1 Hamiltonian cycles - Dirac’s theorem

Recall that in extremal graph theory, we would like to answer questions of the following sort: ‘What is the maximum/minimum possible parameter C among graphs satisfying a certain property P?’ In the last lecture, we see Mantel’s theorem, which answers the above question with the parameter being the number of edges and the property being triangle-free. In this lecture, we will be looking at other interesting parameters and properties.

Definition 1. Let G be a graph. A path P (or cycle C) in G is said to be simple if and only if all vertices of P (or C) are distinct.

Question: What is the minimal number of edges in a graph to guarantee the existence of a cycle? In other words, what is maximal number of edges without a cycle?

Notice that a tree T of order n contains no cycle and it has $n - 1$ many edges. On the other hand, a graph G of order n and $e(G) \leq n$ must contain a cycle.

Theorem 1. A graph G of order $n \geq 3$ contains a cycle if $e(G) \geq n$.

One key observation is that if the minimum degree of G is at least 2, then it must contain a cycle.

Definition 2. Let G be a graph. Define $\delta(G)$ to be the minimum degree of all vertices in G:

$$\delta(G) := \min \{ d(v) : v \in V(G) \}.$$

Suppose $\delta(G) \geq 2$. We may start from an arbitrary vertex, and go to one of its neighbours. Since $\delta(G) \geq 2$ and G is finite, we can always continue this process, until we come back to a vertex that has been visited. This forms a cycle.

With the observation in hand, we can show Theorem 1 by induction. The base case is trivial. For the induction step, if G has no cycle, then it must have a vertex v of degree 1. Consider $G \setminus v$, which has $n - 1$ vertices and at least $n - 1$ edges. Hence by induction hypothesis $G \setminus v$ contains a cycle.

Next let us turn our attention to cycles that visit every vertex. Contradiction.

Definition 3. Let G be a graph of order n. A Hamiltonian cycle is a simple cycle of order n. Also, G is said to be Hamiltonian if it has a Hamiltonian cycle.
In other words, a Hamiltonian cycle visits every vertex exactly once.

Question: What is the minimal number of edges to guarantee the existence of a Hamiltonian cycle? In other words, what is the maximal number of edges without a Hamiltonian cycle?

However, this question is not very interesting, as the answer is close to the maximum possible number of edges, \(\binom{n}{2}\). Consider the following family of graphs \(G_n\). Take a \(K_{n-1}\) together with an isolated vertex \(v\). Add one edge between \(K_{n-1}\) and \(v\). There is no Hamiltonian cycle since \(d(v) = 1\) and no cycle can go through \(v\). On the other hand,

\[
e(G_n) = \binom{n-1}{2} + 1 = \binom{n}{2} - (n-2).
\]

Thus, the edge “density” of this family of graphs is

\[
\frac{e(G_n)}{\binom{n}{2}} = 1 - \frac{2(n-2)}{n(n-1)} \to 1
\]

as \(n \to \infty\). This means that even if the graph contains almost all the possible edges, it could still be non-Hamiltonian. In contrast, by Mantel’s Theorem, a triangle-free graph \(G\) has density at most

\[
\frac{|n^2/4|}{\binom{n}{2}} \to \frac{1}{2} \text{ as } n \to \infty.
\]

Note that the degrees of the example we constructed above are distributed very unevenly. There are \(n-1\) vertices with degree at least \(n-2\) and 1 vertex with degree 1. A more interesting question is that can we guarantee the existence of Hamiltonian cycles by lower bounding the minimum degree of the graph.

Theorem 2 (Dirac 1952). Let \(n \geq 3\). If \(G\) is a graph of order \(n\) and \(\delta(G) \geq n/2\), then \(G\) is Hamiltonian.

Theorem 2 is actually the best possible. Consider the graph \(G\), which is putting together two copies of \(K_{n/2}\). Since \(G\) is disconnected, it is not Hamiltonian. Moreover, \(\delta(G) = n/2 - 1\). Thus Theorem 2 is the best possible for even \(n\). The case of odd \(n\) will be left as an exercise.

Proof of Theorem 2. First we claim that \(G\) is connected. Suppose otherwise. Then pick one of the smallest components of \(G\). It must contain at most \(n/2\) many vertices. Hence any vertex in this component has degree at most \(n/2 - 1\). Contradiction.

Now suppose \(G\) is not Hamiltonian. Consider the simple path \(P\) of maximum possible length \(\ell \leq n-1\). That is, \(P = \{x_0, x_1, \ldots, x_\ell\}\) where \(x_ix_{i+1} \in E\) for all \(0 \leq i \leq \ell -1\). Since \(P\) is a maximal path, the neighbors of \(x_0\) and \(x_\ell\) must be all inside \(P\). Let

\[
A = \Gamma(x_1), \quad B = \{x_{i+1} : x_i \in \Gamma(x_\ell)\}.
\]

Since \(\delta(G) \geq n/2\), \(|A|, |B| \geq n/2\). On the other hand, it is easy to see that \(x_0 \notin A\) and \(x_0 \notin B\). Hence \(A \cup B \subseteq \{x_1, \ldots, x_\ell\}\). Thus \(|A \cup B| \leq \ell \leq n-1\). It implies that \(A \cap B \neq \emptyset\) (as otherwise \(|A \cup B| \geq n/2 + n/2 = n\)).
Suppose $x_t \in A \cap B$ for some t. Then consider the following cycle C
\[x_1 - x_t - x_{t+1} - x_{t+2} - \cdots - x_{\ell-1} - x_{\ell} - x_{\ell-1} - x_{\ell-2} - \cdots - x_2 - x_1. \]

A picture can be found in Figure 1. Clearly, C has length ℓ.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The path P and cycle C}
\end{figure}

If $\ell = n$, then C is a Hamiltonian cycle. Contradiction.

If $\ell < n$, we then construct a simple path P' of length $\geq \ell + 1$. As $\ell < n$, there exists at least one vertex $v \notin C$. However, G is connected. Hence there exists a simple path from v to some vertex x_r in C. Construct the path P' as follows: start from v, to x_r, and then traverse C to x_{r-1}. The length of P' is at least $\ell + 1$. It contradicts to the maximality of P.}

\section{Forbidding a path of length k}

The way we prove Dirac’s theorem is useful to answer the following question.

\textbf{Question:} What is the maximal number of edges in a graph of order n without a simple path of length k?

Let try to guess the answer first. An easy way to avoid paths of length k is when every component has size at most k. Then to maximize the number of edges, we put all possible edges in each component. Thus our construction G is n/k many copies of cliques K_k (assuming $k \mid n$). In this case,

\[e(G) = \frac{n}{k} \binom{k}{2} = \frac{n}{k} \cdot \frac{k(k-1)}{2} = \frac{(k-1)n}{2}. \]

We will show that this is indeed the best possible.

\begin{theorem}
Let G be a graph of order n and there is no path of length k in n. Then

\[e(G) \leq \frac{(k-1)n}{2}. \]
\end{theorem}

The proof of Theorem 3 relies on the following lemma, which is a similar result to Dirac’s theorem.
Lemma 4. Let G be a connected graph of order n and $\delta(G) \geq k/2$ for some integer $k < n$. Then G contains a simple path of length k.

Proof. Suppose that G contains no path of length k. Let $P = \{x_0, x_1, \cdots, x_\ell\}$ be a path of maximum length $\ell < k$.

Since P is a maximal path, the neighbours of x_0 and x_ℓ must be all inside P. Let $A = \Gamma(x_1)$, $B = \{x_{i+1} : x_i \in \Gamma(x_\ell)\}$.

Since $\delta(G) \geq k/2$, $|A|, |B| \geq k/2$. On the other hand, it is easy to see that $x_0 \notin A$ and $x_0 \notin B$. Hence $A \cup B \subseteq \{x_1, \cdots, x_\ell\}$. Thus $|A \cup B| \leq \ell < k$. It implies that $|A| \cap |B| \neq \emptyset$ (as otherwise $|A \cup B| \geq k/2 + k/2 = k$).

Suppose $x_t \in A \cap B$ for some t. Then consider the following cycle C

$$x_1 - x_t - x_{t+1} - x_{t+2} - \cdots - x_{\ell-1} - x_\ell - x_{t-1} - x_{t-2} - \cdots - x_2 - x_1.$$ (Recall Figure 1.) Clearly, C has length ℓ.

Since $\ell < k < n$, we then construct a simple path P' of length $\geq \ell + 1$. As $\ell < n$, there exists at least one vertex $v \notin C$. However, G is connected. Hence there exists a simple path from v to some vertex x_r in C. Construct the path P' as follows: start from v, to x_r, and then traverse C to x_{r-1}. The length of P' is at least $\ell + 1$. It contradicts to the maximality of P. \hfill \square

With Lemma 4 in hand, we are now ready to prove Theorem 2.

Proof of Theorem 2. If $k = 1$, then there is no possible edge in G and $e(G) = 0$.

Otherwise $k \geq 2$, we do an induction on n (for each fixed integer $k \geq 2$). The base case is when $n \leq k$ and is trivial. This is because

$$e(G) \leq \frac{n}{2} \leq \frac{(k-1)n}{2}.$$

For the induction step, we want to show the theorem for a graph G of order $n > k$ assuming it holds for any graph of order $< n$. If G is disconnected, then let G_0 be a component of order $n_0 > 0$ and G_1 be the rest of the graph. Clearly

$$e(G) \leq e(G_0) + e(G_1).$$

Moreover, G_0 is of order $n_0 < n$ and G_1 has $n - n_0 < n$ many vertices. By induction hypothesis,

$$e(G_0) \leq \frac{k-1}{2} \cdot n_0,$$

$$e(G_1) \leq \frac{k-1}{2} \cdot (n - n_0).$$
Combine all of the above:

\[e(G) \leq \frac{k - 1}{2} (n_0 + n - n_0) = \frac{k - 1}{2} n. \]

Otherwise, \(G \) is connected. If \(\delta(G) \geq k/2 \), then by Lemma 4 there exists a path of length \(k \). Contradiction

Therefore \(\delta(G) < k/2 \). It implies that there exists a vertex \(v \in V(G) \) such that

\[d(v) \leq \lceil k/2 \rceil - 1 \leq \frac{k - 1}{2}. \]

Now consider the graph \(G' = G \setminus v \). \(G' \) has \(n - 1 \) many vertices and hence we can apply the induction hypothesis:

\[e(G') \leq \frac{k - 1}{2} (n - 1). \]

Thus,

\[e(G) = e(G') + d(v) \leq \frac{k - 1}{2} (n - 1) + \frac{k - 1}{2} = \frac{k - 1}{2} n. \]

We note that the edge density of graphs without a path of length \(k \) is at most

\[\frac{(k-1)^n}{\binom{n}{2}} = \frac{k - 1}{n - 1} \to 0 \quad \text{as } n \to \infty. \]

2 Turán numbers and Turán densities

Let us fit the examples we have seen so far into a general theory.

Definition 4. Let \(F \) be an unlabelled graph. We say that a graph \(G \) is \(F \)-free if \(G \) does not contain any isomorphic copy of \(F \) as a subgraph.

Notice that here we do mean subgraph rather than induced subgraph. For example, \(K_5 \) is not \(C_4 \)-free because it contains a lot of cycles of length 4. However, the induced graph of \(K_5 \) on any 4 vertices is a \(K_4 \neq C_4 \).

Definition 5. Let \(F \) be an unlabelled graph, and let \(n \geq 2 \) be an integer. Define the Turán number of \(F \) to be

\[\text{ex}(n, F) := \max\{ e(G) : G \text{ is an } F\text{-free graph of order } n \}. \]

Determining \(\text{ex}(n, F) \) is one of the basic problems of extremal graph theory. Mantel’s theorem tells us that \(\text{ex}(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor \), and Theorem 3 shows that \(\text{ex}(n, P_k) \leq \frac{(k-1)n}{2} \).

We also look at the “edge” density of \(F \)-free graphs. In particular, it is natural to consider the following limit:

\[\lim_{n \to \infty} \frac{\text{ex}(n, F)}{\binom{n}{2}}. \]

Let us first show that the limit above does exist for any graph \(F \).
Lemma 5. Let F be a graph. Then for any integer $n \geq 3$,

$$\frac{ex(n, F)}{\binom{n}{2}} \leq \frac{ex(n - 1, F)}{\binom{n-1}{2}}.$$

Proof. Let G be an F-free graph of order n such that $e(G) = ex(n, F)$. Let $v_0 \in V(G)$ of the minimum degree, i.e. $d(v_0) = \delta(G)$. Thus by the handshaking lemma,

$$2e(G) = \sum_{v \in V} d(v) \geq nd(v_0).$$

Let $G' = G - v$. Thus G' is an F-free graph of order $n - 1$. By Definition 5,

$$e(G') \leq ex(n - 1, F).$$

On the other hand,

$$e(G) = e(G') + d(v).$$

Hence

$$e(G) \leq ex(n - 1, F) + \frac{2e(G)}{n}.$$

It implies that

$$ex(n, F) = e(G) \leq \frac{n}{n - 2} ex(n - 1, F).$$

Rearranging the terms yields

$$\frac{ex(n, F)}{ex(n - 1, F)} \leq \frac{n}{n - 2} = \frac{\binom{n}{2}}{\binom{n-1}{2}},$$

or equivalently,

$$\frac{ex(n, F)}{\binom{n}{2}} \leq \frac{ex(n - 1, F)}{\binom{n-1}{2}}.$$

Lemma 5 implies that the sequence

$$\left(\frac{ex(n, F)}{\binom{n}{2}} \right)_{n=2}^{\infty}$$

is monotone non-increasing. It is also a sequence of positive real numbers. Hence its limit exists. Define

$$\pi(F) := \lim_{n \to \infty} \frac{ex(n, F)}{\binom{n}{2}}. \quad (1)$$
This limit $\pi(F)$ is also called the *Turán density* of F.

As we have seen, Mantel's theorem implies that $\pi(K_3) = \pi(C_3) = \frac{1}{2}$. Moreover, Theorem 3 implies that

$$\pi(P_k) \leq \frac{\text{ex}(n, P_k)}{\binom{n}{2}} \leq \frac{(k - 1)n/2}{(n - 1)n/2} = \frac{k - 1}{n - 1} \to 0 \text{ as } n \to \infty.$$

It implies that $0 \leq \pi(P_k) \leq 0$, and thus $\pi(P_k) = 0$. Later, we will see the Erdős-Stone theorem, which gives us precise answer of $\pi(F)$ for any F. A consequence of the Erdős-Stone theorem is that $\pi(F) = 0$ if and only if F is bipartite.