Duck Efface:

Decorating faces with duck bills aka “Duckification”
Marlee Gotlieb, Scott Hendrickson, and Martin Wickham
University of Wisconsin, Madison

CS 534, Fall 2015

http://pages.cs.wisc.edu/~hendrick/cs534/Duckefface-web/index.html

Abstract

Facial recognition in photographs has been utilized in a variety of forms. At first, it was
used to simply detect where a face existed, but now it goes beyond this by being able to
recognize particular features on the face and even recognize a specific person. Lately, a
major use of facial detection and recognition has been creating “filters” to go over the
recognized faces. These filters use facial recognition to distort or change a person’s
face. For example, the mobile application Snapchat has the capability of recognizing a
person’s face and putting a “filter” over it such as placing sunglasses over eyes, dog
ears on a person’s head, or turning someone into a ghost, robot, clown, and more. This
project aims to use facial recognition to accurately create a filter of our own: placing a
duck bill onto a person’s face, or duckification.

Introduction, Motivation, and Goals

While there are many picture editors and filters available, we noticed there was one
common “pose” in photographs that was not specifically addressed by any of these
editing tools. The “duck face” is commonly made by people in “selfies” and pictures in
general. Done by pursing the lips together outwards, this pose resembles a duck’s bill,
hence the name “duck face”. The following celebrities’ pictures exhibit examples of the
duck face:

We wanted to create a filter that could detect a person’s face, recognize the “duck face’
being made by the mouth, and place a duckbill over the mouth. We planned to identify
any and all faces on a chosen picture, use facial recognition to find facial landmarks,
calculate the necessary transformations in order to place the duckbill onto the different

faces, and render the duckbill onto the recognized faces. In the end, this project

H


http://pages.cs.wisc.edu/~hendrick/cs534/Duckefface-web/index.html

automatically places duckbills onto all faces in an image, and not just ones making a
“duck face”.

Background and Related Work

Most facial recognition uses a training dataset to learn where certain features on a face
are located. For this project, we used the dlib library and Helen Facial Feature Dataset
to recognize faces in an image.

The Helen Facial Feature Dataset, according to a paper by the creators of the
dataset, builds a “facial feature localization algorithm that can operate reliably and
accurately under a broad range of appearance variation, including pose, lighting,
expression, occlusion, and individual differences.” It used 2000 training and 300 test
images in order to construct its dataset, and it generates accurate results even on
high-resolution images.

Dlib [1] had a pre-existing implementation of facial landmarking, trained with the
Helen dataset. We leveraged these capabilities in our approach to duckification.

The next problem to solve was a version of the Perspective-n-Point problem. We
have n points, outputted from the dlib facial detector, and we would like to calculate a
transformation matrix to rotate those points, in 3d space, back to their original
configuration measured from a model face. We chose a simple iterative approach
named POSIT [4]. POSIT allows us to calculate a transformation matrix quickly, in 4-5
iterations of matrix algebra. There are more optimal solutions, but they seemed like
overkill for our needs. We ported POSIT from matlab source freely available, to C++,
using dlib’s linear algebra libraries.

Method and Implementation
Duckification is implemented in 3 basic steps: facial detection and landmarking,
transform matrix calculation, and rendering.

Facial detection and landmarking is implemented with dlib[1]. Dlib exposed a
simple to use API, which made setup very simple. The facial landmarker detects 68
unique points on the face, corresponding to the 68 unique points in the Helen Facial
Feature Dataset [2].



*25
*19 *20 21 *22 *23 %24 *26

%18 *27

%38 %39 %28 * 44 * 45
*374 4% 41740 K43y 484 4740

*1 *29 *17

*30

*16
*2 *31

#3253, 54028 30 s
*3

#51 52 %53

*50 *54
se4 *62 *63 %64

* 49k 61 *65¢ 55
%68 *66
+60 767 %56

*5 *59 458 * 57

*14

*13

*12
*6

*7 *11

*10
*8 _—

68 point markup from Helen dataset [3]

For our transformation, we use a subset of these points, to allow for quicker
POSIT convergence, and to avoid excessive errors. We chose the following subset of
points:

37 (outer-left eye)

40 (inner-left eye)

43 (inner-right eye)

46 (outer-right eye)

34 (tip of nose)

49 (left mouth corner)

55 (right mouth corner)

We manually measured the coordinates of each these points on a 3D model of a
face found online.




Coordinates of each point, relative to center of mouth, and corrected for symmetry
(labeled with the Helen dataset indices).

Helen Dataset Index X y z

37 -44.43 47.56 62.53
40 -19.05 44.89 61.99
43 19.05 44.89 61.99
46 44.43 47.56 62.53
34 0 -5.87 38.28
49 -25.22 13.17 -3.60
55 25.22 13.17 -3.60

T1. Measured points from reference face

Once a facial landmarking is finished, we now have all the data we need to
calculate our transformation.

The transformation is an implementation of POSIT [4], ported from Matlab code
that is publically available [5]. The port was made easier due to dlib’s build in linear
algebra library, which made most Matlab operations trivial to implement in C++. Our
implementation of POSIT takes the following inputs:

image_points: Our list of 2D points outputted by facial landmarking. These are
the measured xy pixel coordinates of the subset of the Helen Facial Feature Dataset
feature points discussed from earlier.

object_points: The pre-calculated 3-D coordinates of each feature point, as
measured on the reference face from table [t1].

focal_length: An estimated focal length that the picture was taken at.

center. The center coordinates of the photograph (IS THIS RIGHT?).

POSIT uses an iterative approach to converging on a transformation matrix,
usually converging within 5 iterations.

After converging, out implementation of POSIT returns a combined
transformation-rotation matrix.



We then apply this transform matrix to a duck-bill model, also found and modified

from an online source. The transformation, and rendering process are applied with
OpenGL.

Results

= &7
Ba?

The four images above show the results of our project at the different stages. The
top-left image is the original input image, which contains seven different faces to be
detected. The top-right image shows the result after detecting the facial landmarks,
outlined in green. The bottom-left image includes the transform placed on each of the
faces. Finally, the bottom-right image displays the completed product as all seven faces
have a duckbill placed onto them.



Above and below, more group images exemplify how our project accurately places
duckbills onto several faces, even if some are not directly facing the camera, or if they
are at different distances from the camera.







The image below shows another example of duck bills accurately being placed on a

group image.

Future Improvements/Conclusion

Ouir final result successfully implemented the basic ideas of duckification for our project
- taking an image with faces and rendering duckbills onto those faces. We were very
happy with the results of the project and the implementation we were able to
accomplish. Looking ahead, here are some further improvements that could be made to

our project:

1.

Morphable Face Model: Instead of running POSIT against only one set of
3d points extracted from a single model face, a modified version of the
algorithm should be run against multiple face models of differing form, to
find the best “it”. This will allow for significantly better alignment of the
duck bill.

. Fix rotation errors: In many of our tests, the duck bills seem to be pointed

too far “down”, and don’t seem to ever point “left”. We have yet to find the
source of this error.

Only apply to actual “duck faces”: Originally, the goal of our project was to
take in an image, find faces that are doing the “duck face”, and position a
duckbill onto these faces. As of now, the capabilities of our project are just
to find any face and place a duckbill onto it. Therefore, one future
improvement we had an idea for is to implement this “duck face” detection
feature. We would have to use a training set of people making the “duck
face” in order to teach facial recognition for duck faces specifically. This
improvement would show the true meaning of duckification.

Increased accuracy of filters: Although our project is able to resize and
transform a duckbill in order to align it with different sized and angled
faces, a future improvement one could implement with this project would
be to make the duck bill better blend with the face. This could give the



image the appearance that the duckbill is actually part of the face and not
only placed on top of the image. One could blend the edges of the duckbill
with the colors of the skin. Also, one could use information on the colors of
the image and people in it to give the duckbill more accurate coloring. One
could even use the contours of the face, extracted from landmarking, to
apply 3d morphing and blending techniques.

The previously discussed improvements apply to more accurate duckification.
However, our project could be extended beyond the basic duckbill as well by making it
possible to place other images or objects onto an input image. For example, you could
replace a human’s nose with a pig snout or ears with elephant trunks. Different feature
points might need to be used to make this possible, but the basic face detection
algorithms could be used for a basis of any project similar to this.

All'in all, we were very pleased with the results of our project. Our
implementation works very smoothly to integrate a duckbill onto an image and is an
excellent basis for future projects that utilize facial detection.



References

1: dlib (http://dlib.net)

2: Helen Dataset (http://www.ifp.illinois.edu/~vuongle2/helen/)

3: Helen Dataset Point Indecies (http://ibug.doc.ic.ac.uk/resources/300-W/)

4: POSIT: Model-based object pose in 25 lines of code
(http://www.cfar.umd.edu/~daniel/daniel_papersfordownload/Pose25Lines.pdf)
5: POSIT Implementation: (http://www.cfar.umd.edu/~daniel/classicPosit.m)

Code Details

Facial Landmarking: dlib (http://dlib.net)

Matrix Library: dlib

POSIT: A port of code from “Model-based object pose in 25 lines of code”
(http://dl.acm.org/citation.cfm?id=204015)

OpenGL: The OBJ loader was based on one written by Martin for a CS506 project 2 years ago,
and modified for this project. The rest of the OpenGL code was written from scratch for this
project.

Team Member Contributions

POSIT Porting - Scott & Marlee

OpenGL Rendering - Martin

Dlib experimentation - Martin

Helen Dataset investigation - Scott & Marlee

Manual Model Face Measurements - Scott & Marlee
Duck Bill Creation - Scott & Martin

Paper - Scott, Marlee, & Martin

Presentation - Marlee (small additions by Scott & Martin)


http://dlib.net/
http://www.ifp.illinois.edu/~vuongle2/helen/
http://ibug.doc.ic.ac.uk/resources/300-W/
http://www.cfar.umd.edu/~daniel/daniel_papersfordownload/Pose25Lines.pdf
http://www.cfar.umd.edu/~daniel/classicPosit.m
http://dlib.net/
http://dl.acm.org/citation.cfm?id=204015

