
96

Chapter 6

Parametric Motion Graphs

This chapter presents a new approach for controlling interactive human character using a novel

example-based motion synthesis data structure called aparametric motion graph. Like other

example-based data structures, parametric motion graphs provide easy authoring of high-quality

motions, but they also supply the responsiveness, precise control, and flexibility demanded by in-

teractive applications. A parametric motion graph describes possible ways to generate seamless

streams of motion by concatenating short motion clips generated through blending-based paramet-

ric synthesis. As described in Section 3.5, blending-based parametric synthesis allows accurate

generation of any motion from an entire space of motions, by blending together examples from

that space. For instance, parametric synthesis can generate motions of a person picking up an item

from any location on a shelf by blending together a small set of example motions. While neither

seamless motion concatenation nor parametric synthesis is a new idea, by combining both tech-

niques, parametric motion graphs provide accurate control through parametric synthesis and can

generate long streams of high-fidelity motion without visible seams using linear-blend transitions.

In contrast to many other automated methods for representing transitions between motions

(see Section 2.2), parametric motion graphs are highly structured, facilitating efficient interactive

character control. The nodes of a parametric motion graph represent entire parametric motion

spaces that produce short motions for given values of their continuously valued parameters. The

directed edges of the graph encode valid transitions between source and destination parametric

motion spaces. This structure efficiently organizes the large number of example motions that can

be blended together to produce the final motion streams. Because of this structure, I have been able



97

Figure 6.1 An interactively controllable walking character using parametric motion graphs to
smoothly move through an environment. The character is turning around to walk in the

user-requested travel direction, depicted by the red arrow on the ground.



98

to easily author interactively controllable characters that can walk, run, cartwheel, punch, change

facing direction, and/or duck in response to user-issued requests.

While prior work on synthesis by concatenation has focused on representing seamless transi-

tions between individual clips of motion (see Section 2.2.1), I face the problem of defining valid

transitions between parametricspacesof motions, where it is not often possible to transition from

any motion in one parametric motion space to any motion in another. For example, consider a

parametric motion space representing a person taking two steps, parameterized on curvature. One

can imagine that this parametric motion space can follow itself; a person can take two steps, and

then take two more, and so on. However, a transition should not be generated between a motion

where the character curves sharply to the right and another where the character curves sharply to

the left; the resulting transition would not look realistic. Thus, the edges in a parametric motion

graph must encode therangeof parameters of the target space that a motion from the source space

can transition to, as well as the correct way to make the transition between valid pairs of source

and destination motions. The key challenge to parametric motion graphs is finding a good way to

compute and represent these transitions. By approaching the problem from a sampling perspective,

I provide an efficient way to compute and encode the edges of a parametric motion graph, allowing

automated authoring and fast transition generation at runtime.

To provide parametric motion graphs as a method for interactive character control, this chapter

describes how to:

Build Parametric Motion Graphs: Using a method based on sampling, I can efficiently locate

and represent transitions between parametric motion spaces.

Extract Data from Parametric Motion Graphs: My representation of transitions allows fast lookup

of possible transitions at runtime using interpolation.

Use Parametric Motion Graphs for Interactive Control: Because parametric motion graphs are

highly structured, they facilitate the fast decision-making necessary for interactive character

control. Furthermore, because all motion clips in the graph are generated using parametric

synthesis, motions accurately meet relevant constraints.



99

The rest of this chapter is organized as follows. Section 6.1 details my methods for building and

extracting information from a parametric motion graph. Then, Section 6.2 presents results from

some experiments using parametric motion graphs, including controlling interactive characters in

realtime. Finally, Section 6.3 concludes with a general discussion of the presented technique,

including a number of the technique’s limitations.

6.1 Parametric Motion Graphs

This section describes in detail the methods developed for building parametric motion graphs

and extracting data from them. My methods for controlling a character using a parametric motion

graph are presented later in Section 6.2.

6.1.1 Building a Parametric Motion Graph

To facilitate efficient motion synthesis at runtime, much of the needed computation for control-

ling interactive characters is done while building a parametric motion graph offline. A parametric

motion graph only needs to be built once, resulting in a small text file representation of the graph

that can be loaded at runtime.

As described at the beginning of this chapter, each node of a parametric motion graph represents

a parametric motion space implemented using blending-based parametric synthesis. For all of the

examples in this dissertation, blending-based parametric synthesis is performed using the method

presented in Section 3.5. While the nodes of a parametric motion graph can be built using this

existing technique, the key challenge is finding a way to identify and represent possible transitions

between these parameterized nodes. Because the parametric motion spaces represented by the

graph nodes are smooth, as described in Section 3.5, I can tackle this challenge using sampling and

interpolation. The rest of this subsection describes in detail how to identify and represent edges

between source and target graph nodes,Ns andNt respectively. Throughout this description,

the parametric motion space represented by nodeNi is denoted byP i(l), wherel is a vector of

relevant motion parameters, such as the target of a punch; a parametric motion space produces a

short motion,Mi, for any given value,li, of its continuously valued parameters.



100

6.1.1.1 Identifying Transitions Between Motion Spaces

To start, consider the case where the nodesNs andNt represent small motion spaces whose

valid parameter ranges only include a single point. This case reduces to the traditional synthesis-

by-concatenation problem; is there a frame of motion near the end of the motion generated byNs,

M1, and a frame of motion near the beginning of the motion generated byNt, M2, that are similar

enough to allow a linear-blend transition from one to the other over a short window centered at

these frames? A good transition exists fromM1 to M2 if and only if there exists a frame,t1, near

the end ofM1 and a frame,t2, near the beginning ofM2 such thatD(M1(t1),M2(t2)) ≤ TGOOD,

whereTGOOD is a tunable threshold. If the distance value of the optimal transition point found

using the method presented in Section 3.3 is belowTGOOD, then it is possible to transition between

M1 andM2 at that point,(t1o, t
2
o).

Now consider the general case whereNs andNt represent larger spaces. For any sufficiently

large space, it is unlikely that the motions represented by the space look similar enough to be

treated like a single motion. For instance, in the walking example discussed at the beginning of

this chapter, the walking character can only transition to other walking motions where the charac-

ter walks at a similar curvature to its current one. However, since each parametric motion space

represents an infinite number of motions, it is infeasible to compare all possible pairs of motions

represented by each of the parameterized nodes. One possible approach is to reduce each paramet-

ric motion space to a discrete number of motions chosen from the full space. To find and represent

good transitions between all pairs of motions from a source set of sizem and a target set of sizen,

I would need to repeat the technique described abovemn times. Unfortunately, by transforming a

continuous motion space into a discrete set of motions, I lose much of the accuracy that parametric

synthesis provides; accuracy can be increased by adding more motions to these sets but this re-

sults in a combinatorial explosion in the number of required comparisons and the amount of space

needed to store the possible transitions.

Yet, in a smooth parametric motion space, motions generated for any local neighborhood of

parameter space look similar. For example, consider a parametric motion space representing mo-

tions of a person punching, parameterized on the location of the punch. Two motions in this space



101

a b c

Figure 6.2 Process of determining the valid transition region in target parameter space. (a) A set
of randomly chosen samples from the target space. (b) Darkened circles produce good transitions,

crossed out circles produce bad transitions, and empty circles produce neutral transitions. The
shaded box encloses all good samples but also includes some bad samples. (c) The adjusted,

shaded box excludes all bad samples. In practice, little to no adjustment is usually made to the
bounding box.

where the punches land1mm apart look similar. In this case, I can compute the possible transitions

from one of these motions and use the result for both. This observation leads me to approach the

problem of identifying and representing transitions between parametric motion spaces using sam-

pling, extending the method presented in Section 3.3 for locating possible linear blend transitions

between individual motions.

6.1.1.2 Building a Parametric Motion Graph Edge

An edge between source and target nodes,Ns andNt respectively, maps any point,lsi , in Ps

to the subspace ofP t that can be transitioned to fromMs
i = Ps(lsi ). It also supplies the time at

which that transition should occur. Assuming it is possible to transition from every point inNs

to some subspace inNt, we can build an edge between these nodes using sampling. I start by

generating two lists of random parameter samples,Ls = {ls1, . . . , lsns
} andLt = {lt1, . . . , ltnt

} (see

Figure 6.2a). In order to accurately capture the variations in the target space,nt should be large.

The exact number depends on the size of the parameter space, but I have found1000 samples to be

more than enough for all of the cases I have tried, even for parametric motion spaces that have three



102

parameters. In contrast,ns should be small, while still covering the extremes of the source space,

as this number affects the amount of storage needed for an edge as well as performance efficiency

of the graph when used to produce motion at runtime (see Section 6.2.4). For the examples in this

dissertation,ns ranged from4 to 200.

Now consider a sample fromLs, ls1. This sample corresponds to the motionMs
1 = Ps(ls1).

I can determine ifMs
1 can transition to each motion represented by the parameter samples inLt

by computing the optimal transition point with each motion{Mt
1, . . . ,M

t
nt
} using the method

presented in Section 3.3. Samples fromLt that produce good transitions are added to the list of

parameter samplesLt
GOOD.

Using the observation that motions close in parameter space look similar, I can assume that

any parameter vector forP t whose nearest parameter samples fromLt appear inLt
GOOD can also

be transitioned to fromMs
1. Thus, the listLt

GOOD defines the subspace ofP t to whichMs
1 can

transition.

Unfortunately, I cannot represent the subspace ofNt that can be transitioned to fromMs
1 by

listing the points inLt
GOOD because, as described at the beginning of Section 6.1, I plan to deter-

mine what transitions are possible at runtime using a simple and efficient interpolation scheme (as

shown in Figure 6.3); interpolating between potentially different numbers of uncorrelated points in

a meaningful way is difficult, if not impossible. So, instead, I represent each subspace as a simple

shape that can always be interpolated (i.e., bounding boxes, spheres, triangles). I have found axis-

aligned bounding boxes work well for my data; I use axis-aligned bounding boxes to represent all

of the transition parameter subspaces.

Using simple, easily interpolated shapes to represent transition regions introduces a consider-

able problem. Any simple shape that contains all points inLt
GOOD could also contain other points

from Lt that were not deemed good transition candidates (see Figure 6.2b). To guarantee that bad

transitions are not included in the transition subspace ofNt, I take a conservative, double threshold

approach. First, while constructing the listLt
GOOD, I also form a list,Lt

BAD, containing all samples

from Lt that generate motions whose optimal transition point distance is greater thanTBAD, where

TBAD ≥ TGOOD. Next, I compute the bounding box of all parameter samples inLt
GOOD. Finally,



103

I consider each sample inLt
BAD; if the sample falls within the subspace defined by the bounding

box, I make the minimal adjustment to the dimensions of the bounding box so that the sample falls

at leastε away, whereε > 0. In this way, I construct a bounding box that contains many, if not all,

of the samples fromLt
GOOD without including any of the samples fromLt

BAD. Neutral samples

from Lt whose optimal transition point distance falls betweenTGOOD andTBAD are considered

good enough if they fall within the transition subspace ofNt but will not be explicitly included

in the space (see Figure 6.2c). In practice, the system makes few bounding box adjustments to

remove bad samples and in most cases makes none at all.

I also compute a single transition point fromMs
1 to any of the motions located in the subspace

of Nt defined by the computed bounding box. In Section 3.3, I described the optimal transition

point of two motions as the pair of frames where the two motions are most similar. For computing

a generic transition point for the entire subspace, it is useful to normalize these frame numbers

to the range0 to 1. Again, because nearby motions in a motion space look similar, the optimal

transition points are likely to be at similar normalized times. So, I average the normalized optimal

transition points for each sample ofLt
GOOD that falls inside the adjusted bounding box to calculate

the normalized transition point for the subspace.

Putting all the pieces together, an edge can be defined betweenNs andNt as a list of transition

samples, one for each parameter vector inLs. Each sample includes:

• The value of the parameter vectorlsi

• The computed transition bounding box forlsi

• The average, normalized transition point forlsi

I could also store the average alignment transform between the motionMs
i and each of the motion

samples inLt
GOOD but recomputing this alignment using the method presented in Section 3.3 is

fast; instead I save storage space by computing the alignment transform for each transition at

runtime.

Up until this point, I have assumed that I can transition from every point inNs to some subspace

of Nt. I define that a transition exists between nodesNs andNt if and only if for any motion



104

Figure 6.3 Mapping a parameter vector, depicted by the X, from the1-D parameter space on the
left, to a valid transition region in the2-D parameter space on the right. X’s bounding box is the

weighted average of the bounding boxes for its2-nearest neighbors.

contained inNs there existssomesubspace inNt that it can transition to. Thus, if I find any

sample inLs whose adjusted bounding box is empty, I cannot create an edge betweenNs andNt

6.1.2 Extracting Data from a Parametric Motion Graph

Synthesizing motion using a parametric motion graph is quick and efficient. The data that is

stored in each node of the graph allows fast lookup for possible transitions. In particular, given the

node,Ns, and relevant parameter vector,l̃s, for a motion clip, I can determine what subspaces of

other parametric motion spaces can be transitioned to as well as when that transition should occur.

For each outgoing edge ofNs, begin by finding thek-nearest neighbors tõls from the transi-

tion sample list, in terms of Euclidean distance, wherek is normally one more than the number

of dimensions ofPs. Call these neighborsls1, . . . , l
s
k, ordered from closest to farthest from̃1s.

Following the work of Allen et al. [ACP02] on skinning human characters using k-nearest neigh-

bor interpolation and on Buehler et al.’s work on rendering lumigraphs using k-nearest neighbor



105

interpolation [BBM+01], eachlsi is associated with a weight,wi:

wi =
w′

i∑k
j=1 w′

j

[6.1]

w′
i =

1

ε(l̃s, lsi )
− 1

ε(l̃s, lsk)
[6.2]

whereε gives the Euclidean distance between parameter samples. This method of determining

weights has two relevant advantages over using a linear map constructed as a best fit optimization

over weights and motion parameters. First, this method does not introduce large negative weights.

Using a linear fit method, these large negative weights often appear in order to artificially produce

a better fit, even though the quality of the results suffer. Second, computing weights using this

algorithm is fast as it does not require a costly global optimization and scales well with the number

of example motions in the database.

For any outgoing edge ofNs, calculate the subspace of the target node,Nt, that can be transi-

tioned to,B(Ns,Nt), as follows:

B(Ns,Nt) =
k∑

i=1

wi ∗ β(lsi ) [6.3]

whereβ(lsi ) gives the value of the bounding box for the samplelsi , represented by the location of

the box’s center and its width in each dimension, as stored in the edge (see Figure 6.3). Similarly,

compute the normalized transition point as a weighted sum of the average, normalized transition

points for eachlsi stored in the edge.

6.2 Results

This section provides details for some of the example parametric motion graphs I designed for

interactive character control. Following the description of these graphs, I present the results of a

number of experiments for testing the usefulness of these graph structures in interactive applica-

tions.



106

Graph Name # of Nodes # of Edges # of Example Motions

Walking 1 1 44

Running 1 1 198

Cartwheeling 1 1 10

Walking and Running 2 4 242

Many Everyday Actions 7 14 256

Boxing 3 9 275

Table 6.1 Size and make-up of the parametric motion graphs in this dissertation. Each line
provides the name of the parametric motion graph, the number of nodes in that graph, the number
of edges connecting those nodes in the graph, and the total number of example motions organized

by the graph.

6.2.1 Graphs

I have constructed six different parametric motion graphs in order to show the utility of the

technique. These graphs are described throughout this section. Refer to Table 6.1 for a summary

of the size of these graphs in terms of number of nodes, edges, and example motions.

The process of building parametric motion graphs is highly automated. An author starts by

choosing the parametric motion spaces needed for the graph from an available motion space

database built using the blending-based parametric synthesis technique described in Section 3.5.

These parametric motion spaces then appear as disconnected nodes in the graph.

Next, the author chooses two nodes to generate an edge between and specifies values for

TGOOD, TBAD, ns, andnt. While it is possible to set the values ofTGOOD andTBAD with-

out user input, the ability to adjust these values allows an author to determine where to set the

tradeoff between motion quality and flexibility discussed later in this section. In practice, it took

two or three iterations in order to tune the parametersTGOOD andTBAD for each edge. Empiri-

cally, settingTGOOD to .5 andTBAD to .7 served as a good starting point. For my example graphs,

the amount of time it took to generate a single edge varied from2 − 147 seconds, depending on

the complexity of the source and target parametric motion spaces.



107

Or

Figure 6.4 Graph for walking, running, or cartwheeling.

6.2.1.1 Single Node Locomotion Graphs

While other researchers have dealt specifically with generating controllable streams of loco-

motion in realtime (see Section 2.2.4 for a review of these methods), I chose to create several

single-node locomotion graphs because it is easy to see artifacts in this commonly performed ac-

tivity. In my first graph, I encoded streams of walking motion that only contain smooth turns. This

graph consists of a single node representing a parametric motion space of a character walking for

two steps at different curvatures. The parametric motion space maps the angular change in the

character’s travel direction from the beginning to the end of the motion (between−131 degrees

and138 degrees) to synthesized motions. Similarly, I built a running graph as a single node rep-

resenting a parametric motion space with a valid angular travel direction change between−120

degrees and99 degrees.

Since my technique requires little authoring effort, it is possible to experiment with non-

obvious motions. I also built a parametric motion graph that encodes locomotion control through

cartwheeling. Like the graphs for walking and running, my cartwheel locomotion graph con-

tains only a single node. This node represents a parametric motion space of a character doing a

cartwheel, rotating towards the right by varying amounts on one foot, and then doing a cartwheel



108

walk run

Figure 6.5 A locomotion graph for walking and running.

in another direction. Again, the parametric motion space maps the angular change in travel direc-

tion of the character from the beginning of the motion to the end (between−13 degrees and157

degrees) to synthesized motions.

Each of these single node locomotion graphs take less than5 minutes to build from beginning

to end using my unoptimized system.

6.2.1.2 General Graphs

In addition to single-node locomotion graphs, I have also built several larger graphs. The

simplest is a two-node graph that combines the walking and running nodes described earlier (see

Figure 6.5). This graph can control the travel direction of a character that can both run and walk.

I have also built a seven-node, fourteen-edge graph containing motions for a number of differ-

ent everyday actions: walking and running at different curvatures, sitting down and standing up

from chairs of heights between1ft and1.9ft tall, stepping up onto and stepping off of platforms of

heights between.8ft and1.8ft tall, and leaping over distances between2 and3ft (see Figure 6.6).

It takes about11 minutes to build this graph. The final graph organizes a total of256 example

motions so that they can be blended to produce continuous streams of controllable animation.

In order to show that my technique works when controlling a number of different non-locomotion

actions, I built a parametric motion graph that encodes the motions of a boxer punching, ducking,

and “dancing” from one foot to the other. The boxing graph consists of three nodes. The first node

represents all motions of a boxing character punching to some location in a6ft wide,2ft tall, and5ft



109

walk run

stand up
sit down

jump

step up step down

Figure 6.6 A graph for controlling a number of different everyday actions.



110

punch

dance duck

Figure 6.7 A boxing graph.



111

deep space. The parametric motion space maps desired punch locations in relation to the starting

configuration of the root to synthesized punching motions. The second node of the boxing graph

represents motions of a boxing character ducking below different heights (between3.4ft and5.6ft

from the ground) and is parameterized on how low the character ducks. The third and final node

encodes motions of a character “dancing” from one foot to another while maintaining a boxing

ready stance. When “dancing”, the character rotates by different amounts (between−27 and46

degrees). Thus, the “dancing” motion space maps the change in facing direction from the beginning

of the motion to the end of the motion to synthesized “dancing” motions. In total, the parametric

motion spaces used for these graph nodes blend between275 different motion-captured examples.

A discrete motion transition graph, like those described in Section 2.2.2 and Section 2.2.3, that

represents transitions between this number of motions would be large and unwieldy. In contrast,

the final parametric motion graph (Figure 6.7) contains only nine edges, one connecting every pair

of nodes. It takes approximately7 minutes and40 seconds to build the graph.

6.2.2 Applications

I implemented a number of different applications to test the usefulness of my technique. In this

section, I describe these applications in detail and provide an overview of my results.

6.2.2.1 Random Graph Walks

My first application shows that parametric motion graphs can generateseamless, high-fidelity

motion streams in realtime. For each of the graphs described in Section 6.2.1, I can produce a

random stream of motion by taking random walks on the graph.

I start by choosing a random node and parameter vector from the graph. When the parametric

motion space associated with the node is supplied with the chosen parameter vector, I can render a

motion that matches this parameter request in realtime using the method presented in Section 3.5.

While playing the motion, when I reach the possible transition region, I randomly choose an edge

from those leaving the current node. The node that this edge points to is the new target node. Using

the method described in Section 6.1.2, I compute the optimal transition point and the parameter



112

Figure 6.8 Using parametric motion graphs, this character walks to a specified location, depicted
by the red square on the ground. The path on the ground plane is not prespecified. It is shown

only to illustrate the path the character takes to the target.

subspace of the target node that I can transition to from my current parameter vector. I then

randomly choose a new target parameter vector enclosed in this subspace. Finally, when I reach

the blending window centered at the optimal transition point, I can append my current motion to

my newly chosen motion using a linear blend transition, as described in Section 3.3. This process

is then repeated indefinitely to produce an infinitely long stream of motion.

By randomly generating long streams of motion, I can confirm that my technique produces

continuous motions and avoids poor transitions. I can also show that the algorithm for synthesiz-

ing new motion with a parametric motion graph is efficient enough to be used in an interactive

application.

6.2.2.2 Target Directed Control

My second application tests whether my walking character canaccuratelyreach a target loca-

tion using a greedy graph search similar to ones used for locomotion control [SMM05] and crowd

control [SKG05]. For this application, I generate a motion stream in the same way as for random

graph walks (see Section 6.2.2.1), except that when it is time to choose a new parameter vector

from the target bounding box, I choose the parameter vector that best adjusts the character’s travel

direction towards a target. Figure 6.8 shows that the walking character is able to accurately reach

a target location without wandering by using this simple control algorithm.



113

Figure 6.9 Using parametric motion graphs, this character walks to a specified location, and
arrives while oriented in the requested direction. The red box and arrow on the ground depict the
desired location and orientation respectively. The path on the ground plane is not prespecified. It

is shown only to illustrate the path the character takes to the target.

Figure 6.10 Using parametric motion graphs, this walking character cannot arrive at the specified
location while oriented in a particular direction. The turning radius of the character is too small.



114

Figure 6.11 Locations that the walking character can reach in a short period of time. Height
corresponds to possible orientations that the character can be in when it reaches the location. This

experiment shows that most locations on the ground plane can be reached by the walking
character but that there are only a small number of orientations in which the character can be in

when they arrive at each of these locations.

I also allow a user to request that the character reach the target location oriented in a particular

direction. For this case, I choose the parameter vector that both adjusts the character’s travel

direction towards the target and orients the character towards the desired facing direction. I place

more weight on the orientation component of this optimization function as the character gets closer

to the target. In several cases, the walking character can perform the requested action well (see

Figure 6.9). But I find that in others, the character approaches the target and then turns in circles

trying to orient itself (see Figure 6.10). This result is anticipated as I know that the character’s

minimum turning radius is quite large.

Inspired by the work of Reitsma and Pollard [RP04, RP07], I used a discrete, brute force

method to embed the walking parametric motion graph in the environment in hopes of better un-

derstanding this problem. The embedding made it clear that the walking character could meet

location constraints within a reasonable radius but that for most locations, there were only a few

orientations that the character could be in when they arrived. Figure 6.11 shows the results of this

embedding.



115

Figure 6.12 An interactively controllable running character using parametric motion graphs to
smoothly move through an environment. The character has changed running direction in order to

travel in the user-requested direction depicted by the red arrow.



116

Figure 6.13 An interactively controllable cartwheeling character using parametric motion graphs
to smoothly move through an environment. The character has changed cartwheeling direction in

order to travel in the user-requested direction depicted by the red arrow.

6.2.2.3 Interactive Character Control

My last and most important application allows users to interactively control a character, testing

all of the necessary characteristics of interactive applications (see Section 1.1). To do this, I attach

a function to each node that translates user requests to parameters. For example, for walking and

cartwheeling, I wanted a user to control the travel direction of the character by specifying the

desired travel direction using a joystick. So, I attached a function to each of these nodes that

could compute the angular change between the character’s current direction of travel and desired

direction of travel.

With these translation functions in place, I can again generate motion streams as I did when

generating random graph walks (see Section 6.2.2.1) except that when it is time to choose a pa-

rameter vector from the target bounding box, I query the user’s current request. Then I use the

translation function for the requested node to compute a parameter vector. These parameter values

are adjusted so that they fall within the target bounding box if they were not within bounds already.



117

Figure 6.14 An interactively controllable character using parametric motion graphs to smoothly
move through an environment by walking or running. The character has just transitioned from
walking to running, and is now changing his travel direction in order to meet the user-requested

direction depicted by the blue arrow.



118

Figure 6.15 An interactively controllable boxing character that uses parametric motion graphs.
The character is punching towards a user-requested target in the top image. In the bottom image,

the character is ducking below a user specified height.

This process has the effect of creating interactive characters that perform requested actions as

accurately as possible without introducing poor transitions between motion clips. By limiting the

transitions to good ones, our characters occasionally miss targets; in these cases, the character still

“reacts” to the target by choosing a good transition that gets closest to meeting the request. For

instance, the boxing character shown in Figure 6.15 occasionally misses its punching target when

the target appears on the periphery of the region in front of his body. This is because it is not

possible to hit the target without producing a bad transition. So, instead, the character will rotate

his body as much as possible and punch near to the target, thus “reacting” to the request but not

quite meeting it.

Using this technique, I have produced:

1. awalkingcharacter whose travel direction can be controlled (see Figure 1.5b).

2. a runningcharacter whose travel direction can be controlled (see Figure 6.12).

3. a cartwheelingcharacter whose travel direction can be controlled (see Figure 6.13). Note

that the cartwheeling character is an interesting one because the character only knows how

to turn to the right. So, when the character is asked to turn to the left, he makes two large

right hand turns. This reaction is not “programmed” into the control structure, instead it

happens naturally because of the way parametric motion graphs work.

4. a character who can eitherrun or walk in a desired travel direction (see Figure 6.14).



119

Figure 6.16 An interactively controllable character using parametric motion graphs. The
character has just stepped up onto a platform after sitting down in a chair.

5. a boxingcharacter that is able to change facing direction while “dancing”, punch towards

specified 3D locations, and duck below a specified height (see Figure 6.15).

6. a character that can performeveryday actions- walking or running in a desired direction,

stepping onto and off of platforms, sitting down and standing up from chairs, and leaping

over distances (see Figure 6.16)

6.2.3 Comparison with Fat Graphs

Parametric motion graphs are similar to another method for constructing structured motion

graphs called fat graphs [SO06]. As described in Section 2.2.3, a fat graph is constructed by first

identifying key poses within a motion database that appear many times. These poses are then repre-

sented as “hub” nodes within the graph. The edges represent parametric motion spaces of motions

that can transition from the same two key poses. Like parametric motion graphs, this structure

explicitly combines parametric synthesis with synthesis-by-concatenation methods to produce a

structured representation of motion transitions that can be used efficiently at runtime to accurately

control a human character.



120

Figure 6.17 At the transition point between two motions of a character turning towards the right,
the character using a parametric motion graph remains leaning into the turn (as shown in green)
while the character using a fat graph must return to the common transition pose with no lean (as

shown in blue), causing the character to “bob” as it goes around the turn.



121

Yet, parametric motion graphs have a number of advantages over fat graphs. Because all mo-

tions representing the same logical action, such as walking or dodging, are explicitly grouped to-

gether, parametric motion graphs provide additional logical structure to the graph. A graph author

can easily see the logical connections between motion types, allowing the graphs to be designed

easily for specific applications.

Parametric motion graphs also represent continuously changing transition points and ranges

within a single type of motion. Like Snap-Together Motion, the technique fat graphs are based

on (see Section 2.2.3), a fat graph must use more than one “hub” node in order to capture some

of this complexity. For instance, in a fat graph representation, a walking parametric motion space

might be divided across three parametric motion spaces in order to avoid transitioning from a sharp

righthand curvature walking motion to a sharp lefthand curvature walking motion: one where the

character is curving a lot towards the right, one where the character is curving a lot towards the

left, and one where the character is curving mostly forward. And even if these motions are grouped

into these three separate parametric motion spaces, each motion within a single parametric motion

space will have exactly the same possible target transition motions. Parametric motion graphs

represent continuously changing transition points using sampling.

Fat graphs are also limited in the quality of their results by the use of “hub” nodes; motions are

constantly forced to return to the same average pose at each transition point. For instance imagine

a character who is walking at a curvature that is very sharp to the right; when that character reaches

the “hub” node, he must transition to the average pose of all of the walking motions represented by

the parametric graph edge, even if the character continues to walk at a curvature that is very sharp

to the right. By forcing motions to return to an average pose at “hub” nodes, motion streams often

exhibit repetitive “bobbing” artifacts, as illustrated in Figure 6.17. On the other hand, parametric

motion graphs handle natural variations in the transition poses of similar motions.

6.2.4 Algorithm Performance

In this section, I describe how parametric motion graphs perform in each of the six categories

described in Section 1.1.



122

Node Name Mean Clip Length Min Clip Length Max Clip Length

Walking 1.6s 1.4s 1.8s

Running 1.0s 0.8s 1.1s

Cartwheeling 2.9s 2.5s 3.5s

Stepping Up 1.9s 1.9s 2.0s

Stepping Down 1.9s 1.8s 1.9s

Sitting Down 4.8s 4.3s 5.3s

Standing Up 3.0s 2.9s 3.1s

Jumping 1.5s 1.4s 1.6s

Punching 1.1s 0.5s 1.9s

Ducking 1.6s 1.1s 2.6s

Boxing Dance 0.9s 0.6s 1.1s

Table 6.2 Example motion length information for each parametric motion space. Each line in the
table contains the name of the parametric motion space, the average length of a motion clip in the
parametric motions space, the minimum length of a motion clip in the parametric motion space,

and the maximum length of a motion clip in the parametric motion space.



123

Efficient Synthesis The examples in this paper were computed on a laptop computer with a

1.75GHz Pentium M Processor,1GB of RAM, and an ATI Mobility Radeon X300 graphics

card. All of the generated motions were sampled at30Hz. Each of the generated parametric

motion graphs can synthesize and render streams of motion at more than180 frames per

second, consistently. Because I use k-nearest neighbor interpolation and the weighting al-

gorithm presented in Section 6.1.2, synthesis times are nearly independent of the number of

example motions in the database. It should be noted however that computation time is de-

pendent on the number of examples being blended together. Because Kovar and Gleicher’s

method for blending-based parametric synthesis [KG04] limits the number of motions that

can be blended together at each of the sample points in a parametric motion space, this time

is effectively bounded.

Efficient Data Storage Even for my largest graph, it is possible to store the graph’s structure

and edge information in a plain text file requiring less than50KB of space. The storage

required for this graph structure scales linearly withns, or the number of samples from the

source motion space (see Section 6.1.1.2). Thus, it is useful to keepns small. Since it is

unnecessary to densely sample the source nodes, in generalns can remain low; however,ns

scales exponentially in relation to the dimensionality of the space being sampled1. Though,

because blending-based parametric synthesis requires a more densely sampled space, it will

fail due to high-dimensionality well before the limit ofns is met for a parametric motion

graph. In Section 6.3, I will discuss a possible way to alleviate the dimensionality problem

using decoupling methods.

Low Latency or Response TimeIn terms of responsiveness, my method is limited by my ability

to transition between motions only at one point near the end of a clip. Similarly, I do not

adjust the parameter vector while generating a motion. These limitations mean that for

motion spaces that represent long motions, it may take time for the character to react to

1This phenomenon of an exponentially increasing volume caused by adding dimensions to a mathematical space
is a well studied problem in statistics. It is often referred to as thecurse of dimensionality, a term coined by Richard
Bellman [Bel57]



124

user requests. This problem can be lessened by choosing parametric motion spaces that

represent short motion clips, as the maximum length of an example clip acts as an upper

bound on the amount of time that the user must wait for a transition to a new motion (see

Table 6.2 for detailed timing information about the length of the example clips used for this

dissertation). Another possible way to improve the response time for some motions is to

use a representation of blending-based parametric motions that is specifically designed for

continuous, parameter vector changes, such as that in [TLP07].

I advocate improving response times for motions that are necessarily longer in natural ways.

For instance, while it may take time for a human to begin accelerating, a gaze cue, such as

those that can be generated using my technique in Chapter 5, can be used to indicate that

the character is about to start moving; a simple change of gaze can easily be perceived as a

response to a motion request.

Accurate Motion Generation and Visual Quality Because the motion clips in a parametric mo-

tion graph are generated using existing blending-based parametric synthesis methods, it is

possible to produce motion clips that are of high-quality and that accurately meet user re-

quests. However, a tradeoff exists between the quality of the transitions produced between

motion clips and the accuracy of those clips. By settingTGOOD to be high, synthesized mo-

tions are more likely to be accurate since the graph edge will allow a much larger range of

transitions, but this might cause the transitions to look less good. For instance, by setting

TGOOD high when building the walking parametric motion graph, it might be possible for

a character to transition from any walking motion to any other, allowing very fast changes

in curvature. The synthesized motion streams would react accurately to each request for a

curvature change as all curvature changes are possible, but the motion would look unrealistic

during the transition. By allowing a user to setTGOOD andTBAD manually, I allow the user

to explicitly manage this tradeoff.

Automated Authoring The process of authoring a parametric motion graph is highly automated.

As described at the beginning of this section, an author must simply choose which existing



125

parametric motion spaces to connect together, set the tunable thresholds,TGOOD andTBAD,

for determining the tradeoff between motion quality and accuracy, and decide how many

samples to take from the source and target nodes. It is also possible for my system to identify

all possible links between chosen parametric motion spaces automatically, but in practice,

the information an author supplies about which types of motions can transition to which

other types of motions is invaluable for minimizing the complexity of the graph, allowing

more efficient synthesis of controllable motion streams.

6.3 Discussion

As presented, parametric motion graphs are able to produce seamless, controllable motion

streams in realtime. The authoring process is highly automated, making parametric motion graphs

useful for interactive applications that would not normally have the resources to build the structures

necessary for accurate character control.

While I use the method of Kovar and Gleicher [KG04] to produce parametric motion spaces,

my methods do not require that motions be generated with any particular parametric motion syn-

thesis method. However, parametric motion graphs do require smooth parametric motion spaces

(see Section 3.5); my sampling and interpolation methods depend on nearby motions in parame-

ter space looking similar (see Section 6.1.1). While I have not provided an example, my method

should work just as well using a procedural parametric synthesis method, as long as it produces

smooth motion spaces.

One limitation to the technique in this chapter is that it cannot represent transitions between

two nodes if there is any motion in the source node that cannot transition to the target node (see

Section 6.1.1.2). For example, consider two nodes that represent a person walking at different

curvatures where the first allows a much wider range of curvatures than the other. Because the

extreme motions of the first node do not look like any of the motions in the second node, I will be

unable to create an edge between the nodes.

One possible solution to the problem of building edges between partially compatible nodes is

to dynamically add additional nodes to the graph when large enough continuous pieces of a source



126

node can transition to the target node. This new node would represent the same parametric motion

space as the first except that its range would be limited to the range of parameters that have valid

transitions to the target node. This solution has the drawback of adding greater complexity to the

parametric motion graph, a characteristic that should be avoided in order to facilitate fast decision

making at runtime. But there may be a way to balance the tradeoff between graph complexity and

overall transition representation.

Another extension to this work that could lead to better methods for interactive control is to

develop better local search methods than the greedy one in Section 6.2.2.2. Planning a long motion

that consists of a series of motion clips using a parametric motion graph is at the moment an

unexplored area of research. This lack of planning is in part designed into parametric motion

graphs; the ability to make quick decisions without planning allows the graph to react to changing

user requests efficiently and often. However, in some circumstances, it could be useful to know

how to reach a specific motion outcome within the graph that requires synthesizing multiple motion

clips before the outcome can be reached.

This chapter shows that motions for interactive characters can be designed in an automated way,

allowing fast, accurate, high-fidelity motion generation in realtime. My method gains the benefits

of accurate motion generation using parametric synthesis as well as the ability to make good transi-

tions between clips using a continuous representation of transitions between parameterized spaces

of motion. This technique can decrease the amount of time it takes to author interactive charac-

ters, increase the accuracy and efficiency of these characters at runtime, and provide high-fidelity

motion in a reliable way.


