to produce an associated parameter vector. The blend information then becomes

a new data point in parametric motion space at this computed parameter vector. Figure 3.7b

shows these blend samples mapped in the punching parametric motion space.

4. Use the samples from the parametric motion space to synthesize new motions that accu-

rately meet user-requested parameter vectors. Once the samples in parametric motion space

are sufficiently close together, k-nearest neighbor interpolation is used to synthesize new

motions that meet specified parameter vectors. Other methods for blending-based paramet-

ric synthesis use a linear fit model to perform this scattered data interpolation instead of

k-nearest neighbor interpolation. But k-nearest neighbor interpolation has a number of ad-

vantages: it constrains interpolation weights to reasonable, positive values, resulting in more

realistic-looking motion; it is computationally efficient for large data sets and does not re-

quire a costly optimization to calculate; and it projects all outlier parameter vector requests

back into the space enclosed by the original example motions.

I chose to use the method of Kovar and Gleicher to perform parametric synthesis because

it produces high-quality results, allows for quick experimentation with many different types of

motion, provides a simple and efficient method for producing motion clips at runtime, and results

in parameteric motion spaces that aresmooth. A parameteric motion space is considered smooth

if small changes in the input parameters produce small changes in the generated motion. This

smoothness property is important to my work on parametric motion graphs in Chapter 6.


