A Holant Dichotomy: Is the FKT Algorithm Universal?

Jin-Yi Cai* Zhiguo Fu† Heng Guo‡ Tyson Williams§

\texttt{jyc@cs.wisc.edu} \texttt{zfu8@wisc.edu} \texttt{hguo@cs.wisc.edu} \texttt{tdw@cs.wisc.edu}

Abstract

We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary set of symmetric constraint functions on Boolean variables. This dichotomy is specifically to answer the question: Is the FKT algorithm under a holographic transformation [38] a universal strategy to obtain polynomial-time algorithms for problems over planar graphs that are intractable in general? This dichotomy is a culmination of previous ones, including those for Spin Systems [25], Holant [21, 6], and \#CSP [20].

In the study of counting complexity, such as \#CSP, there are problems which are \#P-hard over general graphs but polynomial-time solvable over planar graphs. A recurring theme has been that a holographic reduction to FKT precisely captures these problems. Surprisingly, for planar Holant, we discover new planar tractable problems that are not expressible by a holographic reduction to FKT. In particular, a straightforward formulation of a dichotomy for planar Holant problems along the above recurring theme is false.

In previous work, an important tool was a dichotomy for \#CSPd, which denotes \#CSP where every variable appears a multiple of \(d\) times. However the very first step in the \#CSPd dichotomy proof fundamentally violates planarity. In fact, due to our newly discovered tractable problems, the putative form of a planar \#CSPd dichotomy is false when \(d \geq 5\). Nevertheless, we prove a dichotomy for planar \#CSP2. In this case, the putative form of the dichotomy is true. We manage to prove the planar Holant dichotomy without relying on a planar \#CSPd dichotomy for \(d \geq 3\), while the dichotomy for planar \#CSP2 plays an essential role.

As a special case of our new planar tractable problems, counting perfect matchings (\#PM) over \(k\)-uniform hypergraphs is polynomial-time computable when the incidence graph is planar and \(k \geq 5\). The same problem is \#P-hard when \(k = 3\) or \(k = 4\), which is also a consequence of our dichotomy. When \(k = 2\), it becomes #PM over planar graphs and is tractable again. More generally, over hypergraphs with specified hyperedge sizes and the same planarity assumption, \#PM is polynomial-time computable if the greatest common divisor (gcd) of all hyperedge sizes is at least 5. It is worth noting that it is the gcd, and not a bound on hyperedge sizes, that is the criterion for tractability.

*University of Wisconsin–Madison. Supported by NSF CCF-1217549.
†School of Mathematics, Jilin University
‡Also supported by a Simons Award for Graduate Students in Theoretical Computer Science from the Simons Foundation.
§Also supported by a Cisco Systems Distinguished Graduate Fellowship.
1 Introduction

The Fisher-Kasteleyn-Temperley (FKT) algorithm [34, 23, 24] is a classical gem that counts perfect matchings over planar graphs in polynomial time. This was an important milestone in a decades-long research program by physicists in statistical mechanics to determine what is known as Exactly Solved Models [1, 22, 32, 43, 44, 27, 34, 23, 24, 28, 29, 42].

For four decades, the FKT algorithm stood as the polynomial-time algorithm for any counting problem over planar graphs that is #P-hard over general graphs. Then Valiant introduced matchgates [36, 35] and holographic reductions to the FKT algorithm [38, 37]. These reductions differ from classical ones by introducing quantum-like superpositions. This novel technique extended the reach of the FKT algorithm and produced polynomial-time algorithms for a number of problems for which only exponential-time algorithms were previously known.

Since the new polynomial-time algorithms appear so exotic and unexpected, and since they solve problems that appear so close to being #P-hard, they challenge our faith in the well-accepted conjecture that P ≠ NP. Quoting Valiant [37]: “The objects enumerated are sets of polynomial systems such that the solvability of any one member would give a polynomial time algorithm for a specific problem. . . . the situation with the P = NP question is not dissimilar to that of other unresolved enumerative conjectures in mathematics. The possibility that accidental or freak objects in the enumeration exist cannot be discounted if the objects in the enumeration have not been studied systematically.” Indeed, if any “freak” object exists in this framework, it would collapse #P to P.

Therefore, over the past 10 to 15 years, this technique has been intensely studied in order to gain a systematic understanding to the limit of the trio of holographic reductions, matchgates, and the FKT algorithm [35, 3, 4, 10, 39, 11, 26, 30, 31]. Without settling the P versus #P question, the best hope is to achieve a complexity classification. This program finds its sharpest expression in a complexity dichotomy theorem, which classifies every problem expressible in a framework as either solvable in P or #P-hard, with nothing in between.

Out of this work, a strong theme has emerged. For a wide variety of problems, such as those expressible as a #CSP, holographic reductions to the FKT algorithm is a universal technique for turning problems that are #P-hard in general to P-time solvable over planar graphs. In fact, a preponderance of evidence suggests the following putative classification of all counting problems defined by local constraints into exactly three categories: (1) those that are P-time solvable over general graphs; (2) those that are P-time solvable over planar graphs but #P-hard over general graphs; and (3) those that remain #P-hard over planar graphs. Moreover, category (2) consists precisely of those problems that are holographically reducible to the FKT algorithm. This theme is so strong that it has become an intuitive and trusty guide for us when we investigate unknown problems and plan proof strategies. In fact, many of the results in the present paper were proved in this way. However, one is still left wondering whether the FKT algorithm is universal, or more precisely, is the combined algorithmic power of the trio sufficient to capture all tractable problems over planar graphs that are intractable in general?

We list some of the supporting evidence for this putative classification. These date back to the classification of the complexity of the Tutte polynomial [41, 40]. It has also been an unfailing theme in the classification of spin systems and #CSP [25, 12, 9, 20]. However, these frameworks do not capture all locally specified counting problems. Some natural problems, such as counting perfect matchings (#PM), are not expressible as a point on the Tutte polynomial or a #CSP, and #PM is provably not expressible within the special case of vertex assignment models [18, 17, 33].
However, this is the problem for which FKT was designed, and is the basis of Valiant’s matchgates
and holographic reductions.

A refined framework, called Holant problems [13], was proposed to address this issue. It is an
degree assignment model. It naturally encodes and expresses #PM as well as Valiant’s matchgates
and holographic reductions. Thus, Holant is the proper framework in which to study the power of
holographic algorithms. It is also more general than #CSP in the sense that a complete complexity
classification for Holant problems implies one for #CSP.

In this paper, we classify for the first time the complexity of Holant problems over planar
tographs. Our result generalizes both the dichotomy for Holant [21, 6] and the dichotomy for planar
#CSP [12, 20]. Surprisingly, we discover new planar tractable problems that are not expressible
by a holographic reduction to matchgates and FKT. To the best of our knowledge, this is the first
primitive extension since FKT to a problem solvable in P over planar instances but #P-hard in
general. Furthermore, our dichotomy theorem says that this completes the picture: there are no
more undiscovered extensions for problems expressible in this framework, unless #P collapses to
P. In particular, the putative form of the planar Holant dichotomy is false.

Before stating our main theorem, we give a brief description of the Holant framework [13]. Fix
a set of local constraint functions \(F \). A signature grid \(\Omega = (G, \pi) \) is a tuple, where \(G = (V, E) \) is
a graph, \(\pi \) labels each \(v \in V \) with a function \(f_v \in F \) with input variables from the incident edges
\(E(v) \) at \(v \). Each \(f_v \) maps \(\{0, 1\}^{\deg(v)} \) to \(\mathbb{C} \). We consider all 0-1 edge assignments. An assignment
\(\sigma \) for every \(e \in E \) gives an evaluation \(\prod_{v \in V} f_v(\sigma_{E(v)}) \), where \(\sigma_{E(v)} \) denotes the restriction of \(\sigma \)
to \(E(v) \). The counting problem on the instance \(\Omega \) is to compute

\[
\text{Holant}(\Omega; F) = \sum_{\sigma: E \rightarrow \{0, 1\}} \prod_{v \in V} f_v(\sigma_{E(v)}).
\]

(1.1)

For example, #PM, the problem of counting perfect matchings in \(G \), corresponds to assigning the
ExactOne function at every vertex of \(G \). The Holant problem parameterized by the set \(F \) is
denoted by \(\text{Holant}(F) \).

At a high level, we can state our main theorem as follows.

Theorem 1.1. Let \(F \) be a set of complex-valued, symmetric functions on Boolean variables. Then
there is an effective classification for all possible \(F \), according to which, \(\text{Holant}(F) \) is either (1)
P-time computable over general graphs, or (2) P-time computable over planar graphs but #P-hard
over general graphs, or (3) #P-hard over planar graphs.

The complete statement is given in Theorem 8.1. The classification is explicit. The tractability
criterion is decidable in polynomial time due to [11, 7]. Tractable problems over general graphs
have been previously studied in [6]. The planar tractable class includes both those solvable by
holographic reductions to FKT and those newly discovered. Explicit criteria for these are also
proved in this paper.

Let us meet some new tractable problems. They can be described as orientation problems, which
are Holant problems after a complex-valued holographic transformation.\(^1\) Given a planar graph,
we allow two kinds of vertices. The first kind can be either a sink or a source while the second kind

\(^1\)This transformation is \(Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). It is common that one problem can be transformed to another over \(\mathbb{C} \) while
one or both problems are specified by real-valued constraint functions, and provably no transformation exists over
\(\mathbb{R} \). Thus to study the classification question over complex-valued constraint functions is natural and proper. For
example, the integer-valued orientation problem studied here is complex weighted if expressed directly as Holant.
only allow one incoming edge. The goal is to compute the number of orientations satisfying these constraints. This problem can be expressed in the Holant framework under a Z-transformation. It can be shown that this is equivalent to the Holant problem on the edge-vertex incidence graph where we assign the \texttt{DISEQUALITY} function to every edge, and to each vertex, we assign either the \texttt{EQUALITY} function or the \texttt{EXACTONE} function. Suppose vertices assigned \texttt{EQUALITY} functions all have degree k. If $k = 2$, then this problem can be solved by FKT. We show that this problem is \#P-hard if $k = 3$ or $k = 4$, but is tractable again if $k \geq 5$. The algorithm involves a recursive procedure that simplifies the instance until it can be solved by known algorithms, including FKT. The algorithm crucially uses global topological properties of a planar graph, in particular Euler’s characteristic formula. If the graph is not planar, then this algorithm does not work, and indeed the problem is \#P-hard over general graphs.

More generally, we allow vertices of arbitrary degrees to be assigned \texttt{EQUALITY}. If all the degrees are at most 2, then the problem is tractable by the FKT algorithm. Otherwise, the complexity depends on the greatest common divisor (gcd) of the degrees. The problem is tractable if gcd ≥ 5 and \#P-hard if gcd ≤ 4. It is worth noting that the criterion for tractability is not a degree lower bound. Moreover, the planarity assumption and the degree rigidity pose a formidable challenge in the hardness proofs for gcd ≤ 4.

If the graph is bipartite with \texttt{EQUALITY} functions assigned on one side and \texttt{EXACTONE} functions on the other, then this is the problem of \#PM over hypergraphs with planar incidence graphs. Our results imply that the complexity of this problem depends on the gcd of the hyperedge sizes. The problem is computable in polynomial time when gcd ≥ 5 and is \#P-hard when gcd ≤ 4 (assuming there are hyperedges of size at least 3). For a formal statement, see Theorem 7.15.

Most of the reductions in previous Holant dichotomy theorems \cite{21,6} do not hold for planar graphs, so we are forced to develop new techniques and formulate new proof strategies. In particular, an important ingredient in previous proofs is the $\#\text{CSP}^d$ dichotomy by Huang and Lu \cite{21}. Here $\#\text{CSP}^d$ denotes \#CSP where every variable appears a multiple of d times. The very first step in the $\#\text{CSP}^d$ dichotomy proof uses the popular pinning technique. Multiple copies of an instance are created and vertices are connected across different copies. But this construction fundamentally violates planarity. Moreover, this violation of planarity is unavoidable, a consequence of the new dichotomy. Due to our newly discovered tractable problems, the putative form of a planar $\#\text{CSP}^d$ dichotomy is \textit{false} when $d \geq 5$. Nevertheless, we prove a dichotomy for planar $\#\text{CSP}^2$ for which the putative form is, luckily for us, true (but not obvious in hindsight). Obtaining a dichotomy for planar $\#\text{CSP}^2$ is essential because it captures a significant fraction of planar Holant problems either directly or through reductions. We manage to prove the planar Holant dichotomy without appealing to planar $\#\text{CSP}^d$ for $d \geq 3$.

The proof of the planar $\#\text{CSP}^2$ dichotomy comprises the entire Part II of this paper that starts on page 63. A brief outline of the proof is given in Section 5 of Part I. Among the concepts and techniques introduced are some special tractable families of constraint functions specific to the $\#\text{CSP}^2$ framework. We also introduce a \textit{derivative} ∂ and its inverse operator \textit{integral} \int to streamline the proof argument. There is also an application of the theory of \textit{cyclotomic fields}.

We began this project expecting to prove the putative form of the planar Holant dichotomy. It was determined that a planar $\#\text{CSP}^d$ dichotomy in the putative form would be both a more modest, and thus hopefully more attainable, intermediate step as well as a good launch station for the final goal. However after some attempt, even the planar $\#\text{CSP}^d$ dichotomy appeared too difficult to achieve, and so we scaled back the ambition to prove just a planar $\#\text{CSP}^2$ dichotomy.
Luckily, a successful #CSP2 dichotomy can carry most of the weight of a full #CSPd dichotomy, and, as it turned out, the putative form of the planar #CSP2 dichotomy is true while that for planar #CSPd is not. Ironically, many steps of our proof in this paper were guided by the putative form of the complexity classification. The discovery of the new tractable problems changed the original plan, but also helped complete the picture.

Coming back to the challenge of the P vs. NP question posed by Valiant’s holographic algorithms, we venture the opinion that the dichotomy theorem provides a satisfactory answer. Indeed, it would be difficult to conceive a world where #P is P, and yet all this algebraic theory can somehow maintain a consistent, sharp but faux division where there is none.

2 Preliminaries

2.1 Problems and Definitions

The framework of Holant problems is defined for functions mapping any $[q]^n \rightarrow R$ for a finite q and some commutative semiring R. In this paper, we investigate complex-weighted Boolean Holant problems, that is, all functions are of the form $[2]^n \rightarrow \mathbb{C}$. For consideration of models of computation, functions take complex algebraic numbers.

Graphs may have self-loops and parallel edges. A graph without self-loops or parallel edges is a simple graph. Fix a set of local constraint functions \mathcal{F}. A signature grid $\Omega = (G, \pi)$ consists of a graph $G = (V, E)$, where π assigns to each vertex $v \in V$ and its incident edges some $f_v \in \mathcal{F}$ and its input variables. We say that Ω is a planar signature grid if G is planar, where the variables of f_v are ordered counterclockwise starting from an edge specified by π. The Holant problem on instance Ω is to evaluate $\text{Holant}(\Omega; \mathcal{F}) = \sum_{\sigma} \prod_{v \in V} f_v(\sigma |_{E(v)})$, a sum over all edge assignments $\sigma : E \rightarrow \{0, 1\}$, where $E(v)$ denotes the incident edges of v and $\sigma |_{E(v)}$ denotes the restriction of σ to $E(v)$. We write G in place of Ω when π is clear from context.

A function f_v can be represented by listing its values in lexicographical order as in a truth table, which is a vector in $\mathbb{C}^{2^{\deg(v)}}$, or as a tensor in $(\mathbb{C}^2)^{\otimes \deg(v)}$. A function $f \in \mathcal{F}$ is also called a signature. A symmetric signature f on n Boolean variables can be expressed as $[f_0, f_1, \ldots, f_n]$, where f_w is the value of f on inputs of Hamming weight w. In this paper, we consider symmetric signatures. An example is the Equality signature $=n$ of arity n.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures \mathcal{F}, we define the counting problem $\text{Holant}(\mathcal{F})$ as:

Input: A signature grid $\Omega = (G, \pi)$;

Output: $\text{Holant}(\Omega; \mathcal{F})$.

The problem Pl-Holant(\mathcal{F}) is defined similarly using a planar signature grid.

A signature f of arity n is degenerate if there exist unary signatures $u_j \in \mathbb{C}^2$ ($1 \leq j \leq n$) such that $f = u_1 \otimes \cdots \otimes u_n$. A symmetric degenerate signature has the form $u^{\otimes n}$. Replacing such signatures by n copies of the corresponding unary signature does not change the Holant value. Replacing a signature $f \in \mathcal{F}$ by a constant multiple cf, where $c \neq 0$, does not change the complexity of Holant(\mathcal{F}). In this paper, we may say we obtain a signature f when in fact we have obtained a signature cf for some $c \neq 0$. It introduces a global nonzero factor to Holant($\Omega; \mathcal{F}$).

We allow \mathcal{F} to be an infinite set. For Pl-Holant(\mathcal{F}) to be tractable, the problem must be computable in polynomial time even when the description of the signatures in the input Ω are
 included in the input size. In contrast, we say \(\text{Pl-Holant}(F) \) is \#P-hard if there exists a finite subset of \(F \) for which the problem is \#P-hard. We say a signature set \(F \) is tractable (resp. \#P-hard) if the corresponding counting problem \(\text{Pl-Holant}(F) \) is tractable (resp. \#P-hard). Similarly for a signature \(f \), we say \(f \) is tractable (resp. \#P-hard) if \(\{f\} \) is. We follow the usual conventions about polynomial time Turing reduction \(\leq_T \) and polynomial time Turing equivalence \(\equiv_T \).

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a general graph, we can always transform it into a bipartite graph while preserving the Holant value, as follows. For each edge in the graph, we replace it by a path of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new vertex is assigned the binary Equality signature \((=_2) = [1, 0, 1] \).

We use Holant \((F \mid G)\) to denote the Holant problem over signature grids with a bipartite graph \(H = (U, V, E) \), where each vertex in \(U \) or \(V \) is assigned a signature in \(F \) or \(G \), respectively. Signatures in \(F \) are considered as row vectors (or covariant tensors); signatures in \(G \) are considered as column vectors (or contravariant tensors) \([16] \). Similarly, \(\text{Pl-Holant}(F \mid G) \) denotes the Holant problem over signature grids with a planar bipartite graph.

For a 2-by-2 matrix \(T \) and a signature set \(F \), define \(T F \) = \(\{ g \mid \exists f \in F \text{ of arity } n, \ g = T^{\otimes n} f\} \), and similarly for \(FT \). Whenever we write \(T^{\otimes n} f \) or \(T F \), we view the signatures as column vectors; similarly for \(f T^{\otimes n} \) or \(F T \) as row vectors. In the special case that \(T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \), we also define \(T F = \tilde{F} \).

Let \(T \) be an invertible 2-by-2 matrix. The holographic transformation defined by \(T \) is the following operation: given a signature grid \(\Omega = (H, \pi) \) of Holant \((F \mid G)\), for the same bipartite graph \(H \), we get a new grid \(\Omega' = (H', \pi') \) of Holant \((FT \mid T^{-1}G)\) by replacing each signature in \(F \) or \(G \) with the corresponding signature in \(FT \) or \(T^{-1}G \).

Theorem 2.2 (Valiant’s Holant Theorem \([38]\)). If \(T \in \mathbb{C}^{2 \times 2} \) is an invertible matrix, then we have \(\text{Holant}(\Omega; F \mid G) = \text{Holant}(\Omega'; FT \mid T^{-1}G) \).

Therefore, an invertible holographic transformation does not change the complexity of the Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic transformation, the orthogonal transformation, that preserves the binary equality and thus can be used freely in the standard setting.

Theorem 2.3 (Theorem 2.6 in \([13]\)). If \(T \in \mathbb{O}_2(\mathbb{C}) \) is an orthogonal matrix (i.e. \(TT^T = I_2 \)), then \(\text{Holant}(\Omega; F) = \text{Holant}(\Omega'; FT) \).

We frequently apply a holographic transformation defined by the matrix \(Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \) (or sometimes without the nonzero factor of \(\frac{1}{\sqrt{2}} \) since this does not affect the complexity). This matrix has the property that the binary Equality signature \((=_2) = [1, 0, 1] \) is transformed to \([1, 0, 1]Z^{\otimes 2} = [0, 1, 0] = (\neq_2) \), the binary Disequality signature.

An important definition involving a holographic transformation is the notion of a signature set being transformable.

Definition 2.4. We say a signature set \(F \) is \(\mathcal{C} \)-transformable if there exists a \(T \in \text{GL}_2(\mathbb{C}) \) such that \([1, 0, 1]T^{\otimes 2} \in \mathcal{C} \) and \(F \subseteq T\mathcal{C} \).
This definition is important because if Pl-Holant(∅) is tractable, then Pl-Holant(F) is tractable for any ∅-transformable set F.

2.3 Counting Constraint Satisfaction Problems

We can define the framework of counting constraint satisfaction problems (#CSP) in terms of the Holant framework. An instance of #CSP(F) has the following bipartite view. Create a vertex for each variable and each constraint. Connect a variable vertex to a constraint vertex if the variable appears in the constraint. This bipartite graph is also known as the constraint graph. Moreover, each variable can be viewed as an Equality function, as it takes two values. Under this view, we see that #CSP(F) \(\cong_T\) Holant(EQ | F), where \(\text{EQ} = \{=1, =2, =3, \ldots\}\) is the set of Equality signatures of all arities. By restricting to planar constraint graphs, we have the planar #CSP framework, which we denote by Pl-#CSP. The construction above also shows that Pl-#CSP(F) \(\cong_T\) Pl-Holant(EQ | F).

For any positive integer \(d\), the problem #CSP\(^d\)(F) is the same as #CSP(F) except that every variable appears a multiple of \(d\) times. Thus, Pl-#CSP\(^d\)(F) \(\cong_T\) Pl-Holant(EQ\(_d\) | F), where \(\text{EQ}_{d} = \{=d, =2d, =3d, \ldots\}\) is the set of Equality signatures of arities that are a multiple of \(d\). If \(d \in \{1, 2\}\), then we further have

\[
\text{Pl-#CSP}\(^d\)(F) \equiv_T \text{Pl-Holant}(\text{EQ}_{d} | F) \equiv_T \text{Pl-Holant}(\text{EQ}_{d} \cup F).
\]

The reduction from left to right in the second equivalence is trivial. For the other direction, we take a signature grid for the problem on the right and create a bipartite signature grid for the problem on the left such that both signature grids have the same Holant value up to an easily computable factor. If two signatures in F are assigned to adjacent vertices, then we subdivide all edges between them and assign the binary Equality signature \(=\) to all new vertices. Suppose Equality signatures \(=n, =m \in \text{EQ}_d\) are assigned to adjacent vertices connected by \(k\) edges. If \(n = m = k\), then we simply remove these two vertices. The Holant of the resulting signature grid differs from the original by a factor of 2. Otherwise, we contract all \(k\) edges and assign \(=n+m-2k \in \text{EQ}_d\) to the new vertex.

2.4 Realization

One basic notion used throughout the paper is realization. We say a signature \(f\) is realizable or constructible from a signature set F if there is a gadget with some dangling edges such that each vertex is assigned a signature from F, and the resulting graph, when viewed as a black-box signature with inputs on the dangling edges, is exactly \(f\). If \(f\) is realizable from a set F, then we can freely add \(f\) into F while preserving the complexity.

Formally, such a notion is defined by an F-gate [12]. An F-gate is similar to a signature grid \((G, \pi)\) for Holant(F) except that \(G = (V, E, D)\) is a graph with some dangling edges D. The dangling edges define external variables for the F-gate. (See Figure 1 for an example.) We denote the regular edges in E by 1, 2, \ldots, \(m\) and the dangling edges in D by \(m+1, \ldots, m+n\). Then we can define a function \(\Gamma\) for this F-gate as

\[
\Gamma(y_1, \ldots, y_n) = \sum_{x_1, \ldots, x_m \in \{0, 1\}} H(x_1, \ldots, x_m, y_1, \ldots, y_n),
\]
where \((y_1, \ldots, y_n) \in \{0, 1\}^n\) is an assignment on the dangling edges and \(H(x_1, \ldots, x_m, y_1, \ldots, y_n)\) is the value of the signature grid on an assignment of all edges in \(G\), which is the product of evaluations at all internal vertices. We also call this function \(\Gamma\) the signature of the \(F\)-gate.

An \(F\)-gate is planar if the underlying graph \(G\) is a planar graph, and the dangling edges, ordered counterclockwise corresponding to the order of the input variables, are in the outer face in a planar embedding. A planar \(F\)-gate can be used in a planar signature grid as if it is just a single vertex with the particular signature.

Using the idea of planar \(F\)-gates, we can reduce one planar Holant problem to another. Suppose \(g\) is the signature of some planar \(F\)-gate. Then \(\text{Pl-Holant}(F \cup \{g\}) \leq_T \text{Pl-Holant}(F)\). The reduction is simple. Given an instance of \(\text{Pl-Holant}(F \cup \{g\})\), by replacing every appearance of \(g\) by the \(F\)-gate, we get an instance of \(\text{Pl-Holant}(F)\). Since the signature of the \(F\)-gate is \(g\), the Holant values for these two signature grids are identical.

Although our main result is about symmetric signatures, some of our proofs utilize asymmetric signatures. When a gadget has an asymmetric signature, we place a diamond on the edge corresponding to the first input. The remaining inputs are ordered counterclockwise around the vertex. (See Figure 8 for two examples.)

We note that even for a very simple signature set \(F\), the signatures for all \(F\)-gates can be quite complicated and expressive.

2.5 Tractable Signature Sets

We define the sets of signatures that were previously known to be tractable. All quotations of results and definitions from [6, 20, 7], both in this section and throughout the paper, refer to the full versions of these papers.

Affine Signatures

Definition 2.5 (Definition 3.1 in [15]). A \(k\)-ary function \(f(x_1, \ldots, x_k)\) is affine if it has the form

\[
\lambda \cdot \chi_{Ax=0} \cdot \sum_{j=1}^n \langle v_j, x \rangle,
\]

where \(\lambda \in \mathbb{C}\), \(x = (x_1, x_2, \ldots, x_k, 1)^T\), \(A\) is a matrix over \(\mathbb{F}_2\), \(v_j\) is a vector over \(\mathbb{F}_2\), and \(\chi\) is a 0-1 indicator function such that \(\chi_{Ax=0}\) is 1 iff \(Ax = 0\). Note that the dot product \(\langle v_j, x \rangle\) is calculated over \(\mathbb{F}_2\), while the summation \(\sum_{j=1}^n\) on the exponent of \(i = \sqrt{-1}\) is evaluated as a sum mod 4 of 0-1 terms. We use \(\mathcal{A}\) to denote the set of all affine functions.
Notice that there is no restriction on the number of rows in the matrix A. It is permissible that A is the zero matrix so that $\chi_{A_{x=0}} = 1$ holds for all x. An equivalent way to express the exponent of i is as a quadratic polynomial where all cross terms have an even coefficient (cf. [2]).

It is known that the set of non-degenerate symmetric signatures in A is precisely the nonzero signatures ($\lambda \neq 0$) in $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ with arity at least 2, where \mathcal{F}_1, \mathcal{F}_2, and \mathcal{F}_3 are three families of signatures defined as

$$\mathcal{F}_1 = \left\{ \lambda \left([\mathbf{1}, \mathbf{0}]^\otimes k + i^r[\mathbf{0}, \mathbf{1}]^\otimes k \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \ldots, r = 0, 1, 2, 3 \right\},$$

$$\mathcal{F}_2 = \left\{ \lambda \left([\mathbf{1}, \mathbf{1}]^\otimes k + i^r[\mathbf{1}, -\mathbf{1}]^\otimes k \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \ldots, r = 0, 1, 2, 3 \right\},$$

$$\mathcal{F}_3 = \left\{ \lambda \left([\mathbf{1}, i]^\otimes k + i^r[\mathbf{1}, -i]^\otimes k \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \ldots, r = 0, 1, 2, 3 \right\}.$$

We explicitly list these signatures up to an arbitrary constant multiple from \mathbb{C}:

1. $[\mathbf{1}, 0, \ldots, 0, \pm 1]$; \hspace{1cm} ($\mathcal{F}_1, r = 0, 2$)
2. $[\mathbf{1}, 0, \ldots, 0, \pm i]$; \hspace{1cm} ($\mathcal{F}_1, r = 1, 3$)
3. $[\mathbf{1}, 0, 1, 0, \ldots, 0 \text{ or 1}]$; \hspace{1cm} ($\mathcal{F}_2, r = 0$)
4. $[\mathbf{1}, -i, 1, -i, \ldots, (-i) \text{ or 1}]$; \hspace{1cm} ($\mathcal{F}_2, r = 1$)
5. $[\mathbf{0}, 1, 0, 1, \ldots, 0 \text{ or 1}]$; \hspace{1cm} ($\mathcal{F}_2, r = 2$)
6. $[\mathbf{1}, i, 1, \ldots, i \text{ or 1}]$; \hspace{1cm} ($\mathcal{F}_2, r = 3$)
7. $[\mathbf{1}, 0, -1, 0, 1, -1, 0, \ldots, 0 \text{ or 1 or } (-1)]$; \hspace{1cm} ($\mathcal{F}_3, r = 0$)
8. $[\mathbf{1}, 1, -1, -1, 1, 1, -1, \ldots, 1 \text{ or } (-1)]$; \hspace{1cm} ($\mathcal{F}_3, r = 1$)
9. $[\mathbf{0}, 1, 0, -1, 0, 1, 0, -1, \ldots, 0 \text{ or 1 or } (-1)]$; \hspace{1cm} ($\mathcal{F}_3, r = 2$)
10. $[\mathbf{1}, -1, -1, 1, 1, -1, 1, \ldots, 1 \text{ or } (-1)]$. \hspace{1cm} ($\mathcal{F}_3, r = 3$)

Product-Type Signatures

Definition 2.6 (Definition 3.3 in [15]). A function is of product type if it can be expressed as a product of unary functions, binary equality functions $[\mathbf{1}, \mathbf{0}, \mathbf{1}]$, and binary disequality functions $([\mathbf{0}, \mathbf{1}, \mathbf{0}])$. We use \mathcal{P} to denote the set of product-type functions.

An alternate definition for \mathcal{P}, implicit in [14], is the tensor closure of signatures with support on two complementary bit vectors. It can be shown (cf. Lemma A.1 in the full version of [21]) that if f is a symmetric signature in \mathcal{P}, then f is either degenerate, binary $\text{DISEQUALITY \neq 2}$, or $[a, 0, \ldots, 0, b]$ for some $a, b \in \mathbb{C}$.

Matchgate Signatures Matchgates were introduced by Valiant [36, 35] to give polynomial-time algorithms for a collection of counting problems over planar graphs. As the name suggests, problems expressible by matchgates can be reduced to computing a weighted sum of perfect matchings. The latter problem is tractable over planar graphs by Kasteleyn’s algorithm [24], a.k.a. the FKT algorithm [34, 33]. These counting problems are naturally expressed in the Holant framework using matchgate signatures. We use \mathcal{M} to denote the set of all matchgate signatures; thus Pl-Holant(\mathcal{M}) is tractable. Holographic transformations extend the reach of the FKT algorithm even further, as stated below.

Theorem 2.7. Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. If \mathcal{F} is \mathcal{M}-transformable, then Pl-Holant(\mathcal{F}) is computable in polynomial time.
Matchgate signatures are characterized by the matchgate identities (see [5] for the identities and a self-contained proof). The parity of a matchgate signature is even (resp. odd) if its support is on entries of even (resp. odd) Hamming weight. We explicitly list all the symmetric signatures in M (see [5]).

Proposition 2.8. Let f be a symmetric signature in M. Then there exists $a, b \in \mathbb{C}$ and $n \in \mathbb{N}$ such that f takes one of the following forms:

1. $[a^{n}, 0, a^{n-1}b, 0, \ldots, 0, ab^{n-1}, 0, b^{n}]$ (of arity $2n \geq 2$);
2. $[a^{n}, 0, a^{n-1}b, 0, \ldots, 0, ab^{n-1}, 0, b^{n}, 0]$ (of arity $2n + 1 \geq 1$);
3. $[0, a^{n}, 0, a^{n-1}b, 0, \ldots, 0, ab^{n-1}, 0, b^{n}]$ (of arity $2n + 1 \geq 1$);
4. $[0, a^{n}, 0, a^{n-1}b, 0, \ldots, 0, ab^{n-1}, 0, b^{n}, 0]$ (of arity $2n + 2 \geq 2$).

In the last three cases with $n = 0$, the signatures are $[1, 0]$, $[0, 1]$, and $[0, 1, 0]$. Any multiple of these is also a matchgate signature.

Roughly speaking, the symmetric matchgate signatures have 0 for every other entry (which is called the parity condition), and form a geometric progression with the remaining entries.

Another useful way to view the symmetric signature in M is via a low tensor rank decomposition. To state these low rank decompositions, we use the following definition.

Definition 2.9. Let S_{n} be the symmetric group of degree n. Then for positive integers t and n with $t \leq n$ and unary signatures v, v_1, \ldots, v_{n-t}, we define

$$
\text{Sym}_{n}^{t}(v; v_1, \ldots, v_{n-t}) = \sum_{\pi \in S_{n}} \bigotimes_{k=1}^{n} u_{\pi(k)},
$$

where the ordered sequence $(u_1, u_2, \ldots, u_n) = (v, \ldots, v, v_1, \ldots, v_{n-t})$.

Proposition 2.10. Let f be a symmetric signature in M of arity n. Then there exist $a, b, \lambda \in \mathbb{C}$ such that f takes one of the following forms:

1. $[a, b]^{\otimes n} + [a, -b]^{\otimes n} = \begin{cases}
 2[a^{n}, 0, a^{n-2}b^{2}, 0, \ldots, 0, b^{n}] & n \text{ is even},
 2[a^{n}, 0, a^{n-2}b^{2}, 0, \ldots, 0, ab^{n-1}, 0] & n \text{ is odd};
\end{cases}$
2. $[a, b]^{\otimes n} - [a, -b]^{\otimes n} = \begin{cases}
 2[0, a^{n-1}b, 0, a^{n-3}b^{3}, 0, \ldots, 0, ab^{n-1}, 0] & n \text{ is even},
 2[0, a^{n-1}b, 0, a^{n-3}b^{3}, 0, \ldots, 0, b^{n}] & n \text{ is odd};
\end{cases}$
3. $\lambda \text{Sym}_{n}^{a-1}([1, 0]; [0, 1]) = [0, \lambda, 0, \ldots, 0]$;
4. $\lambda \text{Sym}_{n}^{a-1}([0, 1]; [1, 0]) = [0, \ldots, 0, \lambda, 0]$.

The understanding of matchgates was further developed in [11], which characterized, for every symmetric signature, the set of holographic transformations under which the transformed signature becomes a matchgate signature.

Vanishing Signatures Vanishing signatures were first introduced in [19] in the parity setting to denote signatures for which the Holant value is always 0 modulo 2.

Definition 2.11. A set of signatures F is called vanishing if the value Holant$_{\Omega}(F)$ is 0 for every signature grid Ω. A signature f is called vanishing if the singleton set $\{f\}$ is vanishing.
A Holant problem defined only by vanishing signatures is trivially tractable by definition. Question is how to determine which sets of signatures are vanishing? We introduce the following definitions to answer this question.

Definition 2.12 (Definition 4.4 in [6]). A nonzero symmetric signature f of arity n has positive vanishing degree $k \geq 1$, which is denoted by $\text{vd}^+(f) = k$, if $k \leq n$ is the largest positive integer such that there exists $n - k$ unary signatures v_1, \ldots, v_{n-k} satisfying

$$f = \text{Sym}_n^k([1, i]; v_1, \ldots, v_{n-k}).$$

If f cannot be expressed as such a symmetrization form, we define $\text{vd}^+(f) = 0$. If f is the all zero signature, define $\text{vd}^+(f) = n + 1$.

We define negative vanishing degree vd^- similarly, using $-i$ instead of i.

Definition 2.13 (Definition 4.5 in [6]). For $\sigma \in \{+, -\}$, we define $\mathcal{V}^\sigma = \{f \mid 2 \text{vd}^\sigma(f) > \text{arity}(f)\}$.

Furthermore, we let $\mathcal{V} = \mathcal{V}^+ \cup \mathcal{V}^-$. The fact that \mathcal{V} is closed under orthogonal transformations follows directly from the next lemma.

Lemma 2.14. For a symmetric signature f of arity n, $\sigma \in \{+, -\}$, and an orthogonal matrix $T \in \mathbb{C}^{2 \times 2}$, either $\text{vd}^\sigma(f) = \text{vd}^\sigma(T \otimes n f)$ or $\text{vd}^\sigma(f) = \text{vd}^-\sigma(T \otimes n f)$.

The following characterization of vanishing signature sets holds.

Theorem 2.15 (Theorem 4.13 in [6]). Let \mathcal{F} be a set of symmetric signatures. Then \mathcal{F} is vanishing if and only if $\mathcal{F} \subseteq \mathcal{V}^+$ or $\mathcal{F} \subseteq \mathcal{V}^-$.

To prove this theorem, two more definitions were made, which complement the previous two definitions because of Corollary 2.18.

Definition 2.16 (Definition 4.7 in [6]). A symmetric signature $f = [f_0, f_1, \ldots, f_n]$ of arity n is in \mathcal{R}_t^+ for a nonnegative integer $t \geq 0$ if $t > n$ or for any $0 \leq k \leq n - t$, f_k, \ldots, f_{k+t} satisfy the recurrence relation

$$\binom{t}{0} i^0 f_k + \binom{t}{1} i^{t-1} f_{k+t-1} + \cdots + \binom{t}{t} i^t f_k = 0. \quad (2.3)$$

We define \mathcal{R}_t^- similarly but with $-i$ in place of i in (2.3).

Definition 2.17 (Definition 4.8 in [6]). For a nonzero symmetric signature f of arity n, it is of positive (resp. negative) recurrence degree $t \leq n$, denoted by $\text{rd}^+(f) = t$ (resp. $\text{rd}^-(f) = t$), if and only if $f \in \mathcal{R}_{t+1}^- - \mathcal{R}_t^+$ (resp. $f \in \mathcal{R}_{t+1}^+ - \mathcal{R}_t^-$). If f is the all zero signature, we define $\text{rd}^+(f) = \text{rd}^-(f) = -1$.

Corollary 2.18 (Corollary 4.16 in [6]). If f is a symmetric signature and $\sigma \in \{+, -\}$, then $\text{vd}^\sigma(f) + \text{rd}^\sigma(f) = \text{arity}(f)$.

An observation was made in Section 4.3 of [6] that we utilize. We state it here as a lemma.

Lemma 2.19. Suppose f is a symmetric signature of arity n. Let $\hat{f} = (Z^{-1}) \otimes n f$. If $\text{rd}^+(f) = d$, then $\hat{f} = [f_0, f_1, \ldots, f_d, 0, \ldots, 0]$ and $\hat{f}_d \neq 0$. Also $f \in \mathcal{R}_d^+$ iff all nonzero entries of \hat{f} are among the first d entries in its symmetric signature notation.

Similarly, if $\text{rd}^-(f) = d$, then $\hat{f} = [0, \ldots, 0, \hat{f}_{n-d}, \ldots, \hat{f}_n]$ and $\hat{f}_{n-d} \neq 0$. Also $f \in \mathcal{R}_d^-$ iff all nonzero entries of \hat{f} are among the last d entries in its symmetric signature notation.
The following lemma is a reduction involving binary signatures in the Z basis. It is used in Section 4 to help determine what binary signatures can mix with vanishing signatures. The original statement is for general graphs, but the proof clearly holds for planar graphs as well.

Lemma 2.20 (Lemma A.1 in [6]). Let $x \in \mathbb{C}$. If $x \neq 0$, then for any set F containing $[x, 1, 0]$, we have

$$\text{Pl-Holant} (\neq 2 | F \cup \{[v, 1, 0]\}) \leq_T \text{Pl-Holant} (\neq 2 | F)$$

for any $v \in \mathbb{C}$.

2.6 Some Known Dichotomies

Here we list several known dichotomies. The first is the dichotomy for Holant.

Theorem 2.21 (Theorem 5.1 in [6]). Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then Holant(F) is $\#P$-hard unless F satisfies one of the following conditions, in which case the problem is in P:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is \mathcal{A}-transformable;
3. F is \mathcal{P}-transformable;
4. $F \subseteq \mathcal{V}^\sigma \cup \{f \in R^2_2 | \text{arity}(f) = 2\}$ for $\sigma \in \{+, -\}$;
5. All non-degenerate signatures in F are in R^2_2 for $\sigma \in \{+, -\}$.

We also use several dichotomy theorems for planar Holant problems with additional restrictions. The first of these is a dichotomy theorem for a single signature of small arity. It is a combination of Theorem V.1 in [12] and Theorem 14 in [20] for arity 3 and 4, respectively. This theorem forms the base case of an inductive proof of Theorem 6.1, our single signature dichotomy.

Theorem 2.22. If f is a non-degenerate, symmetric, complex-valued signature of arity 3 or 4 in Boolean variables, then Pl-Holant(f) is $\#P$-hard unless f satisfies one of the following conditions, in which case, the problem is computable in polynomial time:

1. Holant(f) is tractable (i.e. f is \mathcal{A}-transformable, \mathcal{P}-transformable, or vanishing);
2. f is \mathcal{M}-transformable.

We also state a corollary of this result, which shows that counting weighted matchings in 4-regular planar graphs is $\#P$-hard. This is easier to apply than Theorem 2.22.

Corollary 2.23 (Lemma 5.5 in [20]). Let $v \in \mathbb{C}$. If $v \neq 0$, then Pl-Holant([v, 1, 0, 0, 0]) is $\#P$-hard.

Next is a dichotomy theorem about counting complex weighted graph homomorphisms over degree prescribed graphs.

Theorem 2.24 (Theorem 3 in [8]). Let $S \subseteq \mathbb{Z}^+$ containing some $r \geq 3$, let $G = \{=k | k \in S\}$, and let $d = \gcd(S)$. Further suppose that $f_0, f_1, f_2 \in \mathbb{C}$. Then Pl-Holant($[[f_0, f_1, f_2] | G]$) is $\#P$-hard unless one of the following conditions holds:

1. $f_0f_2 = f_1^2$;
2. $f_0 = f_2 = 0$;
3. $f_1 = 0$;
4. $f_0f_2 = -f_1^2$ and $f_0^d = -f_2^d \neq 0$;
5. $f_d^0 = f_d^2 \neq 0$.

In all exceptional cases, the problem is computable in polynomial time.

Theorem 2.24 is the original statement as in [8]. It is explicit and easy to apply. Conceptually, it can be restated as Theorem 2.24’, which supports the putative form of the Pl-$\#\text{CSP}^d$ dichotomy.

Theorem 2.24’ (Theorem 3 in [8]). Let $S \subseteq \mathbb{Z}^+$ contain $k \geq 3$, let $G = \{=_{k}\mid k \in S\}$, and let $d = \gcd(S)$. Further suppose that f is a non-degenerate, symmetric, complex-valued binary signature in Boolean variables. Then $\text{Pl-Holant}(f \mid G)$ is $\#\text{P}$-hard unless f satisfies one of the following conditions, in which case, the problem is computable in polynomial time:

1. there exists $T \in T_{ld}$ such that $T^{\otimes 2}f \in \mathcal{A}$;
2. $f \in \mathcal{P}$;
3. there exists $T \in T_{2d}$ such that $T^{\otimes 2}f \in \widetilde{\mathcal{M}}$.

Lastly, we quote the Pl-$\#\text{CSP}$ dichotomy. It also supports the putative form of a dichotomy, which states that holographic algorithms using matchgates followed by the FKT algorithm is a universal strategy.

Theorem 2.25 (Theorem 19 in [20]). Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then $\text{Pl-$\#\text{CSP}$(\mathcal{F})}$ is $\#\text{P}$-hard unless $\mathcal{F} \subseteq \mathcal{A}$, $\mathcal{F} \subseteq \mathcal{P}$, or $\mathcal{F} \subseteq \widetilde{\mathcal{M}}$, in which case the problem is computable in polynomial time.

2.7 Redundant Signature Matrices and Related Hardness Results

Definition 2.26 (Definition 6.1 in [6]). A 4-by-4 matrix is redundant if its middle two rows and middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4 signature.

Definition 2.27 (Definition 6.2 in [6]). The signature matrix of a symmetric arity 4 signature $f = [f_0, f_1, f_2, f_3, f_4]$ is

$$M_f = \begin{bmatrix} f_0 & f_1 & f_1 & f_2 \\ f_1 & f_2 & f_2 & f_3 \\ f_1 & f_2 & f_2 & f_3 \\ f_2 & f_3 & f_3 & f_4 \end{bmatrix}.$$

This definition extends to an asymmetric signature g as

$$M_g = \begin{bmatrix} g_{0000} & g_{0010} & g_{0001} & g_{0011} \\ g_{1010} & g_{0110} & g_{0101} & g_{0111} \\ g_{1000} & g_{1010} & g_{1001} & g_{1011} \\ g_{1100} & g_{1110} & g_{1101} & g_{1111} \end{bmatrix},$$

where g_{wxyz} is the output of g on input $wxyz$. When we present g as an \mathcal{F}-gate, we order the four external edges $ABCD$ counterclockwise. In M_g, the row index bits are ordered AB and the column index bits are ordered DC, in reverse order. This is for convenience so that the signature matrix of the linking of two arity 4 \mathcal{F}-gates is the matrix product of the signature matrices of the two \mathcal{F}-gates.
If \(M_g \) is redundant, we also define the compressed signature matrix of \(g \) as

\[
\widetilde{M}_g = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

Lemma 2.28 (Corollary 3.8 in [20]). Let \(f \) be an arity 4 signature with complex weights. If \(M_f \) is redundant and \(M_f \) is nonsingular, then \(\text{Pl-Holant}(f) \) is \#P-hard.

Furthermore, by combining Lemma 2.28 with Lemma 6.8 in [6], we obtain the planar version of Corollary 6.9 in [6].

Corollary 2.29. Let \(f \) be an arity 4 signature with complex weights. If there exists a nonsingular matrix \(T \in \mathbb{C}^{2 \times 2} \) such that \(\hat{f} = T^{\otimes 4} f \), where \(M_f \) is redundant and \(\hat{M}_f \) is nonsingular, then \(\text{Pl-Holant}(f) \) is \#P-hard.

In the course of working with symmetric signature, we sometimes construct gadgets with signatures that are not symmetric. The power of Lemma 2.28 and Corollary 2.29 is that they apply to such signatures provided the corresponding signature matrix is redundant. Sometimes one can apply a rotation to obtain a signature with a redundant signature matrix (see Figure 2).

3 \(\mathcal{A} \)-, \(\mathcal{P} \)-, and \(\mathcal{M} \)-transformable Signatures

In this section, we investigate the properties of \(\mathcal{A} \)-, \(\mathcal{P} \)-, and \(\mathcal{M} \)-transformable signatures. Throughout, we define \(\alpha = \frac{1+i}{\sqrt{2}} = \sqrt{i} = e^{\frac{i\pi}{4}} \) and use \(\mathbf{O}_2(\mathbb{C}) \) to denote the group of 2-by-2 orthogonal matrices over \(\mathbb{C} \). While the main results in this section assume that the signatures involved are symmetric, we note that some of the lemmas also hold without this assumption.
3.1 Characterization of \mathcal{A}- and \mathcal{P}-transformable Signatures

\mathcal{A}- and \mathcal{P}-transformable signatures have been well studied in previous work [6, 7]. We summarize some useful notions and lemmas here. The three sets \mathcal{A}_1, \mathcal{A}_2, and \mathcal{A}_3 capture all symmetric \mathcal{A}-transformable signatures.

Definition 3.1. A symmetric signature f of arity n is in, respectively, \mathcal{A}_1, or \mathcal{A}_2, or \mathcal{A}_3 if there exist an $H \in \mathbf{O}_2(\mathbb{C})$ and a nonzero constant $c \in \mathbb{C}$ such that f has the form, respectively, $cH^{\otimes n} \left(\left[\begin{array}{l} 1 \\ 1 \end{array} \right]^{\otimes n} + \beta \left[\begin{array}{l} 1 \\ -1 \end{array} \right]^{\otimes n} \right)$, or $cH^{\otimes n} \left(\left[\begin{array}{l} 1 \\ 1 \end{array} \right]^{\otimes n} + \beta \left[\begin{array}{l} 1 \\ -1 \end{array} \right]^{\otimes n} \right)$, or $cH^{\otimes n} \left(\left[\begin{array}{l} 1 \\ 1 \end{array} \right]^{\otimes n} + ir \left[\begin{array}{l} 1 \\ -1 \end{array} \right]^{\otimes n} \right)$, where $\beta = \alpha^{tn+2r}$, $r \in \{0,1,2,3\}$, and $t \in \{0,1\}$.

For $k \in \{1,2,3\}$, when such an orthogonal H exists, we say that $f \in \mathcal{A}_k$ with transformation H. If $f \in \mathcal{A}_k$ with I_2, then we say f is in the canonical form of \mathcal{A}_k.

The following lemma characterizes the signatures in \mathcal{A}_2.

Lemma 3.2 (Lemma 8.8 in [6]). Let f be a symmetric signature of arity n. Then $f \in \mathcal{A}_2$ if and only if $f = c \left(\left[\begin{array}{l} 1 \\ 1 \end{array} \right]^{\otimes n} + \beta \left[\begin{array}{l} 1 \\ -1 \end{array} \right]^{\otimes n} \right)$ for some nonzero constants $c, \beta \in \mathbb{C}$.

Membership in these three sets characterize the \mathcal{A}-transformable signatures.

Lemma 3.3 (Lemma 8.10 in [6]). Let f be a non-degenerate symmetric signature. Then f is \mathcal{A}-transformable if and only if $f \in \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$.

There is a similar characterization for \mathcal{P}-transformable signatures.

Definition 3.4. A symmetric signature f of arity n is in \mathcal{P}_1 if there exist an $H \in \mathbf{O}_2(\mathbb{C})$ and a nonzero $c \in \mathbb{C}$ such that $f = cH^{\otimes n} \left(\left[\begin{array}{l} 1 \\ 1 \end{array} \right]^{\otimes n} + \beta \left[\begin{array}{l} 1 \\ -1 \end{array} \right]^{\otimes n} \right)$, where $\beta \neq 0$.

We define $\mathcal{P}_2 = \mathcal{A}_2$. For $k \in \{1,2\}$, when such an H exists, we say that $f \in \mathcal{P}_k$ with transformation H. If $f \in \mathcal{P}_k$ with I_2, then we say f is in the canonical form of \mathcal{P}_k.

Lemma 3.5 (Lemma 8.13 in [6]). Let f be a non-degenerate symmetric signature. Then f is \mathcal{P}-transformable if and only if $f \in \mathcal{P}_1 \cup \mathcal{P}_2$.

3.2 Characterization of \mathcal{M}-transformable Signatures

Now we develop a similar theory for the \mathcal{M}-transformable signatures. Recall from Definition 2.4 that for a signature set \mathcal{F} to be \mathcal{M}-transformable, it must be that there exists a $T \in \text{GL}_2(\mathbb{C})$ such that $[1,0,1]T^{\otimes 2} \in \mathcal{M}$. Since $[1,0,1]$ is symmetric, $[1,0,1]T^{\otimes 2}$ is also symmetric. However, it is unnecessary to consider all binary signatures in \mathcal{M}. We can normalize via right multiplication by elements in

$$\text{Stab}(\mathcal{M}) = \{ T \in \text{GL}_2(\mathbb{C}) \mid T\mathcal{M} \subseteq \mathcal{M} \},$$

the stabilizer group of \mathcal{M}. Technically this set is the left stabilizer group of \mathcal{M}, but it is easy to see that the left and right stabilizer groups of \mathcal{M} coincide and that they are generated by nonzero scalar multiples of matrices of the form $\left[\begin{array}{cc} 1 & \nu \\ 0 & X \end{array} \right]$ for any nonzero $\nu \in \mathbb{C}$ and $X = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$.

After this normalization, it is enough to consider cases 1 and 3 in the following proposition.

Proposition 3.6 (Proposition 8.1 in [6]). Let $T \in \mathbb{C}^{2 \times 2}$ be a matrix. Then the following hold:
1. \([1, 0, 1]T^{\otimes 2} = [1, 0, 1]\) if and only if \(T \in \text{O}_2(\mathbb{C})\);
2. \([1, 0, 1]T^{\otimes 2} = [1, 0, i]\) if and only if there exists an \(H \in \text{O}_2(\mathbb{C})\) such that \(T = H \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}\);
3. \([1, 0, 1]T^{\otimes 2} = [0, 1, 0]\) if and only if there exists an \(H \in \text{O}_2(\mathbb{C})\) such that \(T = \frac{1}{\sqrt{2}}H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}\).

Lemma 3.7. Let \(\mathcal{F}\) be a set of signatures. Then \(\mathcal{F}\) is \(\mathcal{M}\)-transformable if and only if \(\mathcal{F} \subseteq \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M}\) or there exists an \(H \in \text{SO}_2(\mathbb{C})\) such that \(\mathcal{F} \subseteq H \mathcal{M}\).

Proof. Sufficiency is easily verified by checking that \(=2\) is transformed into \(\mathcal{M}\) in both cases. In particular, \(H\) leaves \(=2\) unchanged.

If \(\mathcal{F}\) is \(\mathcal{M}\)-transformable, then by definition, there exists a matrix \(T\) such that \((=2)T^{\otimes 2} \in \mathcal{M}\) and \(\mathcal{F} \subseteq T \mathcal{M}\). The non-degenerate binary signatures in \(\mathcal{M}\) are either \([0, 1, 0]\) or of the form \([1, 0, \nu]\), up to a scalar. However, notice that \([1, 0, 1] = [1, 0, \nu] \begin{bmatrix} 1 & 0 \\ 0 & \nu^{-1} \end{bmatrix}^{\otimes 2}\) and \(\begin{bmatrix} 1 & 0 \\ 0 & \nu^{-1} \end{bmatrix} \in \text{Stab}(\mathcal{M})\). Thus, we only need to consider \([1, 0, 1]\) and \([0, 1, 0]\). Now we apply Proposition 3.6.

1. If \((=2)T^{\otimes 2} = [1, 0, 1]\), then by case 1 of Proposition 3.6, we have \(T \in \text{O}_2(\mathbb{C})\). If \(T \in \text{SO}_2(\mathbb{C})\), then we are done with \(H = T\). Otherwise, \(T \in \text{O}_2(\mathbb{C}) - \text{SO}_2(\mathbb{C})\). We want to find an \(H \in \text{SO}_2(\mathbb{C})\) such that \(\mathcal{F} \subseteq H \mathcal{M}\). Let \(H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in \text{SO}_2(\mathbb{C})\). Then

\[
\mathcal{F} \subseteq H \mathcal{M} = T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathcal{M} = H \mathcal{M}
\]

since \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in \text{Stab}(\mathcal{M})\).

2. If \((=2)T^{\otimes 2} = [0, 1, 0]\), then by case 3 of Proposition 3.6, there exists an \(H \in \text{O}_2(\mathbb{C})\) such that \(T = \frac{1}{\sqrt{2}}H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}\). Therefore \(\mathcal{F} \subseteq H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M}\). Furthermore, if \(H = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in \text{SO}_2(\mathbb{C})\), then \(a^2 + b^2 = 1\) and

\[
\mathcal{F} \subseteq H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \begin{bmatrix} a + bi & 0 \\ 0 & a - bi \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M}
\]

since \(H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} = [1, 1, i] \begin{bmatrix} a+bi & 0 \\ 0 & a-bi \end{bmatrix} \in \text{Stab}(\mathcal{M})\). Otherwise, \(H = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} \in \text{O}_2(\mathbb{C}) - \text{SO}_2(\mathbb{C})\), so \(a^2 + b^2 = 1\) and

\[
\mathcal{F} \subseteq H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \begin{bmatrix} 0 & a - bi \\ a + bi & 0 \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \mathcal{M}
\]

since \(H \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} = [1, 1, i] \begin{bmatrix} 0 & a-bi \\ a+bi & 0 \end{bmatrix} \in \text{Stab}(\mathcal{M})\). □

We use four sets to characterize the \(\mathcal{M}\)-transformable signatures. The function \(\text{Sym}^k_n(\cdot; \cdot)\) is defined in Definition 2.9.

Definition 3.8. A symmetric signature \(f\) of arity \(n\) is in \(\mathcal{M}_i\) for \(k = 1, 2, 3, 4\), if there exist an \(H \in \text{O}_2(\mathbb{C})\) and nonzero constants \(c, \gamma \in \mathbb{C}\) such that \(f\) has the form \((k)\) as follows:

1. \(cH^{\otimes n} \left(\begin{bmatrix} 1 \end{bmatrix}^{\otimes n} \pm i^n \begin{bmatrix} 1 \end{bmatrix}^{\otimes n} \right)\);
2. \(cH^{\otimes n} \left(\begin{bmatrix} 1 \end{bmatrix}^{\otimes n} \pm \begin{bmatrix} 1 \end{bmatrix}^{\otimes n}_\gamma \right)\) for some \(\gamma \neq 0\);
3. \(cH^{\otimes n} \text{Sym}^{n-1}_n(\begin{bmatrix} 1 \end{bmatrix}; \begin{bmatrix} 0 \end{bmatrix})\);
4. \(cH^{\otimes n} \text{Sym}^{n-1}_n(\begin{bmatrix} 1 \end{bmatrix}; \begin{bmatrix} 0 \end{bmatrix}_i)\).

16
For $k \in \{1, 2, 3, 4\}$, when such an H exists, we say that $f \in \mathcal{M}_k$ with transformation H. If $f \in \mathcal{M}_k$ with I_2, then we say f is in the canonical form of \mathcal{M}_k.

Notice that $\{[1], [\bar{1}]\}$ is set-wise invariant under any transformation in $O_2(\mathbb{C})$ up to nonzero constants. Using this fact, the following lemma gives a characterization of \mathcal{M}_4. It says that any signature in \mathcal{M}_4 is essentially in canonical form.

Lemma 3.9. Let f be a symmetric signature of arity n. Then $f \in \mathcal{M}_4$ if and only if $f = c \text{Sym}^{n-1}_{2}([1]; [\bar{1}])$ or $f = c \text{Sym}^{n-1}_{4}([\bar{1}]; [1])$ for some nonzero constant $c \in \mathbb{C}$.

Proof. Suppose $f \in \mathcal{M}_4$, so that $f = cH^{\otimes n} \text{Sym}^{n-1}_{2}([1]; [\bar{1}])$. If $H \in O_2(\mathbb{C})$, then $H = \begin{bmatrix} a & b \\ \bar{b} & \bar{a} \end{bmatrix}$ for some $a, b \in \mathbb{C}$ such that $a^2 + b^2 = 1$. Since $H \begin{bmatrix} 1 \\ \bar{1} \end{bmatrix} = (a + bi) \begin{bmatrix} 1 \\ \bar{1} \end{bmatrix}$ and $H \begin{bmatrix} 1 \\ -1 \end{bmatrix} = (a - bi) \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, it follows that $f = c(a + bi)^{n-1}(a - bi) \text{Sym}^{n-1}_{2}([1]; [\bar{1}])$. Otherwise, $H \in O_2(\mathbb{C}) - O_2(\mathbb{C})$, so $H = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ for some $a, b \in \mathbb{C}$ such that $a^2 + b^2 = 1$. Then $f = c(a + bi)(a - bi)^{n-1} \text{Sym}^{n-1}_{4}([\bar{1}]; [1])$.

Now suppose $f = c \text{Sym}^{n-1}_{2}([1]; [\bar{1}])$ or $f = c \text{Sym}^{n-1}_{4}([\bar{1}]; [1])$. The first case is already in the standard form of \mathcal{M}_4. In the second case, we pick $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in O_2(\mathbb{C})$. Then $H^{\otimes n}f$ is in the standard form of \mathcal{M}_4. \hfill \Box

We further split \mathcal{M}_4 into \mathcal{M}_4^+ for future use. Define $\mathcal{M}_4^+ = \{f \mid f = c \text{Sym}^{n-1}_{2}([\frac{1}{\bar{1}}]; [\frac{1}{\bar{1}}])\}$. In other words, \mathcal{M}_4^+ contains signatures of the form $Z^{\otimes n}[0, 1, 0, \ldots, 0]$ and \mathcal{M}_4^- contains signatures of the form $Z^{\otimes n}[0, \ldots, 0, 1, 0]$ up to a scalar, where $Z = \begin{bmatrix} 1 \\ 1 \\ \bar{1} \end{bmatrix}$. We will denote $[0, 1, 0, \ldots, 0]$ of arity k by EXACTONE_k, and $[0, \ldots, 0, 1, 0]$ of arity k by ALLBUTONE_k. Note that these are precisely the PERFECT MATCHING signatures and corresponding reversals.

We note that $\mathcal{M}_1 \subset \mathcal{A}_1 \subset \mathcal{P}_1$ and $\mathcal{A}_2 = \mathcal{P}_2 \subset \mathcal{M}_2$. Also note that $\mathcal{P}_1 \cap \mathcal{M}_2 \subset \mathcal{A}_1$. See Figure 3 for a visual description of the relationships among sets.

Next we show that \mathcal{M}_k for $k = 1, 2, 3, 4$ captures all \mathcal{M}-transformable signatures.
Lemma 3.10. Let f be a non-degenerate symmetric signature. Then f is \mathcal{M}-transformable if and only if $f \in \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4$.

Proof. Assume that f is \mathcal{M}-transformable of arity n. By applying Lemma 3.7 to $\{f\}$, we have $f \in \left[\frac{1}{1} \quad \frac{1}{1}\right] \mathcal{M}$ or there exists an $H \in SO_2(\mathbb{C})$ such that $f \in H \mathcal{M}$. Proposition 2.10 lists the symmetric signatures in \mathcal{M}. Since we are only interested in non-degenerate signatures, we only consider $a, b, \text{ and } \lambda$ that are nonzero. Now we consider the possible cases.

1. Suppose $f \in \left[\frac{1}{1} \quad \frac{1}{1}\right] \mathcal{M}$.
 - Further suppose $f = \left[\frac{1}{1} \quad \frac{1}{1}\right]^n \left[\frac{a}{b} \quad \gamma\right]$ for some nonzero $a, b \in \mathbb{C}$. Let $T = \frac{1-i}{2} \begin{pmatrix} u & v \\ u & -v \end{pmatrix}$, where $u = a + bi$ and $v = i(a - bi)$. Then $f = T^\otimes n \left[\frac{1}{1} \quad \frac{a}{b}\right]$.
 Since $T \in O_2(\mathbb{C})$ up to a nonzero factor of $\sqrt{2ab}$, we have $f \in \mathcal{M}_1$.
 - Further suppose $f = \lambda \left[\frac{1}{1} \quad \frac{1}{1}\right]^n \text{Sym}_{n-1}^{-1}\left(\frac{1}{1}; \frac{0}{1}\right)$ for some nonzero $\lambda \in \mathbb{C}$. Then we have $f = \lambda\text{Sym}_{n-1}^{-1}\left(\frac{1}{1}; \frac{1}{1}\right)$, so $f \in \mathcal{M}_4$.
 - Further suppose $f = \lambda \left[\frac{1}{1} \quad \frac{1}{1}\right]^n \text{Sym}_{n-1}^{-1}\left(\frac{0}{1}; \frac{1}{1}\right)$ for some nonzero $\lambda \in \mathbb{C}$. Then we have $f = \lambda\text{Sym}_{n-1}^{-1}\left(\frac{1}{1}; \frac{1}{1}\right)$, so $f \in \mathcal{M}_4$ by Lemma 3.9.

2. Suppose $f \in H \mathcal{M}$.
 - Further suppose $f = H^\otimes n \left[\frac{a}{b} \quad \gamma\right]$ for some nonzero $a, b \in \mathbb{C}$. Then we have $f = a^n H^\otimes n \left[\frac{1}{1} \quad \frac{a}{b}\right]$, where $\gamma = \frac{b}{a}$, so $f \in \mathcal{M}_2$.
 - Further suppose $f = \lambda H^\otimes n \text{Sym}_{n-1}^{-1}\left(\frac{1}{1}; \frac{0}{1}\right)$ for some nonzero $\lambda \in \mathbb{C}$. Then $f \in \mathcal{M}_3$.
 - Further suppose $f = \lambda H^\otimes n \text{Sym}_{n-1}^{-1}\left(\frac{0}{1}; \frac{1}{1}\right)$ for some nonzero $\lambda \in \mathbb{C}$. Let $H' = H \left[\frac{1}{1} \quad \frac{1}{1}\right] \in O_2(\mathbb{C})$. Then we have $f = \lambda H'^\otimes n \text{Sym}_{n-1}^{-1}\left(\frac{1}{1}; \frac{0}{1}\right)$, so $f \in \mathcal{M}_3$.

Conversely, if there exists a matrix $H \in O_2(\mathbb{C})$ such that $H^\otimes n f$ is in one of the canonical forms of \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, or \mathcal{M}_4, then one can directly check that f is \mathcal{M}-transformable by Definition 2.4. In fact, the transformations that we applied above are all invertible. \hfill \square

Furthermore, we show that a nontrivial signature f in the set \mathcal{M}_3 is not \mathcal{A}- or \mathcal{P}-transformable. Moreover, the only transformation to make f in \mathcal{M} is very restricted. This is for future use.

Lemma 3.11. Let $f \in \mathcal{M}_3$ be a non-degenerate signature of arity $n \geq 3$ with $H \in O_2(\mathbb{C})$. Then f is not \mathcal{A}- or \mathcal{P}-transformable. Moreover, f is \mathcal{M}-transformable with only HD or $H \left[\frac{1}{1} \quad \frac{1}{0}\right] D$ for some diagonal matrix D.

Proof. Suppose $f = [f_0, f_1, \ldots, f_n]$. If f is \mathcal{A}- or \mathcal{P}-transformable, then f has to satisfy a second order recurrence relation that $af_i + bf_{i+1} + cf_{i+2} = 0$, for $a, b, c \in \mathbb{C}$ such that not all a, b, c are 0 and $b^2 - 4ac \neq 0$. In other words, the second order recurrence relation has to have distinct eigenvalues. This is due to Lemma 6.15 or Lemma 7.2 in [7]. Moreover, this property is preserved by holographic transformations (cf. Lemma 6.2 in [7]). However, f is in \mathcal{M}_3. Hence $f = H^\otimes n \text{ExactOne}_n$ for some $H \in O_2(\mathbb{C})$ up to a nonzero factor. On the other hand, ExactOne does not satisfy a second recurrence with distinct eigenvalues if $n \geq 3$, a contradiction.

Moreover, notice that the only signatures in \mathcal{M} that do not satisfy such second order recurrence relations are ExactOne and AllButOne functions. If f is \mathcal{M}-transformable, then there exists a transformation T such that $f = T^\otimes n g$ for some $g \in \mathcal{M}$ and $[1, 0, 1]^T \otimes 2 \in \mathcal{M}$. Hence $g = \text{ExactOne}_n$ or AllButOne. On the other hand $f = H^\otimes n \text{ExactOne}_n$ up to a nonzero factor. Therefore $(T^{-1}H)^\otimes n \text{ExactOne}_n = \text{ExactOne}_n$ or AllButOne up to a nonzero factor.
Let \(J = T^{-1}H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) and let \(h = J \otimes n \text{ExactOne}_n \). As \(\text{ExactOne}_n = \text{Sym}_n^{-1}(\begin{bmatrix} 1 \\ 0 \end{bmatrix}; \begin{bmatrix} 0 \end{bmatrix}) \), \(h = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes n \text{ExactOne}_n = \text{Sym}_n^{-1}(\begin{bmatrix} 1 \\ y \end{bmatrix}; \begin{bmatrix} x \end{bmatrix}) \). The first and last entries of \(h \) are \(x^{n-1}y \) and \(z^{n-1}w \). As \(h = \text{ExactOne}_n \) or \(\text{AllButOne}_n \), we have that \(x^{n-1}y = z^{n-1}w = 0 \). It is easy to see that \(x \) and \(z \), or \(y \) and \(w \) cannot be both 0. Then \(x = w = 0 \) or \(y = z = 0 \). This implies that \(J = D \) or \(J = D \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) for some diagonal matrix \(D \). Thus \(T = HJ^{-1} = HD^{-1} \) or \(H \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} D^{-1} \). \(\square \)

Let \(g = [x, y, 0, \ldots, 0, z] \) have arity \(n \geq 3 \), where \(xyz \neq 0 \). As an example of the theory developed in this section, we discuss the signature \(Z \otimes n g \) in the following lemma, which will be used in Lemma 6.6 in the proof of the single signature dichotomy Theorem 6.1.

Lemma 3.12. Let \(n \geq 3 \), \(g = [x, y, 0, \ldots, 0, z] \) have arity \(n \) and \(xyz \neq 0 \). Then the signature \(Z \otimes n g \) is neither \(\alpha \)-, \(\mathcal{P} \)-, \(\mathcal{M} \)-transformable, nor vanishing.

Remark 1. By Theorem 2.22, for arity \(n = 3 \) or 4, Lemma 3.12 implies that \(\Pi \)-Holant\((Z \otimes n g) \) is \#P-hard. After we have proved Theorem 6.1, this lemma will imply that \(\Pi \)-Holant\((Z \otimes n g) \) is \#P-hard for all \(n \geq 3 \).

Proof. That \(Z \otimes n g \) is not vanishing follows from Lemma 2.19 combined with Corollary 2.18 and Theorem 2.15. To show that \(Z \otimes n g \) is not \(\alpha \)-, \(\mathcal{P} \)-, \(\mathcal{M} \)-transformable, we only need to show that \(Z \otimes n g \notin \mathcal{P}_1 \cup \mathcal{M}_1 \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \) by Lemma 3.3, 3.5 and 3.10, and the fact that \(\mathcal{M}_1 \subset \mathcal{A}_1 \subset \mathcal{P}_1 \) and \(\mathcal{A}_2 \subset \mathcal{P}_2 \subset \mathcal{M}_2 \). See Figure 3.

We first show that \(Z \otimes n g \notin \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \). We say a signature \(f = [f_0, f_1, \ldots, f_n] \) satisfies a second order recurrence of type \(\langle a, b, c \rangle \) if \(a f_k - b f_{k+1} + c f_{k+2} = 0 \) for \(1 \leq k \leq n - 2 \), for some \(a, b \) and \(c \) not all zero. Suppose \(Z \otimes n g \) is a nonzero constant multiple of \(Hf \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \) in the forms given in Definitions 3.4, 3.8 and 3.1, then \(f \), and hence also \((Z^{-1}) \otimes n f \), satisfies a second order recurrence. We have \(H^{-1}Z = ZD \) or \(ZD \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) for some non-singular diagonal \(D \) since \(H \in \mathcal{O}_2(\mathbb{C}) \). Thus \(f = Z \otimes n g' \) for some \(g' = [x', y', 0, \ldots, 0, z'] \) or \([x', 0, \ldots, 0, y', z'] \), with \(x' y' z' \neq 0 \). We assume the former; the proof is similar for the latter.

However, for \(n \geq 4 \), \(g' \) does not satisfy any second order recurrence. For a contradiction suppose \(g' \) does. By \(x' y' z' \neq 0 \), \(a y' - b 0 + c 0 = 0 \) gives \(a = 0 \), \(a x' - b y' + c 0 = 0 \) gives \(b = 0 \), and \(a 0 - b 0 + c z' = 0 \) gives \(c = 0 \); but \(a, b, c \) cannot be all zero.

Next suppose \(n = 3 \), and we show that \(g' = (Z^{-1}) \otimes n f \) is still impossible. For \(\mathcal{P}_1 \), \(f = [1] \otimes 3 + \beta [1] \otimes 3 \). It is easy to check that \((Z^{-1}) \otimes n f \) satisfies a second order recurrence with its two eigenvalues sum to zero. However \(g' = [x', y', 0, z'] \) has type \((y' z', x' z', -y'^2) \), the sum of its two eigenvalues is \(-x' z'/y'^2 \neq 0 \).

For \(\mathcal{M}_2 \), \(f = [\begin{bmatrix} 1 \\ 1 \end{bmatrix}] \otimes 3 \pm [\begin{bmatrix} 1 \\ 0 \end{bmatrix}] \otimes 3 \). In \((Z^{-1}) \otimes n f \), \(Z^{-1} [\begin{bmatrix} 1 \\ 1 \end{bmatrix}] \) has the form \([u \ w \ u \ w] \), and \((Z^{-1}) \otimes n f = [u \ w \ u \ w] \otimes 3 \pm [u \ w] \otimes 3 \). Thus the weight 1 and weight 2 entries of \((Z^{-1}) \otimes n f \) are either equal or negative of each other. If \(g' = (Z^{-1}) \otimes n f \) this would imply \(y' = 0 \), a contradiction.

For \(\mathcal{A}_3 \), \(f = [\begin{bmatrix} 1 \\ 1 \end{bmatrix}] \otimes n + r [\begin{bmatrix} 1 \\ 0 \end{bmatrix}] \otimes n \). \(Z^{-1} [\begin{bmatrix} 1 \\ 0 \end{bmatrix}] = [u \ w \ u \ v] \), with \(u = 1 - \alpha i \) and \(v = 1 + \alpha i \). The weight 2 entry of \((Z^{-1}) \otimes n f \) is \(w u^2 + r v u v = (uv)(v + i r u) \). This is nonzero for all \(r \). However \(g' = [x', y', 0, z'] \) has this property.

It remains to show that \(Z \otimes n g \notin \mathcal{M}_3 \cup \mathcal{M}_4 \). If \(Z \otimes n g \in \mathcal{M}_3 \), then \(Z \otimes n g = c H f \) for some \(H \in \mathcal{O}_2(\mathbb{C}) \) and \(f = \text{Sym}_{n-1}^{-1}(\begin{bmatrix} 1 \\ 0 \end{bmatrix}; \begin{bmatrix} 0 \end{bmatrix}) \). Again \(f = (c H)^{-1} Z \otimes n g = Z \otimes n g' \) for some \(g' \) having the same or its reversal form as \(g \). Then \(g' = (Z^{-1}) \otimes n f \) is the signature \([n, n - 2, \ldots, -(n - 2), -n] \). The weight 1 entry and weight \(n - 1 \) entry have the same absolute value. By the form of \(g' \) this is a contradiction.
Finally if $Z^{\otimes n}g \in \mathcal{M}_4$, then by Lemma 3.9, $Z^{\otimes n}g = cZ^{\otimes n}f$, for some nonzero constant $c \in \mathbb{C}$, and $f = \text{Sym}_{n-1}^{n-1}([\frac{1}{4}]; [\frac{1}{2}])$ or its reversal $\text{Sym}_{n}^{n}([\frac{1}{2}]; [\frac{1}{4}])$. In either case, after canceling out Z, the weight 0 entry is 0 in the expression but not so in g; a contradiction.

\section{Mixing with Vanishing Signatures}

In this section, we prove some hardness results for vanishing signature sets when augmented by other signatures. We first consider the mixing of vanishing signatures with unary and binary signatures. Over general graphs, these cases are handled by Lemma 7.1 and Lemma 7.2 in [6]. One can check that the hardness in Lemma 7.1 in [6] holds for planar graphs. We state the planar version of Lemma 7.1 in [6] and provide a proof for completeness. Specifically, the reduction to obtain the signature f'' is planar and Pl-Holant(f'') is #P-hard by Theorem 2.22.

Lemma 4.1. Let $f \in \mathcal{V}_\sigma$ be a symmetric signature of arity n with $\text{rd}^\sigma(f) = d \geq 2$ where $\sigma \in \{+,-\}$. Suppose $v = u^{\otimes m}$ is a symmetric degenerate signature for some unary signature u and some integer $m \geq 1$. If u is not a multiple of $[1, \sigma i]$, then Pl-Holant(f, v) is #P-hard.

Proof. We consider $\sigma = +$ since the other case is similar. Since $f \in \mathcal{V}_+$, we have $n > 2d \geq 4$. Under a holographic transformation by Z, we have

$$\text{Pl-Holant}(f, v) \equiv \text{Pl-Holant} \left(\neq_2 \mid \hat{f}, [a, b]^{\otimes m} \right),$$

where $\hat{f} = (Z^{-1})^{\otimes n}f$ and $[a, b]^{\otimes m} = (Z^{-1})^{\otimes m}v$ with $b \neq 0$ since u is not a multiple of $[1, i]$. Moreover, $\hat{f} = [\hat{f}_0, \hat{f}_1, \ldots, \hat{f}_d, 0, \ldots, 0]$ with $\hat{f}_d \neq 0$ by Lemma 2.19.

We get $\tilde{f}' = [\tilde{f}_{d-2}, \tilde{f}_{d-1}, \tilde{f}_d, 0, \ldots, 0]$ of arity $n - 2d + 4$ by $d - 2$ self-loops via \neq_2 on \hat{f}. This is on the right side. With two more self-loops, we get $[1, 0]^{\otimes n-2d}$, also on the right.

We claim that we can use $[1, 0]^{\otimes n-2d}$ and $[a, b]^{\otimes m}$ to create $[a, b]^{\otimes n-2d}$. Let $t = \text{gcd}(m, n-2d)$. If $n - 2d > m$, then we connect $[a, b]^{\otimes m}$ to $[1, 0]^{\otimes n-2d}$ via \neq_2 to get $[1, 0]^{\otimes n-2d - m}$ up to a nonzero factor $b \neq 0$. We repeat this process until we get a tensor power $[1, 0]^{\otimes \ell}$ for some $\ell \leq m$. We can do a similar construction if $m > n - 2d$. Repeat this process, which is a subtractive Euclidean algorithm. Halt upon getting both $[1, 0]^{\otimes \ell}$ and $[a, b]^{\otimes t}$. Then we combine $\frac{n-2d}{\ell}$ copies of $[a, b]^{\otimes t}$ to get $[a, b]^{\otimes n-2d}$.

Now connecting $[a, b]^{\otimes n-2d}$ back to \tilde{f}' via \neq_2, gives $\tilde{f}' = \tilde{f} = [\tilde{f}_0, \tilde{f}_1, \tilde{f}_2, 0, 0]$ of arity 4. Moreover, $\tilde{f} = b^{n-2d} \neq 0$. Notice that Pl-Holant$(\neq_2 \mid \tilde{f}$, $\tilde{f}_{d} = 0)$ is #P-hard by Corollary 2.29 (or more directly by [20, Theorem 3.7]). Thus, Pl-Holant(f, v) is #P-hard.

Next come binary signatures. The statement of Lemma 7.2 in [6] must be modified to rule out a planar tractable case (which is proved #P-hard for general graphs in Lemma 7.2 in [6]). Excluding this planar tractable case, there is one more nonplanar reduction in the proof of Lemma 7.2 in [6]. This reduction is used to show that Holant$(\neq_2 \mid \{[t, 1, 0, 0, 0], [c, 0, 1]\})$ is #P-hard when $c \neq 0$ (since the gadget in Figure 12a of [6] is nonplanar). In the following lemma, we first show that this problem Holant$(\neq_2 \mid \{[t, 1, 0, 0, 0], [c, 0, 1]\})$ remains #P-hard even restricted to planar graphs provided $t \neq 0$. If $t = 0$, then all signatures belong to \mathcal{M} and the problem is tractable.

Lemma 4.2. Let $c, t \in \mathbb{C}$. If $ct \neq 0$, then Pl-Holant$(\neq_2 \mid [t, 1, 0, 0, 0], [c, 0, 1])$ is #P-hard.
Lemma 7.2 in [6] using Lemma 4.2. We have to rule out the planar tractable case \(f \in \mathcal{M}_4^+ \). Also note that if \(f \in \mathcal{V}^+ \) is a symmetric non-degenerate signature, then \(f \) has arity at least 3. This is because a unary signature is degenerate, and if a binary symmetric signature \(f \) is vanishing, then its vanishing degree is greater than 1, hence at least 2, and therefore \(f \) is also degenerate. In the following lemma, we explicitly state this condition \(\text{arity}(f) \geq 3 \).

Lemma 4.3. Let \(f \in \mathcal{V}^\sigma \) be a symmetric non-degenerate signature of arity \(n \geq 3 \) for some \(\sigma \in \{+, -\} \). Suppose \(h \) is a non-degenerate binary signature. If \(f \not\in \mathcal{M}_4^\sigma \) and \(h \not\in \mathcal{R}_2^\sigma \), then \(\text{Pl-Holant}(f, h) \) is \#P-hard.

Proof. We consider \(\sigma = + \) since the other case is similar. Under a \(Z \) transformation,

\[
\text{Pl-Holant}(f, h) \equiv \text{Pl-Holant}(\neq_2 | \hat{f}, \hat{h}),
\]

where \(\hat{f} = (Z^{-1})^{\otimes n} f \) and \(\hat{h} = (Z^{-1})^{\otimes 2} h \). Since \(h \not\in \mathcal{R}_2^+ \), we may assume that \(\hat{h} = [a, b, 1] \) by Lemma 2.19 with a nonzero entry \(h_2 \). Moreover since \(h \) is non-degenerate, so is \(\hat{h} \), and \(b^2 \neq a \).

We prove the lemma by induction on the arity of \(f \) (or equivalently \(\hat{f} \)). There are two base cases, \(n = 3 \) and \(n = 4 \). However, the arity 3 case is easily reduced to the arity 4 case. We show this first, and then show that the lemma holds in the arity 4 case.

Assume \(n = 3 \). Since \(f \in \mathcal{V}^+ \), we have \(\hat{f} = [t, 1, 0, 0] \) for some \(t \neq 0 \), by Lemma 2.19 and \(f \not\in \mathcal{M}_4^+ \). Consider the gadget in Figure 4. We assign \(\hat{f} \) to the circle vertices and \(\neq_2 \) to the square vertex. Let \(\tilde{f} \) be the signature of the resulting gadget. The signature \(\tilde{f} \) may not seem symmetric by construction, but it is not hard to verify that indeed \(\tilde{f} = [2t, 1, 0, 0, 0] \). The crucial observation is that it takes the same value 0 on inputs 1010 and 1100, where bits are ordered counterclockwise, starting from an arbitrary edge. This finishes our reduction to \(n = 4 \).

Now we consider the base case of \(n = 4 \). Since \(f \in \mathcal{V}^+ \), we have \(\text{vd}^+(f) > 2 \) and \(\text{rd}^+(f) < 2 \). As \(f \) is not degenerate, \(\text{rd}^+(f) \not\in \{-1, 0\} \). It implies that \(\text{rd}^+(f) = 1 \) and by Lemma 2.19, \(\hat{f} = [t, 1, 0, 0, 0] \).
Our next goal is to show that we can realize a signature of the form \([c, 0, 1]\) with \(c \neq 0\). Then Pl-Holant \((\neq_2 \mid [t, 1, 0, 0, 0], [c, 0, 1]) \leq \text{Pl-Holant}(f, h)\). Moreover, \(t \neq 0\) since \(f \notin \mathcal{M}_4^+\). Then by Lemma 4.2, Pl-Holant \((\neq_2 \mid [t, 1, 0, 0, 0], [c, 0, 1])\) is \#P-hard.

If \(b = 0\), then \(h\) is what we want since in this case \(a = a - b^2 \neq 0\).

Otherwise \(b \neq 0\). By connecting \(h\) to \(f\) via \(\neq_2\), we get \([t + 2b, 1, 0]\). If \(t - 2b\), then by Lemma 2.20, we can interpolate any binary signature of the form \([v, 1, 0]\). Otherwise \(t = 2b\). Then we connect two copies of \(h\) via \(\neq_2\), and get \(h' = [2ab, a + b^2, 2b]\). By connecting this \(h'\) to \(f\) via \(\neq_2\), we get \([2(a - b^2), 2b, 0]\), using \(t = 2b\). Since \(a \neq b^2\) and \(b \neq 0\), we can once again interpolate any \([v, 1, 0]\) by Lemma 2.20.

Hence, we have the signature \([v, 1, 0]\), where \(v \in \mathbb{C}\) is for us to choose. We construct the gadget in Figure 5 with the circles assigned \([v, 1, 0]\), the squares assigned \(\neq_2\), and the triangle assigned \([a, b, 1]\). The resulting gadget has signature \([a + 2bv + v^2, b + v, 1]\), which can be verified by the matrix product

\[
\begin{bmatrix}
 v & 1 & 0 & 1 & 0 \\
 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 b & 1
\end{bmatrix}
\begin{bmatrix}
 v & 1 & 0 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
 a + 2bv + v^2 & b + v \\
 b + v & 1
\end{bmatrix}.
\]

By setting \(v = -b\), we get \([c, 0, 1]\), where \(c = a - b^2 \neq 0\).

Now we do the induction step. Assume \(n \geq 5\). Since \(f\) is non-degenerate, \(rd^+(f) \geq 1\). If \(rd^+(f) = 1\), then \(\hat{f} = [t, 1, 0, \ldots, 0]\) for some \(t \neq 0\). We connect \(h\) to \(\hat{f}\) via \(\neq_2\), getting \([t + 2b, 1, 0, \ldots, 0]\) of arity \(n - 2 \geq 3\). If \(t + 2b \neq 0\), then we are done by induction hypothesis. Otherwise \(t = -2b\), and we connect two \(\hat{h}\) together via \(\neq_2\). The signature is \(\hat{h}' = [2ab, b^2 + a, 2b]\). Connect \(\hat{h}'\) to \(\hat{f}\) via \(\neq_2\). We get \([-4b^2 + 2(b^2 + a), 2b, 0, \ldots, 0]\) \([2(a - b^2), 2b, 0, \ldots, 0]\). If \(b = 0\), then \(t = 0\). Contradiction. Hence \(b \neq 0\), and \(a - b^2 \neq 0\) for \(b\) is not degenerate. Then we can apply induction hypothesis on \([2(a - b^2), 2b, 0, \ldots, 0]\).

The case left is that \(rd^+(f) = d \geq 2\). Then \(\hat{f} = [\hat{f}_0, \hat{f}_1, \ldots, \hat{f}_d, 0, \ldots, 0]\) with \(\hat{f}_d \neq 0\) by Lemma 2.19. We do a self-loop of \(\hat{f}\) via \(\neq_2\), getting \(\hat{f'} = [\hat{f}_1, \ldots, \hat{f}_d, 0, \ldots, 0]\) of arity \(n - 2 \geq 3\). Since \(d \geq 2\), \(\hat{f'}\) is non-degenerate and \(\hat{f''} = Z^{\oplus (n-2)} \hat{f'} \in \mathcal{V}^+\). If \(f'' \notin \mathcal{M}_4^+\), then apply the induction hypothesis and we are done. Otherwise \(d = 2\) and we may assume \(\hat{f} = [\hat{f}_0, 0, 1, 0, \ldots, 0]\) since \(\hat{f}_2 \neq 0\).

In this case, we connect \(h\) to \(\hat{f}\) via \(\neq_2\), getting \(\hat{f''' := [a + \hat{f}_0, 2b, 1, 0, \ldots, 0]\) of arity \(n - 2 \geq 3\). If \(n \geq 7\), then we can apply the induction hypothesis. If \(n = 6\), then \(\hat{f}''' = [a + \hat{f}_0, 2b, 1, 0, 0]\) of arity 4. Notice that Pl-Holant \(([0, 1, 0] \mid [a + \hat{f}_0, 2b, 1, 0, 0]\) is equivalent to Pl-Holant \(([0, 1, 0] \mid [0, 0, 1, 0, 0])\), which is counting Eulerian orientations in 4-regular planar graphs. Then Pl-Holant \((\neq_2 \mid \hat{f}'''\) is \#P-hard by Corollary 2.29.

The only case left now is when \(n = 5\) and \(\hat{f} = [\hat{f}_0, 0, 1, 0, 0, 0]\). We do two self-loops on \(\hat{f}\) via \(\neq_2\) to get \([1, 0]\). Then connect \([1, 0]\) to \(h\) via \(\neq_2\) and get \([b, 1]\). At last, connect \([b, 1]\) to \(\hat{f}\) via \(\neq_2\), resulting in \([\hat{f}_0, b, 1, 0, 0]\). Similar to the case above, this is counting Eulerian orientations in
4-regular planar graphs, and is \#P-hard by Corollary 2.29.

If \(f \in \mathcal{M}_4^\pm \) there is an additional case for the binary signature.

Lemma 4.4. Let \(f \in \mathcal{M}_4^\sigma \) be a symmetric non-degenerate signature with \(\sigma \in \{+, -\} \) of arity \(k \geq 3 \). Suppose \(h \) is a non-degenerate binary signature such that \(h \notin \mathcal{R}_2^\sigma \) and \(h \) is not a multiple of \(Z^{\otimes 2}[a, 0, 1] \) for any \(a \neq 0 \). Then \(\text{Pl-Holant}(f, h) \) is \#P-hard.

Proof. We assume \(f \in \mathcal{M}_4^+ \) since the other case is similar. Suppose \(h = Z^{\otimes 2}[a, b, c] \) for some \(a, b, c \in \mathbb{C} \). Since \(h \notin \mathcal{R}_2^+ \), we have \(c \neq 0 \), so we assume \(c = 1 \). Moreover \(b \neq 0 \). This is because, if \(b = 0 \) then either \(h \) is degenerate or is a multiple of \(Z^{\otimes 2}[a, 0, 1] \) for some \(a \neq 0 \). Either case is a contradiction. Then under a holographic transformation by \(Z \), the problem becomes \(\text{Pl-Holant}(\neq_2 | \text{ExactOne}_k, [a, b, 1]) \). If we connect two copies of \(\text{ExactOne}_k \) via \(\neq_2 \), we get \(\text{ExactOne}_{2k-2} \). Hence we may assume that \(k \geq 5 \). Then we connect \([a, b, 1] \) to \(\text{ExactOne}_k \) via \(\neq_2 \), and get \([2b, 1, 0, \ldots, 0]\) of arity \(k-2 \geq 3 \). Since \(b \neq 0 \), \(\text{Pl-Holant}(f, h) \) is \#P-hard by Lemma 4.3.

Next we consider mixing signatures from \(\forall^+ \) and \(\forall^- \). This is a planar version of Lemma 7.3 in [6]. However, for planar graphs, there is a tractable case when one signature is in \(\mathcal{M}_4^+ \) and the other is in \(\mathcal{M}_4^- \). This case was shown to be \#P-hard over general graphs by Lemma 6.12 in [6] using a nonplanar reduction. One can check that the rest of the proof of Lemma 7.3 in [6] holds for planar graphs. For completeness we include a proof.

Lemma 4.5. Let \(f \in \forall^+ \) and \(g \in \forall^- \) be symmetric non-degenerate signatures of arities \(\geq 3 \) respectively. If \(f \notin \mathcal{M}_4^+ \) or \(g \notin \mathcal{M}_4^- \) then \(\text{Pl-Holant}(f, g) \) is \#P-hard.

Proof. Let \(rd^+(f) = d \), \(rd^-(g) = d' \), \(\text{arity}(f) = n \) and \(\text{arity}(g) = n' \), then \(2d < n \) and \(2d' < n' \). Under a holographic transformation by \(Z = [\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}] \), we have

\[
\text{Pl-Holant}(\neq_2 | f, g) \equiv_T \text{Pl-Holant}\left(\neq_2 | \hat{f}, \hat{g}\right),
\]

where \(\hat{f} := (Z^{-1})^{\otimes n} f = [\hat{f}_0, \ldots, \hat{f}_d, 0, \ldots, 0] \) and \(\hat{g} := (Z^{-1})^{\otimes n'} g = [0, \ldots, 0, \hat{g}_d', \ldots, \hat{g}_0] \) due to Lemma 2.19. Moreover \(\hat{f}_d \neq 0 \) and \(\hat{g}_d \neq 0 \).

If \(d \geq 2 \), we can do \(d \) many self-loops of \(\neq_2 \) on \(\hat{g} \), getting \(\hat{g}' := [0, \ldots, 0, \hat{g}_d', \ldots, \hat{g}_0] \) of arity \(n'-2d' \geq 1 \). Thus \(g' := Z^{\otimes (n'-2d')} \hat{g}' = [1, -1]^{\otimes (n'-2d')} \) up to a nonzero constant. We apply Lemma 4.1 to derive that \(\text{Pl-Holant}(f, g) \) is \#P-hard. If \(d' \geq 2 \), we can similarly get \([1, i]^{\otimes (n'-2d')} \) and apply Lemma 4.1. Thus we can assume that \(d = d' = 1 \).

So up to nonzero constants, we have \(\hat{f} = [a, 1, 0, \ldots, 0] \) and \(\hat{g} = [0, \ldots, 0, 1, b] \) for some \(a, b \in \mathbb{C} \). We can assume that \(f \notin \mathcal{M}_4^+ \) and \(a \neq 0 \). The case of \(b \neq 0 \) is similar. We show that it is always possible to get two such signatures of the same arity \(\min\{n, n'\} \). Suppose \(n > n' \). We form a loop from \(f \) via \(\neq_2 \). It is easy to see that this signature is the degenerate signature \(2[1, 0]^{\otimes (n-2)} \). Similarly, we can form a loop from \(g \) and get \(2[0, 1]^{\otimes (n'-2)} \). Thus we have both \([1, 0]^{\otimes (n-2)} \) and \([0, 1]^{\otimes (n'-2)} \). We can connect all \(n'-2 \) edges of the second to the first, connected by \(\neq_2 \). This gives \([1, 0]^{\otimes (n-n')} \). We can continue subtracting the smaller arity from the larger one. We continue this process in a subtractive version of the Euclidean algorithm, and end up with both \([1, 0]^{\otimes t} \) and \([0, 1]^{\otimes t} \), where \(t = \gcd(n-2, n'-2) = \gcd(n-n', n'-2) \). In particular, \(t | n-n' \) and by taking \(\frac{n-n'}{t} \) copies of \([0, 1]^{\otimes t} \), we can get \([0, 1]^{\otimes (n-n')} \). Connecting this back to \(\hat{f} \) via \(\neq_2 \), we get a symmetric signature of arity \(n' \) consisting of the first \(n'+1 \) entries of \(\hat{f} \). A similar proof works when \(n' > n \).
Thus we may assume \(n = n' \). Connecting \([0,1]^\otimes(n-2)\) to \(\hat{f} = [a,1,0,\ldots,0] \) via \(\neq 2 \) we get \(\hat{h} = [a,1,0] \). Recall that \(a \neq 0 \). Translating this back by \(Z \), we have a binary signature \(h \notin R^- \) and \(h \) is not a multiple of \(Z^\otimes2[c,0,1] \) for any \(c \neq 0 \). Since \(g \in \mathcal{V}^- \), by Lemma 4.3 or Lemma 4.4, \(\text{Pl-Holant}(g,h) \) is \(\#P \)-hard. Hence \(\text{Pl-Holant}(f,g) \) is also \(\#P \)-hard.

When signatures in both \(\mathcal{M}^+_4 \) and \(\mathcal{M}^-_4 \) appear, we show that the only degenerate signatures that mix must also be vanishing.

Lemma 4.6. Let \(f \in \mathcal{M}^+_4 \) and \(g \in \mathcal{M}^-_4 \) be two non-degenerate signatures of arity \(\geq 3 \). Let \(v = u^\otimes m \) be a degenerate signature for some unary signature \(u \) and some integer \(m \geq 1 \). If \(u \) is not a multiple of \([1,\pm i]\), then \(\text{Pl-Holant}(f,g,v) \) is \(\#P \)-hard.

Proof. Suppose \(f \) is of arity \(n \) and \(g \) of arity \(\ell \). Under a holographic transformation by \(Z \), we have

\[
\text{Pl-Holant}(f,g,v) \equiv \text{Pl-Holant} \left(\neq 2 \mid \text{ExactOne}_n, \text{AllButOne}_\ell, [a,b]^\otimes m \right),
\]

where \(ab \neq 0 \). Notice that \(v \) is transformed to \((Z^{-1}u)^\otimes m = [a,b]^\otimes m \). We have \(ab \neq 0 \) since \(u \) is not a multiple of \([1,\pm i]\). First we get \([1,0]^\otimes n-2 \) by a self-loop via \(\neq 2 \) on \(\text{ExactOne}_n \). By the same subtractive Euclidean argument as in Lemma 4.1, we can realize \([a,b]^\otimes n-2 \) by \([1,0]^\otimes n-2 \) and \([a,b]^\otimes m \). Connecting \([a,b]^\otimes n-2 \) to \(\text{ExactOne}_n \) via \(\neq 2 \) we get a binary signature \(h = [(n-2)ab^{-3}, b^{n-2}, 0] \). After transforming back, we have

\[
\text{Pl-Holant}(g, Z^\otimes2h) \leq_T \text{Pl-Holant}(f,g,v).
\]

However \(Z^\otimes2h \notin R^- \) by Lemma 2.19 and it is not a multiple of \(Z^\otimes2[c,0,1] \) for any \(c \neq 0 \). Hence \(\text{Pl-Holant}(f,g,v) \) is \(\#P \)-hard by Lemma 4.4, where \((g, Z^\otimes2h) \) plays the role of “\((f,h)\)” in Lemma 4.4 and \(\sigma = - \).

We also consider the mixing of vanishing signatures with those in \(\mathcal{P}_2 \).

Lemma 4.7. Let \(f \in \mathcal{V} \setminus \mathcal{M}_4 \) and \(g \in \mathcal{P}_2 \) be two non-degenerate signatures with arities \(m \) and \(n \) respectively. If \(m, n \geq 3 \), then \(\text{Pl-Holant}(f,g) \) is \(\#P \)-hard.

Proof. We claim that it suffices to consider \(f \in \mathcal{V}^+ \setminus \mathcal{M}_4 \) and \(g = \lfloor \frac{1}{1} \rfloor^\otimes n \). By Lemma 3.2, we know that \(g = \lfloor \frac{1}{1} \rfloor^\otimes n + \lfloor \frac{-1}{1} \rfloor^\otimes n \). Under a holographic transformation by \(T = Z \lfloor \frac{1}{1} \rfloor^\otimes n + \lfloor \frac{-1}{1} \rfloor^\otimes n \), which is orthogonal up to a nonzero factor of \(\beta^2 \), we have

\[
\hat{g} = (T^{-1})^\otimes n g = \lfloor \frac{1}{1} \rfloor^\otimes n + \lfloor \frac{-1}{1} \rfloor^\otimes n.
\]

Now \(\mathcal{M}_4 \) is closed under orthogonal transformations by definition, and \(\mathcal{V} \) is closed under orthogonal transformations by Lemma 2.14. Thus, we still have a signature \(\hat{f} = (T^{-1})^\otimes n f \) such that \(\hat{f} \in \mathcal{V} \setminus \mathcal{M}_4 \). If \(\hat{f} \in \mathcal{V}^- \), then under a holographic transformation by \(D = \lfloor \frac{1}{1} \rfloor^\otimes n \), we have \(\hat{f} \in \mathcal{V}^- \). Furthermore, \(\hat{g} \) is invariant under \(D \). This proves the claim.

Now we assume that \(f \in \mathcal{V}^+ \setminus \mathcal{M}_4 \) and \(g = \lfloor \frac{1}{1} \rfloor^\otimes n \). By Corollary 2.18, we have \(\text{rd}_+(f) = d < \frac{n}{2} \). Under a holographic transformation by \(Z \), we have

\[
\text{Pl-Holant} \left(\neq 2 \mid f,g \right) \equiv \text{Pl-Holant} \left(\lfloor 1,0,1 \rfloor Z^\otimes2 \mid Z^{-1}\{f,g\} \right)
\]

\[
\equiv \text{Pl-Holant} \left(\neq 2 \mid \hat{f}, \hat{g} \right),
\]

where \(\hat{f} = (Z^{-1})^\otimes m f \). By Lemma 2.19, the support of \(\hat{f} \) is on entries with Hamming weight at most \(d \) and includes the entry of Hamming weight exactly \(d \). Now \(f \notin \mathcal{M}_4 \), so by Lemma 3.9, we
either have \(d = 1 \) and \(\hat{f} = [\hat{f}_0, 1, 0, \ldots, 0] \) with \(\hat{f}_0 \neq 0 \) or \(d \geq 2 \) and \(\hat{f} = [\hat{f}_0, \hat{f}_1, \ldots, \hat{f}_{d-1}, 1, 0, \ldots, 0] \) (and up to a nonzero scalar in either case).

In the first case, a self-loop on \(\hat{f} \) via \(\neq 2 \) gives \([1,0]^{\otimes m-2} \) on the right side. Let \(r = \gcd(n, m-2) \), and let \(\ell_1, \ell_2 \) be two positive integers such that \(\ell_1 n - \ell_2 (m-2) = r \). We connect \(\ell_1 \) copies of \(=n \) with \(\ell_2 \) copies of \([1,0]^{\otimes m-2} \) via \(\neq 2 \)'s to get \([0,1]^{\otimes r} \). Since \(r \mid m - 2 \), we can also realize \([0,1]^{\otimes m-2} \) by putting \(\frac{m-2}{r} \) copies of \([0,1]^{\otimes r} \) together. Now connect \([0,1]^{\otimes m-2} \) to \(\hat{f} \) via \(\neq 2 \). The resulting signature is \([\hat{f}_0, 1, 0] \). We can also move \(=n \) to the left using \(n \) copies of \(\neq 2 \). Hence, we have \(\text{Pl-Holant}(=n | [0,1,0]) \leq_T \text{Pl-Holant}(\neq 2 | \hat{f}, =n) \). The former problem is \#P-hard by Theorem 2.24 since \(\hat{f}_0 \neq 0 \), so the latter problem is \#P-hard as well.

In the second case, we have \(m \geq 5 \) since \(2 \leq d < \frac{m}{2} \). Furthermore, we may assume that \(d = 2 \), since otherwise we can do \(d - 2 \) self-loops on \(\hat{f} \) via \(\neq 2 \). With this assumption, we do two self-loops on \(\hat{f} \) via \(\neq 2 \) to get \([1,0]^{\otimes m-4} \) on the right side. By a similar argument as in the previous case, we can construct \([0,1]^{\otimes m-4} \) by using \([1,0]^{\otimes m-4} \) and \(=n \) via \(\neq 2 \). Now connect \([0,1]^{\otimes m-4} \) back to \(\hat{f} \) via \(\neq 2 \). We get the arity 4 signature \([\hat{f}_0, \hat{f}_1, 1, 0, 0] \). Hence, we have \(\text{Pl-Holant}(\neq 2 | [\hat{f}_0, 1, 0, 0]) \leq_T \text{Pl-Holant}(\neq 2 | \hat{f}, =n) \). Note that \(\text{Pl-Holant}(\neq 2 | [\hat{f}_0, 1, 0, 0]) \) is equivalent to \(\text{Pl-Holant}(\neq 2 | [0,0,1,0,0]) \), counting Eulerian Orientations in planar 4-regular graphs, which is \#P-hard by Corollary 2.29. Thus \(\text{Pl-Holant}(\neq 2 | \hat{f}, =n) \) is \#P-hard as well.

\[\square \]

5 Dichotomy for Pl-\#CSP\(^2\) and Related Lemmas

In this section, we state the dichotomy for Pl-\#CSP\(^2\). We defer the proof to Part II of this paper starting on page 63. We provide a sketch of the proof here. Afterwards, we discuss several related lemmas, which are used for the full dichotomy of Pl-Holant. Let \(\mathcal{T}_k = \{ [\begin{smallmatrix} 1 & 0 \\ 0 & \omega \end{smallmatrix}] \in \mathbb{C}^{2 \times 2} \mid \omega^k = 1 \} \).

Theorem 5.1. Let \(\mathcal{F} \) be a set of symmetric signatures. Then Pl-\#CSP\(^2\)(\(\mathcal{F} \)) is \#P-hard unless \(\mathcal{F} \) satisfies one of the following conditions:

1. there exists \(T \in \mathcal{T}_k \) such that \(\mathcal{F} \subseteq T\mathcal{A} \);
2. \(\mathcal{F} \subseteq \mathcal{P} \);
3. there exists \(T \in \mathcal{T}_k \) such that \(\mathcal{F} \subseteq T\mathcal{M} \).

In each exceptional case, Pl-\#CSP\(^2\)(\(\mathcal{F} \)) is computable in polynomial time.

Proof Sketch. We first define some tractable families of signatures specific to the Pl-\#CSP\(^2\) framework. Let \(\mathcal{A} = \mathcal{A} \cup \{ [\begin{smallmatrix} 0 & e^{i/4} \\ e^{-i/4} & 0 \end{smallmatrix}] \mathcal{A} \} \) and \(\mathcal{M} = \mathcal{M} \cup \{ [\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}] \mathcal{M} \} \). One can show that \(\mathcal{A} \) covers Case 1 above, and \(\mathcal{M} \) covers Case 3. The proof will revolve around these tractable classes.

The overall plan is to break the proof into two main steps.

The first step is to prove the dichotomy theorem for Pl-\#CSP\(^2\)(\(\mathcal{F} \)) when there is at least one nonzero signature of odd arity in \(\mathcal{F} \). In this case, we can make use of a lemma showing that we can simulate Pl-\#CSP(\(\mathcal{F} \)) by Pl-\#CSP\(^2\)(\(\mathcal{F} \)) if \(\mathcal{F} \) includes a unary signature \([a,b] \) with \(ab \neq 0 \). Then we can apply the known dichotomy Theorem 2.25 for Pl-\#CSP. However this strategy (provably) cannot work when every signature in \(\mathcal{F} \) satisfies the parity constraint. In that case we employ other means. This first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in \(\mathcal{F} \) have even arity. This is where the real difficulties lie. In this case it is impossible to directly construct any unary signature. So we cannot use that lemma pertaining to a unary signature. But we prove another lemma which provides a way to simulate Pl-\#CSP(\(\mathcal{F} \)) by Pl-\#CSP\(^2\)(\(\mathcal{F} \)) in a **global** fashion, if \(\mathcal{F} \) includes some tensor power of the form \([a,b]^{\otimes 2} \) where \(ab \neq 0 \). Moreover, we have a lucky break (for
the complexity of the proof) if \(\mathcal{F} \) includes a signature that is in \(\mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). In this case, we can construct a special binary signature, and obtain \([1, 1]^{\otimes 2}\) by interpolation. This proof uses the theory of cyclotomic fields. This simplifies the proof greatly. For all other cases (when \(\mathcal{F} \) has only even arity signatures), the proof gets going in earnest—we will attempt an induction on the arity of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2 whenever possible; however for many cases an arity reduction to 2 destroys the \#P-hardness at hand. Therefore the true basis of this induction proof of Pl-\#CSP\(^2\) starts with arity 4. Consequently we will first prove a dichotomy theorem for Pl-\#CSP\(^2\)(\(f\)), where \(f \) is a signature of arity 4. Several tools will be used. These include the rank criterion for redundant signatures, Theorem 2.24 for arity 2 signatures, and a trick we call the Three Stooges by domain pairing.

However, in the next step we do not attempt a general Pl-\#CSP\(^2\) dichotomy for a single signature of even arity. This would have been natural at this point, but it would have been too difficult. We will need some additional leverage by proving a conditional “No-Mixing” Lemma for pairs of signatures of even arity. So, seemingly taking a detour, we prove that for two signatures \(f \) and \(g \) both of even arity, that individually belong to some tractable class, but do not belong to a single tractable class in the conjectured dichotomy (that is yet to be proved), the problem Pl-\#CSP\(^2\)(\(f, g\)) is \#P-hard. We prove this No-Mixing Lemma for any pair of signatures \(f \) and \(g \) both of even arity, not restricted to arity 4. Even though at this point we only have a dichotomy for a single signature of arity 4, we prove this No-Mixing Lemma for higher even arity pairs \(f \) and \(g \) by simulating two signatures \(f' \) and \(g' \) of arity 4 that belong to different tractable sets, from that of Pl-\#CSP\(^2\)(\(f, g\)). After this arity reduction (within the No-Mixing Lemma), we prove that Pl-\#CSP\(^2\)(\(f', g'\)) is \#P-hard by the dichotomy for a single signature of arity 4. After this, we prove a No-Mixing Lemma for a set of signatures \(\mathcal{F} \) of even arities, which states that if \(\mathcal{F} \) is contained in the union of all tractable classes, then it is still \#P-hard unless it is entirely contained in one single tractable class. Note that at this point we still only have a conditional No-Mixing Lemma in the sense that we have to assume every signature in \(\mathcal{F} \) belongs to some tractable set.

We then attempt the proof of a Pl-\#CSP\(^2\) dichotomy for a single signature of arbitrary even arity. This uses all the previous lemmas, in particular the (conditional) No-Mixing Lemma for a set of signatures. However, after completing the proof of this Pl-\#CSP\(^2\) dichotomy for a single signature of even arity, the No-Mixing Lemma becomes absolute.

Finally the dichotomy for a single signature of even arity is logically extended to a dichotomy theorem for Pl-\#CSP\(^2\)(\(\mathcal{F}\)) where all signatures in \(\mathcal{F} \) have even arity. Together with the first main step when \(\mathcal{F} \) contains some nonzero signature of odd arity, this completes the proof of Theorem 5.1.

\[\square \]

5.1 Related Lemmas

Now we give some consequences of Theorem 5.1. These are cases that can be reduced to Pl-\#CSP\(^2\). We consider signatures in \(\mathcal{P}_1, \mathcal{M}_2 \setminus \mathcal{P}_2, \mathcal{A}_3 \), or \(\mathcal{M}_3 \).

We begin with the cases of \(\mathcal{P}_1 \) and \(\mathcal{A}_3 \). The following two lemmas are rephrased from [6]. One can check that the reductions in these proofs are planar.

Lemma 5.2 (Lemma 8.15 in [6]). Let \(f \in \mathcal{P}_1 \) be a non-degenerate signature of arity \(n \geq 3 \) with an orthogonal transformation \(H \) and \(\mathcal{F} \) be a set of signatures containing \(f \). Let \(H_2 \) be the 2-by-2 matrix \(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Then Pl-\#CSP\(^2\)(\(H_2H\mathcal{F}\)) \(\leq __ \) Pl-Holant(\(\mathcal{F}\)).
Lemma 5.3 (Lemma 8.17 in [6]). Let $f \in \mathcal{A}$ be a non-degenerate signature of arity $n \geq 3$ with an orthogonal transformation H and \mathcal{F} be a set of signatures containing f. Let $\alpha = e^{\pi i/4}$ and Y be the 2-by-2 matrix $\begin{bmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{bmatrix}$. Then $\text{Pl-#CSP}^2(\{YHF \cup \{(1, -i, l)\}) \leq_T \text{Pl-Holant}(\mathcal{F})$.

With these reductions, we can apply Theorem 5.1 to get the following corollaries. The next one follows directly from Lemma 5.2 and Theorem 5.1 as H_2 is orthogonal and every $\text{Pl-}\#\text{CSP}^2$ tractable case is also tractable for Pl-Holant.

Corollary 5.4. Let \mathcal{F} be a set of signatures. Suppose there exists $f \in \mathcal{F}$ which is a non-degenerate signature of arity $n \geq 3$ in \mathcal{P}_1 with $H \in \mathcal{O}_2(\mathbb{C})$. Then $\text{Pl-Holant}(\mathcal{F})$ is $\#P$-hard unless \mathcal{F} is \mathcal{A}-, \mathcal{P}-, or \mathcal{M}-transformable, in which case $\text{Pl-Holant}(\mathcal{F})$ is tractable.

The proof of this corollary is straightforward. To illustrate the power of Theorem 5.1, we give a short proof here.

Proof. Let $H' = (H_2 H)^{-1} \in \mathcal{O}_2(\mathbb{C})$. By Lemma 5.2 and Theorem 5.1, $\text{Pl-Holant}(\mathcal{F})$ is $\#P$-hard unless either (1) $\mathcal{F} \subseteq H' \mathcal{A}$, or (2) $\mathcal{F} \subseteq H' \mathcal{A}$, or (3) $\mathcal{F} \subseteq H' T' \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathcal{M}$, where $T \in \mathcal{T}$ and $T' \in \mathcal{T}_4$. In case (1), \mathcal{F} is \mathcal{P}-transformable since $(\mathcal{P}) \mathcal{H}^\otimes 2 = (\mathcal{F}) \mathcal{P}$. In case (2), \mathcal{F} is \mathcal{A}-transformable since $(\mathcal{A}) (H' T')^\otimes 2 = (\mathcal{A}) T^\otimes 2 \in \mathcal{A}$. In case (3), \mathcal{F} is \mathcal{M}-transformable. If $T' = \begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix}$, then $T' \in \mathcal{O}_2(\mathbb{C})$. So $(\mathcal{M})(H' T' \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix})^\otimes 2 = (\mathcal{M}) \in \mathcal{M}$. If $T' = \begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix}$, then $(\mathcal{M})(H' T' \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix})^\otimes 2 = 2(0, 1, 0) \in \mathcal{M}$. □

Corollary 5.4 is useful in Section 8. In Section 6, we need the following further specialization.

Corollary 5.5. Suppose f is a non-degenerate signature of arity $n \geq 5$. Let f' be f with a self loop, and assume that $f' \in \mathcal{P}_1$ is non-degenerate. Then $\text{Pl-Holant}(f)$ is $\#P$-hard unless f is \mathcal{A}-, \mathcal{P}-, or \mathcal{M}-transformable, in which case $\text{Pl-Holant}(f)$ is tractable.

For the other case of \mathcal{A}_3, some case analysis is required.

Corollary 5.6. Let \mathcal{F} be a set of signatures. Suppose there exists $f \in \mathcal{F}$ which is a non-degenerate signature of arity $n \geq 3$ in \mathcal{A}_3. Then $\text{Pl-Holant}(\mathcal{F})$ is $\#P$-hard unless \mathcal{F} is \mathcal{A}- or \mathcal{M}-transformable, in which case $\text{Pl-Holant}(\mathcal{F})$ is tractable.

Proof. Assume that $f \in \mathcal{A}_3$ with an orthogonal transformation H. By Lemma 5.3, we have $\text{Pl-}\#\text{CSP}^2(\{YHF \cup \{(1, -i, l)\}) \leq_T \text{Pl-Holant}(\mathcal{F})$, where $Y = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{bmatrix}$ and $\alpha = e^{\pi i/4}$. Let $g = [1, -i, 1]$ and $\mathcal{F}' = YHF \cup \{g\}$.

We apply Theorem 5.1 to $\text{Pl-}\#\text{CSP}^2(\mathcal{F}')$. The consequence is that $\text{Pl-}\#\text{CSP}^2(\mathcal{F}')$ (and hence $\text{Pl-Holant}(\mathcal{F})$) is $\#P$-hard unless $\mathcal{F}' \subseteq \mathcal{P}', \mathcal{F}' \subseteq [1, 0, 0], \mathcal{M}$ for some integer $0 \leq r \leq 3$, or $\mathcal{F}' \subseteq [1, 0, 0], \mathcal{A}$ for some integer $0 \leq r \leq 7$ where $\alpha = e^{\pi i/4}$. Notice that $g \notin \mathcal{P}$ and hence the first case is impossible.

Suppose $\mathcal{F}' \subseteq [1, 0, 0], \mathcal{M}$ for some integer $0 \leq r \leq 3$. Then as $g \notin [1, 0, 0], \mathcal{M}$ for $r = 1, 3$, we have $YHF \subseteq [1, 0, 0], \mathcal{M}$. Moreover, notice that $[1, 0, 0], \mathcal{M} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathcal{M} = \mathcal{M}$. Hence $YHF \subseteq \mathcal{M}$. Rewrite Y as $Y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and $\mathcal{M} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. We deduce that $H \mathcal{F} \subseteq \frac{1}{2} \begin{bmatrix} \alpha^{-1} & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathcal{M} = \frac{1}{2} \begin{bmatrix} \alpha^{-1} & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathcal{M} = \mathcal{M}$. Hence \mathcal{F} is \mathcal{M}-transformable in this case.
The last case is when \(F' \subseteq [1/0, 0] \mathcal{A} \) for some integer \(0 \leq r \leq 7 \). It implies that \(r = 0, 2, 4, 6 \) as \(g \in [1/0, 0] \mathcal{A} \) and \(g \notin [1/0, 0] \mathcal{A} \). That is, \(F' \subseteq [1/0, 0] \mathcal{A} \) for some integer \(0 \leq l \leq 3 \). Notice that \([1/0, 0] \in \text{Stab}(\mathcal{A}) \). It implies that \(YHF \subseteq \mathcal{A} \). Again, rewriting \(Y \) as \(Y = [1/0, 0] \mathcal{A} \), we have

\[
HF \subseteq \frac{1}{2} \begin{bmatrix} \alpha^{-1} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \mathcal{A} = \frac{1}{2} \begin{bmatrix} \alpha^{-1} 0 & 1 \\ 0 & 1 \end{bmatrix} \mathcal{A}.
\]

Therefore \(F \) is \(\mathcal{A} \)-transformable. This finishes the proof.

Again, we specialize Corollary 5.6 to our need.

Corollary 5.7. Let \(f \) be a non-degenerate signature of arity \(n \geq 5 \). Let \(f' \) be \(f \) with a self loop, and \(f' \) is non-degenerate and \(f' \in \mathcal{A}_3 \) with an orthogonal transformation \(H \). Then \(\text{Pl-Holant}(f) \) is \#P-hard unless \(f \) is \(\mathcal{A} \)- or \(\mathcal{M} \)-transformable, in which case \(\text{Pl-Holant}(f) \) is tractable.

The next case is when \(f \) is in \(\mathcal{M}_2 \) but not \(\mathcal{P}_2 \).

Lemma 5.8. Let \(F \) be a set of signatures. Suppose there exists \(f \in F \) which is a non-degenerate signature of arity \(n \geq 3 \) in \(\mathcal{M}_2 \setminus \mathcal{P}_2 \). Then \(\text{Pl-Holant}(F) \) is \#P-hard unless \(F \) is \(\mathcal{M} \)- or \(\mathcal{A} \)-transformable, in which case \(\text{Pl-Holant}(F) \) is tractable.

Proof. As \(f \in \mathcal{M}_2 \setminus \mathcal{P}_2 \), assume \(f = H \otimes (\begin{bmatrix} 1/\gamma \end{bmatrix} \otimes n \pm \begin{bmatrix} -1/\gamma \end{bmatrix} \otimes n) \), where \(H \) is an orthogonal 2-by-2 matrix and \(\gamma \neq 0, \pm i \).

We first show that

\[
\text{Pl-\#CSP}^2(T^{-1}F, g) \leq_T \text{Pl-Holant}(\{f\} \cup F),
\]

(5.4)

where \(T = H \begin{bmatrix} 1/\gamma & 1/\gamma \end{bmatrix} \) and \(g = (=2)T \otimes 2 = [1 + \gamma^2, 1 - \gamma^2, 1 + \gamma^2] \).

Assume that \(f = H \otimes (\begin{bmatrix} 1/\gamma \end{bmatrix} \otimes n + \begin{bmatrix} -1/\gamma \end{bmatrix} \otimes n) \) with the + sign. In this case, we do the transformation \(T \):

\[
\text{Pl-Holant}(=2 \mid f, F) \equiv_T \text{Pl-Holant} \left([1, 0, 1]H \otimes [\begin{bmatrix} 1/\gamma \end{bmatrix} \otimes 2, \begin{bmatrix} 1/\gamma \end{bmatrix} \otimes 2] \left(\left[\begin{bmatrix} 1/\gamma \end{bmatrix} \right]^{-1} \right) \otimes n (H^{-1}) \otimes n f, T^{-1}F \right)
\]

\[
\equiv_T \text{Pl-Holant} \left(g \mid =_n, T^{-1}F \right).
\]

By connecting \(g \) to \(=_n \), we get \(=_{n-2} \) up to a constant factor of \(1 + \gamma^2 \neq 0 \) as \(\gamma \neq \pm i \). We repeat this process. If \(n \) is even, then we get \(=_2 \) eventually, which is on the right hand side. If \(n \) is odd, then eventually we get \(=_3 \) and \((=1) = [1, 1] \) on the right. Connecting \([1, 1] \) to \(g \) we get \(2[1, 1] \) on the left. Then connecting \([1, 1] \) to \(=_3 \) we get \(=_2 \) on the right. To summarize, we get that

\[
\text{Pl-Holant} \left(g \mid =_2, =_n, T^{-1}F \right) \leq_T \text{Pl-Holant} \left(g \mid =_n, T^{-1}F \right)
\]

\[
\leq_T \text{Pl-Holant} \left(f, F \right).
\]

(5.5)

Next we show that

\[
\text{Pl-Holant} \left(=_2, g \mid =_2, =_n, T^{-1}F \right) \leq_T \text{Pl-Holant} \left(g \mid =_2, =_n, T^{-1}F \right).
\]

(5.6)

Let \(N = \begin{bmatrix} 1 + \gamma^2 & 1 - \gamma^2 \\ 1 - \gamma^2 & 1 + \gamma^2 \end{bmatrix} \) be the signature matrix of \(g \). If there is a positive integer \(k \) and a nonzero constant \(c \) such that \(N^k = cI_2 \), where \(I_2 \) is the 2-by-2 identity matrix, then we may directly
implement \(=_2 \) on the left by connecting \(k \) copies of \([1 + \gamma^2, 1 - \gamma^2, 1 + \gamma^2]\) via \(=_2 \) on the right. It implies (5.6) holds.

Otherwise such \(k \) and \(c \) do not exist. The two eigenvalues of \(N \) are \(\lambda_1 = 2 \) and \(\lambda_2 = 2\gamma^2 \). If \(\lambda_1 = \lambda_2 \), then \(\gamma^2 = 1 \) and \(N = [\frac{1}{2}, \frac{1}{2}] \). Contradiction. Hence \(\lambda_1 \neq \lambda_2 \), and \(N \) is diagonalizable. Let \(N = P \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} P^{-1} \), for some non-singular matrix \(P \). By connecting \(l \) many copies of \(N \) on the left via \(=_2 \) on the right, where \(l \) is a positive integer, we can implement \(N^l = P \begin{bmatrix} \lambda_1^l & 0 \\ 0 & \lambda_2^l \end{bmatrix} P^{-1} \). Since \(N \) does not have finite order up to a scalar, for any positive integer \(l \), \((\lambda_1/\lambda_2)^l \neq 1 \).

Consider an instance \(\Omega \) of Pl-Holant \((=_2, g \mid =_2, =_n, T^{-1} \mathcal{F})\). Suppose that the left \(=_2 \) appears \(t \) times. Let \(l \) be a positive integer. We obtain \(\Omega_l \) from \(\Omega \) by replacing each occurrence of \(=_2 \) on the left with \(N^l \).

Since \(N^l = P \begin{bmatrix} \lambda_1^l & 0 \\ 0 & \lambda_2^l \end{bmatrix} P^{-1} \), we can view our construction of \(\Omega_l \) as replacing \(N^l \) by 3 signatures, with matrix \(P \begin{bmatrix} \lambda_1^l & 0 \\ 0 & \lambda_2^l \end{bmatrix} \), and \(P^{-1} \), respectively. This does not change the Holant value.

We stratify the assignments in \(\Omega_l \) based on the assignments to the \(t \) occurrences of the signature whose matrix is the diagonal matrix \(\begin{bmatrix} \lambda_1^l & 0 \\ 0 & \lambda_2^l \end{bmatrix} \). Suppose there are \(i \) many times it was assigned 00 with function value \(\lambda_1^l \), and \(j \) times 11 with function value \(\lambda_2^l \). Clearly \(i + j = t \) if the assignment has a nonzero evaluation. Let \(c_{ij} \) be the sum over all such assignments of the products of evaluations of all signatures (including the signatures corresponding to matrices \(P \) and \(P^{-1} \)) in \(\Omega_l \) except for this diagonal one. Then

\[
\text{Holant}_{\Omega_l} = \sum_{i+j=t} \left(\frac{\lambda_1^l}{\lambda_2^l} \right)^i \left(\frac{\lambda_2^l}{\lambda_1^l} \right)^j c_{ij}
\]

By an oracle of Pl-Holant \((g \mid =_2, =_n, T^{-1} \mathcal{F})\), we can get Holant\(\Omega_l\) for any \(1 \leq l \leq t + 1 \). Recall that for any positive integer \(l \), \((\lambda_1/\lambda_2)^l \neq 1 \). This implies that for any two distinct integers \(i, j \geq 0 \), \((\lambda_1/\lambda_2)^i \neq (\lambda_1/\lambda_2)^j \). Therefore we get a non-singular Vandermonde system. We can solve all \(c_{ij} \) for \(i + j = t \) given Holant\(\Omega_l\) for all \(1 \leq l \leq t + 1 \). Then notice that \(\sum_{i+j=t} c_{ij} \) is the Holant value of \(\Omega_l \) by replacing both \(\lambda_1^l \) and \(\lambda_2^l \) with 1, which is the instance \(\Omega \) as \(PI_2P^{-1} = I_2 \). Therefore we may compute Holant\(\Omega \) via \(t + 1 \) many oracle calls to Pl-Holant \((g \mid =_2, =_n, T^{-1} \mathcal{F})\). This finishes the reduction in (5.6).

In the left hand side of (5.6) we have \(=_2 \) on both sides. Therefore we may lift the bipartite restriction. Combining it with (5.5), we get

\[
\text{Pl-Holant} \left(=_n, g, T^{-1} \mathcal{F}\right) \leq_T \text{Pl-Holant} \left(f, \mathcal{F}\right).
\]

Notice that given an equality of arity \(n \geq 3 \), we can always construct all equalities of even arity, regardless of the parity of \(n \), in the Pl-Holant setting. Therefore, we have Pl-\#CSP\(^2(T^{-1} \mathcal{F}, g) \leq_T \text{Pl-Holant} \left(f, \mathcal{F}\right)\).

To prove (5.4), there is another case that \(f = H^\otimes n \left(\left[\frac{1}{2}\right] \otimes^n - \left[\frac{1}{2}\right] \otimes^n \right) \), with the \(- \) sign. Again we do a \(T \) transformation, where \((T^{-1})^\otimes f = [1, 0, \ldots, 0, -1] \) has parity:

\[
\text{Pl-Holant} \left(=_2 \mid f, \mathcal{F}\right) \equiv_T \text{Pl-Holant} \left(g \mid [1, 0, \ldots, 0, -1], T^{-1} \mathcal{F}\right).
\]
We then do the same construction as in the previous case of connecting \(g \) to \([1,0,\ldots,0,-1]\) repeatedly. Depending on the parity of \(n \), we have two cases.

1. If \(n \) is odd, then eventually we get \([1,0,0,-1]\) and \([1,-1]\) on the right as \(\gamma \neq \pm i \), and therefore \(2\gamma^2[1,1,-1] \), i.e., \([1,-1]\) on the left as \(\gamma \neq 0 \). Then connecting \([1,-1]\) to \([1,0,0,-1]\) we get \(=_2 \) on the right. Thus, for odd \(n \),

\[
\text{Pl-Holant} \left(g \mid =_2, [1,0,\ldots,0,-1], T^{-1} \mathcal{F} \right) \leq_T \text{Pl-Holant} \left(g \mid [1,0,\ldots,0,-1], T^{-1} \mathcal{F} \right) \\
\leq_T \text{Pl-Holant} (f, \mathcal{F}).
\]

Notice that our previous binary interpolation proof only relies on \(g \) and \(=_2 \). Hence we get

\[
\text{Pl-Holant} \left(g \mid =_2, [1,0,\ldots,0,-1], T^{-1} \mathcal{F} \right) \geq_T \text{Pl-Holant} \left(=_2, g \mid =_2, [1,0,\ldots,0,-1], T^{-1} \mathcal{F} \right) \\
\equiv_T \text{Pl-Holant}(1,0,\ldots,0,-1), g, T^{-1} \mathcal{F}).
\]

Moreover it is straightforward to construct all even equalities from \([1,0,\ldots,0,-1]\) in the normal Pl-Holant setting as \(n \geq 5 \). Combining everything together gives us

\[
\text{Pl-}\#\text{CSP}^2(g, T^{-1} \mathcal{F}) \leq_T \text{Pl-Holant} (f, \mathcal{F}).
\]

2. Otherwise \(n \) is even. By the same construction of connecting \(g \) to \([1,0,\ldots,0,-1]\) repeatedly, we get \([1,0,0,0,-1]\) and \([1,0,-1]\) on the right eventually. Then we connect two copies of \(g \) via \([1,0,-1]\), resulting in \(\begin{bmatrix} 1+\gamma^2 & -1-\gamma^2 \\ 1-\gamma^2 & 1+\gamma^2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1+\gamma^2 & -1-\gamma^2 \\ 1-\gamma^2 & 1+\gamma^2 \end{bmatrix} = 4\gamma^2 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \) on the left. Then connect \([1,0,-1]\) to \([1,0,0,0,-1]\) to get \([1,0,1]\) on the right. At last we connect two \([1,0,-1]\)’s on the left via \([1,0,1]\) on the right to get \([1,0,1]\) on the left. Then it reduces to the previous case. This concludes the proof of (5.4).

We apply Theorem 5.1 to \(\text{Pl-}\#\text{CSP}^2(T^{-1} \mathcal{F}, g) \). Then we have that \(\text{Pl-}\#\text{CSP}^2(T^{-1} \mathcal{F}, g) \) (and hence \(\text{Pl-Holant}(f, \mathcal{F}) \)) is \#P-hard unless \(T^{-1} \mathcal{F} \cup \{g\} \subseteq \mathcal{P} \), or \(T^{-1} \mathcal{F} \cup \{g\} \subseteq \{1,0\}_0 \mathcal{M} \) for some integer \(0 \leq r \leq 3 \), or \(T^{-1} \mathcal{F} \cup \{g\} \subseteq \{1,0\}_0 \mathcal{A} \) for some integer \(0 \leq r \leq 7 \) where \(\alpha = e^{i\pi/4} \). We have three cases.

1. The first case is that \(T^{-1} \mathcal{F} \cup \{g\} \subseteq \mathcal{P} \). Recall that \(\gamma \neq 0 \) or \(\pm i \), it can be verified that \(g \notin \mathcal{P} \) unless \(\gamma^2 = 1 \). Hence \(\gamma = \pm i \). In either case we have that \(\begin{bmatrix} 1 & -1 \end{bmatrix} \) is an orthogonal matrix up to a nonzero scalar, and hence so is \(T \). It implies that \(F \) is \(\mathcal{P} \)-transformable.

2. Next suppose \(T^{-1} \mathcal{F} \cup \{g\} \subseteq \{1,0\}_0 \mathcal{M} \). For some integer \(0 \leq r \leq 3 \). If \(\gamma = \pm i \), then \(T \) is an orthogonal matrix as \(\begin{bmatrix} 1 & -1 \end{bmatrix} \) is, up to a factor of \(\frac{1}{\sqrt{2}} \). Hence \(F \) is \(\mathcal{M} \)-transformable, as

\[
F \subseteq T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} \mathcal{M}
\]

and \(=_2 \left(T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \right) \otimes^2 \) is either \([1,0,1] \) when \(r = 0, 2 \), or \([0,1,0] \) when \(r = 1, 3 \), up to a nonzero factor.

Otherwise \(\gamma^2 \neq 1 \) and it is straightforward to verify that \(g \notin \{1,0\}_0 \mathcal{M} \) for \(r = 1, 3 \). Hence we may assume that \(T^{-1} \mathcal{F} \subseteq \{1,0\}_0 \mathcal{M} \). Moreover, \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathcal{M} = \mathcal{M} \). Then \(T^{-1} \mathcal{F} \subseteq \mathcal{M} \). As \(T^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \mathcal{M} \), it implies that

\[
H^{-1} \mathcal{F} \subseteq \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \mathcal{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathcal{M} = \mathcal{M}.
\]

Hence \(F \subseteq H \mathcal{M} \) and \(F \) is \(\mathcal{M} \)-transformable.
3. In the last case, \(T^{-1}F \cup \{g\} \subseteq \begin{bmatrix} 1 & 0 \\ 0 & \alpha^r \end{bmatrix} A \) for some integer \(0 \leq r \leq 7 \). If \(\gamma = \pm 1 \), then \(T \) is an orthogonal matrix as \(\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \) is, up to a factor of \(\frac{1}{\sqrt{2}} \). Hence \(F \) is \(A \)-transformable, as \(F \subseteq T \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A \) and \((=2) (T \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix})^{\otimes 2} \) is \([1, 0, i'] \) \(A \), up to a nonzero factor. Otherwise \(\gamma^2 \neq 1 \) and \(g \notin \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A \) for any integer \(r = 1, 3, 5, 7 \). Hence \(T^{-1}F \cup \{g\} \subseteq A \) as \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A = A \) for any integer \(0 \leq r \leq 3 \). If \(\frac{1+i}{1-\gamma} \neq \pm i \), then one can check that \(g \notin A \). A contradiction. Otherwise \(\frac{1+i}{1-\gamma} = \pm i \). It implies that \(\gamma = \alpha^l \) for some integer \(l = 1, 3, 5, 7 \). We may assume \(l = 1 \) as other cases are similar. In this case it is possible that \(T^{-1}F \cup \{g\} \subseteq A \). As \(T^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} H^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} H^{-1} \), it implies that

\[
H^{-1}F \subseteq \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A.
\]

Hence, \(F \) is \(A \)-transformable, so \(\text{Pl-Holant}(F) \) is tractable. This finishes the proof.

Lemma 5.8 leads to the following specialization.

Corollary 5.9. Let \(f \) be a non-degenerate signature of arity \(n \geq 5 \). Let \(f' \) be \(f \) with a self loop, and \(f' \) is non-degenerate and \(f' \in \mathcal{M}_2 \setminus \mathcal{P}_2 \). Then \(\text{Pl-Holant}(f) \) is \#P-hard unless \(f \) is \(A \)-, \(P \)-, or \(M \)-transformable, in which case \(\text{Pl-Holant}(f) \) is tractable.

We can reduce the case of \(f \in \mathcal{M}_3 \) to the previous case.

Lemma 5.10. Let \(F \) be a set of signatures. Suppose there exists \(f \in F \) which is a non-degenerate signature of arity \(n \geq 3 \) in \(\mathcal{M}_3 \) with \(H \in O_2(\mathbb{C}) \). Then \(\text{Pl-Holant}(F) \) is \#P-hard unless \(F \subseteq H, M \), in which case \(F \) is \(M \)-transformable and \(\text{Pl-Holant}(F) \) is tractable.

Proof. We first claim that \(\text{Pl-Holant}(F) \) is \#P-hard unless \(F \) is \(A \)-, \(P \)-, or \(M \)-transformable.

By the definition of \(\mathcal{M}_3 \), we may assume that \(f = \text{ExactOne}_n \) is of arity \(n \) after an orthogonal transformation \(H \). After zero or more self loops, we can further assume that either \(f = \text{ExactOne}_3 \) or \(f = \text{ExactOne}_4 \) depending on the parity of \(n \).

Suppose \(f = \text{ExactOne}_3 \). Consider the gadget in Figure 6a. We assign \(f \) to all vertices. The signature of the resulting gadget is \(g = [0, 1, 0, 1] \), which is in \(\mathcal{M}_2 \) and not in \(\mathcal{P}_2 = \mathcal{A}_2 \) by Lemma 3.2. Thus, the claim follows from Lemma 5.8.

Otherwise, \(f = \text{ExactOne}_4 \). Consider the gadget in Figure 6b. We assign \(f \) to all vertices. Note that this is a matchgate. The signature of the resulting gadget is \([0, 2, 0, 1, 0] \), which is in \(\mathcal{M}_2 \) and not in \(\mathcal{P}_2 = \mathcal{A}_2 \) by Lemma 3.2. Thus, the claim follows from Lemma 5.8.

Figure 6: Two gadgets used to create a signature in \(\mathcal{M}_2 \setminus \mathcal{P}_2 \).
However, as \(f \in \mathcal{F} \) and \(f \in \mathcal{M}_3 \), \(\mathcal{F} \) cannot be \(\mathcal{M} \)- or \(\mathcal{P} \)-transformable by Lemma 3.11. Also by Lemma 3.11, if \(\mathcal{F} \) is \(\mathcal{M} \)-transformable, then \(\mathcal{F} \subseteq H.D.\mathcal{M} \) or \(H[0\ 1\ 1\ 0\ 0\ 1]D.\mathcal{M} \) for some diagonal matrix \(D \). Notice that \(D \in \text{Stab}(\mathcal{M}) \) and \([0\ 1\ 1\ 0\ 0\ 1]D \in \text{Stab}(\mathcal{M}) \). It implies that \(\mathcal{F} \subseteq H.D.\mathcal{M} \). \(\Box \)

Once again, we specialize Lemma 5.10 to our needs.

Corollary 5.11. Let \(f \) be a non-degenerate signature of arity \(n \geq 5 \). Let \(f' \) be \(f \) with a self loop, and \(f' \) is non-degenerate and \(f' \in \mathcal{M}_3 \). Then Pl-Holant(\(f \)) is \#P-hard unless \(f \) is \(\mathcal{M} \)-transformable, in which case Pl-Holant(\(f \)) is tractable.

6 Single Signature Dichotomy

Theorem 6.1 is the single signature dichotomy for Pl-Holant problems.

Theorem 6.1. If \(f \) is a non-degenerate symmetric signature of arity \(n \geq 3 \) with complex weights in Boolean variables, then Pl-Holant(\(f \)) is \#P-hard unless \(f \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \), in which case the problem is computable in polynomial time.

We prove Theorem 6.1 by induction on the arity. Before proceeding to the proof, we first introduce several lemmas involved in the inductive step.

6.1 Lemmas applied to Non-Degenerate Signatures in the Inductive Step

The single signature dichotomy relies on the following key lemma. The important assumption here is that \(f' \) is non-degenerate.

Lemma 6.2. Suppose \(f \) is a non-degenerate signature of arity \(n \geq 5 \). Let \(f' \) be \(f \) with a self loop. If \(f' \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \) is non-degenerate, then Pl-Holant(\(f \)) is \#P-hard unless \(f \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \).

Lemma 6.2 depends on several results, each of which handles a different case. In fact, the proof of Lemma 6.2 is a straightforward combination of Corollary 5.5 (for \(\mathcal{P}_1 \)), Corollary 5.7 (for \(\mathcal{A}_3 \)), Corollary 5.9 (for \(\mathcal{M}_2 \setminus \mathcal{P}_2 \)), and Corollary 5.11 (for \(\mathcal{M}_3 \)) from Section 5, as well as Corollary 6.4 (for \(\mathcal{P}_2 \)) and Lemma 6.5 (for \(\mathcal{V} \)), which we will prove shortly. These last two results handle the cases \(f' \in \mathcal{P}_2 \) and \(f' \in \mathcal{V} \) respectively. First we consider the case of \(f' \in \mathcal{P}_2 \) and show the following lemma.

Lemma 6.3. Let \(f \) be a non-degenerate signature of arity \(n \geq 5 \). If \(f = Z^{\otimes n}[a, 1, 0, \ldots, 0, 1, b] \) for some \(a, b \in \mathbb{C} \), where the number of 0’s is \(n - 3 \). Then Pl-Holant(\(f \)) is \#P-hard.
Proof. First we use the gadget in Figure 7b, where we put \(f \) on both vertices. Let the resulting signature be \(h = Z^4 \hat{h} \). It is easier to calculate \(\hat{h} \), that is, \(h \) in the \(Z \) basis. Indeed, \(\hat{h} \) is not symmetric, but \(\hat{h} \) has the following matrix representation as \(n \geq 5 \):

\[
M_{\hat{h}} = \begin{bmatrix}
0 & a & a & ab + (n - 2) \\
abla & 2 & 2 & b \\
a & 2 & 2 & b \\
ab + (n - 2) & b & b & 0
\end{bmatrix}.
\]

Notice that this matrix is redundant, and \(\det(M_{\hat{h}}) = -4(n - 2)(ab + n - 2) \). If \(ab \neq 2 - n \), then by Corollary 2.29 Pl-Holant(\(h \)) is \#P-hard, and so is Pl-Holant(\(f \)). Hence in the following we assume \(ab = 2 - n \).

Let \(f' \) be \(f \) with a self loop. Then apply the \(Z \) transformation as follows:

\[
\text{Pl-Holant} \left([f; f'] \right) \equiv_T \text{Pl-Holant} \left([0, 1, 0] | \hat{f}; \hat{f}' \right) \equiv_T \text{Pl-Holant} \left([0, 1, 0] | \hat{f}, [1, 0, \ldots, 0, 1] \right),
\]

where \(\hat{f}' = [1, 0, \ldots, 0, 1] \) and \(\hat{f} = [a, 1, 0, \ldots, 0, 1, b] \) for some \(a, b \in \mathbb{C} \). We get this expression of \(\hat{f}' \) because doing a self loop commutes with the operation of holographic transformations.

We connect \(\hat{f}' \) to \(\hat{f} \) via \([0, 1, 0]\), getting \([a, 2, b]\). Then we connect \([a, 2, b]\) to \(\hat{f} \) via \([0, 1, 0]\) again, getting \(\hat{g} = [ab + 4, b, 0, \ldots, 0, a, ab + 4] \) of arity \(n - 2 \).

If \(n \geq 7 \), then we use the gadget in Figure 7b again, where we put \(g \) on both vertices this time. We get some signature \(h' \), which in \(Z \) basis has the following matrix representation as \(n - 2 \geq 5 \):

\[
M_{\hat{h}'} = \begin{bmatrix}
0 & a(ab + 4) & a(ab + 4) & (n - 4)ab + (ab + 4)^2 \\
ab(ab + 4) & 2ab & 2ab & b(ab + 4) \\
a(ab + 4) & 2ab & 2ab & b(ab + 4) \\
(n - 4)ab + (ab + 4)^2 & b(ab + 4) & b(ab + 4) & 0
\end{bmatrix}.
\]

Once again this matrix is redundant as \(ab = 2 - n \). The compressed matrix is

\[
\widetilde{M}_{\hat{h}'} = \begin{bmatrix}
0 & -2(n - 6)a & -6n + 28 \\
-(n - 6)a & 8 - 4n & -(n - 6)b \\
-6n + 28 & 8 - 4n & 0
\end{bmatrix}.
\]

It is easy to compute that \(\det(\widetilde{M}_{\hat{h}'}) = -8(3n - 14)(ab(n - 6)^2 - 6n^2 + 40n - 56) = 8(n - 4)(n - 2)^2(3n - 14) \). Since \(n \geq 7 \), \(\det(\widetilde{M}_{\hat{h}'}) > 0 \). Then by Corollary 2.29 Pl-Holant(\(h' \)) is \#P-hard, and so is Pl-Holant(\(f \)).

The remaining cases are \(n = 6 \) and \(n = 5 \). When \(n = 6 \), \(ab = 2 - n = -4 \). Moreover, \(\hat{g} \) is of arity 4 and \(\hat{g} = [ab + 4, b, 0, a, ab + 4] = [0, b, 0, a, 0] \). We do one more self loop on \(g \) via \([0, 1, 0]\) in the \(Z \) basis, resulting in \(\hat{g}' = [b, 0, a] \). Connecting \(\hat{g}' \) to \(\hat{f} \) via \([0, 1, 0]\), we get \(\hat{g}_1 = [a^2, a, 0, b, b^2] \). Hence \(\det(\widetilde{M}_{\hat{g}_1}) = -4a^2b^2 = -64 \neq 0 \). Then by Corollary 2.29 Pl-Holant(\(g_1 \)) is \#P-hard, and so is Pl-Holant(\(f \)).

At last, \(n = 5 \) and \(ab = 2 - n = -3 \). We also have \(\hat{g} = [ab + 4, b, a, ab + 4] = [1, b, a, 1] \). One more self loop on \(g \) via \([0, 1, 0]\) in the \(Z \) basis results in \(\hat{g}'' = [b, a] \). Connecting \(\hat{g}'' \) to \(\hat{f} \) via \([0, 1, 0]\), we get \(\hat{g}_2 = [a^2 + b, a, 0, b, b^2 + a] \). Hence \(\det(\widetilde{M}_{\hat{g}_2}) = -2(a^3 + 2a^2b^2 + b^3) = -2(a^3 + b^3 + 18) \). If
\(a^3 + b^3 + 18 \neq 0\), then we are done by Corollary 2.29. Otherwise \(a^3 + b^3 = -18\), and we construct a binary signature \([a, 0, b]\) by doing a self-loop on \(g_a\) in \(Z\) basis. Then we construct another unary signature by connecting \(g'' = [b, a]\) to \([a, 0, b]\) via \([0, 1, 0]\), which gives \([a^2, b^2]\). Connecting \([a^2, b^2]\) to \(f\) via \([0, 1, 0]\), we have another arity-4 signature \(g_a = [a^2b^2 + a^2b + b^2, 0, a^2, a^2b + b^2]\). We compute \(\det(M_{g_a}) = -2(a^6 + a^5b^2 + a^2b^5 + b^6) = -2(a^6 + b^6 - 162)\). If \(a^6 + b^6 - 162 \neq 0\), again we are done by Corollary 2.29. Otherwise \(a^6 + b^6 = 162\). Together with \(a^3 + b^3 = -18\) and \(ab = -3\), there is no solution of \(a\) and \(b\). This finishes the proof. \(\square\)

This lemma essentially handles the case of \(f' \in \mathcal{P}_2\) due to the following corollary.

Corollary 6.4. Suppose \(f\) be a non-degenerate signature of arity \(n \geq 5\). Let \(f'\) be \(f\) with a self loop. If \(f' \in \mathcal{P}_2\) is non-degenerate, then \(\Pi\)-Holant(\(f\)) is \#P-hard.

Proof. Since \(f' \in \mathcal{P}_2\), we have that \(f' = Z^\otimes n\) up to an orthogonal transformation \(H\). Since \(H\) does not change the complexity, we may assume we are under this transformation. Then \(f\) is of the form \(Z^\otimes n[a, 1, 0, \ldots, 0, 1, b]\). The claim follows by Lemma 6.3. \(\square\)

The next lemma handles the case when \(f'\) is a non-degenerate vanishing signature. Its proof is partly contained in the proof of Theorem 9.1 in [6]. We include this part here for completeness. As we shall see, the case of \(f' \in \mathcal{M}_4\) is a special case of this result.

Lemma 6.5. Suppose \(f\) is a non-degenerate signature of arity \(n \geq 5\). Let \(f'\) be \(f\) with a self loop. If \(f'\) is non-degenerate and vanishing, then \(\Pi\)-Holant(\(f\)) is \#P-hard unless \(\{f, f'\}\) is vanishing, in which case \(\Pi\)-Holant(\(f\)) is tractable.

Proof. Since \(f'\) is vanishing, \(f' \in \mathcal{V}^\sigma\) for some \(\sigma \in \{+,-\}\) by Theorem 2.15. For simplicity, assume that \(f' \in \mathcal{V}^+\). The other case is similar.

Note that \(f'\) is of arity \(n - 2 \geq 3\). Suppose \(rd^+(f') = d - 1\), where \(2d < n\) and \(d \geq 2\) since \(f'\) is non-degenerate. Under the transformation \(Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\), we have that

\[
\Pi\text{-Holant} \left(\begin{array}{c} -2 \\ \begin{array}{c} f' \end{array} \end{array} \right) \equiv_T \Pi\text{-Holant} \left(\begin{array}{c} [1, 0, 1]Z^\otimes 2 \\ (Z^{-1})^\otimes n f', (Z^{-1})^\otimes n f' \end{array} \right)
\]

where \(\mathcal{F'} = [\mathcal{F}_1, \ldots, \mathcal{F}_d, 0, \ldots, 0]\) with \(\mathcal{F}_d \neq 0\) by Lemma 2.19. Note that doing self-loop in the standard basis is the same as connecting to \([0, 1, 0]\) in the \(Z\) basis. Hence we may assume that \(\mathcal{F} = [\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_d, 0, \ldots, 0, c]\), for some \(\mathcal{F}_0\) and \(c\). If \(c = 0\), then \(\{f, f'\} \in \mathcal{V}^+\) is vanishing. Hence we may assume that \(c \neq 0\). We will show that \(\Pi\)-Holant(\(f\)) is \#P-hard.

Doing \(d - 2\) self-loops by \([0, 1, 0]\) on \(\mathcal{F}\), we get a signature \(\mathcal{H} = [\mathcal{F}_{d-2}, \mathcal{F}_{d-1}, \mathcal{F}_d, 0, \ldots, 0/c]\) of arity \(n - 2(d - 2) = n - 2d + 4 \geq 5\). The last entry of \(\mathcal{H}\) is \(c\) when \(d = 2\) and is 0 when \(d > 2\). As \(n > 2d\), we may do two more self loops and get \([\mathcal{F}_d, 0, \ldots, 0]\) of arity \(k = n - 2d \geq 1\). This signature is equivalent to \([1, 0]^\otimes k\). Now connect this signature back to \(\mathcal{F}\) via \([0, 1, 0]\). It is the same as getting the last \(n - k + 1 = 2d + 1\) signature entries of \(\mathcal{F}\) up to a nonzero scalar. We may repeat this operation zero or more times until the arity \(k'\) of the resulting signature is less than or equal to \(k\). We claim that this signature has the form \(\mathcal{G} = [0, \ldots, 0, c]\). In other words, the \(k'\) many 0’s from the signature \(\mathcal{F}\), all appearing after \(\mathcal{F}_d\). This is because there are \(n - d - 1\) many 0 entries in the signature \(\mathcal{F}\) after \(\mathcal{F}_d\), and \(n - d - 1 \geq k \geq k'\). Note that \(\mathcal{G} = [0, 1]^\otimes k'\).
Having both $[1,0]^\otimes k$ and $\overline{g} = [0,1]^\otimes k'$ in the Z basis, we realize $[0,1]^\otimes t$ using the subtractive Euclidean argument as in Lemma 4.1, where $t = \gcd(k,k')$. Then we put $\frac{t}{k}$ many copies of $[0,1]^\otimes t$ together to get $[0,1]^k$. Connect \overline{h} with $[0,1]^k$ by $[0,1,0]$. Note that due to $[0,1,0]$ flipping the bits, this gets the prefix of \overline{h} of arity $\arity(h) - k$. Recall that $\arity(h) = n - 2d + 4$, and hence $\arity(h) - k = n - 2d + 4 - (n - 2d) = 4$. The resulting signature has arity 4. Moreover, the signature is $[[\overline{f}_d-2, \overline{f}_d-1, \overline{f}_d, 0], 0]$. The last entry is 0 (and not c), because $k \geq 1$ and $\arity(\overline{h}) \geq 5$.

However, $\PlHolant([0,1,0] | [[\overline{f}_d-2, \overline{f}_d-1, \overline{f}_d, 0], 0])$ is equivalent to $\PlHolant([0,1,0] | [0,0,1,0,0])$ when $\overline{f}_d \neq 0$, which is transformed back by Z to $\PlHolant([3,0,1,0,3])$. This is the Eulerian Orientation problem on planar 4-regular graphs and is #P-hard by Theorem 2.22. \qed

6.2 Lemmas applied to Degenerate Signatures in the Inductive Step

Lemma 6.2 does not solve the case when f' is degenerate. In general, when f' is degenerate, the inductive step is straightforward unless f' is also vanishing. Lemma 6.6 and 6.8 are the two missing pieces to this end.

Lemma 6.6. Let $a,b \in \mathbb{C}$. Suppose f is a signature of the form $[\begin{smallmatrix} Z & 1 \\ \ast & Z \end{smallmatrix}]^\otimes n [a,1,0,\ldots,0,b]$ with arity $n \geq 3$. If $ab \neq 0$, then $\PlHolant(f)$ is #P-hard.

Proof. We prove by induction on n. For $n = 3$ or 4, it follows from Lemma 3.12 and Theorem 2.22 that $\PlHolant(f)$ is #P-hard.

Now assume $n \geq 5$. Under a holographic transformation by $Z = [\begin{smallmatrix} 1 & 1 \\ \ast & Z \end{smallmatrix}]$, we have

$$\PlHolant(=2 | f) \equiv_T \PlHolant\left([1,0,1,Z^\otimes 2 | (Z^{-1})^\otimes n f]\right) \equiv_T \PlHolant\left([0,1,0] | \hat{f}\right),$$

where $\hat{f} = [a,1,0,\ldots,0,b]$. Now consider the gadget in Figure 7a with \hat{f} assigned to both vertices. This gadget has the binary signature $\hat{g}_1 = [0, ab, 2b]$, which is equivalent to $[0, a, 2]$ since $b \neq 0$. Translating back by Z to the original setting, this signature is $g_1 = [a + 1, -i, a - 1]$. This can be verified as

$$\begin{bmatrix} 1 & 1 \\ \ast & \ast \end{bmatrix} \begin{bmatrix} 0 & a \\ a & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \ast & \ast \end{bmatrix}^\mathsf{T} = \begin{bmatrix} a + 1 & -i \\ -i & a - 1 \end{bmatrix}.$$

By the form of $\hat{g}_1 = [0, ab, 2b]$ and $b \neq 0$, it follows from Lemma 2.19 that $g_1 \notin \mathcal{R}_2^+$. Moreover, since $a \neq 0$, g_1 is non-degenerate.

Doing a self loop on f yields $f' = Z^\otimes n-2 [1,0,\ldots,0]$. Connecting f' back to f, we get a binary signature $g_2 = Z^\otimes 2 [0,0,b]$. Once again we connect g_2 to f, the resulting signature is $h = Z^\otimes n-2 [a,1,0,\ldots,0]$ of arity $n - 2 \geq 3$ up to the constant factor of $b \neq 0$.

Notice that h is non-degenerate and $h \in \mathcal{V}^+$. By Lemma 4.3, $\PlHolant(h,g_1)$ is #P-hard, hence $\PlHolant(f)$ is also #P-hard. \qed

The next case uses the following technical lemma. It is also applied more than once in Section 7.

Lemma 6.7. Let \hat{g} be the arity 4 signature whose matrix is

$$M_{\hat{g}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \quad (6.7)$$
(a) \((\neq_2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], \tilde{g})\)-gate on right side
(b) Simpler construction with the same signature

Figure 8: Two gadgets with the same signature used in Lemma 6.7.

(a) Negating the second and fourth inputs
(b) Movement of even Hamming weight entries

Figure 9: The movement of the even Hamming weight entries in the signature matrix of a quaternary signature under the negation of the second and fourth inputs (i.e. the square vertices are assigned \([0, 1, 0]\)).

(a) Gadget that realizes a partial crossover
(b) Gadget with a useful signature matrix

Figure 10: Two quaternary gadgets used in the proof of Lemma 6.7 and 6.8.
Then Pl-Holant \((\neq_2 | [0,1,0,0],[0,0,0,1],[0,1,0,0],[0,1,1,0],g)\) is \#P-hard.

Proof. Consider the gadget in Figure 8a. We assign \([0,0,0,1]\) to the triangle vertices, \([0,1,0,0]\) to the circle vertices, \(g\) to the pentagon vertex, and \([0,1,0]\) to the square vertices. Let \(h\) be the signature of this gadget. By adding two more disequality signatures and then grouping appropriately, it is clear that the gadget in Figure 8b has the same signature of the gadget in Figure 8a, where the circle vertices are still assigned \([0,1,0,0]\), the square vertices are still assigned \([0,1,0]\), and the diamond vertex is assigned the quaternary equality signature. To compute the signature \(h\), first compute the signature \(h'\) of the inner gadget enclosed by the dashed line, which has signature matrix

\[
M_{h'} = \begin{bmatrix}
3 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}.
\]

Then by Figure 9, the signature matrix of \(h\) is

\[
M_h = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 3 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}.
\]

One more gadget before we finish the proof using interpolation. Consider the gadget in Figure 10b. We assign \(h\) to the circle vertices and \([0,1,0]\) to the square vertices. The signature of the resulting gadget is \(\hat{r}\) with signature matrix \(M_{\hat{r}}\) (see Figure 2 for the signature of a rotated copy of \(h\) that appears as the second circle vertex in Figure 10b), where

\[
M_{\hat{r}} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 3 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \left(\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \otimes \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}\right) \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 3 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 6 & 4 & 0 \\
0 & 4 & 2 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}.
\]

Consider an instance \(\Omega\) of Pl-Holant \((\neq_2 | \mathcal{F} \cup \{r'\})\) with \(r' \in \mathcal{F}\), where the signature matrix of \(r'\) is

\[
M_{r'} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}.
\]

Suppose that \(r'\) appears \(n\) times in \(\Omega\). We construct from \(\Omega\) a sequence of instances \(\Omega_s\) of Pl-Holant \((\neq_2 | \mathcal{F})\) indexed by \(s \geq 1\). We obtain \(\Omega_s\) from \(\Omega\) by replacing each occurrence of \(r'\) with the gadget \(N_s\) in Figure 11 with \(\hat{r}\) assigned to the circle vertices and \([0,1,0]\) assigned to the square vertices. In \(\Omega_s\), the edge corresponding to the \(i\)th significant index bit of \(N_s\), connects to the same location as the edge corresponding to the \(i\)th significant index bit of \(r'\) in \(\Omega\).

We can express the signature matrix of \(N_s\) as

\[
M_{N_s} = X(XM_{\hat{r}})^s = XP \text{diag} \left(1, 4 + 2\sqrt{3}, 4 - 2\sqrt{3}, 1\right)^s P^{-1},
\]

37
where

\[X = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & \sqrt{3} & -\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \]

Since \(M_{r'} = XP \text{diag} \begin{pmatrix} 1, 1 + \sqrt{3}, 1 - \sqrt{3}, 1 \end{pmatrix} P^{-1} \), we can view our construction of \(\Omega_s \) as first replacing \(M_{r'} \) with \(XP \text{diag} \begin{pmatrix} 1, 1 + \sqrt{3}, 1 - \sqrt{3}, 1 \end{pmatrix} P^{-1} \), which does not change the Holant value, and then replacing the diagonal matrix with the diagonal matrix \(\text{diag} \begin{pmatrix} 1, 4 + 2\sqrt{3}, 4 - 2\sqrt{3}, 1 \end{pmatrix} \).

We stratify the assignments in \(\Omega \) based on the assignments to the \(n \) occurrences of the signature whose signature matrix is the diagonal matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 + \sqrt{3} & 0 & 0 \\
0 & 0 & 1 - \sqrt{3} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\]

(6.8)

We only need to consider the assignments that assign

- \(i \) many times the bit patterns 0000 or 1111,
- \(j \) many times the bit pattern 0110, and
- \(k \) many times the bit pattern 1001,

since any other assignment contributes a factor of 0. Let \(c_{ijk} \) be the sum over all such assignments of the products of evaluations of all signatures (including the signatures corresponding to the signature matrices \(X, P, \) and \(P^{-1} \)) in \(\Omega \) except for signature corresponding to the signature matrix in (6.8). Then

\[
\text{Holant}_{\Omega} = \sum_{i+j+k=n} \left(1 + \sqrt{3} \right)^j \left(1 - \sqrt{3} \right)^k c_{ijk}
\]

and the value of the Holant on \(\Omega_s \), for \(s \geq 1 \), is

\[
\text{Holant}_{\Omega_s} = \sum_{i+j+k=n} \left(4 + 2\sqrt{3} \right)^j \left(4 - 2\sqrt{3} \right)^k c_{ijk} = \sum_{i+j+k=n} \left(4 + 2\sqrt{3} \right)^{j-k} 4^k c_{ijk}.
\]

We argue that this Vandermonde system has full rank, which is to say that \((4 + 2\sqrt{3})^{j-k} 4^k \neq (4 + 2\sqrt{3})^{j'-k'} 4^{k'} \) unless \((j, k) = (j', k') \). If \((4 + 2\sqrt{3})^{j-k} 4^k = (4 + 2\sqrt{3})^{j'-k'} 4^{k'} \), then we have \((4 + 2\sqrt{3})^{j-k-(j'-k')} 4^{k-k'} = 1 \). Since any nonzero integer power of \(4 + 2\sqrt{3} \) is not rational, we must have \(j - k = j' - k' \). And in this case, \(4^k-k'=1 \), and hence \(k = k' \) and \(j = j' \).

Therefore, we can solve for the unknown \(c_{ijk} \)'s and obtain the value of \(\text{Holant}_{\Omega} \). Then after a counterclockwise rotation of \(r' \) (c.f. Figure 2), we are done by Corollary 2.29.

With Lemma 6.7 at hand, we continue to prove Lemma 6.8.

Lemma 6.8. Let \(b \in \mathbb{C} \). Suppose \(f \) is a signature of the form \(\frac{1}{1 - i} \otimes [0, 1, 0, \ldots, 0, b] \) with arity \(n \geq 4 \). If \(b \neq 0 \), then \(\text{Pl-Holant}(f) \) is \(\#P \)-hard.

Remark 2. For \(n = 3 \), \(\mathbb{Z}^\otimes 3[0, 1, 0, b] \) is tractable, as it is \(\mathcal{M} \)-transformable.
Proof. If \(n = 4 \), then we are done by Corollary 2.29. Thus, assume that \(n \geq 5 \).

Under a holographic transformation by \(Z = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \), we have

\[
\text{Pl-Holant} (\xi = 2 \mid f) \equiv_T \text{Pl-Holant} \left([1,0,1]Z \otimes Z \mid (Z^{-1})^{\otimes n} f \right)
\equiv_T \text{Pl-Holant} \left([0,1,0] \mid \hat{f} \right),
\]

where \(\hat{f} = [0,1,0,\ldots,0,0,0,b] \). We show how to construct the following three signatures: \([0,0,0,1,0] \), \([0,1,0,0,0,0] \), and \(\hat{g} \), where \(\hat{g} \) is defined by (6.7). Then we are done by Lemma 6.7.

Consider the gadget in Figure 7b. We assign \(\hat{f} \) to the circle vertices and \([0,1,0] \) to the square vertices. The signature of the resulting gadget is \([0,0,0,1,0] \) up to a nonzero factor of \(b \).

Taking a \([0,1,0] \) self loop on \([0,0,0,1,0] \) gives \([0,0,1] = [0,1]^{\otimes 2} \). We connect this back to \(\hat{f} \) through \([0,1,0] \) until the arity of the resulting signature is either 4 or 5, depending on the parity of \(n \).

If \(n \) is even, then we have \([0,1,0,0,0] \) as desired. Otherwise, \(n \) is odd and we have \([0,1,0,0,0,0,b/0] \), where the last entry is \(b \) if \(n = 5 \) and 0 if \(n > 5 \). Connection \([0,1]^{\otimes 2} \) through \([0,1,0] \) to \(\hat{f} \) twice more gives \([0,1] \). We connect this through \([0,1,0] \) to \([0,1,0,0,0,b/0] \) to get \([0,1,0,0,0,0] \) as desired.

Taking a \([0,1,0] \) self loop on \([0,1,0,0,0,0] \) gives \([1,0,0] = [1,0]^{\otimes 2} \). Now consider the gadget in Figure 10a. We assign \(\hat{f} \) to the circle vertices, \([1,0]^{\otimes 2} \) to the triangle vertices, and \([0,1,0] \) to the square vertices. Up to a factor of \(b^2 \), the signature of the resulting gadget is \(\hat{g} \) with signature matrix \(M_{\hat{g}} \) given in (6.7). To see this, first replace the two copies of the signatures \([1,0]^{\otimes 2} \) assigned to the triangle vertices with two copies of \([1,0] \) each. Then notice that \(\hat{f} \) simplifies to a weighted equality signature when connected to \([1,0] \) through \([0,1,0] \).

\(\square \)

6.3 Proof of the Single Signature Dichotomy

Now we are ready to prove the dichotomy for a single signature. Recall that \(\mathcal{M}_1 \subset \mathcal{M}_1 \subset \mathcal{P}_1 \) and \(\mathcal{M}_2 = \mathcal{P}_2 \subset \mathcal{M}_2 \). Thus \(f \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4 \) if and only if \(f \) is \(\mathcal{A}_- \), \(\mathcal{P}_- \), or \(\mathcal{M} \)-transformable by Lemma 3.3, Lemma 3.5, or Lemma 3.10.

Proof of Theorem 6.1. The proof is by induction on \(n \). The base cases of \(n = 3 \) and \(n = 4 \) are proved in Theorem 2.22. Now assume \(n \geq 5 \).

With the signature \(f \), we form a self loop to get a signature \(f' \) of arity at least 3. In general we use prime to denote the signature with a self loop. We consider separately whether or not \(f' \) is degenerate.

- Suppose \(f' = [a,b]^{\otimes (n-2)} \) is degenerate. Then there are three cases to consider.
 1. If \(a = b = 0 \), then \(f' \) is the all zero signature. For \(f \), this means \(f_{k+2} = -f_k \) for \(0 \leq k \leq n-2 \), so \(f \in \mathcal{P}_2 \) by Lemma 3.2, and therefore Pl-Holant\((f) \) is tractable.
 2. If \(a^2 + b^2 \neq 0 \), then \(f' \) is nonzero and \([a,b] \) is not a constant multiple of either \([1,i] \) or \([1,-i] \). We may normalize so that \(a^2 + b^2 = 1 \). Then the orthogonal transformation

\[
\begin{bmatrix}
 a & b \\
 -b & a
\end{bmatrix}
\]

transforms the column vector \([a,b] \) to \([1,0] \). Let \(\hat{f} \) be the transformed signature from \(f \), and \(\hat{f}' = [1,0]^{\otimes (n-2)} \) the transformed signature from \(f' \).

Since an orthogonal transformation keeps \(k \) invariant, this transformation commutes with the operation of taking a self loop, i.e., \(\hat{f}' = (\hat{f})' \). Here \((\hat{f})' \) is the function obtained from \(\hat{f} \) by taking a self loop. As \((\hat{f})' = [1,0]^{\otimes (n-2)} \), we have \(\hat{f}_0 + \hat{f}_2 = 1 \) and for every integer \(1 \leq k \leq n-2 \), we have \(\hat{f}_k = -\hat{f}_{k+2} \). With one or more self loops on \((\hat{f})' \), we eventually obtain either \([1,0] \) when \(n \) is odd or \([1,0,0] \) when \(n \) is even. In either case, we connect \([1,0] \) or \([1,0,0] \) to \(\hat{f} \) until we get an arity 4 signature, which
is \(\hat{g} = [\hat{f}_0, \hat{f}_1, \hat{f}_2, -\hat{f}_1, -\hat{f}_2] \). This is possible because that the parity matches the and \(f \) is at least 5. We show that Pl-Holant(\(\hat{g} \)) is \#P-hard. To see this, we first compute det(\(\hat{M}_g \)) = -2(\(\hat{f}_0 + \hat{f}_2 \))(\(\hat{f}_1^2 + \hat{f}_2^2 \)) = -2(\(\hat{f}_1^2 + \hat{f}_2^2 \)), since \(\hat{f}_0 + \hat{f}_2 = 1 \). Therefore if \(\hat{f}_1^2 + \hat{f}_2^2 \neq 0 \), Pl-Holant(\(\hat{g} \)) is \#P-hard by Lemma 2.28. Otherwise \(\hat{f}_1^2 + \hat{f}_2^2 = 0 \), and we assume \(\hat{f}_2 = i\hat{f}_1 \) since the other case is similar. Since \(f \) is non-degenerate, \(\hat{f} \) is non-degenerate, which implies \(\hat{f}_2 \neq 0 \). We can rewrite \(\hat{g} \) as \([1, 0]^{\otimes 4} - \hat{f}_2[1, i]^{\otimes 4} \). Under the holographic transformation by \(T = \begin{bmatrix} 1 & (-\hat{f}_2)^{1/4} \\ 0 & i(-\hat{f}_2)^{1/4} \end{bmatrix} \), we have

\[\text{Pl-Holant}(=_{2} | \hat{g}) \equiv_T \text{Pl-Holant} \left([1, 0, 1]T^{\otimes 2} | (T^{-1})^{\otimes 4} \hat{g} \right) \]

\[\equiv_T \text{Pl-Holant} \left(\hat{h} | =_{4} \right) \]

where

\[\hat{h} = [1, 0, 1]T^{\otimes 2} = [1, (\hat{f}_2)^{1/4}, 0] \]

and \(\hat{g} \) is transformed by \(T^{-1} \) into the arity 4 equality \(=_{4} \), since

\[T^{\otimes 4} \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes 4} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes 4} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes 4} - \hat{f}_2 \begin{bmatrix} 1 \\ i \end{bmatrix}^{\otimes 4} = \hat{g}. \]

By Theorem 2.24, Pl-Holant \(\left(\hat{h} | =_{4} \right) \) is \#P-hard as \(\hat{f}_2 \neq 0 \).

3. If \(a^2 + b^2 = 0 \) but \((a, b) \neq (0, 0) \), then \([a, b]\) is a nonzero multiple of \([1, \pm i]\). Ignoring the constant multiple, we have \(f' = [1, i]^{\otimes (n-2)} \) or \([1, -i]^{\otimes (n-2)} \). We consider the first case since the other case is similar.

In the first case, the characteristic polynomial of the recurrence relation of \(f' \) is \(x - i \), so that of \(f \) is \((x-i)(x^2+1) = (x-i)^2(x+i) \). Hence there exist \(a_0, a_1, \) and \(c \) such that

\[f_k = (a_0 + a_1 k)i^k + c(-i)^k \]

for every integer \(0 \leq k \leq n \). Let \(f^+ \) and \(f^- \) be two signatures of arity \(n \) such that \(f^+_k = (a_0 + a_1 k)i^k \) and \(f^-_k = c(-i)^k \) for every \(0 \leq k \leq n \). Hence \(f_k = f^+_k + f^-_k \) and we write \(f = f^+ + f^- \). If \(a_1 = 0 \), then \(f' \) is the all zero signature, a contradiction. If \(c = 0 \), then \(f \) is vanishing, one of the tractable cases. Now we assume \(a_1 c \neq 0 \) and show that Pl-Holant(\(f \)) is \#P-hard. Hence \(\text{rd}^+(f^+) = 1 \) and \(\text{rd}^-(f^-) = 0 \). Under the holographic transformation \(Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \), we have

\[\text{Pl-Holant}(=_{2} | f) \equiv_T \text{Pl-Holant} \left([1, 0, 1]Z^{\otimes 2} | (Z^{-1})^{\otimes n} f \right) \]

\[\equiv_T \text{Pl-Holant} \left([0, 1, 0] | \hat{f} \right) \]

where \(\hat{f} \) takes the form \([\hat{f}_0, \hat{f}_1, 0, \ldots, 0, c'] \) with \(c' = 2^{n/2}c \neq 0 \) and \(\hat{f}_1 \neq 0 \), since \(\hat{f} \) is the \(Z^{-1} \)-transformation of the sum of \(f^+ \) and \(f^- \), with \(\text{rd}^+(f^+) = 1 \) and \(\text{rd}^-(f^-) = 0 \) respectively. On the other side, \((=_{2}) = [1, 0, 1] \) is transformed into \((=_{2}) = [0, 1, 0] \). Depending on whether \(\hat{f}_0 = 0 \) or not, we apply Lemma 6.8 or Lemma 6.6 and Pl-Holant(\(f \)) is \#P-hard.
Suppose \(f' \) is non-degenerate. By inductive hypothesis, Pl-Holant(\(f \)) is \#P-hard, unless \(f' \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \). Note that \(f' \) has arity \(n - 2 \geq 3 \), and every signature in \(\mathcal{M}_4 \) of arity at least 3 is also in \(\mathcal{V} \). Hence the exceptional case is equivalent to \(f' \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \). In this case, we apply Lemma 6.2 to \(f' \) and \(f \). Hence Pl-Holant(\(f \)) is \#P-hard, unless \(f \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \). The exceptional cases imply that \(f \) is \(\mathcal{A} \)- or \(\mathcal{P} \)- or \(\mathcal{M} \)-transformable or vanishing, and Pl-Holant(\(f \)) is tractable. \(\square \)

7 Mixing \(\mathcal{P}_2 \) and \(\mathcal{M}_4 \)—Equalities and Matchgates in the \(Z \) Basis

Given a set \(\mathcal{F} \) of symmetric signatures, by Theorem 6.1, Pl-Holant(\(\mathcal{F} \)) is \#P-hard unless every single non-degenerate signature \(f \) of arity at least 3 in \(\mathcal{F} \) is in \(\mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4 \cup \mathcal{V} \). We have already proved that the desired full dichotomy holds if \(\mathcal{F} \) contains such an \(f \) in \(\mathcal{P}_1 \), \(\mathcal{A}_3 \), \(\mathcal{M}_2 \setminus \mathcal{P}_2 \), or \(\mathcal{M}_3 \) due to Corollary 5.4, Corollary 5.6, Lemma 5.8, or Lemma 5.10, respectively.

The remaining cases are when all non-degenerate signatures of arity at least 3 in \(\mathcal{F} \) are contained in \(\mathcal{P}_2 \cup \mathcal{M}_4 \cup \mathcal{V} \). In this section, we consider the mixing of \(\mathcal{P}_2 \) and \(\mathcal{M}_4 \). For this, we do a holographic transformation by \(Z \). Then the problem becomes Pl-Holant(\(\neq_2 \mid =_k \), ExactOne\(d \)) with various arities \(k \) and \(d \). Recall that ExactOne\(d \) denotes the exact one function \([0, 1, 0, \ldots, 0] \) of arity \(d \). These are the signatures for Perfect Matching and they are the basic components of Matchgates.

A big surprise, against the putative form of a complexity classification for planar counting problems, is that we found the complexity of Pl-Holant(\(\neq_2 \mid =_k \), ExactOne\(d \)) depends on the values of \(d \) and \(k \), and the problem is tractable for all large \(k \). This result has the consequence that, for the first time since Kasteleyn’s algorithm, we have discovered some new primitive tractable family of counting problems on planar graphs. These problems cannot be captured by a holographic reduction to Kasteleyn’s algorithm, or any other known algorithm. Thus for planar problems the paradigm of holographic algorithms using matchgates (i.e., being \(\mathcal{M} \)-transformable) is not universal.

Let \(\mathcal{EO} = \{ \text{ExactOne}_d \mid d \geq 3 \} \).

7.1 Hardness when \(k = 3 \) or 4

We begin with some hardness results.

Lemma 7.1. Pl-Holant(\(\neq_2 \mid =_3 \), \([0, 1, 0, 0] \)) is \#P-hard.

Proof. By connecting two copies of \([0, 1, 0, 0] \) together via \(\neq_2 \), we have \([0, 1, 0, 0, 0] \) on the right. Consider the gadget in Figure 12a. We assign \(=_3 \) to the triangle vertices, \([0, 1, 0, 0] \) to the circle vertices, \(\neq_2 \) to the square vertices, and \([0, 1, 0, 0, 0] \) on the diamond vertex in the middle. Let \(f \) be the signature of this gadget.

We claim that the support of \(f \) is \([0011, 0110, 1100, 1001] \). To see this, notice that \([0, 1, 0, 0, 0] \) in the middle must match exactly one of the half edges, which forces the corresponding equality signature to take the value 0 and all other equality signatures to take value 1. The two \([0, 1, 0, 0] \)'s adjacent to the equality assigned 0 must have 0 going out, and the other two \([0, 1, 0, 0] \)'s have 1 going out.

Now we consider the gadget in Figure 12a again. This time we place \([0, 1, 0, 0] \) on each triangle, \(=_3 \) on each circle, \(f \) on the middle diamond, and again \(\neq_2 \) on each square. Now notice that each support of \(f \) makes two \([0, 1, 0, 0] \)'s that are cyclically adjacent on the outer cycle to become
Figure 12: Two gadgets used in the proof of Lemma 7.1.

Figure 13: The whole gadget to realize $[0, 0, 0, 1, 0]$.
Figure 14: A reduction from Pl-Holant \((\mathcal{EQ} \mid h)\) to Pl-Holant\((g)\) for any binary signature \(h\) and a quaternary signature \(g\) that depends on \(h\). The circle vertices are assigned \(=4\) or \(=3\) respectively, the triangle vertex is assigned \(h\), and the square vertex is assigned the signature of the gadget to its left.

\([0, 1, 0, 0]\) and the other two \([1, 0, 0]\). It is easy to see that the support of the resulting signature is \(\{0111, 1011, 1101, 1110\}\). Therefore it is the reversed \textsc{ExactOne}_4 signature \([0, 0, 0, 1, 0]\) (namely \textsc{AllButOne}_4). The whole gadget is illustrated in Figure 13, where each circle is assigned \([0, 1, 0, 0]\), triangle \(=3\), and square \(\neq 2\).

Finally, we build the gadget in Figure 12b. We place \(=3\) on each circle and \(\neq 2\) on each square. It is easy to see that there are only two support vectors of the resulting signature, which are \(0101\) and \(1010\). Recall the definition \((6.7)\) of the partial crossover \(\tilde{g}\). This gadget realizes exactly \(\tilde{g}\).

By Lemma 6.7, Pl-Holant \((\neq 2 \mid [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], \tilde{g})\) is \#P-hard. We have constructed \([0, 1, 0, 0, 0], [0, 0, 0, 1, 0]\), and \(\tilde{g}\) on the right side. Therefore Pl-Holant \((\neq 2 \mid =3, [0, 1, 0, 0])\) is \#P-hard.

For \(k = 4\), we need the following lemma.

Lemma 7.2. Let \(g\) be the arity 4 signature whose matrix is

\[
M_g = \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]

Then Pl-Holant\((g)\) is \#P-hard.

Proof. Let \(h = [2, 1, 1]\). We show that Pl-\#CSP\((h) \leq_T \text{Pl-Holant}(g)\) in two steps. In each step, we begin with a signature grid and end with a new signature grid such that the Holants of both signature grids are the same. Then we are done by Theorem 2.25. Or more explicitly, since Pl-\#CSP\((h) \equiv \text{Pl-Holant}(\mathcal{EQ} \mid h)\) by (2.2), we are done by Theorem 2.24.

For step one, let \(G = (U, V, E)\) be an instance of Pl-Holant \((\mathcal{EQ} \mid h)\). Fix an embedding of \(G\) in the plane. This defines a cyclic ordering of the edges incident to each vertex. Consider a vertex \(u \in U\) of degree \(k\). It is assigned the signature \(=k\). We decompose \(u\) into \(k\) vertices. Then we connect the \(k\) edges originally incident to \(u\) to these \(k\) new vertices so that each vertex is incident to exactly one edge. We also connect these \(k\) new vertices in a cycle according to the cyclic ordering induced on them by their incident edges. Each of these vertices has degree 3, and we assign them \(=3\). Clearly the Holant value is unchanged. This completes step one. An example of this step applied to a vertex of degree 4 is given in Figure 14a. The resulting graph has the following
properties: (1) it is planar; (2) every vertex is either degree 2 (in V and assigned h) or degree 3 (newly created and assigned $=3$); (3) each degree 2 vertex is connected to two degree 3 vertices; and (4) each degree 3 vertex is connected to one degree 2 vertex and two other degree 3 vertices.

Now step two. For every $v \in V$, v has degree 2. We contract the two edges incident to v, or equivalently, we replace the two circle vertices and one triangle vertex boxed in Figure 14b with a single (square) vertex of degree 4. The resulting graph $G' = (V', E')$ is planar and 4-regular.

Next we determine what is the signature on $v' \in V'$ after this contraction. Clearly the two inputs to each original circle have to be the same. Therefore its support is 0000, 0110, 1001, 1111, listed starting from the diamond and going counterclockwise. Moreover, due to the triangle assigned h in the middle, the weight on 0000 is 2, and every other weight is 1. Hence it is exactly the signature g, with the diamond in Figure 14b marking the first input bit. This finishes the proof.

Remark 3. From the planar embedding of the graph G, treating h vertices as edges, the resulting graph G' is known as the medial graph of G. The (constructive) definition is usually phrased in the following way. The medial graph G_m of plane graph G has a vertex on each edge of G and two vertices in G_m are joined by an edge for each face of G in which their corresponding edges occur consecutively. See Figure 15 for an example. However, our construction described in the proof clearly extends to nonplanar graphs as well.

Lemma 7.3. Pl-Holant $(\neq_2 | =_4, [0, 1, 0, 0])$ is $\#P$-hard.

Proof. Consider the gadget in Figure 16. We assign binary disequality \neq_2 to the square vertices, $=_4$ to the circle vertices, and $[0, 1, 0, 0]$ to the triangle vertices. We show that the support of the resulting signature is the set $\{00110011, 11001100, 11111111\}$, where each vector is the assignment ordered counterclockwise starting from the diamond point.

We call the equality signature $=_4$ in the middle the origin. There are two possible assignments at the origin. If it is assigned 0, then every adjacent perfect matching signature $[0, 1, 0, 0]$ is matched to the half edge towards the origin, and every equality $=_4$ is forced to be 1. This gives the support vector 11111111.

The other possibility is that the origin is 1. In this case, we can remove the origin leaving the outer cycle, with every $[0, 1, 0, 0]$ becoming $[0, 1, 0]$. This is effectively a cycle of four equalities.
Figure 16: Grid-like gadget used in the proof of Lemma 7.3, whose support vectors are 00110011, 11001100, and 11111111. Each square is assigned a binary disequality \neq_2, circle $=$ 4, and triangle $[0, 1, 0, 0]$.

(a) Gadget with signature g. Each square is assigned a binary disequality \neq_2, circle $=$ 4, triangle $[0, 1, 0, 0]$, and pentagon f.

(b) Support of g. Each vector is an assignment ordered counterclockwise from the diamond.

Figure 17: Another gadget used in the proof of Lemma 7.3 and a Table listing the support of its signature.
Every pair of half edges at each corner always take the same value. We further connect each pair of these edges to different copy of \(=4\) via two copies of \(\neq 2\). This results in a gadget with signature \(f\) whose support is the complement of the original support, that is, \{11001100, 00110011, 00000000\}.

Now consider the gadget in Figure 17a. We assign \(\neq 2\) to the square vertices, \(=4\) to the circle vertices, \([0, 1, 0, 0]\) to the triangle vertices, and \(f\) to the pentagon vertex. Notice that each pair of edges coming out of the pentagon vertex are from the same corner of the gadget in Figure 16 used to realize \(f\). We now study the signature of this gadget.

Notice that if a \(=4\) on the outer cycle is assigned 0, then the two adjacent perfect matchings must match half edges toward that \(=4\), and their outgoing edges must be 0. Furthermore, the two \(=4\) one more step away must be 1. A further observation is that any pair of consecutive \(=4\)'s cannot be both 0, and if a pair of consecutive \(=4\)'s are both 1, then the \([0, 1, 0, 0]\) in the middle must have a 1 going out. In Figure 17a, we call the pentagon connecting to four equalities \(=4\) on the upper right \(f_1\) and the other one \(f_2\). Let \(g\) be the signature of resulting gadget. We further order the external wires of \(f_1\), \(f_2\), and \(g\) counterclockwise, each starting from edge marked with a diamond. With this notation and these observations, we get Table 17b listing the support of \(g\). The support of \(g\) is \{11111111, 01111000, 11110000, 10000111, 00000000, 00001111, 00000000\}, and \(00000000\) has multiplicity 2.

Next we use a domain pairing argument. First we move \(=4\) to the left hand side, by contracting four \(\neq 2\) into it. We apply the domain pairing on the problem \(\text{Pl-Holant}(=4 | g)\). Specifically, we use \(=4\) as \(=2\), by pairing each pair of edges together. We also pair adjacent two outputs of \(g\) clockwise, starting from the diamond point. Each pair of output wires of \(g\) are connected to a pair of wires from \(=4\) on the left hand side. Note that \(=4\) enforces that each pair of edges always takes the same value. We re-interpret 00 or 11 as 0 or 1 in the Boolean domain. In this way, we can treat \(g\) as an arity 4 signature \(g'\) in the Boolean domain. So the reduction is

\[
\text{Pl-Holant}(=2 | g') \leq_T \text{Pl-Holant}(=4 | g).
\]

We get the expression of \(g'\) next. The two support bit strings 01111000 and 10000111 of \(g\) are eliminated as they do not agree on adjacent paired outputs. So in the paired (Boolean) domain, the support of \(g'\) becomes \{1111, 1100, 0011, 0000\} where \(0000\) has multiplicity 2. We further rotate \(g'\) as a Boolean domain signature such that the support is \{1111, 0110, 1001, 0000\}. Now it is easy to see that the matrix of \(g'\), an arity 4 signature in the Boolean domain, is

\[
M'_{g'} = \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]

By Lemma 7.2 \(\text{Pl-Holant}(g')\) is \#P-hard. Hence \(\text{Pl-Holant}(\neq 2 | =4, [0, 1, 0, 0])\) is \#P-hard.

To extend Lemma 7.1 and Lemma 7.3 to general \text{ExactOne}_d functions, we show that we can always realize constant functions \([1, 0]\) and \([0, 1]\) in this setting.

Lemma 7.4. For any integer \(k \geq 3\) and \(d \geq 3\) and any signature set \(\mathcal{F}\),

\[
\text{Pl-Holant}(\neq 2 | =_{k}, \text{ExactOne}_d, [0, 1], [1, 0], \mathcal{F}) \leq_T \text{Pl-Holant}(\neq 2 | =_{k}, \text{ExactOne}_d, \mathcal{F}).
\]

46
Proof. Given an instance Ω of Pl-Holant ($\neq_2 \mid =_k$, $\text{EXACTONE}_d, [0, 1], [1, 0], F$) with underlying planar graph G, if there is any $[1, 0]$ on the right hand side, then it can be combined with \neq_2 as a $[0, 1]$ on the left hand side, and then contracted into whatever function it is attached to. If it is connected to $[1, 0]$ or $[0, 1]$, we either know the Holant is 0 or remove the two vertices. If it is connected to EXACTONE_d, then the contraction gives us $d - 1$ many $[1, 0]$ pinnings. Similarly, if it is connected to $=_k$, the whole function decomposes into $k - 1$ many $[0, 1]$'s. These additional pinnings by $[1, 0]$'s or $[0, 1]$'s can be recursively applied.

By a similar analysis, it is easy to show that the only nontrivial occurrences of $[0, 1]$'s are those attached to EXACTONE_d via \neq_2. We may therefore assume there is no $[1, 0]$ in Ω, and the only appearances of $[0, 1]$ and $[1, 0]$'s are those of $[0, 1]$'s applied to EXACTONE_d via \neq_2.

We can construct $[0, 1]^{\otimes r}$ for some integer $r \geq 1$. We get $[1, 0]^{\otimes d - 2}$ by a self-loop of EXACTONE_d via \neq_2, ignoring the factor 2. We pick an integer ℓ large enough so that $d - 2 < \ell k$. Then we connect $[1, 0]^{\otimes d - 2}$ to $=_{\ell k}$ via \neq_2 to get $[0, 1]^{\otimes (\ell k - d + 2)}$. This is what we claim with $r = \ell k - d + 2$.

One more construction we will use is $\text{EXACTONE}_{2 + \ell (d - 2)}$ for any integer $\ell \geq 1$. This is realizable by connecting ℓ many copies of EXACTONE_d sequentially via \neq_2.

Consider the dual graph G^* of G. Take a spanning tree T of G^*, with the external face as the root. In each face F, let c_F be the number of $[0, 1]$'s in the face. We start from the leaves to recursively move all the pinnings of $[0, 1]$ to the external face. Suppose we are working on the face F as a leaf of T. If $c_F = 0$ then we just remove the leaf from T and recurse on another leaf. Otherwise we remove all $[0, 1]$'s in F. We let s be the smallest integer such that $sr \geq c_F$. We replace the \neq_2 edge bordering between F and its parent F' by a sequence of three signatures: \neq_2, $\text{EXACTONE}_{2 + \ell (d - 2)}$ and \neq_2, where ℓ is a sufficiently large integer such that $\ell (d - 2) \geq sr - c_F$. From $\text{EXACTONE}_{2 + \ell (d - 2)}$ there are two edges connected to the two adjacent copies of \neq_2. Of the other $\ell (d - 2)$ edges we will put $sr - c_F$ many dangling edges in F, and the remaining $\ell (d - 2) - (sr - c_F)$ dangling edges in F'. Hence there are sr dangling edges in F, including those c_F many that were connected to $[0, 1]$'s before we removed the $[0, 1]$'s. We put s copies of $[0, 1]^{\otimes r}$ inside the face F to pin all of them in a planar way. We add $\ell (d - 2) - (sr - c_F)$ to $c_{F'}$. Remove the leaf F from T, and recurse.

After the process, all $[0, 1]$'s are in the external face of G. Suppose the number is p. We put r disjoint copies of G together to form a planar signature grid. Apply a total of pr many $[0, 1]$'s by p copies of $[0, 1]^{\otimes r}$ in a planar way. This is now an instance of Pl-Holant ($\neq_2 \mid =_k$, $\text{EXACTONE}_d, F$) and the Holant value is the rth power of that of Ω. Since the Holant value of Ω is a nonnegative integer, we can take the rth root and finish the reduction.

Once we have constant functions $[0, 1]$ and $[1, 0]$, it is easy to construct EXACTONE_3 from EXACTONE_d. Therefore combining Lemma 7.4 with Lemma 7.1 and Lemma 7.3 we get the following corollary.

47
Corollary 7.5. If \(d \geq 3 \) and \(k \in \{3, 4\} \), then \(\text{Pl-Holant} (\neq_2 \mid =_k, \text{ExactOne}_d) \) is \#P-hard.

7.2 Tractability when \(k \geq 5 \)

On the other hand, if the arity of the equality signature is at least 5, then the problem is tractable. In this subsection we will first prove that the problem \(\text{Pl-Holant} (\neq_2 \mid =_k, \text{ExactOne}) \) is tractable for \(k \geq 6 \). After that we will return to \(=_5 \).

To prove this, we first do some preprocessing. Let \(G \) be the underlying graph of an instance of \(\text{Pl-Holant} (\neq_2 \mid =_k, \text{ExactOne}) \). Any self loop on an \text{ExactOne}_d by a \neq_2 changes it to a \[[1, 0] \otimes (d-2)\] with factor 2. These pinning signatures can be applied recursively. Any \[1, 0\] is first transformed to \[[0, 1] \otimes (d-1)\]. Similarly, any \[0, 1\] is first transformed to \[[1, 0] \otimes (d-1)\]. Note that if \(d = 3 \) then \text{ExactOne}_d is just \(\neq_2\) on RHS, which combined with its adjacent two copies of \(\neq_2\) of LHS, is equivalent to a single \(\neq_2\) of LHS. Moreover, whenever an \text{ExactOne}_d and another \text{ExactOne}_\ell are connected by a \neq_2, we replace it by a single \text{ExactOne}_{d+\ell-2}, shrinking the edge between (and remove the connecting \(\neq_2\)). On the other hand, consider a connected component made of \(=_k\) and \(\neq_2\). We call such a component an \(E_k\)-block. Notice that each \(E_k\)-block has either exactly two or zero support vectors. This depends on whether or not there exists a contradiction, which is formed by an odd cycle of \(=_k\) connected by \(\neq_2\). We say an \(E_k\)-block is trivial if it has no support. This is easy to check. The two support vectors of a nontrivial \(E_k\)-block are complements of each other. We mark dangling edges of a nontrivial \(E_k\)-block by “+” or “-” signs. Dangling edges marked with the same sign take the same value on both support vectors while dangling edges marked with different signs take opposite values on both support vectors. Let \(n_\pm\) be the number of dangling edges marked \(\pm\). Then it is easy to see that

\[
n_+ \equiv n_- \pmod{k}.
\]

An example of \(E_6\)-block is illustrated in Figure 18, with 8 + signs and 2 − signs.

After contracting all edges between \(\text{ExactOne}_d\)'s and forming \(E_k\)-block's we obtain a bipartite graph connected between \(\text{ExactOne}_d\)'s and \(E_k\)-blocks by edges labeled by \(\neq_2\).

A key observation is that a planar (bipartite) graph cannot be simple, i.e., it must have parallel edges, if its degrees are large.

Lemma 7.6. Let \(G = (L \cup R, E) \) be a planar bipartite graph with parts \(L\) and \(R\). If every vertex in \(L\) has degree at least 6 and every vertex in \(R\) has degree at least 3, then \(G\) is not simple.
Proof. Suppose G is simple. Let v, e and f be the total number of vertices, edges, and faces, respectively. Let v_i be the number of vertices of degree i in L, where $i \geq 6$, and u_j be the number of vertices of degree j in R, where $j \geq 3$. Since G is simple and bipartite, each face has at least 4 edges. Thus,

$$2e \geq 4f. \quad (7.10)$$

Furthermore, it is easy to see that

$$v = \sum_{i \geq 6} v_i + \sum_{j \geq 3} u_j \quad \text{and} \quad e = \sum_{i \geq 6} iv_i = \sum_{j \geq 3} ju_j. \quad (7.11)$$

Then starting from Euler’s characteristic equation for planar graphs, we have

$$2 = v - e + f \leq v - \frac{e}{2} \quad \text{(By } (7.10))$$

$$= \sum_{i \geq 6} v_i + \sum_{j \geq 3} u_j - \frac{1}{6} \sum_{i \geq 6} iv_i - \frac{1}{3} \sum_{j \geq 3} ju_j \quad \text{(By } (7.11))$$

$$= \sum_{i \geq 6} \left(\frac{6-i}{6}v_i + \sum_{j \geq 3} \frac{3-j}{3}u_j \right) \leq 0,$$

a contradiction. \qed

Lemma 7.6 does not give us tractability for the case of $k \geq 6$ yet. The reason is that given an instance of Pl-Holant ($\neq_2 | =_k, \mathcal{EO}$), after the preprocessing and forming E_k-blocks to make the graph bipartite, it is possible to have E_k-blocks of arity less than 6, in which case Lemma 7.6 does not apply. However, for $k \geq 6$ and a nontrivial E_k-block of arity n where $n < 6$, by (7.9) and the fact that $0 \leq n_+, n_- \leq n < k$, we see that $n_+ = n_-$, and $n = n_+ + n_-$ must be even. Moreover, if $n = 2$, then this means that the E_k-block is just \neq_2, in which case we can replace it by a single \neq_2 connecting signatures from \mathcal{EO} to produce a new ExactOne signature. The only problematic case is when $n = 4$. We identify two possibilities of such E_k-blocks up to a rotation in Figure 19a.

Formally we define a contraction process on the connected graph of E_k-block with dangling edges. Recursively, for any non-dangling non-loop edge e, we shrink it to a point, maintaining planarity. The local cyclic orders of incident edges of the two vertices of e are spliced along e to form the cyclic order of the new vertex. For any loop we simply remove it. This contraction process ends in a single point with a cyclic order of the dangling edges. Figure 19a depicts the two possibilities of E_k-blocks of arity 4 up to a rotation. An E_k-block of arity 4 can be viewed as a

![Figure 19: Arity 4 E_k-blocks.](image-url)
pair of \(\neq 2 \) in parallel, but there is a correlation between them, namely their support vectors are paired up in a unique way. If we replace the contracted \(E_k \)-block of arity 4 by two parallel edges as indicated in Fig. 19b, one can revert back to a planar realization in the \(E_k \)-block as it connects to the rest of the graph. This can be seen by reversing the contraction process step by step.

We will show in the following lemma how to replace \(E_k \)-block of arity 4 by some other signatures while keeping track of the Holant value. We also observe that this tractable set is compatible with binary \(\neq 2 \) and unary \([1,0]\) or \([0,1]\) signatures.

Lemma 7.7. For any integer \(k \geq 6 \), Pl-Holant \(\neq 2 | =_k, EO, \neq 2, [1,0], [0,1] \) is tractable.

Proof. Let \(\Omega \) be an instance of Pl-Holant \(\neq 2 | =_k, EO, \neq 2, [1,0], [0,1] \). Without loss of generality, we assume that \(\Omega \) is connected. Any occurrence of \(\neq 2 \) of the right hand side can be removed as follows: It is connected to two adjacent copies of \(\neq 2 \) of the left hand side. We replace these 3 copies of \(\neq 2 \) by a single \(\neq 2 \) from the left hand side.

The given signatures have no weight, however the proof below can be adapted to the weighted case. For the unweighted case, we only need to count the number of satisfying assignments. We call an edge pinned if it has the same value in all satisfying assignments, if there is any. Clearly any edge incident to a vertex assigned \([1,0]\) or \([0,1]\) is pinned.

When an edge is pinned to a known value, we can get a smaller instance of the problem Pl-Holant \(\neq 2 | =_k, EO, \neq 2, [1,0], [0,1] \) without changing the number of satisfying assignments. In our algorithm we may also find a contradiction and simply return 0. If \(e \) is a pinned edge, then it is adjacent to another edge \(e' \) via \(\neq 2 \) on the left hand side, and both \(e \) and \(e' \) are pinned. We remove \(e, e' \), and perform the following on \(e \) (and on \(e' \) as well). If the other endpoint of \(e \) is \(u = [1,0] \) or \([0,1]\) we either remove that \(u \) if the pinned value on \(e \) is consistent with \(u \), or return 0 otherwise. If the other endpoint of \(e \) is \(=_k \), then all edges of this \(=_k \) are pinned to the same value which we can recursively apply. If the other endpoint of \(e \) is \(EXACTONE_d \in EO \), then we replace this signature by \(EXACTONE_{d-1} \) when the pinned value is 0; or if the pinned value is 1 then the remaining \(d - 1 \) edges of this \(EXACTONE_d \) are pinned to 0 which we recursively apply. Notice that we may create an \(EXACTONE_2 \) (i.e. \(\neq 2 \)) on the right hand side when we pin 0 on \(EXACTONE_3 \).

Such \(\neq 2 \)’s are replaced as described at the beginning. It is easy to see that all these procedures do not change the number of satisfying assignments, and work in polynomial time.

We claim that there always exists an edge in \(\Omega \) that is pinned, unless \(\Omega \) does not contain \(=_k \), or does not contain \(EXACTONE_d \) functions (for some \(d \geq 3 \)), or there is a contradiction. Furthermore if there are \(=_k \) or \(EXACTONE_d \) functions (for some \(d \geq 3 \)), in polynomial time we can find a pinned edge with a known value, or return that there is a contradiction. (If there is a contradiction in \(\Omega \), we may still return a purported pinned edge with a known value, which we can apply and simplify \(\Omega \). The contradiction will eventually be found.) If \(\Omega \) does not contain \(=_k \), or does not contain \(EXACTONE_d \) functions (for some \(d \geq 3 \)), then the problem is tractable, since \(\Omega \) is an instance of \(M \), or an instance of \(P \). The lemma follows from the claim, for we either recurse on a smaller instance or have a tractable instance.

Suppose \(\Omega \) is an instance where at least one \(=_k \) and at least one \(EXACTONE_d \in EO \) appear. We assume no \(\neq 2 \) appears on the right hand side. If any \([1,0]\) or \([1,0]\) appear, then we have found a pinned edge with a known value. Hence we may assume neither \([1,0]\) nor \([1,0]\) appears in \(\Omega \).

If a signature \(EXACTONE_d \in EO \) is connected to itself by a self-loop through a \(\neq 2 \), then there are two choices for the assignment on this pair of edges through the \(\neq 2 \), but the remaining \(d - 2 \geq 1 \) edges are pinned to 0. We can keep track of the factor 2 and have found a pinned edge with a known value. Thus we may assume there are no self-loops via \(\neq 2 \) on \(EXACTONE \) signatures.
Next we consider the case that two separate signatures ExactOne_d and ExactOne_d from \mathcal{EO} are connected by some number of \neq_2's. Depending on the number of connecting edges, there are three cases:

1. The connection is by a single \neq_2. We contract the connecting edge, maintaining planarity, and replace these three signatures by an $\text{ExactOne}_{d+\ell-2}$ to get a new instance Ω'. If an edge is pinned in Ω' then it is also pinned in Ω to the same value. We continue with Ω'.

2. The connection is by two \neq_2's. There are two choices for the assignment on these two pairs of edges through \neq_2, but the remaining $d + \ell - 4 \geq 2$ edges are pinned to 0.

3. The connection is by at least three \neq_2's. The three \neq_2's cannot be all satisfied, so there is no satisfying assignment, a contradiction. We return the value 0.

Hence, we may assume there is no connection via any number of \neq_2's among ExactOne signatures.

Define an E_k-block as a connected component composed of $=_k$ and \neq_2. All external connecting edges of each E_k-block are marked with $+$ or $-$ and this can be found by testing bipartiteness of a E_k-block where we treat \neq_2's as edges. If any E_k-block is not bipartite, we return 0. We contract all E_k-blocks and maintain planarity. For each E_k-block we contract two vertices that are connected by an edge, one edge at a time, and remove self loops in this contraction process. If a trivial E_k-block appears, then there is no satisfying assignment, we return 0. Thus we may assume all E_k-blocks are nontrivial. If there is a nontrivial E_k-block of arity 2, as discussed earlier, its signature is \neq_2. We replace it with an edge labeled by \neq_2 to form an instance Ω', maintaining planarity, such that any pinned edge in Ω' corresponds to a pinned edge in Ω. This new edge is between ExactOne signatures and can be dealt with as described earlier. So we may assume the arity of any E_k-block is at least 4. Since $k \geq 6$, the only possible E_k-blocks of arity 4 are those in Figure 19a up to a rotation. Since there is at least one ExactOne_d signature with $d \geq 3$, forming E_k-blocks does not consume all of Ω.

After these steps we may consider Ω a bipartite graph, with one side consisting of E_k-blocks and the other side ExactOne signatures. And they are now connected by edges labeled by $=_2$.

Suppose there are parallel edges between an E_k-block and an ExactOne_d signature. We show that this always leads to some pinned edges. If two parallel edges are marked by the same sign in the E_k-block, then they must be pinned to 0. If they are marked by different signs, then the remaining $d - 2 \geq 1$ edges of the ExactOne_d signature must be pinned to 0. Therefore, we may assume there are no parallel edges between any E_k-block and any ExactOne signature.

The next thing we do is to consider E_k-blocks of arity 4 with ExactOne signatures together. Call a connected component consisting of E_k-blocks of arity 4 and ExactOne an $\text{EO-Eq}-4$-block. Figure 20a illustrates an example. Notice that the two possibilities of E_k-blocks of arity 4 can be viewed as two parallel \neq_2's but with some correlation between them. This is illustrated in Figure 19b. Note that the two dotted lines in Figure 19b represent different correlations.

At this point we would like to replace every arity 4 E_k-block by two parallel \neq_2's. However this replacement destroys the equivalence of the Holant values, before and after.

The surprising move of this proof is that we shall do so anyway!

Suppose we ignore the correlation for the time being and replace every arity 4 E_k-block by two parallel \neq_2's as in Figure 19b. This replacement produces a planar signature grid Ω_1. Every edge in Ω_1 corresponds to a unique edge in Ω. The set of satisfying assignments of Ω_1 is a superset of that of Ω. Moreover, if there is an edge pinned in Ω_1 to a known value, the corresponding edge is also pinned in Ω to the same value. Once we find that in Ω_1 we revert back to work in Ω and apply the pinning to the pinned edge.

51
All that remains to be shown is that pinning always happens in Ω_1. Each EO-Eq-4-block splits into some number of connected components in Ω_1. If any component contains a cycle (which must alternate between $\neq 2$, which are the newly created ones from the E_k-blocks of arity 4, and ExactOne signatures for $d \geq 3$), then any edges not in the cycle but incident to some vertex in the cycle is pinned to 0. Moreover such edges must exist, for ExactOne signatures in the cycle are of arity at least 3. Note that the cycle has even length, and there are exactly two satisfying assignments, which assign exactly one 0 and one 1 to the two cycle edges incident to each ExactOne signature. This produces pinned edges.

Hence we may assume there are no cycles in these components, and every such component forms a tree, whose vertices are ExactOne functions and edges are $\neq 2$'s. Suppose there are $n \geq 2$ vertices in such a tree. As discussed in item 1 above, the whole tree is an ExactOne function for some arity t. Since each vertex in the tree has degree at least 3, $t \geq 3n - 2(n - 1) = n + 2 \geq 4$. We replace these components by ExactOne functions.

Thus, each connected component in the graph underlying Ω_1 is a planar bipartite graph with E_k-blocks of arity at least 6 on one side and ExactOne signatures of arity at least 3 on the other. By Lemma 7.6, no component is simple, which means that there are parallel edges between some E_k-block and some ExactOne signature. As discussed earlier, there must exist some pinned edge, and we can find a pinned edge with a known value in polynomial time. This finishes the proof. \hfill \square

Unlike the situation in Lemma 7.6, a planar (5, 3)-regular bipartite graph can be simple. However, we show that such graphs must have a special induced subgraph. We call this structure a "wheel", which is pictured in Figure 21. There is a vertex v of degree 5 in the middle, and all faces adjacent to this vertex are 4-gons (i.e. quadrilaterals). Moreover, at least four neighbors of v have degree 3. Depending on the degree of the fifth neighbor (whether it is 3 or not), we have two types of wheel, which are pictured in Figure 21a and Figure 21b.

Lemma 7.8. Let $G = (L \cup R, E)$ be a planar bipartite graph with parts L and R. Every vertex in L has degree at least 5 and every vertex in R has degree at least 3. If G is simple, then there exists one of the two wheel structures in Figure 21 in G.

52
Figure 21: Two types of wheels. Each circle is an E_5-block and triangle an EXACTONE signature.

Proof. Let $V = L \cup R$ be the set of vertices and let F be the set of faces. We assign a score s_v to each vertex $v \in V$. We will define s_v so that $\sum_{v \in V} s_v = |V| - |E| + |F| = 2 > 0$. The base score is $+1$ for each vertex, which accounts for $|V|$. For each k-gon face, we assign $\frac{1}{k}$ to each of its vertex. This accounts for $|F|$. As G is a bipartite and a simple graph, $k \geq 4$ and a score coming from a face to a vertex is at most $\frac{1}{4}$.

For $-|E|$, we separate two cases. For any edge if one of the two endpoints has degree 3, we give the degree 3 vertex a score of $-\frac{7}{12}$, and the other one $-\frac{5}{12}$. This is well defined because all degree 3 vertices are in R. If the endpoints are not of degree 3, we give each endpoint $\frac{1}{2}$. This accounts for $-|E|$.

Now we claim that $s_v \leq 0$ unless $v \in L$ and has degree 5. Suppose $v \in L$ and has degree $d \geq 6$, then

$$s_v \leq 1 + \frac{d}{4} - \frac{5}{12}d = 1 - \frac{d}{6} \leq 0.$$

Now suppose $v \in R$ and v has degree $d \geq 4$. Then every edge adjacent to v gives a score $-\frac{1}{2}$. Hence,

$$s_v \leq 1 + \frac{d}{4} - \frac{1}{2}d = 1 - \frac{d}{4} \leq 0.$$

The remaining case is that $v \in R$ and v has degree 3. Then,

$$s_v \leq 1 + \frac{d}{4} - \frac{7}{12}d = 1 - \frac{d}{3} \leq 0.$$

The claim is proved.

Since the total score is positive, there must exist $v \in L$, v has degree 5 and $s_v > 0$. We then claim that there must exist such a v so that all adjacent faces are 4-gons. Suppose otherwise. Then any such v is adjacent to at least one k-gon with $k \geq 6$. In this case,

$$s_v \leq 1 + \frac{1}{4} \cdot 4 + \frac{1}{6} - \frac{5}{12} \cdot 5 = \frac{1}{12}.$$

53
Moreover, if \(v \) is adjacent to more than one \(k \)-gon with \(k \geq 6 \), then
\[
s_v \leq 1 + \frac{1}{4} \cdot 3 + \frac{1}{6} \cdot 2 - \frac{5}{12} \cdot 5 = 0,
\]
contrary to the assumption that \(s_v > 0 \). Hence \(v \) is adjacent to exactly one \(k \)-gon with \(k \geq 6 \). Call this face \(F_v \).

In \(F_v \), \(v \) has two neighbors in \(R \). We match each vertex \(v \) that has a positive score to the vertex on \(F_v \) that is the next one in clockwise order from \(v \). By bipartiteness, every such \(v \) is matched to a vertex in \(R \). We do this matching in all faces containing at least one positively scored vertex. It is possible that more than one such \(v \) are matched to the same \(u \in R \). Suppose a vertex \(u \in R \) is matched to from \(\ell \) different such vertices of positive score. This means that \(u \) is adjacent to at least \(\ell \) many \(k \)-gons with \(k \geq 6 \). Then, if \(u \) has degree 3 then \(u \) has score
\[
s_u \leq 1 + \frac{1}{4} \cdot (3 - \ell) + \frac{1}{6} \cdot \ell - \frac{7}{12} \cdot 3 = -\frac{\ell}{12}.
\]
If \(u \) has degree \(d \geq 4 \) then \(u \) has score
\[
s_u \leq 1 + \frac{1}{4} \cdot (d - \ell) + \frac{1}{6} \cdot \ell - \frac{1}{2} \cdot d \leq -\frac{\ell}{12}.
\]
Hence in any case, we have \(s_u \leq -\frac{\ell}{12} \). It implies that the total score of \(u \) and all positively scored vertices matched to \(u \) is at most 0. However each positively scored vertex is matched to a vertex in \(R \). Hence the total score cannot be positive. This is a contradiction.

Therefore there exists \(v \in L \) such that \(s_v > 0 \), and has degree 5, and all adjacent faces are 4-gons. We further note that at most one neighbor of \(v \) can have degree \(\geq 4 \), for otherwise,
\[
s_v \leq 1 + \frac{5}{4} - \frac{1}{2} \cdot 2 - \frac{5}{12} \cdot 3 = 0.
\]
If all neighbors of \(v \) have degree 3, that is a wheel of type 1 as in Figure 21a. If one neighbor of \(v \) has degree \(\geq 4 \), that is a wheel of type 2 as in Figure 21b.

As we shall see, either structure in Figure 21 leads to pinned edges.

Lemma 7.9. \(\Pi\text{-Holant} (\neq 2 \, | \, =_5, \mathcal{E} \mathcal{O}, \neq 2, [1, 0], [0, 1]) \) is tractable.

Proof. We proceed as in Lemma 7.7 up until the point of getting \(\Omega_1 \). Note that due to (7.9) the only nontrivial \(E_5 \)-blocks of arity \(\leq 4 \) are \(\neq 2 \) and those in Figure 19a. Moreover, each connected component of \(\Omega_1 \) is planar and bipartite with vertices on one side having degree at least 5 and those on the other at least 3. We only need to show that there are edges pinned in \(\Omega_1 \).

Unlike in Lemma 7.7, these components do not satisfy the condition of Lemma 7.6 but that of Lemma 7.8. If any such component is not simple, then there are pinned edges similar to Lemma 7.7. Otherwise by Lemma 7.8, the wheel structure in Figure 21 appears. All we need to show is that wheel structures of either type contain pinned edges.

First we claim that if a wheel of either type has a \(E_5 \)-block, call it \(E_1 \), on the outer cycle which has different signs on the two edges incident to it along the cycle, then the middle \(=_5 \), denoted by \(E_o \), is pinned. This is pictured in Figure 22a. It does not matter whether the wheel is type 1 or 2, or the position of \(E_1 \) relative to the special triangle \(P_1 \) in type 2. Because \(E_o \) is an equality, both \(e_1 \)
and e_2, the two edges incident to E_o that are connected to the two ExactOne signatures flanking E_1, must take the same value. If both e_1 and e_2 are assigned 1, then the two incoming wires of E_1 along the cycle have to be both assigned 0, whereas they are marked by different signs. This is a contradiction. Hence both e_1 and e_2 are pinned to 0 as well as all edges of E_o.

We may therefore assume that each E_5-block has same signs along the outer cycle, either $++$ or $--$. If the wheel is of type 1, then there is no valid assignment such that E_o is assigned 0 because the cycle has odd length. In fact if E_o is assigned 0, then we can remove E_o and its incident edges, and effectively the five ExactOne signatures are now \neq_2’s forming a 5-cycle linked by binary equalities. Hence E_o and all its edges are pinned to 1.

Otherwise the wheel is of type 2, and each E_5-block has signs $++$ or $--$ along the outer cycle. We denote by P_1 the special ExactOne function that has arity $d > 3$. We claim that the two edges e and e' incident to P_1 along the cycle are both pinned to 0. This is illustrated in Figure 22b. As P_1 is ExactOne, at most one of e and e' is 1. If one of e and e' is 1, the other is 0, and as P_1 is an ExactOne function its edge to E_o is also 0, and thus all edges incident to E_o are 0. As all five neighbors of E_o are ExactOne functions, the four ExactOne functions effectively become (\neq_2) functions along the wheel, and we can remove E_o and its incident edges. This becomes the same situation as in the previous case of type 1, where effectively a cycle of five binary equalities are linked by five binary disequalities, which has no valid assignment. It implies that both e and e' are pinned to 0. This finishes the proof.

\[\square \]

7.3 Lemmas related to \mathcal{M}_4 and \mathcal{P}_2

Now we prove some lemmas relating to \mathcal{M}_4 and \mathcal{P}_2 that are used in the proof of the full dichotomy.

Recall that AllButOne is the signature $[0, \ldots, 0, 1, 0]$ of arity d, which is the reverse of ExactOne. After a Z transformation, \mathcal{M}_4 contains both AllButOne and ExactOne. However, if both appear, then with any k the problem is hard.

Lemma 7.10. If integers $d_1, d_2, k \geq 3$, then Pl-Holant $(\neq_2 \mid =_k, \text{ExactOne}_{d_1}, \text{AllButOne}_{d_2})$ is \#P-hard.
Figure 23: Gadget to realize \(\hat{g} \) in Lemma 7.10. Circle vertices are assigned \(=_k \) and square vertices are assigned \(\neq 2 \). The number of parallel edges is \(k - 2 \).

Proof. We apply Lemma 7.4 to create constant functions \([1, 0]\) and \([0, 1]\) first. Then we construct ExactOne\(_4\) and AllButOne\(_4\). With both \([1, 0]\) and \([0, 1]\) in hand, we may reduce \(d_1 \) or \(d_2 \) to 4 if \(d_1 > 4 \) or \(d_2 > 4 \). If either of the two arities is 3, then we connect two copies together via \(\neq 2 \) to realize an arity 4 copy.

Moreover, we use the gadget illustrated in Figure 23 to create the function \(\hat{g} \) in Lemma 6.7 as an \(E_k \)-block. Then by Lemma 6.7, Pl-Holant \((\neq_2 | =_k, \text{ExactOne}_{d_1}, \text{AllButOne}_{d_2})\) is \#P-hard.

In general signatures in \(\mathcal{P}_2 \) are non-degenerate weighted equalities under the \(Z \) transformation. The next several lemmas show that the hardness criterion is the same regardless of the weight.

Lemma 7.11. Let \(f \in \mathcal{P}_2 \), \(g_1 \in \mathcal{M}_4^+ \), \(g_2 \in \mathcal{M}_4^- \) be non-degenerate signatures with arity \(\geq 3 \). Then Pl-Holant \((f, g_1, g_2)\) is \#P-hard.

Proof. Suppose the arities of \(f \), \(g_1 \), and \(g_2 \) are \(n \), \(m_1 \), and \(m_2 \) respectively. Under a holographic transformation by \(Z \), we have

\[
\text{Pl-Holant}(f, g_1, g_2) \equiv \text{Pl-Holant} \left(\neq_2 \mid (Z^{-1})^{\otimes n} f, (Z^{-1})^{\otimes m_1} g_1, (Z^{-1})^{\otimes m_2} g_2 \right)
\equiv \text{Pl-Holant} \left(\neq_2 \mid f, \text{ExactOne}_{m_1}, \text{AllButOne}_{m_2} \right),
\]

where \(f = (Z^{-1})^{\otimes n} f \) which has the form \([1, 0, \ldots, 0, c]\) up to a nonzero constant, with \(c \neq 0 \), as \(f \in \mathcal{P}_2 \). We do another diagonal transformation by \(D = \begin{bmatrix} 1 & 0 \\ 0 & c^{1/n} \end{bmatrix} \). Then

\[
\text{Pl-Holant}(f, g_1, g_2)
\equiv \text{Pl-Holant} \left((\neq_2) D^{\otimes 2} \mid (D^{-1})^{\otimes n} \hat{f}, (D^{-1})^{\otimes m_1} \text{ExactOne}_{m_1}, (D^{-1})^{\otimes m_2} \text{AllButOne}_{m_2} \right)
\equiv \text{Pl-Holant} \left((\neq_2) | =_n, \text{ExactOne}_{m_1}, \text{AllButOne}_{m_2} \right),
\]

where in the last line we ignored several nonzero factors. The lemma follows from Lemma 7.10.

We also need to consider the mixture of \(\mathcal{P}_2 \) and binary signatures.

Lemma 7.12. Let \(\mathcal{F} \) be a set of symmetric signatures. Suppose \(\mathcal{F} \) contains a non-degenerate signature \(f \in \mathcal{P}_2 \) of arity \(n \geq 3 \) and a binary signature \(h \). Then Pl-Holant \((\mathcal{F})\) is \#P-hard unless \(h \in Z \mathcal{P} \), or Pl-\#CSP\(^2\)(\(DZ^{-1} \mathcal{F}\)) \(\leq_T \) Pl-Holant \((\mathcal{F})\) for some diagonal transformation \(D \).
Proof. We do a Z transformation and get

$$\text{Pl-Holant}(\mathcal{F}) \equiv \text{Pl-Holant}(\mathcal{F}, h, f)$$

$$\equiv \text{Pl-Holant} \left(\neg_2 \mid Z^{-1} \mathcal{F}, (Z^{-1}) \otimes^2 h, \hat{f} \right),$$

where $\hat{f} = (Z^{-1}) \otimes^n f = [1, 0, \ldots, 0, t]$ up to a nonzero constant with $t \neq 0$. We further do another diagonal transformation of $D_1 = \left[1 \ 0 \ 1 \ 0 \right]$. Then

$$\text{Pl-Holant}(\mathcal{F}) \equiv \text{Pl-Holant} \left(\neg_2 \mid (D_1^{-1}) \otimes^n \hat{f}, (ZD_1)^{-1} \mathcal{F}, ((ZD_1)^{-1}) \otimes^2 h \right)$$

$$\equiv \text{Pl-Holant} \left(\neg_2 \mid =_n, (ZD_1)^{-1} \mathcal{F}, ((ZD_1)^{-1}) \otimes^2 h \right)$$

$$\geq_T \text{Pl-Holant} \left(=_n \mid (ZD_1)^{-1} \mathcal{F}, ((ZD_1)^{-1}) \otimes^2 h \right),$$

where in the second line we ignore a nonzero factor on \neg_2. Hence by Theorem 2.24, Pl-Holant(\mathcal{F}) is \#P-hard unless $((ZD_1)^{-1}) \otimes^2 h \in \mathcal{P}$ (cases 1, 2 or 3 in Theorem 2.24) or $((ZD_1)^{-1}) \otimes^2 h = [a, b, c]$ for some $a, b, c \in \mathbb{C}$ such that $ac \neq 0$ and $(a/c)^{2n} = 1$ (cases 4 or 5 in Theorem 2.24).

If $((ZD_1)^{-1}) \otimes^2 h \in \mathcal{P}$, then $h \in ZD_1 \mathcal{P} = Z \mathcal{P}$ as $D_1 \in \text{Stab}(\mathcal{P})$. In the latter case, we construct $=_{2n}$ on the right by connecting three copies of $=_n$ to one copy of $=_{2n}$ via \neg_2. We do the same construction again to realize $=_{4n}$ using $=_{2n}$. We connect $n - 1$ many $[a, b, c]$’s to $=_{2n}$ via \neg_2 to realize a binary weighted equality $[1, 0, r]$ with $r = (a/c)^{n-1} \neq 0$ ignoring a factor of c^{n-1}. Note that $r^{2n} = (a/c)^{2n(n-1)} = 1$. Then we do another diagonal transformation of $D_2 = \left[1 \ 0 \ 0 \right]$ to get

$$\text{Pl-Holant} \left(\neg_2 \mid (ZD_1D_2)^{-1} \mathcal{F}, =_n, (D_2^{-1}) \otimes^{4n} (=_{4n}) \right).$$

Notice that

$$(D_2^{-1}) \otimes^{4n} (=_{4n}) = [1, 0, \ldots, 0, r^{-2n}] = (=_{4n}),$$

as $r^{2n} = 1$.

Hence we have $=_2$ and $=_{4n}$ on the right. With \neg_2 on the left, we get $=_{2}$ on the left and therefore equalities of all even arities on the right. Let $D = (D_1D_2)^{-1}$. Then we have the reduction chain:

$$\text{Pl-Holant}(\mathcal{F}) \geq_T \text{Pl-Holant} \left(\neg_2 \mid DZ^{-1} \mathcal{F} \cup \{=_{2n}, =_{4n}\} \right)$$

$$\geq_T \text{Pl-Holant} \left(\neg_2 \mid DZ^{-1} \mathcal{F} \cup \mathcal{E} Q_2 \right)$$

$$\geq_T \text{Pl-Holant}(\mathcal{E} Q_2 \mid DZ^{-1} \mathcal{F} \).$$

The last problem is Pl-$\#\text{CSP}^2(Z^{-1} \mathcal{F})$. Thus Pl-$\#\text{CSP}^2(Z^{-1} \mathcal{F}) \leq_T \text{Pl-Holant}(\mathcal{F}).$

At last, we strengthen Corollary 7.5, Lemma 7.7, and Lemma 7.9 to weighted equalities. We split the hardness and tractability cases. For a set \mathcal{F} of signatures, denote by $\mathcal{F}^{a,b}_{nd}$ the set of non-degenerate signatures in \mathcal{F} of arity at least 3. Moreover denote by \mathcal{F}^* the signature set that is the same as \mathcal{F} but with each degenerate signature $[a, b]^{m}$ in \mathcal{F} replaced by the unary $[a, b]$.

Notice that $\mathcal{F} \cap \mathcal{P}_2$ and $\mathcal{F}^* \cap \mathcal{P}_2$ agree on signatures of arity at least 2, since signatures in \mathcal{P}_2 of arity at least 2 are non-degenerate. So $\mathcal{F} \cap \mathcal{P}_2 \subseteq \mathcal{F}^* \cap \mathcal{P}_2$, and the only possible extra elements are some unary $[x, y]$’s from $[x, y]^{m} \in \mathcal{F}$ for some integer $m \geq 2$ and $[x, y]$ is not a multiple of $[1, \pm i]$. Equivalently the only possible extra elements are unary signatures of the form $Z[a, b]$ for $ab \neq 0$, i.e., not of the form a multiple of $Z[1, 0]$ or $Z[0, 1]$, when $Z^{-1} \mathcal{F}$ contains some degenerate signatures of the form $[a, b]^{m}$ for some integer $m \geq 2$ and $ab \neq 0$.

57
Lemma 7.13. Let \mathcal{F} be a set of symmetric signatures. Let $\mathcal{F}_{\geq 3}^{nd}$ be the set of non-degenerate signatures in \mathcal{F} of arity at least 3. Suppose $\mathcal{F}_{\geq 3}^{nd}$ contains $f \in \mathcal{M}_4$ of arity $d \geq 3$. Moreover, suppose $\mathcal{F}_{\geq 3}^{nd} \cap \mathcal{P}_2$ is nonempty, and let k be the greatest common divisor of the arities of signatures in $\mathcal{F} \cap \mathcal{P}_2$. If $k \leq 4$, then Pl-Holant(\mathcal{F}) is $\#P$-hard.

Proof. We may assume that $f \in \mathcal{M}_4$. Since $\mathcal{F}_{\geq 3}^{nd} \cap \mathcal{P}_2$ is nonempty, there exists $g \in \mathcal{F}_{\geq 3}^{nd} \cap \mathcal{P}_2$. By the definition of $\mathcal{F}_{\geq 3}^{nd}$, g has arity $n \geq 3$. We do a Z transformation,

$$\text{Pl-Holant}(\mathcal{F}) \cong \text{Pl-Holant} \left(\neq_2, \text{EXACTONE}_d, (Z^{-1})^{d} \mathcal{F} \right),$$

where $g = (Z^{-1})^{\otimes n}g$ has the form $[1, 0, \ldots, 0, c]$ of arity n for some $c \neq 0$ up to a nonzero factor. We further do a diagonal transformation $D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and get

$$\text{Pl-Holant}(\mathcal{F}) \cong \text{Pl-Holant} \left(\neq_2, \text{EXACTONE}_d, (ZD)^{-1} \mathcal{F} \right),$$

where we ignore nonzero factors on \neq_2 and EXACTONE$_d$. Then by Lemma 7.4,

$$\text{Pl-Holant}(\mathcal{F}) \geq_T \text{Pl-Holant} \left(\neq_2, \text{EXACTONE}_d, [0, 1], [1, 0], (ZD)^{-1} \mathcal{F} \right).$$

By a weighted equality we mean a signature of the form $[a, 0, \ldots, 0, b]$ of some arity ≥ 1, where $ab \neq 0$. Recall that \mathcal{P}_2 consists of the Z transformation of all weighted equalities. Let \mathcal{G} be the set of weighted equalities in $(ZD)^{-1} \mathcal{F}$. In other words, $\mathcal{G} = (ZD)^{-1} (\mathcal{F} \cap \mathcal{P}_2)$ as $(ZD)^{-1} \mathcal{P}_2$ contains all weighted equalities. Moreover, up to a nonzero factor, $=_n \in \mathcal{G}$.

Let k' be the gcd of all arities of signatures in \mathcal{G}, or equivalently the gcd of all arities of signatures in $\mathcal{F} \cap \mathcal{P}_2$. If $k' \neq k$, then the only possibility is that $(ZD)^{-1} \mathcal{F}$ contains a degenerate signature $[a, b]^{\otimes m}$ for some $m \geq 2$ with $ab \neq 0$. In this case we use pinning $[1, 0]$ or $[0, 1]$ to realize $[a, b]$ from $[a, b]^{\otimes m}$ and put $[a, b]^{\otimes m}$ in \mathcal{G}. Hence we may assume that $k' = k$.

Pick any $g_1, g_2 \in \mathcal{G}$ of arities ℓ_1 and ℓ_2. Let $r = \gcd(\ell_1, \ell_2)$. Let t_1, t_2 be two positive integers such that $t_1 \ell_1 - t_2 \ell_2 = r$. Then connecting t_1 copies of g_1 and t_2 copies of g_2 via \neq_2 in a bipartite and planar way, we get a weighted equality signature of arity r.

Apply the same argument repeatedly. Eventually we construct a weighted equality h of arity k. We further do a diagonal transformation D_1 to make it $=_k$, that is,

$$\text{Pl-Holant}(\mathcal{F}) \geq_T \text{Pl-Holant} \left(\neq_2, \mathcal{G}, \text{EXACTONE}_d \right)$$

$$\geq_T \text{Pl-Holant} \left(\neq_2, h, \text{EXACTONE}_d, \mathcal{G} \right)$$

$$\geq_T \text{Pl-Holant} \left(\neq_2, \text{EXACTONE}_d, D_1^{-1} \mathcal{G} \right),$$

where in the last line we ignored nonzero factors of EXACTONE$_d$ and \neq_2. If $k = 3$ or 4, then the hardness follows from Corollary 7.5.

If $k = 1$ or 2, then on the right hand side we have $=_{k_1}$, which is $=_{1}$ or $=_{2}$, and a weighted equality $(D_1^{-1})^{\otimes n}(=_{n}) \in D_1^{-1} \mathcal{G}$. Call it \hat{g}'. We move the $=_{k}$ to the left hand side via \neq_2. Then we connect zero or more copies of this $=_{k}$, which is $=_{1}$ or $=_{2}$, to \hat{g}' such that its arity is 3 or 4. It is possible that $n = 3$ or 4 to begin with, and if so we do nothing. We are done by yet another diagonal transformation and Corollary 7.5.

\[\Box\]
Lemma 7.14. Let F be a set of symmetric signatures. Suppose $F \subseteq Z^\mathcal{P}\cup\mathcal{M}_1^\mathcal{P}$ for some $\sigma \in \{+, -\}$ and the greatest common divisor of the arities of all signatures in $F^* \cap \mathcal{P}_2$ is $k \geq 5$. Then Pl-Holant(F) can be computed in polynomial time.

Proof. We may assume that $\sigma = +$ and the case of $\sigma = -$ is similar. We do a Z transformation on Pl-Holant(F), and get a problem of Pl-Holant ($\neq_2 | Z^{-1}F$).

In this bipartite setting, given $=_n$ on the right hand side, we can realize $=_{\ell n}$ for any integer $\ell \geq 1$ as an $E_{n\ell}$-block on the right. The problem Pl-Holant ($\neq_2 | \mathcal{EO}_n, \mathcal{EO}, \neq_2, [1, 0], [0, 1]$) is tractable for any $n \geq 5$ by Lemma 7.7 and Lemma 7.9, where \mathcal{EO}_n denotes the set of all equalities of arity ℓn for all integers $\ell \geq 1$.

The symmetric signatures in the set $Z \mathcal{P}$ consist of $\mathcal{P}_2, Z^{\mathcal{P}2}(\neq_2)$, and degenerate signatures. If there is any degenerate signature of the form $(Z[a, b])^{\mathcal{P}m} \in F$ with $ab \neq 0$, then $Z[a, b] \in F^* \cap \mathcal{P}_2$. This contradicts $k \geq 5$. Hence all degenerate signatures in F are of the form $(Z[1, 0])^{\mathcal{P}m}$ or $(Z[0, 1])^{\mathcal{P}m}$, if any. Since $F \subseteq Z \mathcal{P}\cup\mathcal{M}_1^\mathcal{P}$, after a Z transformation, Pl-Holant(F) is an instance of Pl-Holant ($\neq_2 | \mathcal{EO}_t, \mathcal{EO}, \neq_2, [1, 0], [0, 1]$) except for the weights on the equalities. It can be checked that the tractability results of Lemma 7.7 and Lemma 7.9 also apply to weighted equalities. The lemma follows.

Let $\mathcal{G} = \{=_k | k \in S\}$ be a set of EQUALITY signatures, where S is a set of positive integers containing at least one $r \geq 3$. Moreover let $\mathcal{EO}^+ := \{\text{ExactOne}d | d \in Z^+\} = \mathcal{EO} \cup \{\neq_2, [0, 1]\}$. Then Pl-Holant ($\mathcal{G} | \mathcal{EO}^+$) is the problem of counting perfect matchings over hypergraphs with planar incidence graphs, where the hyperedge sizes are prescribed by S. In the incidence graph, vertices assigned signatures in \mathcal{G} on the left represent hyperedges, and vertices assigned signatures in \mathcal{EO}^+ on the right represent vertices of the hypergraph. Let $t = \gcd(S)$. It is stated in the introduction that this problem is tractable if $t \geq 5$ and #P-hard if $t \leq 4$. The tractability when $t \geq 5$ follows from Lemma 7.7 and 7.9, since we can reduce Pl-Holant ($\mathcal{G} | \mathcal{EO}^+$) to Pl-Holant ($\neq_2 | =_t, \mathcal{EO}, \neq_2, [0, 1]$).

The reduction goes as follows. With \neq_2 on the left hand side and $=_t$ on the right hand side, we can construct all E_t-blocks and hence all of \mathcal{EO}_t on the right. Note that $\mathcal{G} \subseteq \mathcal{EO}_t$. Then we move all signatures in \mathcal{G} to the left via \neq_2.

The hardness of Pl-Holant ($\mathcal{G} | \mathcal{EO}^+$) for $t \leq 4$ follows from Corollary 7.5. The reason is as follows. We construct \neq_2 on the left using the gadget pictured in Figure 7a with $(=_r) \in \mathcal{G}$ on the left side assigned to circle vertices and \neq_2 on the right side assigned to square vertices. Then we move \mathcal{G} to the right side via \neq_2 on the right side. We construct $=_t$ on the right side in the same Euclidean process using \mathcal{G} of the right side and \neq_2 of the left side. This gives us a reduction from Pl-Holant ($\neq_2 | =_t, \mathcal{EO}$), which is #P-hard by Corollary 7.5 if $t = 3, 4$. Otherwise $t = 1, 2$. Recall that $(=_r) \in \mathcal{G}$ for some $r \geq 3$. We use $=_t$ to reduce the arity of $=_r$ to 3 or 4, if necessary. Again we are done by Corollary 7.5.

If we do not assume there is at least one hyperedge of size ≥ 3 in Pl-Holant ($\mathcal{G} | \mathcal{EO}^+$), and $t = \gcd(S) \leq 2$, then the problem is tractable if and only if $S \subseteq \{1, 2\}$. The tractability is due to Kasteleyn’s algorithm, as there is no hyperedge. In summary, we have the following theorem.

Theorem 7.15. The problem Pl-Holant ($\mathcal{G} | \mathcal{EO}^+$) counts perfect matchings over hypergraphs with planar incidence graphs, where the hyperedge sizes are prescribed by a set S of positive integers. Let $t = \gcd(S)$. If $t \geq 5$ or $S \subseteq \{1, 2\}$, then the problem is computable in polynomial time. Otherwise $t \leq 4$, $S \not\subseteq \{1, 2\}$, and the problem is #P-hard.
8 Full Dichotomy

We are finally ready to prove our main dichotomy theorem. Recall that for a set F of signatures, $F_{nd}^{\geq 3}$ denotes the set of non-degenerate signatures in F of arity at least 3, and F^* denotes F with all degenerate signatures $[a, b]^{\leq m}$ replaced by unary $[a, b]$.

Theorem 8.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then $\text{Pl-Holant}(F)$ is #P-hard unless F satisfies one of the following conditions:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is \mathcal{A}-transformable;
3. F is \mathcal{P}-transformable;
4. $F \subseteq \mathcal{V}_2^\sigma \cup \{ f \in \mathcal{R}_2^\sigma \mid \text{arity}(f) = 2 \}$ for some $\sigma \in \{+,-\}$;
5. All non-degenerate signatures in F are in \mathcal{R}_2^σ for some $\sigma \in \{+,-\}$.
6. F is \mathcal{M}-transformable;
7. $F \subseteq Z\mathcal{P} \cup \mathcal{M}_2^\sigma$ for some $\sigma \in \{+,-\}$, and the greatest common divisor of the arities of the signatures in $F^* \cap \mathcal{P}_2$ is at least 5.

In each exceptional case, $\text{Pl-Holant}(F)$ is computable in polynomial time. If F satisfies condition 1, 2, 3, 4, or 5, then $\text{Holant}(F)$ is computable in polynomial time without planarity; otherwise $\text{Holant}(F)$ is #P-hard.

Proof. We may assume that F contains no identically 0 signatures. We note that removing any identically 0 signature from a set does not affect its complexity, being either tractable or #P-hard, and it does not affect the set F satisfying any of the listed conditions in Case 1 to 7.

If all non-degenerate signatures in F are of arity at most 2, then the problem is tractable case 1. Otherwise, there is a non-degenerate signature $f \in F$ of arity at least 3. By Theorem 6.1, $\text{Pl-Holant}(F)$ is #P-hard unless $f \in \mathcal{P}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4$ or f is vanishing. If $f \in \mathcal{P}_1$ or $f \in \mathcal{M}_2 \setminus \mathcal{P}_2$ or $f \in \mathcal{M}_3$ or $f \in \mathcal{M}_4$, then we are done by Corollary 5.4 or Lemma 5.8 or Corollary 5.6 or Lemma 5.10 respectively. Therefore, we assume that none of these is the case. This implies that $F_{nd}^{\geq 3}$ is nonempty and that each of its signatures is in \mathcal{P}_2 or in \mathcal{M}_4 or vanishing. That is,

$$\emptyset \neq F_{nd}^{\geq 3} \subseteq \mathcal{P}_2 \cup \mathcal{M}_4 \cup \mathcal{V}.$$

Suppose there exists some $f \in F_{nd}^{\geq 3}$ which is in $\mathcal{V} \setminus \mathcal{M}_4$. We assume $f \in \mathcal{V}^+$ since the other case \mathcal{V}^- is similar. In this case, we show that $\text{Pl-Holant}(F)$ is #P-hard, unless F is in Case 4 or Case 5. Assume that $\text{Pl-Holant}(F)$ is not #P-hard. We will discuss non-degenerate signatures of arity ≥ 3, of arity 2, and degenerate signatures separately.

1. For any $g \in F_{nd}^{\geq 3}$, we claim that $g \in \mathcal{V}^+$. Suppose otherwise, then $g \in \mathcal{P}_2$ or $g \in \mathcal{V}^-$. Notice that the latter covers the case where $g \in \mathcal{M}_4$ but $g \notin \mathcal{V}^+$ (namely $g \in \mathcal{M}_4$). If $g \in \mathcal{P}_2$, then $\text{Pl-Holant}(f, g)$ is #P-hard by Lemma 4.7. If $g \in \mathcal{V}^-$, then $\text{Pl-Holant}(f, g)$ is #P-hard by Lemma 4.5 as $f \notin \mathcal{M}_4$.

2. For any non-degenerate binary signature $h \in F$, it must be that $h \in \mathcal{R}_2^+$ as otherwise $\text{Pl-Holant}(f, h)$ is #P-hard by Lemma 4.3.

3. If $\text{rd}^+(g) = 1$ for all $g \in F_{nd}^{\geq 3}$, then $F_{nd}^{\geq 3} \subseteq \mathcal{R}_2^+$ by Lemma 2.19. Together with the fact just proved that all non-degenerate binary in F are in \mathcal{R}_2^+, Case 5 is satisfied. Otherwise there exists $g \in F_{nd}^{\geq 3}$ such that $\text{rd}^+(g) \geq 2$. Then $g \in \mathcal{V}^+$ by the first item above. If F contains any degenerate signature $v = v^{\leq m}$ for $m \geq 1$ and some unary u that is not a multiple of $[1, i]$, then by Lemma 4.1, $\text{Pl-Holant}(g, v)$ is #P-hard. Hence all degenerate
signatures are multiples of tensor powers of $[1, i]$, which are in \mathcal{V}^\perp. It implies that \mathcal{F} is in Case 4.

Now we have that $\emptyset \neq \mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{P}_2 \cup \mathcal{M}_4$. We handle this in three cases.

1. Suppose $\mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{M}_4$. First suppose $\mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{M}_4^+$ for some $\sigma \in \{+, -\}$. Assume $\sigma = +$ as $\sigma = -$ is similar. Then $\mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{P}_2^+$ by Lemma 3.9 and 2.19. If all non-degenerate binary signatures are in \mathcal{P}_2^+ as well, then this is Case 5 and tractable. Let h be a non-degenerate binary signature in \mathcal{F} that is not in \mathcal{P}_2^+. We apply Lemma 4.4, and Pl-Holant(\mathcal{F}) is \#P-hard unless $h = Z^{\otimes 2}[a, 0, 1]$ up to a nonzero factor, where $a \neq 0$. In this case we apply a Z transformation, and get Pl-Holant $(\neq_2 [a, 0, 1], Z^{-1} \mathcal{F})$. Then we do a diagonal transformation $D = \begin{bmatrix} a^{1/2} & 0 \\ 0 & 1 \end{bmatrix}$. Note that this only changes \neq_2 on the left hand side to a nonzero multiple of \neq_2. Hence we have the reduction chain:

$$\text{Pl-Holant}(\mathcal{F}) \equiv \text{Pl-Holant} (\neq_2 [a, 0, 1], Z^{-1} \mathcal{F})$$

$$\equiv \text{Pl-Holant} (\neq_2 [1, 0, 1], D^{-1} Z^{-1} \mathcal{F})$$

$$\geq_T \text{Pl-Holant}(D^{-1} Z^{-1} \mathcal{F})$$

Notice that $D^{-1} Z^{-1} \mathcal{F}$ contains ExactOne$_k$ with $k \geq 3$ that is in \mathcal{M}_3 with I_2. Then by Lemma 5.10, Pl-Holant(\mathcal{F}) is \#P-hard unless $D^{-1} Z^{-1} \mathcal{F} \subseteq I_2. \mathcal{M} = \mathcal{M}$, i.e., $\mathcal{F} \subseteq Z. \mathcal{M} = Z. \mathcal{M}$. The exceptional case implies that \mathcal{F} is \mathcal{M}-transformable via Z, and we are in the tractable Case 6.

Otherwise $\mathcal{F}^{\geq 3}_{nd}$ contains both $f \in \mathcal{M}_4^+$ and $g \in \mathcal{M}_4^-$. Similarly as above, by Lemma 4.4, any non-degenerate binary signature in \mathcal{F} has to be in $\mathcal{R}_2^+ \cap \mathcal{R}_2^- = \{Z^{\otimes 2}(\neq_2)\}$ (cf. Lemma 2.19), or is a nonzero constant multiple of $Z^{\otimes 2}[a, 0, 1]$ where $a \neq 0$, as otherwise Pl-Holant(\mathcal{F}) is \#P-hard. Moreover, by Lemma 4.6, Pl-Holant(\mathcal{F}) is \#P-hard, unless all degenerate signatures in \mathcal{F} are of the form $[1, \pm i]^{\otimes m}$. Note that $[1, i] = Z[1, 0]$ and $[1, -i] = Z[0, 1]$. When this is the case, \mathcal{F} is \mathcal{M}-transformable via Z.

2. Suppose $\mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{P}_2$. If \mathcal{F} contains a non-degenerate binary signature h, then we apply Lemma 7.12 and Pl-Holant(\mathcal{F}) is \#P-hard unless $h \in Z. \mathcal{P}$, or Pl-$\#$CSP$^2(DZ^{-1} \mathcal{F}) \leq_T$ Pl-Holant(\mathcal{F}) for some diagonal transformation D. If it is the latter case, then by Theorem 5.1, either Pl-Holant(\mathcal{F}) is \#P-hard, or $DZ^{-1} \mathcal{F}$ is a subset of $T. \mathcal{A}$, \mathcal{P}, or $T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathcal{M}$, for some diagonal matrix T. We claim that in any of these cases Pl-Holant(\mathcal{F}) is tractable. In fact,

(a) if $DZ^{-1} \mathcal{F} \subseteq T. \mathcal{A}$, then \mathcal{F} is \mathcal{A}-transformable as $\mathcal{F} \subseteq ZD^{-1}T. \mathcal{A}$ and $[1, 0, 1]$ (as a row vector) is transformed into $[1, 0, 1](ZD^{-1}T)^{\otimes 2}$, which is $[0, 1, 0] \in \mathcal{A}$ up to a nonzero constant;

(b) if $DZ^{-1} \mathcal{F} \subseteq \mathcal{P}$, then \mathcal{F} is \mathcal{P}-transformable as $\mathcal{F} \subseteq ZD^{-1} \mathcal{P}$ and $[1, 0, 1](ZD^{-1})^{\otimes 2}$ is $[0, 1, 0] \in \mathcal{P}$ up to a nonzero constant;

(c) if $DZ^{-1} \mathcal{F} \subseteq T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathcal{M}$, then \mathcal{F} is \mathcal{M}-transformable as $\mathcal{F} \subseteq ZD^{-1}T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathcal{M}$ and $[1, 0, 1]$ is transformed to $[1, 0, 1](ZD^{-1}T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix})^{\otimes 2}$, which is $[1, 0, -1] \in \mathcal{M}$ up to a nonzero constant.

Hence we may assume that every non-degenerate binary in \mathcal{F} is in $Z. \mathcal{P}$. Notice that degenerate signatures are always in \mathcal{P} under any transformation. Also $\mathcal{F}^{\geq 3}_{nd}$ is a subset of $Z. \mathcal{P}$ because $\mathcal{F}^{\geq 3}_{nd} \subseteq \mathcal{P}_2$ and \mathcal{P}_2 is just weighted equalities under Z-transformation. It implies that \mathcal{F} is \mathcal{P}-transformable under the Z transformation. Hence we are in Case 3.

3. Finally, suppose neither of the above is the case. Then there are $f, g \in \mathcal{F}^{\geq 3}_{nd}$ with $f \in \mathcal{M}_4^+$ and $g \in \mathcal{P}_2$. If $\mathcal{F}^{\geq 3}_{nd}$ contains both $f \in \mathcal{M}_4^+$ and $f' \in \mathcal{M}_4^-$, then Pl-Holant(\mathcal{F}) is \#P-hard by
Lemma 7.11. Otherwise $F_{nd}^{\geq 3} \cap M_4 \subseteq M_4^+$ or M_4^-. Let $G = F \cap P_2$, and let d be the gcd of the arities of the signatures in G. Then G contains at least one non-degenerate signature g of arity ≥ 3. If $d \leq 4$, then Pl-Holant(F) is #P-hard by Lemma 7.13. Otherwise $d \geq 5$. If F contains a non-degenerate binary signature h, then we apply Lemma 7.12 and by a similar analysis as in the case of $F_{nd}^{\geq 3} \subseteq P_2$ above, we are done unless every such h is in $Z.P$. Ignoring a nonzero factor, it implies that either $h = Z^{\otimes 2}[1,0,a]$ where $a \neq 0$ or $h = Z^{\otimes 2}(\neq 2)$. If $h = Z^{\otimes 2}[1,0,a]$, then $h \in F^* \cap P_2$, and it contradicts $d \geq 5$. Hence $h = Z^{\otimes 2}(\neq 2)$. If there is any degenerate $v = (Z[a,b])^{\otimes m}$ in F with $ab \neq 0$, then $Z[a,b] \in F^* \cap P_2$ and it also contradicts $d \geq 5$.

In summary, Pl-Holant(F) is #P-hard unless $F_{nd}^{\geq 3} \subseteq P_2 \cup M_4$, $F_{nd}^{\geq 3} \cap M_4 \subseteq M_4^+$ for some $\sigma \in \{+, -\}$, the greatest common divisor of the arities of the signatures in $F^* \cap P_2$ is at least 5. Every non-degenerate binary in F is of the form $Z^{\otimes 2}(\neq 2)$, and every degenerate in F is of the form $(Z[1,0])^{\otimes m}$ or $(Z[0,1])^{\otimes m}$. Notice that P_2, $Z^{\otimes 2}(\neq 2)$, $(Z[1,0])^{\otimes m}$, and $(Z[0,1])^{\otimes m}$ are all in $Z.P$. Hence the exceptional case implies that $F \subseteq Z.P \cup M_4^+$ for some $\sigma \in \{+, -\}$ and the greatest common divisor of the arities of the signatures in $F^* \cap P_2$ is at least 5. This is tractable Case 7.

The tractability of Holant(F) in Case 1, Case 2, Case 3, Case 4, and Case 5 follows from the Holant dichotomy Theorem 2.21, which also implies that Holant(F) is #P-hard otherwise. The tractability of Pl-Holant(F) in Case 6 follows from Theorem 2.7. The tractability of Pl-Holant(F) in Case 7 follows from Lemma 7.14. This completes the proof.

\[\square\]
In Part II of this paper, we prove Theorem A.2, which is the complexity dichotomy theorem of Pl-#CSP$^2(\mathcal{F})$, where \mathcal{F} is a set of complex-valued symmetric signatures on Boolean variables. After we define some relevant notions, we give an outline of the proof of Theorem A.2. Throughout Part II, we denote by α (respectively ρ) any quantity that satisfies $\alpha^4 = -1$ (respectively $\rho^4 = 1$).

A Preliminaries

We first define some tractable families of signatures that are expressible under a holographic transformation, specific to the Pl-#CSP2 framework.

Definition A.1. Let $T_k = \{[1 \ 0] \mid \omega^k = 1 \}$ be a set of diagonal matrices of order dividing k and $\mathcal{T}_k = \mathcal{T}_{2k} \setminus \mathcal{T}_k = \{[1 \ 0] \mid \omega^k = -1 \}$. Let $\mathcal{A}^\dagger = \mathcal{T}_4 \mathcal{A}$ and $\mathcal{M}^\dagger = \mathcal{T}_2 \mathcal{M}$ be the sets of signatures transformed by \mathcal{T}_4 from the Affine family \mathcal{A} and transformed by \mathcal{T}_2 from \mathcal{M}, respectively, where for a class of signatures \mathcal{C}, we denote $T_k \mathcal{C} = \{T^\text{arity}(f) \mid T \in T_k \text{ and } f \in \mathcal{C} \}$.

Let

$$\mathcal{A} = \mathcal{A} \cup \mathcal{A}^\dagger \quad \text{and} \quad \mathcal{M} = \mathcal{M} \cup \mathcal{M}^\dagger$$

be the \mathcal{A}-transformable and \mathcal{M}-transformable signatures for Pl-#CSP2.

Recall that $\mathcal{M} = H \mathcal{M}$ is the set of Matchgate signatures \mathcal{M} transformed by the Hadamard basis $H = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Note that \mathcal{A} is unchanged under the transformation by H, and thus there is no need to define \mathcal{A}^\dagger. Also note that \mathcal{P} is unchanged under any diagonal matrix. Thus there is no need to define \mathcal{P}^\dagger. For $T = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix} \in \mathcal{T}_4$ with $\omega^4 = 1$, $T \mathcal{A} = \mathcal{A}$. Thus \mathcal{A} is \mathcal{A} under transformations by $T = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix} \in \mathcal{T}_4$. For such T, we have $\mathcal{A}^{\otimes 2n} = (=2n)T^{\otimes 2n} \in \mathcal{A}$. Hence \mathcal{A} is \mathcal{A}-transformable for Pl-#CSP2. Similarly, for $T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $TH = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is either H or $H[1 \ 0]$ in \mathcal{M}. Thus $T \mathcal{M} = \mathcal{M}$ and \mathcal{M} is \mathcal{M} transformed under TH for all $T \in \mathcal{T}_4$. Also note that for all such T, we have $(=2n)(TH)^{\otimes 2n} \in \mathcal{M}$. Hence \mathcal{M} is \mathcal{M}-transformable for Pl-#CSP2.

In the proof of No-Mixing of different tractable sets, because of a particular order in which we carry out the proof, to make an overall logical structure more apparent we introduce the following notations

$$S_1 = \mathcal{M}, \quad S_2 = \mathcal{M}^\dagger, \quad S_3 = \mathcal{A}^\dagger, \quad S_4 = \mathcal{A}, \quad \text{and} \quad S_5 = \mathcal{P}.$$
We will prove the following Main Theorem of Part II. It is not hard to see that this is a
rephrase of Theorem 5.1 from Part I. It follows from Theorem C.13, Theorem H.5 and Theorem
G.4, which will be shown in later sections. It follows from the definition of \(\mathcal{P} \)-transformability,
\(\mathcal{A} \)-transformability and \(\mathcal{M} \)-transformability that if \(\mathcal{F} \subseteq S_k \) for any \(1 \leq k \leq 5 \), then \(\text{Pl-\#CSP}^2(\mathcal{F}) \)
is tractable.

Theorem A.2. For any set of complex-valued symmetric signatures \(\mathcal{F} \) on Boolean variables, if
\(\mathcal{F} \subseteq \mathcal{P} \), or \(\mathcal{A} \), or \(\mathcal{A}^1 \), or \(\mathcal{M} \), or \(\mathcal{M}^1 \), then \(\text{Pl-\#CSP}^2(\mathcal{F}) \) is tractable. Otherwise, \(\text{Pl-\#CSP}^2(\mathcal{F}) \)
is \(\#P \)-hard.

Proof Outline. We now give an outline of the proof of Theorem A.2. The overall plan is to break
the proof into two main steps.

The first step is to prove the dichotomy theorem for \(\text{Pl-\#CSP}^2(\mathcal{F}) \) when there is at least one
nonzero signature of odd arity in \(\mathcal{F} \). In this case we can make use of Lemma B.2 that shows that
we can simulate \(\text{Pl-\#CSP}(\mathcal{F}) \) by \(\text{Pl-\#CSP}^2(\mathcal{F}) \) if \(\mathcal{F} \) includes a unary signature \([a, b] \) with \(ab \neq 0 \).
Then we can apply the known dichotomy Theorem A.22 for \(\text{Pl-\#CSP}^1 \). However this strategy
(provably) cannot work in the case when every signature in \(\mathcal{F} \) satisfies the parity constraint. In
that case we employ other means. This first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in \(\mathcal{F} \) have even arity. This is
where the real difficulties lie. In this case it is impossible to directly construct any unary signature.
So we cannot use Lemma B.2 in this case. But Lemma B.3 provides a way to simulate \(\text{Pl-\#CSP}(\mathcal{F}) \)
by \(\text{Pl-\#CSP}^2(\mathcal{F}) \) in a global fashion, if \(\mathcal{F} \) includes some tensor power of the form \([a, b]^{\otimes 2}\) where
\(ab \neq 0 \). Moreover, we have a lucky break (for the complexity of the proof) if \(\mathcal{F} \) includes a signature
that is in \(\mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). In this case, we can construct a special binary signature, and then use
Lemma E.2 to obtain \([1, 1]^{\otimes 2}\) by interpolation. This proof uses the theory of cyclotomic fields. This
simplifies the proof greatly. For all other cases (when \(\mathcal{F} \) has only even arity signatures), the proof
gets going in earnest—we will attempt an induction on the arity of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2 whenever possible; however
for many cases an arity reduction to 2 destroys the \(\#P \)-hardness at hand. Therefore the
true basis of this induction proof of \(\text{Pl-\#CSP}^2 \) starts with arity 4. Consequently we will first prove
a dichotomy theorem for \(\text{Pl-\#CSP}^2(f) \), where \(f \) is a signature of arity 4. This proof is presented
in Section D. Several tools will be used. These include the rank criterion for redundant signatures,
Theorem A.21 for arity 2 signatures, and a trick we call the Three Stooges by domain pairing.

However in the next step we do not attempt a general \(\text{Pl-\#CSP}^2 \) dichotomy for a single signature
of even arity. This would have been natural at this point, but it would have been too difficult.
We will need some additional leverage by proving a conditional No-Mixing Lemma for pairs of
signatures of even arity. So, seemingly taking a detour, we prove that for two signatures \(f \) and \(g \)
both of even arity, that individually belong to some tractable class, but do not belong to a single
tractable class in the conjectured \(\text{Pl-\#CSP}^2 \) dichotomy (that is yet to be proved), the problem
\(\text{Pl-\#CSP}^2(f, g) \) is \(\#P \)-hard. We prove this No-Mixing Lemma for any pair of signatures \(f \) and \(g \)
both of even arity, not restricted to arity 4. Even though at this point we only have a dichotomy
for a single signature of arity 4, we prove this No-Mixing Lemma for higher even arity pairs \(f \) and
\(g \) by simulating two signatures \(f' \) and \(g' \) of arity 4 that belong to different tractable sets, from
that of \(\text{Pl-\#CSP}^2(f, g) \). After this arity reduction (within the No-Mixing Lemma), we prove that
\(\text{Pl-\#CSP}^2(f', g') \) is \(\#P \)-hard by the dichotomy for a single signature of arity 4. After this, we prove
a No-Mixing Lemma for a set of signatures \(\mathcal{F} \) of even arities, which states that if \(\mathcal{F} \) is contained in

64
the union of all tractable classes, then it is still \#P-hard unless it is entirely contained in a single tractable class. Note that at this point we still only have a conditional No-Mixing Lemma in the sense that we have to assume every signature in F belongs to some tractable set.

We then attempt the proof of a Pl-\#CSP2 dichotomy for a single signature of arbitrary even arity. This uses all the previous lemmas, in particular the (conditional) No-Mixing Lemma for a set of signatures. However, after completing the proof of this Pl-\#CSP2 dichotomy for a single signature of even arity, the No-Mixing Lemma becomes absolute.

Finally the dichotomy for a single signature of even arity is logically extended to a dichotomy theorem for Pl-\#CSP$^2(\mathcal{F})$ where all signatures in \mathcal{F} have even arity. Together with the first main step when \mathcal{F} contains some nonzero signature of odd arity, this completes the proof of Theorem A.2.

\[\square \]

In the rest of this Section A, we will introduce the operators ∂ and \int, and give some characterizations of the tractable classes. We will also introduce some preliminary lemmas, including one using the domain pairing technique, and list some known dichotomies. In Section B, we discuss a technique to simulate Pl-\#CSP by Pl-\#CSP2. Section C proves Theorem A.2 in the case when \mathcal{F} contains at least one nonzero signature of odd arity. Section D proves the base case of the even arity case of Theorem A.2 when \mathcal{F} consists of a single signature of arity 4. Section E gives an application of cyclotomic field which simplifies the proof of Theorem A.2 when \mathcal{F} contains a signature in $\mathcal{H} \setminus (\mathcal{P} \cup \mathcal{A})$. Section F proves the conditional No Mixing lemmas for a pair of signatures of even arity. Section G generalizes the No Mixing lemmas to a set of signatures of even arity. Section H finishes the proof of Theorem A.2.

Remark 4. We occasionally make some remarks (such as Remark 5 and Remark 6 in Subsection E.2) to explain the complications forced upon the proof by various reasons, and why another more straightforward approach would not succeed. These remarks are not logically necessary to the proof, but hopefully they provide some insight and point out pitfalls in the proof.

The next lemma is a simple fact that is used many times. It essentially says that the set $\{0, 1, i, -1, -i, \infty\}$ is closed set-wise under the mapping $z \mapsto \frac{z+1}{z-1}$. The proof is straightforward, so we omit it.

Lemma A.3. Let $x \neq y$ and $\lambda = \frac{x+y}{x-y}$. Then $\lambda^4 \notin \{0, 1\}$ iff $x^4 \neq y^4$ and $xy \neq 0$.

Definition A.4 (Derivative). Let f and g be two symmetric signatures of arities n and m respectively, and $n > m$. By connecting all m input edges of g to f, we get a planar $\{f, g\}$-gate with a signature of arity $n - m$. This derivative signature will be denoted by $\partial_g(f)$. If $kn < m$ and we connect k copies of g to f, which is the same as forming $\partial_g(f)$ sequentially k times, the resulting repeated derivative signature is denoted by $\partial_g^k(f)$. If $g = [1, 0, 1]$, we denote $\partial_g(f)$ simply by $\partial(f)$.

Calculus: Our proof will make substantial use of a calculus using this notion of derivatives. This calculus is essentially a systematic way to calculate the signatures of some gadget constructions. In a Pl-Holant problem Pl-Holant($\mathcal{G} \mid \mathcal{F}$), if $g \in \mathcal{G}$ and $f \in \mathcal{F}$, then we say that g is from the LHS and f is from the RHS. If f has arity n and g has arity m, and $n > m$, then we can form the signature $\partial_g(f)$ and Pl-Holant($\mathcal{G} \mid \mathcal{F} \cup \{\partial_g(f)\}$) \leq_T Pl-Holant($\mathcal{G} \mid \mathcal{F}$). If $m > n$ we can form $\partial_f(g)$ and Pl-Holant($\mathcal{G} \cup \{\partial_f(g)\} \mid \mathcal{F}$) \leq_T Pl-Holant($\mathcal{G} \mid \mathcal{F}$). In particular, for Pl-\#CSP$^2(\mathcal{F}) \equiv$ Pl-Holant($\mathcal{E}\mathcal{Q}_2 \mid \mathcal{F}$) we consider all ($=_{2k}$) as from the LHS. In this case if $h \in \mathcal{F}$
with arity \(< n \) then we can also form \(\partial_h(f) \), by first moving \(h \) to LHS via \((\equiv) \in \mathcal{EQ}_2\), and then \(\Pi-\#\text{CSP}^2(\mathcal{F} \cup \{ \partial_h(f) \}) \leq T \Pi-\#\text{CSP}^2(\mathcal{F}) \). Note that if we discuss \(\Pi-\#\text{CSP}^4(\mathcal{F}) \) then this operation \(\partial_h(f) \) is in general not permissible, and has to be justified in each individual case, e.g. when \(h \) has even arity and one can construct \([1,0,1]^{\otimes 2}\) in the LHS.

To familiarize the readers with this calculus, we list some simple calculations below, which we will use often in our proofs freely without comment.

For any \(g \), the operator \(\partial_g(\cdot) \) is a linear operator. It also depends on \(g \) linearly.

By definition \(\partial([f_0,f_1,\ldots,f_n]) = [f_0 + f_2,f_1 + f_3,\ldots,f_{n-2} + f_n] \) has arity \(n - 2 \).

1. If \(f = [s,t]^{\otimes n} \), then
 - \(\partial^k_{[a,b]}(f) = (as + bt)^k[s,t]^{\otimes n-k} \) if \(n > k \).
 - \(\partial^k_{[a,b,c]}(f) = (as^2 + 2bst + ct^2)^k[s,t]^{\otimes n-2k} \) if \(n > 2k \);
 in particular, \(\partial^k(f) = (s^2 + t^2)^k[s,t]^{\otimes n-2k} \).
 - \(\partial^k_{s,t}(f) = (s^4 + t^4)^k[s,t]^{\otimes n-4k} \) if \(n > 4k \).
 - For \(g = [g_0,g_1,\ldots,g_m] \), we have \(\partial_g(\equiv)= [g_0,0,\ldots,0,g_m] \) of arity \(n - m \), where \(n > m \).

2. Let \(f \) be of arity \(n \) and \(f_k = (\pm 1)^k(n - 2k) (0 \leq k \leq n) \), then
 - \(\partial(f) \) has arity \(n' = n - 2 \) and \(\partial(f) \)\(_k = 2(\pm 1)^k(n' - 2k) \). If \(n \) is odd, then \(\partial^{n-1}(f) = 2^{n-1}[1,\mp 1] \).
 - \(\partial_{=4}(f) \) has arity \(n'' = n - 4 \) and \(\partial_{=4}(f) \)\(_k = 2(\pm 1)^k(n'' - 2k) \).
 If \(n \equiv 1 \pmod{4} \), then \(\partial_{=4}(f) = 2^{n-1}[1,\mp 1] \).
 If \(n \equiv 3 \pmod{4} \), then \(\partial(\partial_{=4}(f)) = 2^{n-1}[1,\mp 1] \).

3. Let \(f \) be of arity \(n \) and \(f_k = (\pm i)^k(n - 2k) (0 \leq k \leq n) \), then
 - \(\partial(f) = 4[1,\pm i]^{\otimes n-2} \).
 - \(\partial_{=4}(f) \) has arity \(m = n - 4 \) and \(\partial_{=4}(f) \)\(_k = 2(\pm i)^k(m - 2k) \).
 If \(n \equiv 1 \pmod{4} \), then \(\partial_{=4}(f) = 2^{n-1}[1,\mp i] \).
 If \(n \equiv 3 \pmod{4} \), then \(\partial(\partial_{=4}(f)) = 2^{n-1}[1,\mp i] \).

Now we define an inverse operator \(f(\cdot) \) to \(\partial \). Just like the usual calculus there is a certain non-uniqueness in the expression in an indefinite integral; this non-uniqueness is addressed in Lemma A.5. One reasonable definition for \(f([f_0,f_1,\ldots,f_n]) = [F_0,F_1,\ldots,F_{n+2}] \) such that

\[F_k = \sum_{s \geq 0} (-1)^s f_{k+2s} = f_k - f_{k+2} - f_{k+4} - \ldots \]

where we define \(f_k = 0 \) for all \(k > n \). Clearly \(\partial(F) = f \).

Lemma A.5. Let \(F \) and \(G \) be symmetric signatures of arity \(n \geq 3 \) and suppose \(\partial(F) = \partial(G) \). Then \(F - G = x[1,i]^{\otimes n} + y[1,-i]^{\otimes n} \), for some constants \(x \) and \(y \).

Proof. The signature \(H = F - G \) satisfies \(\partial(H) = 0 \), and thus satisfies the second order recurrence relation \(H_k + H_{k+2} = 0 \) for \(0 \leq k \leq n - 2 \). Hence there exist constants \(x \) and \(y \) such that \(H = x[1,i]^{\otimes n} + y[1,-i]^{\otimes n} \). \(\square \)

Thus \(f(\cdot) \) is well-defined up to an additive term \(x[1,i]^{\otimes n} + y[1,-i]^{\otimes n} \). In this paper, we choose to write the expression \(f(f) \) by the following definition when a certain special expression of \(f \) exists. This is more convenient for our proofs.
Definition A.6. For \(n \geq 3 \),
- \(\int(0) = 0 \).
- For \(a^2 + b^2 \neq 0 \), \(\int([a, b]^{\otimes n-2}) = \frac{1}{a^2 + b^2}[a, b]^{\otimes n} \).
- \(\int(\{1, \pm i\}^{\otimes n-2}) \) has arity \(n \) and \(\int(\{1, \pm i\}^{\otimes n-2})_k = \frac{1}{2}(\pm i)^k(n - 2k) \).
- If the signature \(g \) has arity \(n - 2 \) and \(g_k = (\pm 1)^k(n - 2 - 2k) \), then \(\int(g) \) has arity \(n \) and \(\int(g)_k = \frac{1}{2}(\pm 1)^k(n - 2k) \).
- If the signature \(g \) has arity \(n - 2 \) and \(g_k = (\pm i)^k(n - 2 - 2k) \), then \(\int(g) \) has arity \(n \) and \(\int(g)_k = \frac{1}{2}(\mp 1)^k(n - 2k) \).

Clearly for all \(f \) where \(\int(f) \) is given in the above definition, \(\partial[\int(f)] = f \).

When we prove the dichotomy theorem for Pl-\#CSP\((f)\), where \(f \) has arity \(n \), we can get a signature \(f' \) of arity \(n - 2 \) by taking a self loop with \(f \), i.e., \(f' = \partial(f) \). Clearly Pl-\#CSP\((f') \leq_T \) Pl-\#CSP\((f)\). If \(f' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \), then by induction Pl-\#CSP\((f') \) is \#P-hard. Thus Pl-\#CSP\((f)\) is also \#P-hard. Definition A.6 allows us to write down an explicit expression for \(\int(f') \) for all cases when \(f' \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \).

The following is an explicit list of \(\int(f') \) for \(f' = \partial(f) \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \). We can recover \(f \) up to the constants \(x, y \) from \(\partial(f) \) by Lemma A.5. This list is for the convenience of the readers.

Proposition A.7 (Explicit List for \(\int(f') \)).
- \(\int(f') = 0 \) if \(f' = 0 \).
- \(\int([1, 0]^{\otimes n-2} + a[0, 1]^{\otimes n-2}) = [1, 0]^{\otimes n} + a[0, 1]^{\otimes n} \).
- \(\int([1, \gamma]^{\otimes n-2} + i^r[1, -\gamma]^{\otimes n-2}) = \frac{1}{1+i^r}[1, \gamma]^{\otimes n} + \frac{i^r}{1+i^r}[1, -\gamma]^{\otimes n} \) where \(\gamma^2 \neq -1, \gamma^8 = 1 \).
- \(\int([s, tp]^{\otimes n-2} \pm [t, sp]^{\otimes n-2}) \) where \(\rho^4 = 1, st \neq 0, s^4 \neq t^4 \).
- \(\int([f(f')]_k = \frac{1}{2}(\pm 1)^k(n - 2k) \) if \(f' \) has arity \(n - 2 \) and \(f'_k = (\pm 1)^k(n - 2 - 2k) \).
- \(\int([f(f')]_k = \frac{1}{2}(\pm i)^k(n - 2k) \) if \(f' \) has arity \(n - 2 \) and \(f' = [1, i]^{\otimes n-2} \).
- \(\int([f(f')]_k = \frac{1}{2}[i^k + i^r(-i)^k](n - 2k) \) if \(f' \) has arity \(n - 2 \) and \(f' = [1, i]^{\otimes n-2} + i^r[1, -i]^{\otimes n-2} \).
- \(\int([f(f')]_k = (-\frac{1}{2}k + \frac{1}{2}k^2)(\pm i)^k \) if \(f' \) has arity \(n - 2 \) and \(f'_k = (\pm i)^k(n - 2 - 2k) \).

The following lemma is used to determine whether a binary signature belongs to various tractable sets \(\mathcal{P}, \mathcal{A}, \mathcal{A}^\dagger, \mathcal{M} \), and \(\mathcal{M}^\dagger \). It can be proved directly by the definition.

Lemma A.8. For any binary symmetric signature \(f \),
- \(f \in \mathcal{P} \) iff \(f = [a, 0, c] \) or \(f = [0, b, 0] \) or \(f = [a, b]^{\otimes 2} \).
- \(f \in \mathcal{A} \) iff up to a scalar, \(f = [1, \rho, -\rho^2] \) where \(\rho^4 = 1 \), or \([0, 1, 0] \), or \([1, 0, \rho] \) where \(\rho^4 = 1 \), or \([x, y]^{\otimes 2} \) where \(x^4 = y^4 \neq 0 \) or \(xy = 0 \).
- \(f \in \mathcal{A}^\dagger \) iff up to a scalar, \(f = [1, \alpha, -\alpha^2] \) where \(\alpha^4 = -1 \), or \([0, 1, 0] \), or \([1, 0, \rho] \) where \(\rho^4 = 1 \), or \([x, y]^{\otimes 2} \) where \(x^4 = -y^4 \neq 0 \) or \(xy = 0 \).
- \(f \in \mathcal{M} \) iff \(f = [a, b, a] \) or \([a, 0, -a] \).
- \(f \in \mathcal{M}^\dagger \) iff \(f = [a, b, a] \) or \([a, 0, -a] \).

Corollary A.9 gives some necessary conditions for a binary signature to belong to a tractable set.

Corollary A.9. For any binary signature \(f = [a, b, c] \),
- \(f \in \mathcal{P} \implies f \) satisfies either the parity constraint or \(b^2 = ac \).
- \(f \in \mathcal{A} \implies a^2 = c^2 \) or \(b = 0 \). If \(f \in \mathcal{A} \setminus \mathcal{P} \), then \(f = [1, \rho, -\rho^2] \), \(\rho^4 = 1 \).
- \(f \in \mathcal{A}^\dagger \implies a^2 = -c^2 \) or \(b = 0 \). If \(f \in \mathcal{A}^\dagger \setminus \mathcal{P} \), then \(f = [1, \alpha, -\alpha^2] \), \(\alpha^4 = -1 \).
- \(f \in \mathcal{M} \implies f \) does not have any non-zero entries.
• \(f \in \widehat{\mathcal{M}} \implies a^2 = c^2 \).

Furthermore, all signatures in each tractable set satisfy a second order recurrence relation.

Definition A.10. Let \(f = [f_0, f_1, \ldots, f_n] \). If there exist constants \(a, b \) and \(c \), not all zero, such that \(af_k - bf_{k+1} + cf_{k+2} = 0 \) for \(1 \leq k \leq n - 2 \), then we say \(f \) has type \(\langle a, b, c \rangle \), and it is denoted by \(f \in \langle a, b, c \rangle \).

For a non-degenerate symmetric signature \(f \) of arity at least 3, if \(f \) has type \(\langle a, b, c \rangle \), its type is uniquely determined up to a nonzero multiple. The next lemma states this type information for the various tractable sets. We can use the lemma to check whether a symmetric signature can possibly be in a tractable set.

Lemma A.11. Let \(f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \) be non-degenerate and have arity \(\geq 3 \).

- If \(f \in \mathcal{P} \) then \(f \in \langle 0, 1, 0 \rangle \).
- If \(f \in \mathcal{A} \) then \(f \in \langle 0, 1, 0 \rangle \) or \(f \in \langle 1, 0, \pm 1 \rangle \).
- If \(f \in \mathcal{A}^\dagger \) then \(f \in \langle 0, 1, 0 \rangle \) or \(f \in \langle 1, 0, \pm i \rangle \).
- If \(f \in \mathcal{M} \) then \(f \in \langle 0, 1, 0 \rangle \) or \(f \in \langle 1, 1, 1 \rangle \).
- If \(f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \) then \(f \in \langle 1, 1, 1 \rangle \) with \(c \neq 0 \).

The following two corollaries follow from Lemma A.8 for the binary case, and Lemma A.11 for arity \(n \geq 3 \).

Corollary A.12. If \(f \in \mathcal{A} \setminus \mathcal{P} \), then \(f \notin \mathcal{A}^\dagger \). Similarly, if \(f \in \mathcal{A}^\dagger \setminus \mathcal{P} \), then \(f \notin \mathcal{A} \).

Corollary A.13. If \(f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), then \(f \notin \mathcal{M}^\dagger \). Similarly, if \(f \in \mathcal{M}^\dagger \setminus (\mathcal{P} \cup \mathcal{A}) \), then \(f \notin \mathcal{M} \).

The following lemma gives a characterization for \(\mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \).

Lemma A.14. Let \(f = [f_0, \ldots, f_n] \) be a symmetric signature of arity \(n \). Then \(f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \) iff

- \(n = 2 \) and \(f = \lambda [1, a, 1] \), where \(a^4 \notin \{0, 1\} \) and \(\lambda \neq 0 \); or
- \(n \geq 3 \) and \(f = [s, t]^{\otimes n} \pm [t, s]^{\otimes n} \), where \(st \neq 0 \) and \(s^4 \neq t^4 \); or
- \(n \geq 3 \) and \(f_k = \lambda (\pm i)^k (n - 2k) \), where \(\lambda \neq 0 \).

Similarly, \(f \in \mathcal{M}^\dagger \setminus (\mathcal{P} \cup \mathcal{A}) \) iff

- \(n = 2 \) and \(f = \lambda [1, b, -1] \), where \(b^4 \notin \{0, 1\} \) and \(\lambda \neq 0 \); or
- \(n \geq 3 \) and \(f = [s, ti]^{\otimes n} \pm [t, si]^{\otimes n} \), where \(st \neq 0 \) and \(s^4 \neq t^4 \); or
- \(n \geq 3 \) and \(f_k = \lambda (\pm i)^k (n - 2k) \), where \(\lambda \neq 0 \).

Proof. We prove the lemma for \(\mathcal{M} \). The proof for \(\mathcal{M}^\dagger \) follows from a holographic transformation by \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

By Lemma A.8, a binary symmetric signature \(f \in \mathcal{M} \) has the form \([a, b, a]\) or \([a, 0, -a]\). Since \([a, 0, -a] \in \mathcal{A} \) as a multiple of \([1, 0, -1]\), we exclude it. For \([a, b, a]\), if \(ab = 0 \), then \(f \in \mathcal{P} \). Also if \(a^4 = b^4 \), then \([a, b, a] \in \mathcal{A} \), being a multiple of \([1, \pm 1]^{\otimes 2}\) or \([1, \pm i, 1]\). This gives the form \(f = \lambda [1, b, 1] \) with \(b^4 \notin \{0, 1\} \) and \(\lambda \neq 0 \). Conversely, any \(f \) of this form belongs to \(\mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \).

For arity \(n \geq 3 \), \(f \in \mathcal{M} \) iff \(f \) takes the form \([s, t]^{\otimes n} \pm [t, s]^{\otimes n} \) or \(f_k = \lambda (\pm i)^k (n - 2k) \). For the latter case \(f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \) follows from its type \(\langle 1, \pm 2, 1 \rangle \).
For $f = [s, t]^{\otimes n} \pm [t, s]^{\otimes n}$, if $st = 0$, then $f \in \mathcal{P}$. If $s^2 = t^2$, then f is degenerate, thus $f \in \mathcal{P}$. If $s^2 = -t^2$, then $f \in \mathcal{SA}$. Conversely, if $st \neq 0$ and $s^4 \neq t^4$, then f is non-degenerate and f_k has type $(1, \frac{s}{t} + \frac{t}{s}, 1)$. Note that $\frac{s}{t} + \frac{t}{s} \neq 0$ by $s^4 \neq t^4$. Thus $f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{SA})$ by Lemma A.11.

By the second recurrence relation of the signatures in $\mathcal{M} \setminus (\mathcal{P} \cup \mathcal{SA})$, we have the following lemma that will be used in the proof of Theorem C.11.

Corollary A.15. If $f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{SA})$, then f does not satisfy parity constraints.

Proof. For $f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{SA})$, if f has arity 2, then $f = \lambda[1, a, 1]$ for some $\lambda \neq 0$, $a^4 \neq 0, 1$ by Lemma A.14. Thus it does not satisfy parity constraints.

For f with arity $n \geq 3$, by Lemma A.11, there exists a constant $c \neq 0$ such that $f \in \{1, c, 1\}$. Note that there exists $f_k \neq 0$, where $1 \leq k \leq n - 1$ by $f \notin \mathcal{P}$. If f satisfies parity constraints, then $f_{k-1} = f_{k+1} = 0$. Moreover, by $f_{k-1} - cf_k + f_{k+1} = 0$, we have $c = 0$. This is a contradiction.

The proof for $f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{SA})$ follows from a holographic transformation by $[0, 1]$. □

The following lemma gives a characterization of nonzero signatures in \mathcal{M}. A GEN-EQ is a signature of the form $f = [a, 0, \ldots, 0, b]$, called a generalized equality (with $a = 0$ or $b = 0$ allowed).

Lemma A.16. A GEN-EQ signature f is in \mathcal{M} if and only if $f = \lambda[1, 0, \ldots, 0, \pm 1]$, for some λ.

Suppose f is a symmetric signature that is not a GEN-EQ. Then $f \in \mathcal{M}$ if and only if it satisfies a second order recurrence $f_k - cf_{k+1} + f_{k+2} = 0$ (for $0 \leq k \leq \text{arity}(f) - 2$) and the following conditions hold.

If f has arity $2n$, then
- $f_{n-k} = f_{n+k}$ (for $0 \leq k \leq n$), $f_n \neq 0$, $c = \frac{2f_{n-1}}{f_n}$; or
- $f_{n-k} = -f_{n+k}$ (for $0 \leq k \leq n$), $f_n \neq 0$, $c = \frac{f_{n-2}}{f_{n-1}}$.

If f has arity $2n + 1$, then
- $f_{n-k} = f_{n+k+1}$ (for $0 \leq k \leq n$), $f_n \neq 0$, $c = \frac{f_{n-1} + 1}{f_{n+1}}$; or
- $f_{n-k} = -f_{n+k+1}$ (for $0 \leq k \leq n$), $f_n \neq 0$, $c = \frac{f_{n-1}}{f_{n+1}} - 1$.

Proof. Symmetric signatures in \mathcal{M} have the following forms, $f = [s, t]^{\otimes m} \pm [t, s]^{\otimes m}$, or $f_k = \lambda(\pm 1)^k(m - 2k)$ ($0 \leq k \leq m$). A GEN-EQ $f \in \mathcal{M}$ if and only if it takes the first form with $st = 0$. Suppose f is not a GEN-EQ, then we set $st \neq 0$ in the first form. In particular, f is not identically zero. In both forms, f satisfies a second order recurrence $f_k - cf_{k+1} + f_{k+2} = 0$ ($0 \leq k \leq m - 2$), for some c.

For example, in the first form with a tensor sum, the product of the eigenvalues $s/t \cdot t/s = 1$.

For even arity $m = 2n$, and $f = [s, t]^{\otimes 2n} \pm [t, s]^{\otimes 2n}$, we have the symmetry $f_{n+k} = f_{n-k}$. Thus $f_{n-1} = f_{n+1}$ and $cf_{n} = 2f_{n-1}$. If $f_n = 0$, then f is identically zero, a contradiction. Therefore, we have $c = \frac{2f_{n-1}}{f_n}$.

For $f = [s, t]^{\otimes 2n} - [t, s]^{\otimes 2n}$, or $f_k = \lambda(\pm 1)^k(2n - 2k)$, we have $f_{n+k} = -f_{n-k}$. Thus we have $f_n = 0$ and $cf_{n-1} = f_{n+1} - 2$. If $f_n = 0$, then f is identically zero, a contradiction. Therefore, we have $c = \frac{f_{n+1}}{f_{n-1}}$.

Conversely, the second order recurrence $f_k - cf_{k+1} + f_{k+2} = 0$ gives the expression $f = c_1 [s, t]^{\otimes 2n} + c_2 [t, s]^{\otimes 2n}$, or in the double root case when $c = \pm 2$, we have the form $f_k = \lambda(\pm 1)^k(2n - \mu k)$. If $f_{n+k} = f_{n-k}$, then $f_n = 0$, the double root case must be $f_k = \lambda(\pm 1)^k(2n - 2k)$, and the tensor sum takes the form $f = [s, t]^{\otimes 2n} - [t, s]^{\otimes 2n}$. If $f_{n+k} = f_{n-k}$, then we only have the form $f = [s, t]^{\otimes 2n} + [t, s]^{\otimes 2n}$.

For odd arity, the proof is similar. We omit it here. □

69
Corollary A.17. If \(f \in \hat{\mathcal{M}} \) has even arity \(2n \), then for all \(0 \leq k \leq 2n \),
\[
f_k = f_{2n-k} \quad \text{or} \quad f_k = -f_{2n-k}
\]
and the signs strictly alternate.

Proof. By definition, \(\hat{\mathcal{M}} = [1 \ 0]^{\otimes 2n} \cdot \mathcal{M} \). By Lemma A.16, for some \(\epsilon = \pm 1 \), we have \(i^{n-k} f_{n-k} = \epsilon i^{n+k} f_{n+k} \) for all \(k \). The Corollary follows. \(\square \)

In the proof of Pl-\#CSP\(^2\) dichotomy, we often use the following Corollary. It gives a characterization of a signature of arity 4 in \(\mathcal{M} \). It follows directly from Lemma A.16 and the definition of \(\hat{\mathcal{M}} \).

Corollary A.18. An arity 4 signature \(f \in \hat{\mathcal{M}} \) has the following forms:

- \([u, v, w, v, u]\) and \((u + w)w = 2v^2\); or
- \([u, v, 0, -v, -u]\).

An arity 4 signature \(f \in \hat{\mathcal{M}} \) has the following forms:

- \([u, v, w, -v, u]\) and \((u - w)w = 2v^2\),
- \([u, v, 0, v, -u]\).

The following lemma can be proved by domain pairing. We can use it to derive \#P-hardness of Pl-\#CSP\(^2\) problems by applying the known dichotomy of Pl-\#CSP.

Lemma A.19. Suppose \(f = [f_0, f_1, \ldots, f_{2n}] \) is a symmetric signature of arity \(2n \). Let \(g = [f_0, f_2, \ldots, f_{2n}] \) be a symmetric signature of arity \(n \) consisting of all even indexed entries of \(f \). Then
\[
\text{Pl-\#CSP}(g) \leq \text{Pl-\#CSP}^2(f).
\]

Proof. For any instance of Pl-\#CSP\(^2\)(\(g \)), we replace each edge \(e \) by two edges that connect the same incident nodes of \(e \). For each variable node that is connected to \(k \) edges, we replace its label \(=k \) by \(=2k \). We replace each occurrence of \(g \) by \(f \) as a constraint. Then the new instance is a problem in Pl-\#CSP\(^2\)(\(f \)) and has the same value as the given instance of Pl-\#CSP\(^2\)(\(g \)), because \(g_k = f_{2k} \). Note that the values \(f_{2k+1} \) with an odd index contribute nothing to the partition function in this instance. \(\square \)

The case when \(f = [1, i]^{\otimes 4} + a[1, -i]^{\otimes 4} \) poses some special difficulty, mainly because \(\partial(f) \) is identically 0. The following lemma shows that in this case, with \(a \neq 0 \), we can construct \([1, 0, -1]^{\otimes 2}\) in the LHS in a Pl-Holant problem with \(f \) on the RHS. Its utility is that after a holographic transformation by \([1 \ 0] \) or by \([1 \ 1] = [1 \ 0] [1 \ -1] \) we have \([1, 0, 1]^{\otimes 2}\) on the LHS.
Lemma A.20. Let F be a set of signatures containing $f = [1,i]^{\otimes 4} + a[1,-i]^{\otimes 4}$. Then

$$\text{Pl-Holant}([1,0,-1]^{\otimes 2} \cup \mathcal{Q}_2 \mid F) \equiv \text{Pl-}\#\text{CSP}^2(F).$$

Proof. Suppose $a \neq -1$ and consider the gadget in Figure 24a. We assign f to the circle vertex and $=_4$ to the square vertices. This gives $(1 + a)[1,0,-1]^{\otimes 2}$ on the left as desired.

Otherwise $a = -1$. Consider the gadget in Figure 24b. We assign f to the circle vertices and $=_4$ to the square vertices. This gives $-8[1,0,-1]^{\otimes 2}$ on the left as desired. \blacksquare

Coming up next are a couple of complexity dichotomy theorems that were previously shown. They are also quoted in Section 2 of Part I. Here we restate them for easier reference. The first is a dichotomy theorem about counting complex weighted graph homomorphisms over degree prescribed graphs. It includes Pl-#CSP$^2(f)$, where f is a symmetric binary signature, as a special case. This is also quoted as Theorem 2.24 in Part I.

Theorem A.21 (Theorem 3 in [8]). Let $S \subseteq \mathbb{Z}^+$ contain $k \geq 3$, let $G = \{=_k \mid k \in S\}$, and let $d = \gcd(S)$. Further suppose that $f_0, f_1, f_2 \in \mathbb{C}$. Then $\text{Pl-Holant}([f_0,f_1,f_2] \mid G)$ is $\#P$-hard unless one of the following conditions holds:

1. $f_0f_2 = f_1^2$;
2. $f_0 = f_2 = 0$;
3. $f_1 = 0$;
4. $f_0f_2 = -f_1^2$ and $f_0^d = -f_2^d \neq 0$;
5. $f_0^d = f_2^d \neq 0$.

In any exceptional case, the problem is computable in polynomial time.

Theorem A.21 is the original statement as in [8]. It is explicit and easy to apply. Conceptually, it can be restated as Theorem A.21′, which supports the putative form of the Pl-#CSPd dichotomy.

Theorem A.21′ (Theorem 3 in [8]). Let $S \subseteq \mathbb{Z}^+$ contain $k \geq 3$, let $G = \{=_k \mid k \in S\}$, and let $d = \gcd(S)$. Further suppose that f is a non-degenerate, symmetric, complex-valued binary signature in Boolean variables. Then $\text{Pl-Holant}(f \mid G)$ is $\#P$-hard unless f satisfies one of the following conditions, in which case, the problem is computable in polynomial time:

1. there exists $T \in \mathcal{T}_d$ such that $T^{\otimes 2}f \in \mathcal{A}$;
2. $f \in \mathcal{P}$;
3. there exists $T \in \mathcal{T}_d$ such that $T^{\otimes 2}f \in \mathcal{M}.$

The following theorem is the dichotomy theorem of $\text{Pl-}\#\text{CSP}(F)$, where F is a set of symmetric signatures. This is also quoted as Theorem 2.25 in Part I.

Theorem A.22 (Theorem 19 in [20]). Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then $\text{Pl-}\#\text{CSP}(F)$ is $\#P$-hard unless $F \subseteq \mathcal{A}$, $F \subseteq \mathcal{P}$, or $F \subseteq \mathcal{M}$, in which case the problem is computable in polynomial time.

We repeat the definition of redundant matrices in Section 2.7.

Definition A.23 (Definition 6.1 in [6]). A 4-by-4 matrix is redundant if its middle two rows and middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4 signature.
Definition A.24 (Definition 6.2 in [6]). The signature matrix of a symmetric arity 4 signature \(f = [f_0, f_1, f_2, f_3, f_4] \) is

\[
M_f = \begin{bmatrix}
f_0 & f_1 & f_1 & f_2 \\
f_1 & f_2 & f_2 & f_3 \\
f_1 & f_2 & f_2 & f_3 \\
f_2 & f_3 & f_3 & f_4
\end{bmatrix}.
\]

This definition extends to an asymmetric signature \(g \) as

\[
M_g = \begin{bmatrix}
g^{0000} & g^{0010} & g^{0001} & g^{0011} \\
g^{0100} & g^{0110} & g^{0101} & g^{0111} \\
g^{1000} & g^{1010} & g^{1001} & g^{1011} \\
g^{1100} & g^{1110} & g^{1101} & g^{1111}
\end{bmatrix}.
\]

When we present \(g \) as an \(\mathcal{F} \)-gate, we order the four external edges ABCD counterclockwise. In \(M_g \), the row index bits are ordered AB and the column index bits are ordered DC, in reverse order. This is for convenience so that the signature matrix of the linking of two arity 4 \(\mathcal{F} \)-gates is the matrix product of the signature matrices of the two \(\mathcal{F} \)-gates.

If \(M_g \) is redundant, we also define the compressed signature matrix of \(g \) as

\[
\widetilde{M}_g = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} M_g \begin{bmatrix}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

The definition of compressed signature matrix is a slight change from [20] where \(\tilde{M}_g \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) is called by that name. It does not affect the following lemma. We repeat the following lemma from [20], which is very convenient to apply.

Lemma A.25 (Corollary 3.8 in [20]). Let \(f \) be an arity 4 signature with complex weights. If \(M_f \) is redundant and \(\tilde{M}_f \) is nonsingular, then \(\text{Pl-Holant}(f) \) is \(\#P \)-hard.

B Reduction from Pl-\#CSP to Pl-\#CSP²

Definition B.1. For \(k \geq 1, \ell \geq 0 \) and any \(\omega \), we define \(E_k^\ell(\omega) = [1, 0, \ldots, 0, \omega^\ell] \) to be a signature of arity \(k \), and define \(E(\omega) = \{E_k^\ell(\omega) \mid k \equiv \ell \pmod{2}\} \). We also write \(E_k^\ell \) for \(E_k^\ell(\omega) \) when \(\omega \) is clear from the context.

The following lemma shows that if we have a unary \([1, \omega] \in \mathcal{F} \) with \(\omega \neq 0 \), then either \(\mathcal{F} \) is contained in one single tractable set or \(\text{Pl-\#CSP}^2(\mathcal{F}) \) is \(\#P \)-hard. We will use this lemma for the case that \(\mathcal{F} \) contains at least one nonzero signature of odd arity. The proof of this lemma also demonstrates in a simple setting the idea that will be used in the proof of Lemma B.3.

Lemma B.2. Let \(\omega \neq 0 \) and let \(\mathcal{F} \) be a set of symmetric signatures containing \([1, \omega] \in \mathcal{F} \). If \(\mathcal{F} \notin \mathcal{P}, \mathcal{F} \notin \mathcal{A}, \mathcal{F} \notin \mathcal{A}^\perp, \mathcal{F} \notin \mathcal{M}, \text{ and } \mathcal{F} \notin \mathcal{M}^\perp \), then \(\text{Pl-\#CSP}^2(\mathcal{F}) \) is \(\#P \)-hard.
Proof. Firstly, we have \(E_k^t(\omega) = \partial_{[1,\omega]}^{\ell}(=2k) \) of arity \(k \) on the LHS in Pl-#CSP\(^2(\mathcal{F}) \), for all \(k \geq 1 \). By a holographic transformation using \(T^{-1} \), where \(T = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix} \), we have \((E_k^t(\omega))^{-1} = (=k) \) on the LHS, and

\[
\text{Pl-#CSP}(T\mathcal{F}) \leq_T \text{Pl-Holant}(\mathcal{E}\cup \mathcal{Q} T^{-1} | T\mathcal{F}) \leq_T \text{Pl-#CSP}^2(\mathcal{F}),
\]

where \(\mathcal{E}\cup \mathcal{Q} \) on LHS of the Holant instance comes from \(E_k^t(\omega) \) in the second step of the reduction. If \(T\mathcal{F} \not\subseteq \mathcal{P} \), \(T\mathcal{F} \not\subseteq \mathcal{A} \) and \(T\mathcal{F} \not\subseteq \mathcal{M} \), then Pl-#CSP\((T\mathcal{F}) \) is #P-hard by Theorem A.22. Thus Pl-#CSP\(^2(\mathcal{F}) \) is #P-hard.

Otherwise, \(T\mathcal{F} \subseteq \mathcal{P}, \mathcal{F} \subseteq \mathcal{A} \) or \(T\mathcal{F} \subseteq \mathcal{M} \). If \(T\mathcal{F} \subseteq \mathcal{P} \), then \(\mathcal{F} \subseteq \mathcal{P} \). In the following, assume that \(T\mathcal{F} \not\subseteq \mathcal{P} \), then \(T\mathcal{F} \subseteq \mathcal{A} \) or \(T\mathcal{F} \subseteq \mathcal{M} \).

Note that \([1,\omega^2] \in T\mathcal{F} \). If \(\omega^k = 1 \), then \([1,\omega^2] \not\subseteq \mathcal{A} \cup \mathcal{M} \). This is a contradiction.

If \(\omega^4 = -1 \), then \([1,\omega^2] \not\subseteq \mathcal{M} \). Thus \(T\mathcal{F} \subseteq \mathcal{A} \). It follows that \(\mathcal{F} \subseteq \mathcal{A} \).

For \(\omega^4 = 1 \), if \(T\mathcal{F} \subseteq \mathcal{A} \), then \(\mathcal{F} \subseteq \mathcal{A} \). If \(T\mathcal{F} \subseteq \mathcal{M} \), then either \(\mathcal{F} \subseteq \mathcal{M} \) if \(\omega^2 = 1 \), or \(\mathcal{F} \subseteq \mathcal{M} \) if \(\omega^2 = -1 \).

Lemma B.2 allows us to transfer the complexity question of Pl-#CSP\(^2(\mathcal{F}) \) to that of Pl-#CSP, to which we can apply the known dichotomy (Theorem A.22). However it requires a unary signature. We observe that if all signatures in \(\mathcal{F} \) have even arities, then there is no way to construct a unary in Pl-#CSP\(^2(\mathcal{F}) \). In this case, we use the next lemma, which is similar to Lemma B.2. It shows that if we have \([1,\omega]^{\geq 2} \) with \(\omega \neq 0 \) in \(\mathcal{F} \), then we can still transfer the question of Pl-#CSP\(^2(\mathcal{F}) \) to that of Pl-#CSP. It is proved using a global simulation of Pl-#CSP by Pl-#CSP\(^2(\mathcal{F}) \).

Lemma B.3. Let \(\mathcal{F} \) be a set of signatures of even arities. Suppose \([1,\omega]^{\geq 2} \in \mathcal{F} \) for some \(\omega \neq 0 \). If \(\mathcal{F} \not\subseteq \mathcal{P} \), \(\mathcal{F} \not\subseteq \mathcal{A} \), \(\mathcal{F} \not\subseteq \mathcal{M} \), \(\mathcal{F} \not\subseteq \mathcal{M}^1 \) and \(\mathcal{F} \not\subseteq \mathcal{M} \), then Pl-#CSP\(^2(\mathcal{F}) \) is #P-hard.

Proof. We first prove that Pl-Holant\((E(\omega) | \mathcal{F}) \) is #P-hard.

For \(k \geq 1 \) and \(\ell \geq 0 \), we have all of \(E_k^t(\omega) = \partial_{[1,\omega]}^{\ell}(=2k+2\ell) \) on LHS in Pl-#CSP\(^2(\mathcal{F}) \). Given any instance \(\Omega \) of Pl-Holant\((E(\omega) | \mathcal{F}) \), since all signatures in \(\mathcal{F} \) have even arities, the number of \(E_k^t \) of odd arity must be even. In each connected component of \(\Omega \), we can connect all \(E_k^t \) of odd arity in pairs, by some copies of \([1,\omega]^{\geq 2} \) in a planar way. Note that when one input of \(E_k^t \) is connected to a unary \([1,\omega] \), it becomes \(E_{k+1}^t \). Hence a pair \(E_{2u-1}^t \) and \(E_{2v+1}^t \) can be functionally replaced by a pair \(E_{2u}^t \) and \(E_{2v}^t \) that are connected by \([1,\omega]^{\geq 2} \).

Formally, we may assume the plane graph \(\Omega \) is connected, since the Holant value on \(\Omega \) is the product over its connected components, and the number of \(E_k^t \in E(\omega) \) of odd arity is even in each connected component of \(\Omega \). We will connect pairs of \(E_k^t \) of odd arity by copies of \([1,\omega]^{\geq 2} \) within each connected component.

Let \(T \) be a spanning tree of the dual graph of \(\Omega \), and pick any node as the root of \(T \). For definiteness we pick the node of \(T \) that corresponds to the external face of \(\Omega \) as root. If on a leaf node of \(T \), i.e., a face of \(\Omega \), there are an even number of \(E_k^t \) of odd arity, we can connect them in pairs within the face by copies of \([1,\omega]^{\geq 2} \), maintaining planarity. If there are an odd number of them, we can pick any one, and still connect the others in pairs within the face by copies of \([1,\omega]^{\geq 2} \), maintaining planarity. On the edge connecting the leaf to its parent in the tree \(T \), the corresponding edge in \(\Omega \) has an \(E_s^t \) in one of the two incident nodes of \(\Omega \). If \(s \) is odd, we pick this \(E_s^t \). If \(s \) is even, we pick the first \(E_s^t \) of odd arity in clockwise order in the face of \(\Omega \), which is the leaf node in \(T \), and connect it to that \(E_s^t \) by one copy of \([1,\omega]^{\geq 2} \). This effectively transforms that \(E_s^t \) to \(E_{s-1}^t \) of odd arity. We then delete the leaf node from \(T \).
Under a holographic transformation by Z.

By applying Lemma B.4, the proof uses a global simulation that is similar to Lemma B.2. Therefore, we have

$$\text{Pl-Holant}(E_1, E_2, \ldots, E_k \mid \mathcal{F}) \leq_T \text{Pl-Holant}(E(\omega) \mid \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2(\mathcal{F}).$$

Then by a holographic transformation using $T = \left[\begin{array}{cc} 1 & 0 \\ 0 & \omega^{-1} \end{array} \right]$, we have

$$\text{Pl-}\#\text{CSP}(T^{-1}\mathcal{F}) \equiv \text{Pl-Holant}(E_1, E_2, \ldots, E_k \mid \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2(\mathcal{F}).$$

The rest of the proof is the same as the proof of Lemma B.2. We omit it here.

The next lemma shows that when we obtain $[1, 0, 1]^{\otimes 2}$, we can reduce a Pl-\#CSP problem to a Pl-\#CSP^4 problem, when all signatures in \mathcal{F} have arity divisible by 4.

Lemma B.4. Pl-\#CSP^2(\mathcal{F}) \leq_T Pl-\#CSP^4($\mathcal{F}, [1, 0, 1]^{\otimes 2}$), if all signatures in \mathcal{F} have arity $\equiv 0 \pmod{4}$.

Proof. Let Ω be an instance of Pl-\#CSP^2(\mathcal{F}). Since all signatures in \mathcal{F} have arity $\equiv 0 \pmod{4}$, the number of EQUALITIES of arity $\equiv 2 \pmod{4}$ must be even. We can connect in pairs all EQUALITIES of arity $\equiv 2 \pmod{4}$ by some copies of $[1, 0, 1]^{\otimes 2}$ maintaining planarity similarly as in the proof of Lemma B.3. When two inputs of $=_{m+2}$ are connected to $[1, 0, 1]$ it becomes $\partial(=_{m+2}) = (=_{m})$. Hence a pair $=_{4k-2}$ and $=_{4\ell-2}$ can be functionally replaced by a pair $=_{4k}$ and $=_{4\ell}$ that are connected by $[1, 0, 1]^{\otimes 2}$. The rest of the proof is the same as in Lemma B.3 and we omit it here.

The next corollary is used in the proof of the No-Mixing theorems. We present it here since the proof uses a global simulation that is similar to Lemma B.4.

Corollary B.5. Suppose $f = [1, i]^{\otimes 4} + i^r[1, -i]^{\otimes 4}$ (0 $\leq r \leq 3$) and $g = [g_0, \ldots, g_2n]$ with $g_k = (\pm i)^k(2n - 2k)$. Furthermore, let $\hat{g} = (Z^{-1})^{\otimes 2n}g$, where $Z = \left[\begin{array}{c} \frac{1}{i} \\ \frac{1}{i} \end{array} \right]$. Then

$$\text{Pl-}\#\text{CSP}^2(\hat{g}) \leq_T \text{Pl-}\#\text{CSP}^2(f, g).$$

Proof. Clearly $\hat{g} = [0, 1, 0, \ldots, 0]$ or $\hat{g} = [0, \ldots, 0, 1, 0]$, the perfect matching signature or its reversal. By applying Lemma A.20 to $f = [1, i]^{\otimes 4} + i^r[1, -i]^{\otimes 4}$, we get $[1, 0, -1]^{\otimes 2}$ on the left:

$$\text{Pl-Holant}([1, 0, -1]^{\otimes 2} \cup \mathcal{Q}_2 \mid f, g) \leq_T \text{Pl-}\#\text{CSP}^2(f, g).$$

Under a holographic transformation by Z, we have

$$\text{Pl-Holant}([1, 0, 1]^{\otimes 2} \mid \hat{f}, \hat{g}) \leq_T \text{Pl-Holant}([1, 0, -1]^{\otimes 2} \cup \mathcal{Q}_2 \mid f, g),$$

Figure 25: Gadget used to obtain $=_{4}$. The circle vertices are assigned \hat{f} and the dashed subgadgets are assigned $[1, 0, 1]^{\otimes 2}$ aligned horizontally so that it is equivalent to assigning $[1, 0, 1]$ to the square vertices.
where \(\hat{f} = (Z^{-1})^{\otimes 4} f = [1, 0, 0, 0, i^r] \). Note that \([1, 0, -1]Z^{\otimes 2} = 2[1, 0, 1]\), as \(ZT \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] Z = 2 \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] \).

Consider the gadget in Figure 25. We assign \(\hat{f} \) to the circle vertices and \([1, 0, 1]^{\otimes 2}\) the dashed subgadgets rotated appropriately so that it is equivalent to assigning \([1, 0, 1]\) to the square vertices. The signature of this gadget is \(=_4 \), for any \(0 \leq r \leq 3 \). Thus

\[
\text{Pl-Holant}\left([1, 0, 1]^{\otimes 2} \mid =_4, \hat{g}\right) \leq_T \text{Pl-Holant}\left([1, 0, 1]^{\otimes 2} \mid \hat{f}, \hat{g}\right).
\]

In \(\text{Pl-Holant}\left([1, 0, 1]^{\otimes 2} \mid =_4, \hat{g}\right) \), by \([1, 0, 1]^{\otimes 2}\) and \(=_4 \), we can get all of \(=_{4k} \) for \(k \geq 1 \) on RHS and then move them to LHS by \([1, 0, 1]^{\otimes 2}\). Moreover, we have \([1, 0, 1]^{\otimes 2}\) on RHS by connecting two copies of \(=_4 \) by \([1, 0, 1]^{\otimes 2}\). Thus

\[
\text{Pl-Holant}\left(\mathcal{E} \mathcal{Q}_4 \mid [1, 0, 1]^{\otimes 2}, \hat{g}\right) \leq_T \text{Pl-Holant}\left([1, 0, 1]^{\otimes 2} \mid =_4, \hat{g}\right).
\]

Now we simulate \(\text{Pl-\#CSP}^2(\hat{g}) \) by \(\text{Pl-Holant}(\mathcal{E} \mathcal{Q}_4 \mid [1, 0, 1]^{\otimes 2}, \hat{g}) \). If \(\hat{g} \) has arity \(2n \equiv 0 \pmod{4} \), then we are done by Lemma B.4.

If \(\hat{g} \) has arity \(2n \equiv 2 \pmod{4} \), then in an instance \(\Omega \) of \(\text{Pl-\#CSP}^2(\hat{g}) \), the number of occurrences of \(\text{EQUALITIES} \) of arity \(\equiv 2 \pmod{4} \) has the same parity as the number of occurrences of \(\hat{g} \), which could be odd. However, we observe that all entries of signatures in \(\text{Pl-\#CSP}^2(\hat{g}) \) are nonnegative integers. Thus the value of \(\Omega \) is a nonnegative integer. Let \(\Omega \cup \Omega \) be the disjoint union of two copies of \(\Omega \) as a plane graph with a common external face, then the value of \(\Omega \cup \Omega \) is the square of the value of \(\Omega \). Thus computing the values on \(\Omega \cup \Omega \) and \(\Omega \) are equivalent. In \(\Omega \cup \Omega \), the number of \(\text{EQUALITIES} \) of arity \(\equiv 2 \pmod{4} \) is even. Now we can use the same global simulation as in Lemma B.4, except that in the last step we may use one extra copy of \([1, 0, 1]^{\otimes 2}\) to connect two \(\text{EQUALITIES} \) of arity \(\equiv 2 \pmod{4} \) at the two root nodes of the two spanning trees of the dual graphs of \(\Omega \), if the number of occurrences of \(\text{EQUALITIES} \) of arity \(\equiv 2 \pmod{4} \) in \(\Omega \) is odd. Thus we have

\[
\text{Pl-\#CSP}^2(\hat{g}) \leq \text{Pl-Holant}(\mathcal{E} \mathcal{Q}_4 \mid [1, 0, 1]^{\otimes 2}, \hat{g}).
\]

\[\Box\]

C Dichotomy Theorem when \(\mathcal{F} \) Contains an Odd Arity Signature

In this section, we give a dichotomy theorem for \(\text{Pl-\#CSP}^2(\mathcal{F}) \), where \(\mathcal{F} \) includes at least one nonzero signature \(f \) that has odd arity.

The next result is similar to Lemma 6.2 in [20].

Lemma C.1. Let \(x, y \in \mathbb{C} \) and \(f = [x, 0, y, 0] \). If \(y \neq 0 \) and \(x^4 \neq y^4 \), then \(\text{Pl-\#CSP}^2(f) \) is \#P-hard.

Proof. We reduce from \(\text{Pl-\#CSP}([x^2, y^2, y^2]) \) to \(\text{Pl-\#CSP}^2(f) \). Since \(\text{Pl-\#CSP}([x^2, y^2, y^2]) \) is \#P-hard when \(y \neq 0 \) and \(x^4 \neq y^4 \) by Theorem A.21, this shows that \(\text{Pl-\#CSP}^2(f) \) is also \#P-hard.

An instance of \(\text{Pl-\#CSP}([x^2, y^2, y^2]) \) is a signature grid \(\Omega \) with underlying graph \(G = (U, V, E) \), where \(G \) is bipartite and planar, and every vertex in \(U \) has degree 2. We replace every vertex in \(V \) of degree \(k \) (which is assigned \(=_k \in \mathcal{E} \mathcal{Q} \)) with a vertex of degree \(2k \), and bundle two adjacent variables to form \(k \) bundles of 2 edges each. The \(k \) bundles correspond to the \(k \) incident edges of the original vertex with degree \(k \).

We assign \(=_{2k} \) to the new vertices of degree \(2k \).

If the inputs to these equality signatures are restricted to \(\{(0, 0), (1, 1)\} \) on each bundle, then these equality signatures take value 1 on \(((0, 0), \ldots, (0, 0)) \) and \(((1, 1), \ldots, (1, 1)) \) and take value 0 elsewhere. Thus, if we restrict the domain to \(\{(0, 0), (1, 1)\} \), it is the equality signature \(=_k \).
Figure 26: Gadget designed for the paired domain. Both vertices are assigned \([x, 0, y, 0]\).

To simulate \([x^2, y^2, y^2]\), we connect two copies of \(f = [x, 0, y, 0]\) by a single edge as shown in Figure 26 to form a gadget with signature

\[
h(a_1, a_2, b_1, b_2) = \sum_{c=0,1} f(a_1, b_1, c) f(a_2, b_2, c).
\]

We replace every (degree 2) vertex in \(U\) (which is assigned \([x^2, y^2, y^2]\)) by a degree 4 vertex assigned \(h\), where the variables of \(h\) are bundled as \((a_1, a_2)\) and \((b_1, b_2)\).

The vertices in this new graph \(G'\) are connected as in the original graph \(G\), except that every original edge is replaced by two edges that connect to the same side of the gadget in Figure 26. Notice that \(h\) is only connected by \((a_1, a_2)\) and \((b_1, b_2)\) to some bundle of two incident edges of an equality signature. Since this equality signature enforces that the value on each bundle is either \((0, 0)\) or \((1, 1)\), we only need to consider the restriction of \(h\) to the domain \(((0, 0), (1, 1))\). On this domain, \(h = [x^2, y^2, y^2]\) is a symmetric signature of arity 2. Therefore, the signature grid \(\Omega'\) with underlying graph \(G'\) has the same Holant value as the original signature grid \(\Omega\).

The following lemma is a dichotomy for Pl-\#CSP\(^2\)(\(f\)) where \(f\) is a symmetric ternary signature.

Lemma C.2. Let \(f\) be a symmetric signature of arity 3, then Pl-\#CSP\(^2\)(\(f\)) is \#P-hard unless \(f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}\).

Proof. Let \(f = [f_0, f_1, f_2, f_3]\). If \(f\) satisfies parity constraints, then \(f = [f_0, 0, f_2, 0]\) or \(f = [0, f_1, 0, f_3]\).

For \(f = [f_0, 0, f_2, 0]\), if \(f_2 = 0\), then \(f \in \mathcal{P}\). If \(f_0^2 = f_2^2\), then \(f \in \mathcal{A}\). If \(f_0^2 = -f_2^2\), then \(f \in \mathcal{M}\). Otherwise, we have \(f_2 \neq 0\) and \(f_0^4 \neq f_2\). Thus Pl-\#CSP\(^2\)(\(f\)) is \#P-hard by Lemma C.1. For \(f = [0, f_1, 0, f_3]\), the proof follows from a holographic transformation using \([1 0 1]\).

In the following, assume that \(f\) does not satisfy parity constraints. Firstly, we have \(\partial(f) = [f_0 + f_2, f_1 + f_3]\).

- For \((f_0 + f_2)(f_1 + f_3) \neq 0\), we are done by Lemma B.2.
- For \(f_0 + f_2 = f_1 + f_3 = 0\), \(f = [f_0, f_1, -f_0, -f_1]\). Since \(f\) does not satisfy parity constraints, we have \(f_0 f_1 \neq 0\). If \(f_0^2 = f_1^2\), then \(f \in \mathcal{A}\). Otherwise, we have \(\partial_4(f) = [f_0, -f_1]\) on LHS and \(\partial([f_0, -f_1]) = [f_0^2 - f_1^2, 2f_0 f_1, f_1^2 - f_0^2]\) on RHS. Moreover, we have \(\partial([f_0^2 - f_1^2, 2f_0 f_1, f_1^2 - f_0^2]) = (f_0^2 - f_1^2)[1, 0, -1]\) on LHS, where \(f_0^2 - f_1^2 \neq 0\). So we have \(\partial([1, 0, -1]) = 2[f_0, f_1]\) on RHS. Then we are done by Lemma B.2 and \(f_0 f_1 \neq 0\).
- For \(f_0 + f_2 \neq 0\), \(f_1 + f_3 = 0\), we have \(f_1 = -f_3 \neq 0\) since \(f\) does not satisfy parity constraints. Note that we have \(\partial(f) = (f_0 + f_2)[1, 0]\) in RHS, so we have \(\partial_2^2(f) = [f_0, f_1]\) in RHS. If \(f_0 \neq 0\), then we are done by Lemma B.2. If \(f_0 = 0\), then \(f_2 \neq 0\) since \(f_0 + f_2 \neq 0\). Note that we have \(f_1[0, 1]\) and \(f_2[1, 0]\) now. Thus we have \(\partial([0, 1]) = [f_1, f_2]\). Then we are done by Lemma B.2.
- For \(f_0 + f_2 = 0\), \(f_1 + f_3 \neq 0\), the proof follows from a holographic transformation using \([1 1 0]\).
The next lemma shows that if we have an odd arity signature in \(\tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\), then we can prove Theorem A.2 directly. The key point is that we can use such a signature to get a unary \([1, \omega]\) with \(\omega \neq 0\).

Lemma C.3. Let \(F\) be a symmetric signature set and \(f \in F\) has odd arity.

- If \(f \in \tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\), then either \(F \subseteq \tilde{A}\) or \(\#\text{P}-\text{CSP}^2(F)\) is \#P-hard.
- If \(f \in \tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\), then either \(F \subseteq \tilde{A}\) or \(\#\text{P}-\text{CSP}^2(F)\) is \#P-hard.

Proof. We will use our calculus with the derivative operator \(\partial\). Firstly, we prove the lemma for \(f \in \tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\). We already have \(F \not\subseteq \mathcal{P}, F \not\subseteq \tilde{A}, F \not\subseteq \tilde{A}^1\) by the presence of \(f\), and \(F \not\subseteq \tilde{A}\) by Corollary A.13. If we can construct a unary \([a, b]\) with \(ab \neq 0\), then we can finish the proof by Lemma B.2.

As \(f \not\in \mathcal{P}\) and has odd arity, its arity \(n \geq 3\). By Lemma A.14, the signature \(f \in \tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\) can take one of the following two forms (see the Calculus after Definition A.4):

- For \(f = [s, t]^{\otimes n} \pm [t, s]^{\otimes n}\), where \(n \geq 3\) is odd, we have \(st \neq 0\) and \(s^2 \neq t^2\). Thus we have \(\partial^{\frac{n-1}{2}}(f) = (s^2 + t^2)^{\frac{n-1}{2}}[s, t] \pm [t, s] = (s^2 + t^2)^{\frac{n-1}{2}}(s \pm t)[1, \pm 1]\), a nonzero multiple of \([1, \pm 1]\). So we are done by Lemma B.2.

- For \(f_k = \lambda(\pm 1)^k(n - 2k)\), we have \(\partial^{\frac{n-1}{2}}(f) = 2^{\frac{n-1}{2}}\lambda[1, \mp 1]\) and we are done by Lemma B.2. Similarly, for \(f \in \tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\), we just need to construct a unary \([a, b]\) with \(ab \neq 0\).

- For \(f = [s, t]^{\otimes n} \pm [t, s]^{\otimes n}\), we have \(\partial^{\frac{n-1}{2}}(f) = (s^2 - t^2)^{\frac{n-1}{2}}[s, t] \pm [t, s] = (s^2 - t^2)^{\frac{n-1}{2}}(s \pm t)[1, \pm i]\). By Lemma A.14, we have \(st \neq 0\) and \(s^4 \neq t^4\), and so this is a nonzero multiple of \([1, \pm i]\). So we are done by Lemma B.2.

- For \(f_k = \lambda(\pm i)^k(n - 2k)\), if \(n \equiv 1\) (mod 4), we have \(\partial^{\frac{n-1}{4}}(f) = 2^{\frac{n-1}{4}}\lambda[1, \mp i]\) and we are done by Lemma B.2. If \(n \equiv 3\) (mod 4), we have \(\partial[\partial^{\frac{n-1}{4}}(f)] = 2^{\frac{n+3}{4}}\lambda[1, \pm i]\) and we are done by Lemma B.2.

We remark that the use of \(\partial^{\frac{n}{4}}\) instead of just \(\partial\) in this proof is necessary, because \(\partial^2(f) = 0\) when \(f_k = \lambda(\pm i)^k(n - 2k)\), and \(n \geq 5\). One may also suppose that the case for \(\tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\) can be reduced to the case for \(\tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\) by the transformation \(T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\). While \(T\) transforms \(\tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\) to \(\tilde{A}\), and keeps \(\mathcal{P}\) and \(\tilde{A}\) invariant, this transformation does not keep \(\mathcal{E}_2\) invariant. In fact \([1, 0, 1]T\otimes 2 = [1, 0, -1] \not\in \mathcal{E}_2\). Therefore we need to handle the proof for \(\tilde{A} \setminus (\mathcal{P} \cup \tilde{A})\) separately.

By definitions of \(\mathcal{P}\) and \(\tilde{A}\), we have the following simple lemma.

Lemma C.4. If \(f \in \mathcal{P} \cup \tilde{A}\), then \(f\) satisfies parity constraints iff \(f\) belongs to the following set, up to a scalar factor

\[
\{ [1, 0]^{\otimes n}, [0, 1]^{\otimes n}, [1, 0]^{\otimes 2n} + t[0, 1]^{\otimes 2n}, [1, \rho]^{\otimes n} \pm [1, -\rho]^{\otimes n}, [1, \alpha]^{\otimes n} \pm [1, -\alpha]^{\otimes n} \mid t \neq 0, n \geq 1 \}.
\]

The next lemma shows that if we have a nonzero odd arity signature \(f \in \mathcal{P} \cup \tilde{A}\) that does not satisfy parity constraints, then we can obtain a unary \([a, b]\) with \(ab \neq 0\). Note that if we have a unary \([a, b]\) with \(ab \neq 0\), then we can apply Lemma B.2.

Lemma C.5. If \(f \in \mathcal{P} \cup \tilde{A}\) has odd arity and does not satisfy parity constraints, then we can construct a unary \([a, b]\) with \(ab \neq 0\) in \#P-CSP^2(f).
Proof. Let \(f \) have arity \(2n + 1 \), \(n \geq 0 \). Not satisfying parity constraints implies that \(f \) is not identically 0. Up to a nonzero factor, \(f \) has the following forms.

- If \(f \in \mathcal{P} \), then \(f = [a, b] \odot 2^{n+1} \) with \(ab \neq 0 \) or \(f = [1, 0, \ldots, 0, x] \) with \(x \neq 0 \).
- If \(f = [1, 0, \ldots, 0, x] \) with \(x \neq 0 \), then \(\partial^n(f) = [1, x] \).
- If \(f = [a, b] \odot 2^{n+1} \), \(a^2 + b^2 \neq 0 \), then \(\partial^n(f) = (a^2 + b^2)^n[a, b] \).
- For \(f = [1, \pm i] \odot 2^{n+1} \), if \(n \) is even, then \(\partial^n f = 2^n [1, \pm i] \). If \(n \) is odd, then we have \(\partial^n f = 2^{n+1} [1, \mp i] \).

For \(f \in \mathcal{A} \setminus \mathcal{P} \), we have \(f = [1, \rho] \odot 2^{n+1} \pm i[1, -\rho] \odot 2^{n+1} \) or \(f = [1, \alpha] \odot 2^{n+1} \pm i[1, -\alpha] \odot 2^{n+1} \).

- If \(f = [1, \rho] \odot 2^{n+1} \pm i[1, -\rho] \odot 2^{n+1} \), then \(\partial^n(f) = (1 + \rho^2)^n [1 \pm i, (1 \mp i) \rho] \).
- If \(f = [1, \rho] \odot 2^{n+1} \pm i[1, -\rho] \odot 2^{n+1} \) with \(\rho^2 = -1 \) and if \(n \) is even, then we have \(\partial^n f = 2^n [1 \pm i, (1 \mp i) \rho] \).

If a signature \(f \) satisfies parity constraints, then there is no way to construct \([a, b] \) with \(ab \neq 0 \) from \(f \). In fact in Pl-\#CSP\(^2\) using \(f \), the signature of any \{\(f \)\}-gate will also satisfy the parity constraints, and in particular for unary signature, it can only be a multiple of \([1, 0] \) or \([0, 1]\). The next lemma shows that if we have a nonzero odd arity signature \(f \in \mathcal{P} \cup \mathcal{A} \) that satisfies parity constraints, then we can obtain \([1, 0]\) or \([0, 1]\). We also remark that in Pl-\#CSP\(^2\) using signatures of even arity one can only produce signatures of even arity, and thus no unary signatures.

Lemma C.6. If a nonzero \(f \in \mathcal{P} \cup \mathcal{A} \) has odd arity and satisfies parity constraints, then we can construct a unary \([1, 0]\) or \([0, 1]\) in Pl-\#CSP\(^2\)(\(f \)).

Proof. By Lemma C.4, an nonzero \(f \) of odd arity belongs to the following set, up to a nonzero factor,

\[
\{ [1, 0] \odot 2^{n+1}, [0, 1] \odot 2^{n+1}, [1, \rho] \odot 2^{n+1} \pm [1, -\rho] \odot 2^{n+1}, [1, \alpha] \odot 2^{n+1} \pm [1, -\alpha] \odot 2^{n+1} \mid n \geq 0 \}\.
\]

For \(f = [1, 0] \odot 2^{n+1} \) or \(f = [0, 1] \odot 2^{n+1} \) we have \(\partial^n(f) = [1, 0] \) or \([0, 1]\) respectively.

For \(f = [1, \alpha] \odot 2^{n+1} \pm [1, -\alpha] \odot 2^{n+1} \), \(\partial^n(f) = (1 + \alpha^2)^n [1 \pm 1, (1 \mp 1) \alpha] \), a nonzero multiple of \([1, 0]\) or \([0, 1]\).

For \(f = [1, \rho] \odot 2^{n+1} \pm [1, -\rho] \odot 2^{n+1} \) with \(\rho^2 = 1 \), \(\partial^n(f) = (1 + \rho^2)^n [1 \pm 1, (1 \mp 1) \rho] \), a nonzero multiple of \([1, 0]\) or \([0, 1]\).

For \(f = [1, \rho] \odot 2^{n+1} \pm [1, -\rho] \odot 2^{n+1} \) with \(\rho^2 = -1 \), if \(2n + 1 \equiv 1 \) (mod 4), then \(\partial^n f = 2^n [1 \pm 1, (1 \mp 1) \rho] \), a nonzero multiple of \([1, 0]\) or \([0, 1]\). If \(2n + 1 \equiv 3 \) (mod 4), then \(\pm \rho^{2n+1} = \mp \rho \).

If we write \(f = [f_0, f_1, \ldots, f_{2n+1}] \), then exactly one of \(f_0 \) and \(f_{2n+1} \) is nonzero. We have the unary \(u = \partial_f(= 2n+2) = [f_0, f_{2n+1}] \) in LHS, a nonzero multiple of \([1, 0]\) or \([0, 1]\). Then we get \(\partial^n u \) in RHS, also a nonzero multiple of \([1, 0]\) or \([0, 1]\).

The next lemma shows that if we already have \([1, 0]\) or \([0, 1]\) and also a signature \(f \) of any arity that does not satisfy the parity constraints, then we can construct a unary \([a, b]\) with \(ab \neq 0 \).
Lemma C.7. If \(f \) does not satisfy the parity constraints, then we can construct a unary \([a, b]\) with \(ab \neq 0 \) in \(\text{Pl-}\#\text{CSP}^2([1, 0], f) \) or \(\text{Pl-}\#\text{CSP}^2([0, 1], f) \).

Proof. We prove the lemma for \(\text{Pl-}\#\text{CSP}^2([1, 0], f) \). The proof for the other case follows from a holographic transformation by \([\frac{1}{1}, \frac{1}{0}]\).

Let \(f = [f_0, f_1, \ldots, f_n] \). Since \(f \) does not satisfy the parity constraints, there exist \(0 \leq i < j \leq n \) such that \([f_i, f_{i+1}, \ldots, f_{j-1}, f_j] = [f_i, 0, \ldots, 0, f_j] \), where \(f_if_j \neq 0 \) and \(j - i \) is odd. We can get both \(f' = \partial^{n-i}_{[1, 0]} = [f_0, f_1, \ldots, f_i] \) and \(f'' = \partial^{n-j}_{[1, 0]} = [f_0, f_1, \ldots, f_j] \) on RHS. Either \(i \) or \(j \) is odd. And so we have either \(=_{i+1} \) or \(=_{j+1} \), and we can get either \(\partial f'_{=} = [f_0, f_i] \) or \(\partial f''_{=} = [f_0, f_j] \) on LHS. Without loss of generality, assume that we have \([f_0, f_i] \) on LHS.

If \(f_0 = 0 \), then we have \([0, 1] \) on LHS and \(f'' = \partial^{j-i+1}_{[0, 1]}(f''') = \partial^{j-i+1}_{[0, 1]}([f_i, 0, \ldots, 0, f_j]) = [f_i, f_j] \) on RHS, and we are done.

If \(f_0 \neq 0 \), let \(m = \min \{k \mid f_k \neq 0\} \). (As \(j > 0 \) and \(f_j \neq 0 \), this \(m \) is well-defined.) Then \(f^{(4)} = \partial^{n-m}_{[1, 0]}(f) = [f_0, 0, \ldots, 0, f_m] \). Moreover, we have \(\partial^{m-1}_{[f_0, f_i]}(f^{(4)}) = [f_0^m, f_i^{m-1} f_m] \).

The next lemma assumes the presence of a non-degenerate binary GEN-EQ. The conclusion is about a transformed signature but still in the Pl-\#CSP^2 setting.

Lemma C.8. For any \(x \neq 0 \) and any signature \(f \) of arity \(2n \), let \(\hat{f} = \begin{bmatrix} 1 & 0 \\ 0 & x^{\frac{1}{2}} \end{bmatrix}^{\otimes 2n} f \). Then \(\text{Pl-}\#\text{CSP}^2(\hat{f}) \leq \text{Pl-}\#\text{CSP}^2(f, [1, 0, x]) \).

Proof. After a holographic transformation by \([\frac{1}{1}, \frac{1}{x^{\frac{1}{2}}}] \), we have

\[
\text{Pl-}\#\text{CSP}^2([1, 0, x], f) \equiv_{\text{T}} \text{Pl-Holant}([1, 0, x], [1, 0, 0, 0, x^2], \ldots \mid [1, 0, 1], \hat{f}).
\]

If \(x \) is a root of unity, then there exists a \(t \geq 1 \) such that \(x^t = 1 \). Thus we have \(=_{2kt} \) for all \(k \geq 1 \) on LHS. Moreover, we have \(=_{2k} \) by \(\partial^{k(t-1)}(=_{2kt}) \) on LHS for all \(k \geq 1 \). Thus we are done.

If \(x \) is not a root of unity, then we have \(\partial^{d-2}(E_{2d}(x)) = [1, 0, 0, 0, x^d] \) of arity \(4 \) on LHS for all \(d \geq 2 \), where \(E_{2d}(x) = [1, 0, \ldots, 0, x^d] \) has arity \(2d \). Thus we can get \([1, 0, 0, 0] \) on LHS by interpolation. Then we can get all of \(=_{2k} \) on LHS since we have \([1, 0, 1] \) on RHS.

Lemma C.9. Suppose either \(f = [1, \rho]^{\otimes 3} \pm [1, -\rho]^{\otimes 3} \) or \(f = [1, \alpha]^{\otimes 3} \pm [1, -\alpha]^{\otimes 3} \), and let \(h = [1, 0, x] \).

If \(x^4 \not\in \{0, 1\} \), then \(\text{Pl-}\#\text{CSP}^2(f, h) \) is \#P-hard.

Proof. We prove the lemma for \(f = [1, \rho]^{\otimes 3} \pm [1, -\rho]^{\otimes 3} \). The proof for \(f = [1, \alpha]^{\otimes 3} \pm [1, -\alpha]^{\otimes 3} \) is similar and we omit it here.

Let \(\hat{f} = [1, x-\frac{1}{2} \rho]^{\otimes 3} \pm [1, -x-\frac{1}{2} \rho]^{\otimes 3} \), then \(\text{Pl-}\#\text{CSP}^2(\hat{f}) \leq_{\text{Pl-}\#\text{CSP}^2(h, f)} \) by Lemma C.8. \(\hat{f} \) satisfies a second order recurrence with eigenvalues \(\pm x^{-\frac{1}{2}} \rho \) with sum 0 and product \(-\rho^2/x \). Hence \(\hat{f} \) has type \(\langle -\rho^2/x, 0, 1 \rangle \). Moreover, the second recurrence relation is unique up to a scalar since \(\hat{f} \) is non-degenerate and has arity 3. By \((x^{-1} \rho^2)^4 \neq 1 \), we have \(\hat{f} \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \) by Lemma A.11. So \(\text{Pl-}\#\text{CSP}^2(\hat{f}) \) is \#P-hard by Lemma C.2. Thus \(\text{Pl-}\#\text{CSP}^2(f, h) \) is \#P-hard.

Lemma C.10. Let \(f = [1, \rho]^{\otimes 3} \pm [1, -\rho]^{\otimes 3} \) and \(g = [1, \alpha]^{\otimes 3} \pm [1, -\alpha]^{\otimes 3} \). Then \(\text{Pl-}\#\text{CSP}^2(f, g) \) is \#P-hard.
Figure 27: Gadget used to obtain a signature of the form \([a, 0, b]\) with \(|a| \neq |b|\). The circle vertices are assigned \(f\) and the triangle vertices are assigned \(g\).

Proof. Consider the gadget in Figure 27. We assign \(f\) to the circle vertices and \(g\) to the triangle vertices. Let \(h\) be the signature of this gadget.

- If \(f = [1, \rho]\otimes^3 + [1, -\rho]\otimes^3\) and \(g = [1, \alpha]\otimes^3 + [1, -\alpha]\otimes^3\), then \(h = 32[\rho^2 \alpha^2, 0, -2]\).
- If \(f = [1, \rho]\otimes^3 - [1, -\rho]\otimes^3\) and \(g = [1, \alpha]\otimes^3 + [1, -\alpha]\otimes^3\), then \(h = 32\rho^2[-2, 0, \rho^2 \alpha^2]\).
- If \(f = [1, \rho]\otimes^3 + [1, -\rho]\otimes^3\) and \(g = [1, \alpha]\otimes^3 - [1, -\alpha]\otimes^3\), then \(h = 32\alpha^2[\rho^2 \alpha^2, 0, 2]\).
- If \(f = [1, \rho]\otimes^3 - [1, -\rho]\otimes^3\) and \(g = [1, \alpha]\otimes^3 - [1, -\alpha]\otimes^3\), then \(h = 32\rho^2\alpha^2[2, 0, \rho^2 \alpha^2]\).

Note that both \(f\) and \(g\) satisfy parity constraints, and thus \(h\) also satisfies that. Hence, e.g., in the first case, \(f = 2[1, 0, \rho^2, 0]\) and \(g = 2[1, 0, \alpha^2, 0]\), we only need to calculate \(h_0\) and \(h_2\), since \(h_1 = 0\) by parity. In fact the left half of Figure 27, connecting \(f\) to \(g\), also satisfies parity and has the signature \(4[1 + \rho^2 \alpha^2, 0, 2\rho^2 \alpha^2]\), and thus \(h = 16[(1 + \rho^2 \alpha^2)^2, 0, 4(\rho^2 \alpha^2)^2] = 32[\rho^2 \alpha^2, 0, -2]\).

Since \(|\alpha \rho| = 1 \neq 2\), we are done by Lemma C.9. \(\square\)

Now we can prove a conditional No-Mixing theorem for \(\text{Pl-}\#\text{CSP}^2\) when a set of signatures \(\mathcal{F}\) is assumed to consist of only tractable signatures and has at least one nonzero signature of odd arity.

Theorem C.11. Let \(\mathcal{F} \subseteq \bigcup_{k=1}^5 S_k\) be a set of symmetric signatures that includes at least one nonzero signature of odd arity. If \(\mathcal{F} \not\subseteq S_k\) for all \(1 \leq k \leq 5\), then \(\text{Pl-}\#\text{CSP}^2(\mathcal{F})\) is \#P-hard.

Proof. If \(\mathcal{F}\) contains a signature of odd arity in \(\widetilde{\mathcal{M}} \setminus (\mathcal{P} \cup \widetilde{\mathcal{A}})\), then we are done by Lemma C.3. Thus we can assume that \(\mathcal{F}\) contains at least one nonzero signature of odd arity \(f \in \mathcal{P} \cup \widetilde{\mathcal{A}}\).

By Lemma C.5, if \(f\) does not satisfy parity constraints, then we have a unary \([a, b]\) with \(ab \neq 0\) and we are done by Lemma B.2. Otherwise, we have \([1, 0]\) or \([0, 1]\) by Lemma C.6. If there exists a signature in \(\mathcal{F}\) that does not satisfy parity constraints, then we can obtain a unary \([a, b]\) with \(ab \neq 0\) by Lemma C.7. Thus we are done by Lemma B.2.

Now we can assume that \(\mathcal{F}\) includes a nonzero odd arity signature \(f \in \mathcal{P} \cup \widetilde{\mathcal{A}}\) and all signatures in \(\mathcal{F}\) satisfy parity constraints. Thus \(\mathcal{F} \cap (\widetilde{\mathcal{M}} \setminus (\mathcal{P} \cup \widetilde{\mathcal{A}})) = \emptyset\) by Corollary A.15. So we have \(\mathcal{F} \subseteq \mathcal{P} \cup \widetilde{\mathcal{A}}\), i.e., \(\mathcal{F} \subseteq \bigcup_{k=1}^5 S_k\). Then by Lemma C.4, we have, up to scalar multiples,

\[
\mathcal{F} \subseteq \left\{ [1, 0]^{\otimes n}, [0, 1]^{\otimes n}, [1, 0]^{\otimes 2n} + t[0, 1]^{\otimes 2n}, [1, \rho]^{\otimes n} \pm [1, -\rho]^{\otimes n}, [1, \alpha]^{\otimes n} \pm [1, -\alpha]^{\otimes n} \mid t \neq 0 \text{ and } n \geq 1 \right\}.
\]

Note that the following signatures are all in \(\bigcap_{k=3}^5 S_k\) (see Figure 35):

\[
[1, 0]^{\otimes n} \quad \text{and} \quad [0, 1]^{\otimes n},
\]

\[
[1, 0]^{\otimes 2n} + t[0, 1]^{\otimes 2n} \quad \text{with} \quad t^4 = 1,
\]

\[
[1, \rho]^{\otimes m} \pm [1, -\rho]^{\otimes m} \quad \text{and} \quad [1, \alpha]^{\otimes \ell} \pm [1, -\alpha]^{\otimes \ell} \quad \text{with} \quad 1 \leq m, \ell \leq 2.
\]

Let

\[
\mathcal{F}' = \mathcal{F} \cap \left\{ [1, \rho]^{\otimes m} \pm [1, -\rho]^{\otimes m}, [1, \alpha]^{\otimes \ell} \pm [1, -\alpha]^{\otimes \ell} \mid t^4 \not\in \{0, 1\} \text{ and } m, \ell \geq 3 \right\}.
\]

80
Then $F' \not\subseteq S_k$ for $3 \leq k \leq 5$. Indeed if $F' \subseteq S_k$ for some $3 \leq k \leq 5$, then $F \subseteq S_k$. Let

$$S = F' \cap \{ [1, \rho]^{\otimes m} \pm [1, -\rho]^{\otimes m} \mid m \geq 3 \} \quad \text{and} \quad T = F' \cap \{ [1, \alpha]^{\otimes \ell} \pm [1, -\alpha]^{\otimes \ell} \mid \ell \geq 3 \}.$$

If $S \neq \emptyset$ and $T \neq \emptyset$, then there exist $g, h \in F'$ such that $g = [1, \alpha]^{\otimes m} \pm [1, -\alpha]^{\otimes m}$ and $h = [1, \rho]^{\otimes \ell} \pm [1, -\rho]^{\otimes \ell}$, where $m, \ell \geq 3$. By Lemma C.6, we can get $[1, 0]$ or $[0, 1]$ from f. If we have $[1, 0]$, then we have $g' = \partial_{[1, 0]}^{m-3}(g) = [1, \alpha]^{\otimes 3} \pm [1, -\alpha]^{\otimes 3}$ and $h' = \partial_{[1, 0]}^{\ell-3}(h) = [1, \rho]^{\otimes 3} \pm [1, -\rho]^{\otimes 3}$, and are done by Lemma C.10. If we have $[0, 1]$, then the proof follows from a transformation by $[0 1 1]$. If exactly one of S and T is not empty, then there exists some $[1, 0]^{\otimes n+1} + [0, 1]^{\otimes 2n}$ with $t^4 \notin \{0, 1\}$ in F', since otherwise F' would be contained in either \mathcal{A} or \mathcal{A}'. This contradicts $F' \not\subseteq S_k$ for $3 \leq k \leq 5$. By taking ∂^{n-1}, we have $[1, 0, \ell]$. Moreover, we have $g = [1, \alpha]^{\otimes m} \pm [1, -\alpha]^{\otimes m}$ or $h = [1, \rho]^{\otimes \ell} \pm [1, -\rho]^{\otimes \ell}$ in F', where $m, \ell \geq 3$. By a similar proof with the previous case, first getting $[0, 1]$ or $[1, 0]$ by Lemma C.6, we can have $g' = [1, \alpha]^{\otimes 3} \pm [1, -\alpha]^{\otimes 3}$ or $h' = [1, \rho]^{\otimes 3} \pm [1, -\rho]^{\otimes 3}$ in F'. Thus $\text{Pl-#CSP}^2(F')$ is #P-hard by Lemma C.9. So $\text{Pl-#CSP}^2(F)$ is #P-hard.

If $S = \emptyset$ and $T = \emptyset$, then $F' \subseteq \{ [1, 0]^{\otimes n+1} + [0, 1]^{\otimes 2n} \mid t^4 \notin \{0, 1\} \} \subseteq \mathcal{P}$. This contradicts that $F' \not\subseteq S_k$ for $3 \leq k \leq 5$.

Now we can prove the dichotomy for Pl-#CSP^2 with a single symmetric signature of odd arity.

Theorem C.12. If f is a symmetric signature of odd arity, then either $\text{Pl-#CSP}^2(f)$ is #P-hard or $f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{A}'$.

Proof. Let f have arity $2n + 1$. If $2n + 1 = 1$, then $f \in \mathcal{P}$. If $2n + 1 = 3$, then we are done by Lemma C.2. In the following, assume that $2n + 1 \geq 5$. Let $f' = \partial(f)$. If $f' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{A}'$, then $\text{Pl-#CSP}^2(f')$ is #P-hard by induction. Thus $\text{Pl-#CSP}^2(f)$ is #P-hard as well. Otherwise, $f' \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{A}'$.

If $f' \in \mathcal{A}' \setminus (\mathcal{P} \cup \mathcal{A})$, then we are done by Lemma C.3. So we can assume that $f' \in \mathcal{P} \cup \mathcal{A}$.

Note that f' has odd arity, so if f' does not satisfy parity constraints, then we have $[a, b]$ with $ab \neq 0$ by Lemma C.5 and we are done by Lemma B.2. Otherwise, either f' is identically zero or, as f' has odd arity and satisfies parity, by Lemma C.4

$$f' \in \{ [1, 0]^{\otimes 2n-1}, [0, 1]^{\otimes 2n-1}, [1, \rho]^{\otimes 2n-1} \pm [1, -\rho]^{\otimes 2n-1}, [1, \alpha]^{\otimes 2n-1} \pm [1, -\alpha]^{\otimes 2n-1} \}.$$

If $f' \equiv 0$, then $f = x[1, i]^{\otimes 2n+1} + y[1, -i]^{\otimes 2n+1}$ by Lemma A.5. If $x = 0$ or $y = 0$ or $[xy \neq 0 \land x^4 = y^4]$, then $f \in \mathcal{A}$. Otherwise, $xy \neq 0 \land x^4 \neq y^4$.

- For $2n + 1 \equiv 1 \pmod{4}$, we have $\partial_{x+y}^2(f) = 2^\frac{x+y}{2} \{x[1, i] + y[1, -i]\} = 2^\frac{x+y}{2} \{x+y, (x-y)i\}$. Note that $x+y \neq 0, x-y \neq 0, x^4 \neq y^4$. Then we are done by Lemma B.2.

- For $2n + 1 \equiv 3 \pmod{4}$, we have $\partial_{x+y}^2(f) = 2^{\frac{x+y}{2}} \{x[1, i]^{\otimes 3} + y[1, -i]^{\otimes 3}\}$. Note that $xy \neq 0$ and f is non-degenerate. And by its second order recurrence, $f \in \{1, 0, 1\}$. It follows from Lemma A.11 that $f'' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{A}'$ since $x^4 \neq y^4$. Thus $\text{Pl-#CSP}^2(f'')$ is #P-hard by Lemma C.2. So $\text{Pl-#CSP}^2(f)$ is #P-hard.

If $f' \in \{ [1, 0]^{\otimes 2n-1}, [0, 1]^{\otimes 2n-1}, [1, \rho]^{\otimes 2n-1} \pm [1, -\rho]^{\otimes 2n-1}, [1, \alpha]^{\otimes 2n-1} \pm [1, -\alpha]^{\otimes 2n-1} \}$, then we have $[1, 0]$ or $[0, 1]$ by Lemma C.6. So if f does not satisfy parity constraints, then we have $[a, b]$ with $ab \neq 0$ by Lemma C.7 and we are done by Lemma B.2. So we can assume that f satisfies parity constraints in the following.
For $f' = [1, 0]^{\otimes 2n-1}, f = x[1, i]^{\otimes 2n+1} + y[1, -i]^{2n+1} + [1, 0]^{\otimes 2n+1}$ by Lemma A.5. If $x = y = 0$, then $f \in \mathcal{P}$. Otherwise, $(x, y) \neq (0, 0)$. Let $a = x + y$, $b = (x - y)i$, then $(a, b) \neq (0, 0)$. Note that $f = [a + b, a - b, \ldots, \pm a, \pm b]$. Since $1 + a$ and $-a$ cannot be both 0, by the parity constraints, we have $b = 0$. And thus $a \neq 0$. Moreover we have $\partial^{n-1}([1, 0]^{2n-1}) = [1, 0]$ and $f'' = \partial^{2n-3}([1, 0]) = [1 + a, 0, -a, 0, a]$. We note that $2n - 3 \geq 1$ and so $\partial^{n-3}([1, 0])$ is defined. Note that f'' is a redundant signature and its compressed signature matrix $[\begin{bmatrix} 1 + a & 0 & -a \\ -a & 0 & a \end{bmatrix}]$ is nonsingular, so Pl-$\#$CSP$^2(f'')$ is #P-hard by Lemma A.25. Thus Pl-$\#$CSP$^2(f)$ is #P-hard.

For $f' = [0, 1]^{\otimes 2n-1}$, the proof follows from the previous case by a transformation using $[0, 1]^{\otimes 2n-1}$. For $f' = [1, \alpha]^{\otimes 2n-1} \pm [1, -\alpha]^{\otimes 2n-1}, f = x[1, i]^{\otimes 2n+1} + y[1, -i]^{2n+1} + \frac{1}{1+\alpha^2}\{(1, \alpha)^{\otimes 2n+1} \pm [1, -\alpha]^{\otimes 2n+1}\}$ by Lemma A.5. If $x = y = 0$, then $f \in \mathcal{A}^\dagger$. Otherwise, $(x, y) \neq (0, 0)$. Firstly, we construct $[1, 0, \alpha^2]$ by f. Note that we have $f^{(4)} = \partial^{n-1}(f) = (1 + \alpha^2)^{n-2}\{(1, \alpha)^{\otimes 3} \pm [1, -\alpha]^{\otimes 3}\}$. If $f^{(4)} = (1 + \alpha^2)^{n-2}\{(1, \alpha)^{\otimes 3} \pm [1, -\alpha]^{\otimes 3}\}$ with a + sign, we have $\partial(f^{(4)}) = 2(1 + \alpha^2)^{n-1}[1, 0]$ and $\partial[1, 0](f^{(4)}) = 2(1 + \alpha^2)^{n-2}[1, 0, \alpha^2]$. If $f^{(4)} = (1 + \alpha^2)^{n-2}\{(1, \alpha)^{\otimes 3} \pm [1, -\alpha]^{\otimes 3}\}$ with a - sign, we have $\partial(f^{(4)}) = 2\alpha(1 + \alpha^2)^{n-1}[0, 1]$ and $\partial[0, 1](f^{(4)}) = 2\alpha(1 + \alpha^2)^{n-2}[1, 0, \alpha^2]$. In either case, we have $[1, 0, \alpha^2]$. Then we have $f^{(5)} = \partial^{n-1}_{[1, 0, \alpha^2]}(f) = (1 - \alpha^2)^{n-1}\{x[1, i]^{\otimes 3} + y[1, -i]^{3}\}$. If $x = 0$ or $y = 0$ or $[xy \neq 0 \land x^4 = y^4]$, then $f^{(5)} \in \mathcal{A} \setminus \mathcal{A}^\dagger$. By the eigenvalues, $f' \in (1, 0 \pm i)$, hence $f' \in \mathcal{A} \setminus (\mathcal{P} \cup \mathcal{A} \cup \tilde{\mathcal{A}})$ in this case. So Pl-$\#$CSP$^2(f^{(5)}, f')$ is #P-hard by Theorem C.11. Otherwise, $xy \neq 0$ and $x^4 \neq y^4$. Then $f^{(5)} \notin \mathcal{P} \cup \mathcal{A} \cup \tilde{\mathcal{A}}$. Thus Pl-$\#CSP^2(f^{(5)})$ is #P-hard by Lemma C.2. So Pl-$\#$CSP$^2(f)$ is #P-hard. The final case is $f' = [1, \rho]^{\otimes 2n-1} \pm [1, -\rho]^{\otimes 2n-1}$. For $f' = [1, 1]^{\otimes 2n-1} + [1, -1]^{\otimes 2n-1}$,

$$f = x[1, i]^{\otimes 2n+1} + y[1, -i]^{2n+1} + \frac{1}{2}\{(1, 1)^{\otimes 2n+1} + [1, -1]^{\otimes 2n+1}\}.$$

If $x = y = 0$, then $f \in \mathcal{A}$. In the following, assume that $(x, y) \neq (0, 0)$. Let $a = x + y$, $b = (x - y)i$, then $(a, b) \neq (0, 0)$. Moreover, $f = [a, b, -a, -b, \ldots, \pm a, \pm b] + [1, 0, 1, 0, \ldots, 0] = [a + 1, b, -a + 1, -b, a + 1, \ldots, \pm b]$. Since $a + 1$ and $-a + 1$ cannot be both 0, and f satisfies parity, we have $b = 0$. Thus $f = [a+1, 0, -a+1, 0, a+1, \ldots, \pm a+1, 0]$. As $b = 0$ we have $a \neq 0$. Note that we have $\partial^{n}(f) = 2^n[1, 0]$. Thus we have $f^{(6)} = \partial^{2n-3}([1, 0]) = [a+1, 0, -a+1, 0, a+1]$. The compressed signature matrix of $f^{(6)}$ is $[\begin{bmatrix} a+1 & 0 & -a+1 \\ -a+1 & 0 & a+1 \end{bmatrix}]$ with determinant $4a(1-a)$. If $a \neq 1$, then by $a \neq 0$, this determinant is nonzero. Thus the compressed signature matrix of $f^{(6)}$ is nonsingular and Pl-$\#$CSP$^2(f^{(6)})$ is #P-hard by Lemma A.25. So Pl-$\#$CSP$^2(f)$ is #P-hard.
If $a = 1$, then we have $f^{(7)} = \partial^{2n-4}_{[1,0]}(f) = 2[1,0,0,0,1,0]$ of arity 5 (note that $2n - 4 \geq 0$). Consider the gadget in Figure 28. We assign $[1,0,0,0,1,0]$ to both vertices. The signature of this gadget is redundant, and its compressed signature matrix is \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]. Since this matrix is nonsingular, we are done by Lemma A.25.

- For $f' = [1,1]^{\otimes 2n-1} - [1,-1]^{\otimes 2n-1}$,

\[f = x[1,i]^{\otimes 2n+1} + y[1,-i]^{2n+1} + \frac{1}{2} \{ [1,1]^{\otimes 2n+1} - [1,-1]^{\otimes 2n+1} \}. \]

After the holographic transformation by \([0 \ 1] \), we have Pl-\#CSP\((f, f') \equiv \) Pl-\#CSP\((\hat{f}, \hat{f}') \), where \(\hat{f}' = [1,1]^{\otimes 2n-1} + [1,-1]^{\otimes 2n-1} \), and \(\hat{f}' = x\hat{f}^{2n+1}[1,-i]^{\otimes 2n+1} + y(-i)^{2n+1}[1,i]^{2n+1} + \frac{1}{2} \{ [1,1]^{\otimes 2n+1} + [1,-1]^{\otimes 2n+1} \} \). Thus we are done by the previous case.

- For $f' = [1,i]^{\otimes 2n-1} + [1,-i]^{\otimes 2n-1}$, f has arity $2n + 1$ and using Proposition A.7 (the Explicit List for $f'(x)$), \(f([1,\pm i]^{\otimes 2n-1}) \) is a sum of $\lambda[1,\pm i]^{\otimes 2n+1}$ with a signature having the k-th term of the form $-\frac{1}{2}k(\pm i)^k$. Thus, we can write $f_k = (x - \frac{1}{2}k)i^k + (y - \frac{1}{2}k)(-i)^k$ by Lemma A.5. We have $\partial f'(=2n) = \partial f(=2n) = 2[1,0]$ on LHS.

Let $a = x+y$, $b = (x-y)i$, then $f = [a,b,-a+2,-b,a-4,\ldots,\pm b]$. Since a and $-a+2$ cannot be both 0, and f satisfies parity, we have $b = 0$. Then we have $f^{(8)} = \partial^{2n-3}_{[1,0]}(f) = [a,0,-a+2,0,a-4]$, and is nonsingular and we are done by Lemma A.25.

For $a = 2$, we have $\partial^{2n-4}_{[1,0]}(f) = 2[1,0,0,0,-1,0]$. Consider the gadget in Figure 28. We assign $[1,0,0,0,-1,0]$ to both vertices. The signature of this gadget is redundant, and its compressed signature matrix is \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]. Since this matrix is nonsingular, we are done by Lemma A.25.

- For $f' = [1,i]^{\otimes 2n-1} - [1,-i]^{\otimes 2n-1}$, the proof follows from the previous case by a holographic transformation using \([0 \ 1] \).

By Theorem C.11 and Theorem C.12, we have the following dichotomy theorem.

Theorem C.13. For any set of symmetric signatures \mathcal{F} which contains at least one nonzero signature with odd arity, if $\mathcal{F} \subseteq \mathcal{S}$, or \mathcal{S}^\dagger, or \mathcal{H}, or \mathcal{H}^\dagger, then Pl-\#CSP\((\mathcal{F}) \) is tractable. Otherwise, Pl-\#CSP\((\mathcal{F}) \) is $\#P$-hard.

D The Arity 4 Dichotomy

The goal of this section is a dichotomy theorem for Pl-\#CSP\((f) \) when f is a symmetric signature of arity 4. Frequently our first test uses the determinantal criterion of a redundant signature of arity 4 based on Lemma A.25.

Lemma D.1. Let f be an arity 4 signature. If the signature matrix of f is redundant, and its compressed form is nonsingular, then Pl-\#CSP\((f) \) is $\#P$-hard.

Proof. Since Pl-Holant\((f) \leq_T \) Pl-\#CSP\((f) \), we are done by Lemma A.25. \(\square \)
Next we introduce a trick which we call the “Three Stooges”. For \(f = [a, b, c, d, e] \), define
\[
\begin{align*}
f^\times &= [a, c, e] \\
f^\infty &= [a^2 + c^2 + 2b^2, ac + ce + 2bd, c^2 + e^2 + 2d^2], \quad \text{and} \\
f^\overline{\times} &= [a^2 + c^2 + 2b^2, b^2 + d^2 + 2c^2, c^2 + e^2 + 2d^2].
\end{align*}
\]

The following lemma is proved by the technique of domain pairing.

Lemma D.2. If \(f = [a, b, c, d, e] \), then \(\text{Pl-}\#\text{CSP}(f^\times, f^{\overline{\times}}, f^\infty) \leq \text{Pl-}\#\text{CSP}^2(f) \).

Proof. Let \(f' \) be the signature of the gadget in Figure 29 and \(f'' \) be the signature of the gadget in Figure 29 rotated 90°. Then \(f' \) has a signature matrix on the left, and \(f'' \) has a signature matrix on the right:
\[
\begin{bmatrix}
 2 + c^2 + 2b^2 & ab + cd + 2bc & ab + cd + 2bc & ac + ce + 2bd \\
 2 + c^2 + 2b^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ab + cd + 2bc & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ab + cd + 2bc & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ac + ce + 2bd & bc + de + 2cd & bc + de + 2cd & c^2 + e^2 + 2d^2
\end{bmatrix}
\]
\[
\begin{bmatrix}
 2 + c^2 + 2b^2 & ab + cd + 2bc & ab + cd + 2bc & b^2 + d^2 + 2c^2 \\
 2 + c^2 + 2b^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ab + cd + 2bc & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ab + cd + 2bc & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 & b^2 + d^2 + 2c^2 \\
 ac + ce + 2bd & bc + de + 2cd & bc + de + 2cd & c^2 + e^2 + 2d^2
\end{bmatrix}
\]

We highlight the relevant entries in the display below (in fact, readers should only focus on the entries highlighted; see Figure 2 in Part I for an illustration of the rotation operation):
\[
\begin{bmatrix}
 2 + c^2 + 2b^2 & * & * & ac + ce + 2bd \\
 * & b^2 + d^2 + 2c^2 & * & * \\
 * & * & b^2 + d^2 + 2c^2 & * \\
 ac + ce + 2bd & * & * & c^2 + e^2 + 2d^2
\end{bmatrix}
\]
\[
\begin{bmatrix}
 2 + c^2 + 2b^2 & * & * & b^2 + d^2 + 2c^2 \\
 * & ac + ce + 2bd & * & * \\
 * & * & ac + ce + 2bd & * \\
 b^2 + d^2 + 2c^2 & * & * & c^2 + e^2 + 2d^2
\end{bmatrix}
\]

For any instance of \(\text{Pl-}\#\text{CSP}(f^\times, f^{\overline{\times}}, f^\infty) \), we replace each edge \(e \) by two edges that connect the same incident nodes of \(e \). For each variable node that is connected to \(k \) edges, we replace its label \(=_k \) by \(=_{2k} \). We replace each occurrence of \(f^\times, f^{\overline{\times}}, f^\infty \) by \(f, f', f'' \) as a constraint respectively. Then the new instance is a problem in \(\text{Pl-}\#\text{CSP}^2(f, f', f'') \) and has the same value as the given instance of \(\text{Pl-}\#\text{CSP}(f^\times, f^{\overline{\times}}, f^\infty) \). By \(\text{Pl-}\#\text{CSP}^2(f, f', f'') \equiv \text{Pl-}\#\text{CSP}^2(f) \), we complete the proof.

We demonstrate a simple use of the “Three Stooges” in the following lemma.

Lemma D.3. If \(a \not\in \{0, 1\} \), then \(\text{Pl-}\#\text{CSP}^2([1, 0, a, 0, a^2]) \) is \#P-hard.

Proof. For \(f = [1, 0, a, 0, a^2] \), we have \(f^\times = [1, a, a^2] \) and \(f^{\overline{\times}} = [1 + a^2, 2a^2, a^2(1 + a^2)] \). By Lemma A.8, \(f^\times \not\in \mathcal{A} \cup \mathcal{M} \) since \(a \not\in \{0, 1\} \). By the same reason and Lemma A.8, the only possibility for \(f^{\overline{\times}} \in \mathcal{P} \) is being degenerate. Thus \(a^2(1 + a^2)^2 = 4a^4 \). This implies that \(a = 0 \) or \(a = \pm 1 \); a contradiction. This implies that \(f^\times \) and \(f^{\overline{\times}} \) cannot both be in \(\mathcal{P}, \mathcal{A}, \) or \(\mathcal{M} \). Thus \(\text{Pl-}\#\text{CSP}(f^\times, f^{\overline{\times}}) \) is \#P-hard by Theorem A.22. Then by Lemma D.2, \(\text{Pl-}\#\text{CSP}^2(f) \) is \#P-hard.
Lemma D.4. Let $f = [1, 1]^{\otimes 4} + a[1, -1]^{\otimes 4}$, where $a^4 \neq 0, 1$. Then Pl-$\#\text{CSP}^2(f)$ is $\#P$-hard.

Proof. Under a holographic transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, we have

\begin{align*}
\text{Pl-$\#\text{CSP}^2(f)$} & \equiv \text{Pl-Holant}(\mathcal{E} \mathcal{Q}_2 \mid f) \\
& \equiv \text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots \mid \hat{f}),
\end{align*}

where $\hat{f} = (H^{-1})^{\otimes 4} f = [1, 0, 0, 0, a]$. By Lemma D.3, Pl-$\#\text{CSP}^2([1, 0, a, 0, a^2])$ is $\#P$-hard, and we have

\begin{align*}
\text{Pl-$\#\text{CSP}^2([1, 0, a, 0, a^2])$} & \equiv \text{Pl-Holant}(\mathcal{E} \mathcal{Q}_2 \mid [1, 0, a, 0, a^2]) \\
& \equiv \text{Pl-Holant}([1, 0, a], [1, 0, 0, 0, a^2], \ldots \mid [1, 0, 1, 0, 1]) \\
& \leq \text{Pl-Holant}([1, 0, a], [1, 0, 0, 0, a^2], \ldots \mid [1, 0, 1, 1, 0, 1], \ldots),
\end{align*}

where the second equivalence \equiv is by a holographic transformation with $\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{a} \end{bmatrix}$.

The problem in (D.13) can simulate the problem in (D.16). With $[1, 0, 1]$ on the left and \hat{f} on the right in (D.13), we can get $\partial(\hat{f}) = [1, 0, a]$ on the right. Now consider the gadget in Figure 30. We assign \hat{f} to the circle vertices, $=2$ to the square vertices, and $[1, 0, a]$ to the triangle vertex. If there are $k - 1$ occurrences of the dashed subgadget, then the signature of this gadget is $[1, 0, \ldots, 0, a^k]$ of arity $2k$. Thus

\begin{align*}
\text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots \mid [1, 0, a], [1, 0, 0, 0, a^2], \ldots)
& \leq \text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots \mid \hat{f}).
\end{align*}

Then combining three reductions, we have Pl-$\#\text{CSP}^2([1, 0, a, 0, a^2]) \leq \text{Pl-$\#\text{CSP}^2(f)$}$, where $a^4 \neq 0, 1$. Thus Pl-$\#\text{CSP}^2(f)$ is $\#P$-hard by Lemma D.3.

Now we are ready to prove the following theorem.

Theorem D.5. Let f be a signature of arity 4, then Pl-$\#\text{CSP}^2(f)$ is $\#P$-hard or $f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$.

Proof. The first step is to apply Lemma D.2 to f^\times. For $f = [f_0, f_1, f_2, f_3, f_4]$ we have $f^\times = [f_0, f_2, f_4]$. If Pl-$\#\text{CSP}(f^\times)$ is $\#P$-hard, then Pl-$\#\text{CSP}^2(f)$ is $\#P$-hard by Lemma D.2. In the following, assume that Pl-$\#\text{CSP}(f^\times)$ is not $\#P$-hard, and hence tractable by the dichotomy Theorem A.21, and $[f_0, f_2, f_4]$ takes the following form

\[[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, r, r^2], [0, 1, 0], [1, 0, a], [1, 1, -1], [1, -1, -1], \text{ or } [1, b, 1] \]

up to a scalar, where $r \neq 0, a \neq 0$, and $b^2 \notin \{0, 1\}$.

85
Case 1: \([f_0, f_2, f_4] = [0, 0, 0]\)

In this case, \(f = [0, x, 0, y, 0]\) and \(f^\lessgtr = [2x^2, x^2 + y^2, 2y^2]\).
- If \(x^2 = y^2\), then \(f = [0, x, 0, \pm x, 0] \in \mathcal{A}\).
- If \(x^2 = -y^2\), then \(f = [0, 1, 0, \pm i, 0] \in \mathcal{A}\) since \(\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{bmatrix} \Gamma 4 f \in \mathcal{A}\).
- If \(x^4 \neq y^4\), then \(\Pi - \#\text{CSP}(f^\lessgtr)\) is \#P-hard by Theorem A.21, so \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard by Lemma D.2.

Case 2: \([f_0, f_2, f_4] = [1, 0, 0]\) or \([0, 0, 1]\)

We prove the case for \([f_0, f_2, f_4] = [1, 0, 0]\), i.e., \(f = [1, x, 0, y, 0]\). The other case is similar.

Note that we have \(\partial(f) = [1, x + y, 0]\). If \(x + y \neq 0\), then \(\Pi - \#\text{CSP}^2([1, x + y, 0])\) is \#P-hard by Theorem A.21. Thus \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard.

If \(x = -y \neq 0\), then \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard by Lemma D.1.

If \(x = -y = 0\), then \(f = [1, 0]^{\otimes 4} \in \mathcal{P}\).

Case 3: \([f_0, f_2, f_4] = [1, r, r^2]\) with \(r \neq 0\)

In this case, \(f = [1, x, r, y, r^2]\). If \(rx \neq y\), then \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard by Lemma D.1.

Otherwise, \(f = [1, x, r, x, r^2]\). Then we have \(\partial(f) = (1 + r)[1, x, r]\). If \(r \neq -1\), then we have \([1, x, r]\).

In the following we will separate out the cases according to value of \(r\).

For \(r^4 \neq 1\) in \(f = [1, x, r, x, r^2]\).
- If \(x = 0\), then \(f = [1, 0, r, 0, r^2]\), and \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard by Lemma D.3.
- If \(x^2 = r\), then \(f = [1, x]^{\otimes 4} \in \mathcal{P}\).
- If \(x^2 \neq r\) and \(x \neq 0\), then \(\Pi - \#\text{CSP}^2([1, x, r])\) is \#P-hard by Theorem A.21. Thus \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard.

For \(r = 1\), then \(f = [1, x, 1, x, 1]\).
- If \(x^4 = 0\) or \(1\), then \(f \in \mathcal{A}\).
- If \(x^4 \neq 0, 1\), then let \(a = \frac{1-x}{1+x}\) and we have \(a^4 \neq 0, 1\) by Lemma A.3. Note that \(f = \frac{1}{1+a} \{[1, 1]^{\otimes 4} + a[1, -1]^{\otimes 4}\}\) by Lemma D.4, \(\Pi - \#\text{CSP}^2(f)\) is \#P-hard.

For \(r = -1\), then \(f = [1, x, -1, -x, 1]\).
- If \(x^4 = 0\) or \(1\), then \(f \in \mathcal{A}\).
- If \(x^4 \neq 0, 1\), then let \(a = \frac{1+ix}{1-ix}\) and we have \(a^4 \neq 0, 1\) by Lemma A.3. Note that \(f = \frac{1}{a+1} \{[1, 1]^{\otimes 4} + a[1, -i]^{\otimes 4}\}\). Thus we have \([1, 0, -1]^{\otimes 2}\) on the left by Lemma A.20. Under the holographic transformation by \([0, 1, i]\), this \([1, 0, -1]^{\otimes 2}\) is transformed to \([1, 0, 1]^{\otimes 2}\), and we have

\[
\Pi - \#\text{CSP}^2(f) \equiv_T \Pi - \text{Holant}(\mathcal{E} Q_4 \cup \{[1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 0, 0, 0, -1], \ldots\} \mid f'),
\]

(D.17)

where \(f' = \frac{1}{1+a} \{[1, 1]^{\otimes 4} + a[1, -1]^{\otimes 4}\}\). Now having \([1, 0, 1]^{\otimes 2}\) on the left, we can form a pair of self loops in a planar way for a pair of adjacent \(f'\) and get \((\partial(f'))^{\otimes 2} = \left(\frac{2}{1+a}[1+a, 1-a, 1+a]^{\otimes 2}\right)^{\otimes 2}\) on the right side. Since we have \([1, 0, 1]^{\otimes 2}\) on the left side, we can obtain \([1, 0, 1]^{\otimes 2}\) on the right side by interpolation using \([1+a, 1-a, 1+a]^{\otimes 2}\).
Note that the matrix \(\begin{bmatrix} 1 + a & 1 - a \\ 1 - a & 1 + a \end{bmatrix} \) can be diagonalized by \(\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \). This implies that

\[
\text{Pl-}\#CSP^4(f', [1, 0, 1] \otimes 2) \leq_T \text{Pl-Holant}(\mathcal{E}_{\mathcal{Q}_4} \cup \{[1, 0, 1] \otimes 2, [1, 0, -1], [1, 0, 0, 0, 0, -1], \cdots \}) | f').
\]

Then by (D.17) and Lemma B.4, we have

\[
\text{Pl-}\#CSP^2(f') \leq \text{Pl-}\#CSP^4(f', [1, 0, 1] \otimes 2) \leq \text{Pl-}\#CSP^2(f). \tag{D.18}
\]

By Lemma D.4, Pl-\#CSP(f') is \#P-hard. Thus Pl-\#CSP(f) is \#P-hard.

For \(r^2 = -1 \), then \(r = \pm i \) in \(f = [1, x, r, x r, -1] \).
- If \(x = 0 \), then \(f = [1, 0, r, 0, -1] \in \mathcal{A}^+ \) since \(\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{4} \end{bmatrix}^4 f = [1, 0, \pm 1, 0, 1] \in \mathcal{A} \).
- If \(x^2 = r \), then \(f = [1, x] \otimes 4 \in \mathcal{P} \).
- If \(x^2 = -r \), then \(f = [1, x, -x^2, -x^3, -1] \in \mathcal{A}^+ \) since \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^4 f \in \mathcal{A} \), with \(x^4 = -1 \).
- If \(x^4 \neq 0, -1 \), thus \(x^2 \neq \pm r \). Then Pl-\#CSP^2([1, x, r]) \) is \#P-hard by Theorem A.21. Thus Pl-\#CSP^2(f) \) is \#P-hard.

Case 4: \([f_0, f_2, f_4] = [0, 1, 0] \)

In this case, \(f = [0, x, 1, y, 0] \). We first apply Lemma D.1 and calculate the determinant of the compressed matrix for \(f \), which is \(2xy - 1 \). If \(xy \neq \frac{1}{2} \), then Pl-\#CSP^2(f) is \#P-hard by Lemma D.1.

If \(xy = \frac{1}{2} \) and \(x - y = 0 \), then \(f = [0, \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0] \) or \(f = [0, -\frac{1}{\sqrt{2}}, 1, -\frac{1}{\sqrt{2}}, 0] \). Both are in \(\mathcal{M} \), by Lemma A.18.

If \(xy = \frac{1}{2} \) and \(x + y = 0 \), then \(f = [0, \frac{i}{\sqrt{2}}, 1, -\frac{i}{\sqrt{2}}, 0] \) or \(f = [0, -\frac{i}{\sqrt{2}}, 1, \frac{i}{\sqrt{2}}, 0] \). Both are in \(\mathcal{M}^1 \), by Lemma A.18. In fact from the previous line with \([0, \pm \frac{1}{\sqrt{2}}, 1, \pm \frac{1}{\sqrt{2}}, 0] \), we can see directly \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^4 f \in \mathcal{M} \).

In the following we have \(xy = \frac{1}{2} \) and \(x^2 \neq y^2 \). Then \(f^x = [1 + 2x^2, 2 + x^2 + y^2, 1 + 2y^2] \) and \(f^\infty = [1 + 2x^2, 1, 1 + 2y^2] \). We will prove that Pl-\#CSP(f^x, f^\infty) is \#P-hard by showing that \(f^x, f^\infty \) cannot be both in the same \(\mathcal{P}, \mathcal{A} \), or \(\mathcal{M} \).
- By \(x^2 \neq y^2 \) and Lemma A.8, we have \(f^\infty \notin \mathcal{M} \).
- Suppose \(\{f^x, f^\infty\} \subset \mathcal{P} \). \(f^\infty \) is not of the form \([1, 0, a]\), and also not of the form \([0, 1, 0]\) since \(1 + 2x^2 \neq 1 + 2y^2 \). Thus \(f^\infty \) is degenerate, i.e., \((1 + 2x^2)(1 + 2y^2) = 1\). Note that \(f^x \) is not of the form \([0, 1, 0]\) since \(1 + 2x^2 \neq 1 + 2y^2 \). If \(f^x \) is of the form \([1, 0, a]\), then \(x^2 + y^2 = -2 \). Then together with \(xy = \frac{1}{2} \) we obtain \((1 + 2x^2)(1 + 2y^2) = -2 \neq 1\).

This contradicts that \(f^\infty \) is degenerate. Thus \(f^x \) and \(f^\infty \) are both degenerate. Then we have

\[
(1 + 2x^2)(1 + 2y^2) = (x^2 + y^2 + 2)^2,
(1 + 2x^2)(1 + 2y^2) = 1.
\]

Together we have \((x^2 + y^2 + 2)^2 = 1\), i.e., \(x^2 + y^2 = -3 \) or \(x^2 + y^2 = -1 \). However both possibilities contradict (D.19) and \(xy = \frac{1}{2} \). Thus \(f^x \) and \(f^\infty \) cannot both belong to \(\mathcal{P} \).

87
Suppose \(\{ f^\times, f^\infty \} \subseteq A \). By \(f^\infty \in A \) and the middle term is nonzero, by Corollary A.9 we have \(1 + 2x^2 = \pm (1 + 2y^2) \). Since \(x^2 \neq y^2 \), we have \(1 + 2x^2 = -1 - 2y^2 \). This leads to \((x + y)^2 = 0\) by using \(xy = \frac{1}{2} \). This contradicts \(x^2 \neq y^2 \).

We have proved that \(f^\times, f^\infty \) cannot be both in \(\mathcal{P} \), or \(A \), or \(\widehat{\mathcal{M}} \). Thus \(\text{Pl-}\#\text{CSP}(f^\times, f^\infty) \) is \(\#P \)-hard by Theorem A.22. So \(\text{Pl-}\#\text{CSP}^2(f) \) is \(\#P \)-hard by Lemma D.2.

Case 5: \([f_0, f_2, f_4] = [1, 0, a] \) with \(a \neq 0 \)

In this case, \(f = [1, x, 0, y, a] \). We first apply Lemma D.1 and calculate the determinant of the compressed matrix for \(f \), which is \(-(ax^2 + y^2) \). If \(ax^2 + y^2 \neq 0 \), then \(\text{Pl-}\#\text{CSP}(f) \) is \(\#P \)-hard by Lemma D.1. In the following we assume \(ax^2 + y^2 = 0 \).

If \(x = y = 0 \), then \(f \in \mathcal{P} \).

If \(x = y \neq 0 \), then \(a = -1 \). So \(f = [1, x, 0, x, -1] \in \widehat{\mathcal{M}} \), by Corollary A.18.

If \(x = -y \neq 0 \), then \(a = -1 \). So \(f = [1, x, 0, -x, -1] \in \widehat{\mathcal{M}} \), by Corollary A.18.

Now we assume \(ax^2 + y^2 = 0 \) and \(x^2 \neq y^2 \). Then \(a \neq -1 \) and \(xy \neq 0 \) by \(a \neq 0 \). In this case, the “Three Stooges” are

\[
\begin{align*}
f^\times &= [1, 0, a], & f^\check{\times} &= [1 + 2x^2, x^2 + y^2, a^2 + 2y^2], & f^\infty &= [1 + 2x^2, 2xy, a^2 + 2y^2].
\end{align*}
\]

By \(ax^2 + y^2 = 0 \), we have

\[
\begin{align*}
f^\check{\times} &= [1 + 2x^2, (1 - a)x^2, a^2 - 2ax^2] & f^\infty &= [1 + 2x^2, 2xy, a^2 - 2ax^2].
\end{align*}
\]

We will prove that \(\text{Pl-}\#\text{CSP}(f^\times, f^\check{\times}, f^\infty) \) is \(\#P \)-hard by showing that \(f^\times, f^\check{\times} \) and \(f^\infty \) cannot be all in the same \(\mathcal{P}, A, \) or \(\widehat{\mathcal{M}} \).

- Assume that \(\{ f^\times, f^\infty \} \subseteq \widehat{\mathcal{M}} \). Note that \(a \neq -1 \). If \(f^\times \in \widehat{\mathcal{M}} \), we have \(a = 1 \) by Lemma A.8. Then by \(f^\infty \in \widehat{\mathcal{M}} \) and Lemma A.8, we have \(1 + 2x^2 = 1 - 2x^2 \) or \(2xy = 0 \). This is a contradiction.

- Assume that \(\{ f^\check{\times}, f^\infty \} \subseteq \mathcal{P} \). If \(1 + 2x^2 \) and \(a^2 - 2ax^2 \) are both zero, then \(a = 0 \) or \(-1 \). This is a contradiction. Thus \(f^\check{\times}, f^\infty \) are not of the form \([0, 1, 0]\). By \(xy \neq 0 \), \(f^\infty \) is not of the form \([1, 0, c]\) with \(c \neq 0 \). Thus \(f^\infty \) is degenerate by Lemma A.8, i.e.,

\[
(1 + 2x^2)(a^2 - 2ax^2) = 4x^2y^2 = -4ax^4,
\]

where the last equality is by \(ax^2 + y^2 = 0 \).

If \(a = 1 \), we have \(1 - 4x^4 = -4x^4 \) by (D.20). This is a contradiction.

If \(a \neq 1 \), then \(f^\check{\times} \) is not of the form \([1, 0, c]\) with \(c \neq 0 \). Thus \(f^\check{\times} \) is degenerate by \(f^\check{\times} \in \mathcal{P} \), i.e.,

\[
(1 + 2x^2)(a^2 - 2ax^2) = (1 - a)^2x^4.
\]

Then by (D.20), we have \(-4ax^4 = (1 - a)^2x^4 \). This implies that \(-4a = (1 - a)^2 \) by \(x \neq 0 \). Then \((1 + a)^2 = 0\), contradicting \(a \neq \pm 1 \).

- Suppose \(\{ f^\times, f^\infty \} \subseteq A \). By \(f^\times \in A \), and \(a \neq 0 \), we get \(a^4 = 1 \) from Lemma A.8. It follows that \(a = 1 \) or \(a^2 = -1 \), as we have \(a \neq -1 \).

For \(a = 1 \), the equation \(ax^2 + y^2 = 0 \) gives us \(y^2 = -x^2 \). Then from Corollary A.9 we have

\[
(1 + 2x^2)^2 = (1 - 2x^2)^2
\]

88
by \(f^\infty \in \mathcal{A} \) and \(2xy \neq 0 \). Thus \(x = 0 \). This is a contradiction.

For \(a^2 = -1 \), by \(f^\infty \in \mathcal{A} \) and \(2xy \neq 0 \), we have \((1 + 2x^2)^2 = (-1 - 2ax^2)^2\) by Corollary A.9. \(1 + 2x^2 = 1 + 2ax^2 \) leads to a contradiction \(a = 1 \), hence \(1 + 2x^2 = -(1 + 2ax^2) \). Then \(x^2 = -\frac{1}{a+1} \) and \(f^\infty = [\frac{a-1}{a+1}, 2xy, \frac{a-1}{a+1}] \). Note that \(a + 1 \neq 0 \). We observe that the norm of \(x^2 \) is \(\frac{1}{\sqrt{2}} \) and the norm of \(x \) is equal to the norm of \(y \) by \(ax^2 = -y^2 \) and \(a^2 = -1 \). Thus the norm of \(2xy \) is \(\sqrt{2} \). Moreover, the norm of \(\frac{a-1}{a+1} \) is 1, as \(a = \pm i \). Thus the norm of \(2xy \) is not equal to the norm of \(\frac{a-1}{a+1} \), and are nonzero. So \(f^\infty \notin \mathcal{A} \) by Corollary A.9.

This implies that \(f^\times, f^\tilde{x} \) and \(f^\infty \) cannot be all in \(\mathcal{P} \), or all in \(\mathcal{A} \), or all in \(\mathcal{\tilde{M}} \). Thus the problem \(\text{Pl-}\#\text{CSP}(f^\times, f^\tilde{x}, f^\infty) \) is \#P-hard by Theorem A.22. So \(\text{Pl-}\#\text{CSP}(f) \) is \#P-hard.

Case 6: \([f_0, f_2, f_4] = [1, \pm 1, -1]\)

In this case, \(f = [1, x, 1, y, -1] \) or \([1, x, -1, y, -1] \). We consider the first case; the second case is similar.

We have \(\partial(f) = [2, x + y, 0] \). If \(x + y \neq 0 \), then \(\text{Pl-}\#\text{CSP}^2([2, x + y, 0]) \) is \#P-hard by Theorem A.21. Thus \(\text{Pl-}\#\text{CSP}^2(f) \) is \#P-hard. Now we assume \(x + y = 0 \). Next we apply Lemma D.1 and calculate the determinant of the compressed matrix for \(f \), which is a nonzero constant multiple of \(x^2 + 1 \). If \(x^2 + 1 \neq 0 \), then \(\text{Pl-}\#\text{CSP}^2(f) \) is \#P-hard by Lemma D.1. If \(x + y = 0 \) and \(x^2 + 1 = 0 \), then \(f = [1, \pm i, 1, \mp i, -1] \). We have

\[
\partial(f) = 2[1, 0, 0], \quad \partial_{[1,0,0]}(f) = [1, \pm i, 1], \quad \text{and} \quad \partial_{[1,\pm i,1]}(f) = [0, \pm 2i, 2].
\]

Then \(\text{Pl-}\#\text{CSP}^2([0, \pm 2i, 2]) \) is \#P-hard by Theorem A.21. Thus \(\text{Pl-}\#\text{CSP}^2(f) \) is \#P-hard.

Case 7: \([f_0, f_2, f_4] = [1, b, 1] \) with \(b^2 \neq 0, 1 \)

In this last case of Theorem D.5, \(f = [1, x, b, y, 1] \) and the determinant of the compress signature matrix is

\[
D = b + 2bxy - b^3 - x^2 - y^2.
\] \hspace{1cm} (D.21)

If \(D \neq 0 \), then \(\text{Pl-}\#\text{CSP}^2(f) \) is \#P-hard by Lemma D.1. In the following we assume that \(D = 0 \).

If \(x = y = 0 \), then \(b = 0 \) or \(b^2 = 1 \) by \(D = b(1 - b^2) = 0 \). This is a contradiction.

If \(x = y \neq 0 \), then \(D = (1 - b)[b(1 + b) - 2x^2] = 0 \). By \(b \neq 1 \), we have \(b(1 + b) = 2x^2 \). This implies that \(f \in \mathcal{\tilde{M}} \) by Corollary A.18.

Similarly, if \(x = -y \neq 0 \), then \(D = (1 + b)[b(1 - b) - 2x^2] = 0 \). By \(b \neq -1 \), we have \(b(1 - b) = 2x^2 \). This implies that \(f \in \mathcal{\tilde{M}} \) by Corollary A.18.

In the following, assume that \(x^2 \neq y^2 \) in addition to \(D = 0 \). In this case, the “Three Stooges” are

\[
\begin{align*}
f^\times & = [1, b, 1], \\
f^\tilde{x} & = [1 + b^2 + 2x^2, 2b^2 + x^2 + y^2, 1 + b^2 + 2y^2], \quad \text{and} \\
f^\infty & = [1 + b^2 + 2x^2, 2b + 2xy, 1 + b^2 + 2y^2].
\end{align*}
\]

We will prove that \(\text{Pl-}\#\text{CSP}(f^\times, f^\tilde{x}, f^\infty) \) is \#P-hard by showing that \(f^\times, f^\tilde{x}, f^\infty \) cannot all be in the same \(\mathcal{P} \), or \(\mathcal{A} \), or \(\mathcal{\tilde{M}} \).
By $b^2 \neq 0, 1$, we have $f^\times \notin \mathcal{P}$ by Lemma A.8.

- Suppose $b^2 \neq -1$. Then in addition to $b^2 \neq 0, 1$, we have $b^4 \neq 0, 1$. Then $f^\times \notin \mathcal{A}$ by Lemma A.8. Moreover, if $f^\times \in \hat{\mathcal{M}}$, then by Lemma A.8 and the fact that $x^2 \neq y^2$, we must have

$$1 + b^2 + 2x^2 = -(1 + b^2 + 2y^2) \quad \text{and} \quad 2b^2 + x^2 + y^2 = 0. \quad \text{(D.22)}$$

From (D.22), we get $b^2 = 1$. This is a contradiction. This implies that $f^\times, f^\bar{x}$ cannot be all in \mathcal{P}, or all in \mathcal{A}, or all in $\hat{\mathcal{M}}$ when $b^2 \neq -1$.

- Now suppose $b^2 = -1$. Then $f^\bar{x} = [2x^2, x^2 + y^2 - 2, 2y^2]$ and $f^{\infty} = 2[x^2, b + xy, y^2]$. If $f^\bar{x} \in \hat{\mathcal{M}}$, then by $x^2 \neq y^2$ and Lemma A.8, we have

$$x^2 = -y^2 \quad \text{and} \quad x^2 + y^2 - 2 = 0$$

This is a contradiction.

Finally suppose $\{f^\bar{x}, f^{\infty}\} \subset \mathcal{A}$.

- If $x^2 + y^2 = 0$, then $xy = -1$ by $b^2 = -1$ and

$$D = b + 2bxy - b^3 - x^2 - y^2 = 0.$$

Then $f^\bar{x} = 2[x^2, -1, y^2], f^{\infty} = 2[x^2, b - 1, y^2]$ both have all nonzero entries. If they are both in \mathcal{A}, the norm of their entries must be the all the same $|b - 1| = |x^2| = |-1| = 1$, by Corollary A.9. However $b - 1$ does not have norm 1 since $b^2 = -1$.

- If $x^2 + y^2 \neq 0$, then, since we also have $x^2 \neq y^2$, the first and the last entries of both $f^\bar{x}$ and f^{∞} are neither equal nor negative of each other. It follows from membership in \mathcal{A} that $x^2 + y^2 - 2 = 0$ and $b + xy = 0$ by Corollary A.9. Then by $D = b + 2bxy - b^3 - x^2 - y^2 = 0$ and $b^2 = -1$, we get a contradiction.

We have proved that $f^\times, f^\bar{x}, f^{\infty}$ cannot be all in \mathcal{P}, or all in \mathcal{A}, or all in $\hat{\mathcal{M}}$ when $b^2 = -1$.

From above, $f^\times, f^\bar{x}, f^{\infty}$ cannot be all in \mathcal{P}, or all in \mathcal{A}, or all in $\hat{\mathcal{M}}$ when $x^2 \neq y^2$ and $D = 0$.

Thus Pl-#CSP($f^\times, f^\bar{x}, f^{\infty}$) is #P-hard by Theorem A.22. So Pl-#CSP2(f) is #P-hard. This completes the proof of Case 7.

This completes the proof of Theorem D.5.

\[\square\]

E An Application of Cyclotomic Field

E.1 Dichotomy Theorem with a Signature in $\hat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$

The next three lemmas are crucial. The purpose of these lemmas is to give a similar result as Lemma C.3 when the signature set \mathcal{F} contains some $f \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$, and all signatures in \mathcal{F} have even arity. The proof uses an argument involving the degree of extension of a cyclotomic field.

We first prove that if we have an even arity signature in $\hat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$, then we can construct a binary $[1, a, 1]$ with $a^4 \notin \{0, 1\}$.

90
Lemma E.1. Let \mathcal{F} be a set of symmetric signatures containing some $f \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A})$, which has even arity. Then

$$\text{Pl-}\#\text{CSP}^2([1, a, 1], \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2(\mathcal{F})$$

for some a satisfying $a^4 \notin \{0, 1\}$.

Proof. If f has arity 2, then we are done by Lemma A.14. Thus, we assume that f has arity $2n \geq 4$. By Lemma A.14, we have either $f = [s, t]^{\otimes 2n} \pm [t, s]^{\otimes 2n}$ with $s^4 \neq t^4$ and $st \neq 0$ or $f_k = (\pm 1)^k(2n - 2k)$ up to a scalar.

For $f = [s, t]^{\otimes 2n} \pm [t, s]^{\otimes 2n}$, we have $\partial^{n-1}(f) = (s^2 + t^2)^{n-1}\{[s, t]^{\otimes 2} \pm [t, s]^{\otimes 2}\} = (s^2 + t^2)^n[1, a, 1]$, where $a = \frac{2st}{s^2 + t^2}$. Note that $s^2 + t^2 \neq 0$ and $a \neq 0, \pm 1$. If $a \neq \pm i$, then we are done. Suppose $a = \pm i$. Then $g = \partial^{n-2}(f) = (s^2 + t^2)^{n-2}\{[s, t]^{\otimes 4} \pm [t, s]^{\otimes 4}\}$. A simple calculation shows that $g = -2s^2t^2(s^2 + t^2)^{n-2}[3, \pm i, -1, \pm i, 3]$. Consider the gadget in Figure 31. We assign $[3, \pm i, -1, \pm i, 3]$ to the circle vertices and $=6$ to the square vertex. Its signature is $[8, \pm 6i, 8]$, so we are done.

For $f = [s, t]^{\otimes 2n} - [t, s]^{\otimes 2n}$, we have $\partial^{n-1}(f) = (s^2 + t^2)^{n-1}\{[s, t]^{\otimes 2} - [t, s]^{\otimes 2}\} = \lambda[1, 0, -1]$, where $\lambda = (s^2 + t^2)^{n-1}(s^2 - t^2) \neq 0$. For $2n \geq 6$, we have $\partial_{[0, 0, -1]}(f) = (s^2 - t^2)\{[s, t]^{\otimes 2n-2} + [t, s]^{\otimes 2n-2}\}$ and we are done by the proof of the previous case, as $2n - 2 \geq 4$. For $2n = 4$, we have $\partial_{[1, 0, -1]}(f) = (s^2 - t^2)\{[s, t]^{\otimes 2} + [t, s]^{\otimes 2}\} = (s^4 - t^4)[1, a, 1]$, where $a = \frac{2st}{s^2 + t^2} \neq 0, \pm 1$. If $a \neq \pm i$, then we are done. Suppose $a = \pm i$, then a simple calculation shows that f is a nonzero multiple of $[2i, \mp 1, 0, \pm 1, -2i]$. (One can verify that $\frac{s^2 - t^2}{s^2 + t^2} = \frac{st}{s^2 + t^2} = \frac{a}{2} = \pm \frac{i}{2}$.) Consider the gadget in Figure 31. We assign $[2i, \mp 1, 0, \pm 1, -2i]$ to the circle vertices and $=6$ to the square vertex. The signature of this gadget is $[-3, \mp 4i, -3]$, so we are done.

For $f_k = (\pm 1)^k(2n - 2k)$, we have $\partial^{n-2}(f) = 2^{n-1}[2, \pm 1, 0, \mp 1, -2]$. Consider the gadget in Figure 31. We assign $[2, \pm 1, 0, \mp 1, -2]$ to the circle vertices and $=6$ to the square vertex. The signature of this gadget is $[5, \pm 4, 5]$, so we are done.

The next lemma shows that if we have $[1, a, 1]$ with $a^4 \neq 0, 1$, then we can obtain $[1, 1]^{\otimes 2}$ by interpolation.

Lemma E.2. For any signature set \mathcal{F} and any $a^4 \notin \{0, 1\}$,

$$\text{Pl-}\#\text{CSP}^2([1, 1]^{\otimes 2} \cup \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2([1, a, 1] \cup \mathcal{F}).$$

Proof. The eigenvalues of $\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ are $1 + b$ and $1 - b$ respectively. If we have a signature $[1, b, 1]$, for some $b \neq 1$, such that ratio $\frac{1+b}{1-b}$ of eigenvalues is not a root of unity, then we can interpolate any binary signature $[1, x, 1]$ for $x \in \mathcal{C}$. In particular, we could interpolate the desired $[1, 1]^{\otimes 2}$.

Indeed, let Ω be an instance of Pl-#CSP$^2([1, x, 1] \cup \mathcal{F})$ in which $[1, x, 1]$ occurs n times. Write $[\frac{x}{2} \frac{1}{2}]$ as $H \begin{bmatrix} 1 + x & 0 \\ 0 & 1 - x \end{bmatrix} H$, where $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. We can stratify the partition function value on Ω as $Z(\Omega) = \sum_{\ell=1}^{n} c_\ell (1 + x)\ell (1 - x)^{n-\ell}$, where c_ℓ is the sum, over all assignments that assign 00 to ℓ copies of $\begin{bmatrix} 1+x & 0 \\ 0 & 1 - x \end{bmatrix}$ and 11 to the remaining $n - \ell$ copies, of the product of evaluations of all other signatures from \mathcal{F} and those copies of H. If we construct a sequence Ω_k of instances of Pl-#CSP$^2([1, b, 1] \cup \mathcal{F})$, where we replace each occurrence of $[1, x, 1]$ by a chain of k linked copies
of $[1, b, 1]$, then since $[1/b]^k = H \left[\begin{array}{cc} 1+b^k & 0 \\ 0 & 1-b^k \end{array} \right] H$, we have $Z(\Omega_k) = (1 - b)^kn \sum_{\ell=0}^{n} c\ell \left(\frac{1+b^k}{1-a^k} \right)^{\ell}$, for $0 \leq k \leq n$. This is a Vandermonde system of full rank, and we can solve for all $c\ell$ and find the value $Z(\Omega)$.

The simple gadget with two copies of $=2k$ connected by $2k-1$ parallel copies of $[1, a, 1]$ has signature $[1, a^{2k-1}, 1]$. Our key claim is that there exists a $k \geq 1$, depending only on a, such that $\frac{1+a^{2k-1}}{1-a^{2k-1}}$ is not a root of unity. Then we are done by the interpolation given above.

For a contradiction, assume that $\frac{1+a^{2k-1}}{1-a^{2k-1}}$ is a root of unity for all $k \geq 1$. For $k=1$, $\frac{1+a}{1-a}$ is some root of unity $e^{2\pi ij/m}$, where $\gcd(j, m) = 1$. Then $a \in \Phi_m = \mathbb{Q}(e^{2\pi i/m})$, the m-th cyclotomic field. Therefore $a^{2k-1} \in \Phi_m$ as well for all $k \geq 1$. Furthermore, $|\frac{1+a}{1-a}| = 1$, so a is purely imaginary, i.e. $a = ih$ for some real $h \notin \{0, \pm 1\}$ since $a^4 \notin \{0, 1\}$. First we consider the case $0 < |h| < 1$. Then $a^{2k-1} = \pm ih^{2k-1}$ and $\lim_{k \to \infty} h^{2k-1} = 0$.

For all $k \geq 1$, $\frac{1+a^{2k-1}}{1-a^{2k-1}}$ is some root of unity $e^{2\pi iJ/M}$ (in which J and M depend on k), where $0 < |J| < M/2$ with $\gcd(J, M) = 1$. Then $e^{2\pi iJ/M} \in \Phi_m$ as well, so $\Phi_M \subseteq \Phi_m$. Note that $|\tan(\pi J/M)| = |h^{2k-1}|$. Hence $|h^{2k-1}| \geq \tan(\pi J/M)$. Thus $M \geq \pi |h^{2k-1}|$.

However, the M-th cyclotomic field Φ_M has degree of extension $[\mathbb{Q}(e^{2\pi i/M}) : \mathbb{Q}] = \varphi(M)$, where φ is the Euler totient function. We have a crude estimate $(\varphi(M))^2 \geq M/2$, which is obvious by considering each prime dividing M. Then it follows that $\lim_{M \to \infty} \varphi(M) = \infty$, which contradicts $\varphi(M) \leq \varphi(m) < \infty$.

The remaining case $|h| > 1$ can be handled similarly. In fact, if $|h^{2k-1}|$ is large, then the angle $\tan^{-1}(|h^{2k-1}|)$ is close (but unequal) to $\pi/2$. Then the angle of $\left(\frac{1+a^{2k-1}}{1-a^{2k-1}} \right)^2$ is close (but unequal) to $0 \mod 2\pi$.

Combining Lemma B.3, Lemma E.1 and Lemma E.2, we have proved the following.

Lemma E.3. Let \mathcal{F} be a set of even-arity signatures containing f. If $f \in \widehat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$, then Pl-$\mathsf{CSP}^2(\mathcal{F})$ is $\#P$-hard unless $\mathcal{F} \subseteq \widehat{\mathcal{M}}$.

E.2 Dichotomy Theorem with a Signature in $\widehat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$

We would like to prove a corresponding statement to Lemma E.3 after replacing the condition $f \in \widehat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$ by $f \in \widehat{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$. This corresponding statement is indeed true and is implied by Theorem A.2, the final dichotomy theorem for Pl-CSP^2. However, at this point leading up to the proof of Theorem A.2, we are not able to prove it. Instead, we prove a weaker version, Lemma E.7, in which f is assisted by a binary signature other than a multiple of $[1, 0, 1]$.

Remark 5. Here we explain some of the difficulties in the proof caused by structural complications of the signatures involved.

When we prove the No-Mixing statements for $\widehat{\mathcal{M}}$ the crucial step is the ability to construct $[1, \omega]^{\otimes 2}$ with $\omega \neq 0$ in the Pl-CSP^2 setting (cf. Lemma E.1 and Lemma E.2). This is the key, and the only known method, for us to leverage the existing dichotomy for Pl-CSP (cf. Lemma B.3). Then in a similar spirit, to prove the No-Mixing statements for $\widehat{\mathcal{M}}$, we would like to be able to construct $[1, \omega]^{\otimes 2}$ as well.

A signature $f = [f_0, \ldots, f_n]$ is called an odd signature if $f_{2k} = 0$ for all $k \geq 0$, and an even signature if $f_{2k+1} = 0$ for all $k \geq 0$.

In any \mathcal{F}-gate H, if every signature in \mathcal{F} satisfies parity constraints, then the signature of H also satisfies parity constraints. In fact the parity of the signature of H is the same as the parity of the
number of occurrences of odd signatures of F in H. To see this, suppose σ is a $\{0,1\}$-assignment to all the edges of H, including internal and external edges, that has a nonzero evaluation on H. By parity constraints, each odd (resp. even) signature appearing in H has an odd (resp. even) number of incident edges assigned 1. Adding up all these numbers mod 2, noting that each internal edge of H assigned 1 contributes 2 to the sum while each external edge of H assigned 1 contributes 1, we get $N \equiv 2X + Y \equiv Y \pmod{2}$, where N is the number of occurrences of odd signatures of F in H, and X (resp. Y) is the number of internal (resp. external) edges assigned 1 by σ. Hence H has the same parity as N.

For any signature of the form $f = [s, ti]^\otimes m \pm [t, si]^\otimes m$, or $f_k = (\pm i)^k(m - 2k)$, for any arity m, $(Z^{-1})^\otimes m f$ satisfies the parity constraints, where $Z = \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right]$. In fact for f of the first type, $(Z^{-1})^\otimes m f = [u, v]^\otimes m \pm [u, -v]^\otimes m$ for $u = s + t$ and $v = s - t$, and for f of the second type, $(Z^{-1})^\otimes m f = 2^m[0, 1, 0, \ldots, 0]$ or $2^m[0, \ldots, 0, 1, 0]$. Note that

$$\left[\begin{array}{c} 1 \\ 1 \\ i \\ -i \end{array} \right]^\otimes m [0, 1, 0, \ldots, 0] = \text{Sym}^{m-1}(\left[\begin{array}{c} 1 \\ 1 \\ i \\ -i \end{array} \right])$$

has its k-th term $i^k(m - 2k)$. Similarly, $\left[\begin{array}{c} 1 \\ 1 \\ i \\ -i \end{array} \right]^\otimes m [0, \ldots, 0, 1, 0]$ has its k-th term $(-i)^k(m - 2k)$.

Under the holographic transformation Z, we have

$$\text{Pl-}\#\text{CSP}^2(f) \equiv_T \text{Pl-Holant}([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid f),$$

(E.23)

where $\hat{f} = (Z^{-1})^\otimes m f$, and $\frac{1}{2}[0, 1, 0, 1] = (=2)Z^2$, $\frac{1}{2\pi}[1, 0, 1, 0, 1] = (=4)Z^4$, etc. Notice that for the signatures $(=2n)Z^{2n}$, if the arity $2n \equiv 2 \pmod{4}$ then the signature is odd, and if $2n \equiv 0 \pmod{4}$ then the signature is even.

Every signature of the form $[s, ti]^\otimes m + [t, si]^\otimes m$ is even, every signature of the form $[s, ti]^\otimes m - [t, si]^\otimes m$ is odd, and for even arity $2n$ the signatures $[0, 1, 0, \ldots, 0]$ and $[1, 0, \ldots, 1, 0]$ are both odd.

Thus, if we focus on signatures $f = [s, ti]^\otimes 2n + [t, si]^\otimes 2n$ with arity $2n \equiv 2 \pmod{4}$, or $f = [s, ti]^\otimes 2n - [t, si]^\otimes 2n$ with arity $2n \equiv 2 \pmod{4}$, or $f_k = (\pm i)^k(2n - 2k)$ with arity $2n \equiv 2 \pmod{4}$, then the following property holds for all the signatures in the bipartite Pl-Holant problem in (E.23):

All signatures of arity $2n \equiv 2 \pmod{4}$ satisfy odd parity and all signatures of arity $2n \equiv 0 \pmod{4}$ satisfy even parity.

It follows that, for such f, any gadget constructed from (E.23) has the same parity as the number of occurrences of signatures of arity $2n \equiv 2 \pmod{4}$.

Furthermore, in a bipartite gadget construction in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid f), if the resulting signature of the gadget is binary, the number of occurrences of signatures of arity $2n \equiv 2 \pmod{4}$ in this gadget must be odd. Indeed let N_0 (resp. N_2) denote the number of occurrences of signatures of arity $2n \equiv 0 \pmod{4}$ (resp. $2n \equiv 2 \pmod{4}$) in this bipartite gadget, and we add up the arities of all signatures modulo 4, we get $0N_0 + 2N_2 \equiv 2N_1 + 2 \pmod{4}$, where N_1 is the number of internal edges in the bipartite gadget, and the additive term 2 is because the gadget is a binary gadget. Thus $N_2 \equiv N_1 + 1 \pmod{2}$. On the other hand, since the gadget is bipartite, N_1 is the sum of all arities of signatures from RHS, and minus 2 if the external 2 edges come from the RHS. As all signatures in this gadget have even arity, $N_1 \equiv 0 \pmod{2}$. Hence $N_2 \equiv 1 \pmod{2}$.

This implies that any binary signature constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid f) must have odd parity, i.e., they are all of the form $\lambda[0, 1, 0]$. Thus, before the Z-transformation, one can only construct binary signatures of the form $\frac{1}{2}[1, 0, 1] = \lambda Z^2[0, 1, 0]$ in Pl-\#CSP(f) by gadget construction. This can be verified as $\left[\begin{array}{c} 1 \\ 1 \\ i \\ -i \end{array} \right] \text{Sym}^1(\left[\begin{array}{c} 1 \\ 1 \\ i \\ -i \end{array} \right]) = 2 \left[\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right]$. 93
In particular one cannot construct $[1, \omega]^{\otimes 2}$ in $\text{Pl-}\#\text{CSP}^2(f)$ by gadget construction. This explains the extra mile we have to travel in this proof.

As indicated, therefore, we prove a weaker version of Lemma E.3 in this subsection, namely Lemma E.7, in which f is assisted by a binary signature other than a multiple of $[1,0,1]$.

We begin with the following lemma.

Lemma E.4. Let \mathcal{F} be any set of symmetric signatures of even arities, and suppose \mathcal{F} contains signatures f and g, where $f \in \mathcal{M}^1 \setminus (\mathcal{P} \cup \mathcal{A})$, and $g = [g_0, g_1, \ldots, g_{2n}]$ and there exists a positive integer s such that $g_0^s = -g_2^s \neq 0$. Then either $\mathcal{F} \subseteq \mathcal{M}^1$ or $\text{Pl-}\#\text{CSP}^2(\mathcal{F})$ is $\#P$-hard.

Proof. Let $E_{2k}(-1) = [1,0,\ldots,0,-1]$ have arity $2k$ and $\mathcal{E}(-1) = \{E_{2k}(-1) \mid k \geq 1\}$. Firstly, by our calculus we have $\partial_g^{4}(=2n+2k) = g_2^s E_{2k}(-1)$ on LHS for $k \geq 1$. Thus we have

$$\text{Pl-Holant}(\mathcal{E}(-1) \cup \mathcal{E}Q_2 \mid \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2(\mathcal{F}).$$

Under a holographic transformation by $T^{-1} = [1^1_0 0^1_0]$, the set $\mathcal{E}(-1) \cup \mathcal{E}Q_2$ is set-wise invariant. Indeed, for all $k \geq 1$, signatures of arity $4k$ in $\mathcal{E}(-1) \cup \mathcal{E}Q_2$ are pointwise fixed, and signatures of arity $4k - 2$ in $\mathcal{E}(-1)$ and in $\mathcal{E}Q_2$ are interchanged. Thus,

$$\text{Pl-}\#\text{CSP}^2(T\mathcal{F}) \leq_T \text{Pl-Holant}(\mathcal{E}(-1) \cup \mathcal{E}Q_2 \mid T\mathcal{F}) \equiv_T \text{Pl-Holant}(\mathcal{E}(-1) \cup \mathcal{E}Q_2 \mid \mathcal{F}).$$

Note that $T^{\otimes 2n} f \in T\mathcal{F}$ is in $\mathcal{M}^1 \setminus (\mathcal{P} \cup \mathcal{A})$. Thus either $T\mathcal{F} \subseteq \mathcal{M}^1$ or $\text{Pl-}\#\text{CSP}^2(T\mathcal{F})$ is $\#P$-hard by Lemma E.3. Note that $T\mathcal{F} \subseteq \mathcal{M}^1$ iff $\mathcal{F} \subseteq \mathcal{M}^1$. Thus either $\mathcal{F} \subseteq \mathcal{M}^1$ or $\text{Pl-}\#\text{CSP}^2(\mathcal{F})$ is $\#P$-hard.

The next two lemmas show that if we have a signature in $\mathcal{M}^1 \setminus (\mathcal{P} \cup \mathcal{A})$ and a binary signature that is not a multiple of $[1,0,1]$, then we have the same statement for \mathcal{M}^1, as Lemma E.3 is for \mathcal{M}. This will be stated as Lemma E.7. Note that if $f \in \mathcal{M}^1 \setminus (\mathcal{P} \cup \mathcal{A})$ is a binary signature, then f takes the form $[1, b, -1]$ by Lemma A.14, and this case is covered by Lemma E.4, where f also plays the role of g. Thus we assume $f \in \mathcal{M}^1 \setminus (\mathcal{P} \cup \mathcal{A})$ has arity ≥ 4. By Lemma A.14, such a signature f has two forms. Lemma E.5 and E.6 handle these two cases respectively.

Lemma E.5. Let \mathcal{F} be any set of symmetric signatures of even arities, and suppose \mathcal{F} contains signatures f and h, where $f = [s,ti]^{\otimes 2n} \pm [t,si]^{\otimes 2n}$ with $2n \geq 4$, $s^4 \neq t^4$ and $st \neq 0$, and h is any nonzero binary signature other than $\lambda[1,0,1]$. Then either $\mathcal{F} \subseteq \mathcal{M}^1$ or $\text{Pl-}\#\text{CSP}^2(\mathcal{F})$ is $\#P$-hard.

Proof. Firstly, by our calculus, ignoring the nonzero factor $(s^2 - t^2)^{n-2}$ in $\partial^{n-2}(f)$, we have $g = [s,ti]^{\otimes 4} \pm (-1)^{n-2}[t,si]^{\otimes 4}$. If $g = [s,ti]^{\otimes 4} - [t,si]^{\otimes 4}$, then we have $\partial(g) = (s^2 - t^4)\{[s,ti]^{\otimes 2} + [t,si]^{\otimes 2}\} = (s^2 - t^4)(s^2 + t^2, 2sti, -(s^2 + t^2))$ and we are done by Lemma E.4.

Suppose $g = [s,ti]^{\otimes 4} + [t,si]^{\otimes 4}$, and we also have $h \neq \lambda[1,0,1]$. If $h \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$, then $\text{Pl-}\#\text{CSP}^2(\mathcal{F})$ is $\#P$-hard by Theorem A.21'. Otherwise, by Lemma A.8, the possibilities for h, after normalizing, are

$$[a, b]^{\otimes 2}, [1, 0, x], [0, 1, 0], [1, \rho, -\rho^2], [1, \alpha, -\alpha^2], [1, u, 1], \text{ and } [1, v, -1],$$

where $x \notin \{0, 1\}$, $\rho^4 = 1$, $\alpha^4 = -1$, $u^4 \notin \{0, 1\}$, and $v^4 \notin \{0, 1\}$.

- If $h = [a, b]^{\otimes 2}$ with $ab \neq 0$, then we are done by Lemma B.3.
• If \(h \in \{[1, 0, -1], [1, 0, \pm i], [1, \pm 1, -1], [1, \alpha, -\alpha^2], [1, v, -1]\} \), then we are done by Lemma E.4.
• If \(h = [1, u, 1] \) with \(u^4 \neq 0, 1 \), then \(h \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \) by Lemma A.14. Thus we are done by Lemma E.3.

The remaining cases are \(h = [1, 0, 0], [0, 1, 0], [1, 0, x], [0, 1, 0], \) or \([1, \pm i, 1]\), where \(x^4 \neq 0, 1 \).

• If \(h = [1, 0, x] \) with \(x^4 \neq 0, 1 \), then by taking 4 copies of \(h \) and connecting one input of \(h \) to each edge of \(g \), we have \(\hat{g} = [x, x, x, x] \odot 2^n g = [s, xti] \odot 4 + [t, xsi] \odot 4 \). The signature \(\hat{g} \) is non-degenerate, has arity 4, and satisfies a second recurrence relation. The eigenvalues of the recurrence relation are \(\frac{\pm 1}{2} \) and \(\frac{\pm i}{2} \). By the trace and product, \(\hat{g} \) has type \((\mp x^2, \frac{\pm 1}{2} + \frac{\pm i}{2}, 1) \).

Thus \(\hat{g} \not\in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \) by Lemma A.11, since \((-x^2)^2 \neq 0, 1 \) and \(\frac{\pm 1}{2} + \frac{\pm i}{2} \neq 0 \). So \(\text{Pl-}\#\text{CSP}^2(\hat{g}) \) is \#P-hard by Theorem D.5. Thus \(\text{Pl-}\#\text{CSP}^2(F) \) is \#P-hard.

• If \(h = [0, 1, 0], \) then \(\partial_h(g) = 2sti\{[s, ti] \odot 2 + [t, si] \odot 2\} = 2sti[s^2 + t^2, 2sti, -(s^2 + t^2)] \). Then we are done by Lemma E.4.

• If \(h = [1, \pm i, 1] \), by connecting two copies of \([1, \pm i, 1] \) we have \(\pm 2i[0, 1, 0], \) as \(\left[\frac{1}{\pm i} \right]^2 = [\frac{\pm 1}{\pm 2i}, \frac{\pm 1}{\pm 2i}, \frac{\pm 1}{\pm 2i}] \). Then we are done by the previous case.

• If \(h = [1, 0, 0] \odot 2 \), then we have \(g' = \partial_h(g) = s^2[s, ti] \odot 2 + t^2[t, si] \odot 2 = [s^4 + t^4, (s^2 + t^2)sti, -s^2t^2] \).

We claim that \(g' \not\in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \).

• If \(g' \in \mathcal{P} \), then \(g' \) is degenerate by \((s^2 + t^2)sti \neq 0 \) and \(-2s^2t^2 \neq 0 \). So \(2s^2t^2(s^4 + t^4) = -(s^2 + t^2)^2s^2t^2 \). Thus \(st = 0 \) or \((s^2 + t^2)^2 = 0 \). This is a contradiction.

• If \(g' \in \mathcal{A} \setminus \mathcal{P} \), then \(g' = [1, \rho, -\rho^2] \) up to a scalar by Corollary A.9, where \(\rho^2 = 1 \). By \(\rho^2 = \pm 1 \), we have \(s^4 + t^4 \leq \pm 2s^2t^2 \). This contradicts \(s^4 \neq t^4 \).

• If \(g' \in \mathcal{A} \setminus \mathcal{P} \), then \(g' = [1, \alpha, -\alpha^2] \) up to a scalar by Corollary A.9, where \(\alpha^4 = 1 \). Thus \(2s^2t^2(s^4 + t^4) = -(s^2 + t^2)^2s^2t^2 \). Then, by \(st = 0 \), we have \(3(s^4 + t^4) = -2s^2t^2 \neq 0 \), and so \(s^4 + t^4 \neq \pm 2s^2t^2 \). This implies that the norms of two nonzero entries of \(g' \) are not equal. This contradicts the form \(g' = \lambda[1, \alpha, -\alpha^2] \).

• Since \(s^4 \neq t^4 \) we have \(s^4 + t^4 \neq \pm 2s^2t^2 \). Hence \(g' \not\in \mathcal{M} \) by Corollary A.9.

Then by Theorem A.21', \(\text{Pl-}\#\text{CSP}^2(g') \) is \#P-hard. Thus \(\text{Pl-}\#\text{CSP}^2(F) \) is \#P-hard.

• If \(h = [0, 1, 0] \odot 2 \), then we apply the transformation \(\left[\frac{1}{1} \right] \) and are done by the previous case.

\[\text{Lemma E.6.} \text{ Let } F \text{ be any set of symmetric signatures of even arities, and suppose } F \text{ contains signatures } f \text{ and } h, \text{ where } f \text{ has arity } 2n \geq 4 \text{ and } f_k = (\pm i)^k(2n - 2k), \text{ and } h \text{ is any nonzero binary signature other than } \lambda[1, 0, 1]. \text{ Then either } F \subseteq \mathcal{M} \text{ or } \text{Pl-}\#\text{CSP}^2(F) \text{ is } \#\text{P-hard.} \]

\[\text{Proof.} \text{ If } 2n \equiv 0 \pmod{4}, \text{ then } f_0 = -f_{2n} = 2n. \text{ Thus we are done by Lemma E.4.} \]

Suppose \(2n \equiv 2 \pmod{4} \). Thus \(n \geq 3 \) and we have \(g = \partial_{x^{-1}}(f) \) of arity 6. Ignoring the nonzero factor \(2^{n-2} \), we have \(g_k = (\pm i)^k(6 - 2k) \). Removing another factor 2, we have \(g = [3, \pm 2i, -1, 0, -1, \mp 2i, 3] \).

We also have a nonzero binary signature \(h \neq \lambda[1, 0, 1] \). If \(h \not\in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \), then \(\text{Pl-}\#\text{CSP}^2(F) \) is \#P-hard by Theorem A.21'. Otherwise (similar to the proof of Lemma E.5), by Lemma A.8, the possibilities for \(h \), after normalizing, are \([a, b] \odot 2, [1, 0, x], [0, 1, 0], [1, \rho, -\rho^2], [1, \alpha, -\alpha^2], [1, u, 1], \text{ and } [1, v, -1], \]

where \(x \not\in \{0, 1\}, \rho^4 = 1, \alpha^4 = -1, u^4 \not\in \{0, 1\}, \text{ and } v^4 \not\in \{0, 1\} \). If \(h = [1, 0, -1], [1, 0, \pm i], [1, \pm 1, -1], [1, \alpha, -\alpha^2], [1, v, -1], [1, u, 1], \) or \([a, b] \odot 2 \) with \(ab \neq 0 \), then we are done with the same proof as in Lemma E.5.

95
The remaining cases are $h = [1, 0]^2, [1, 1]^2, [1, 0, x], [0, 1, 0]$, or $[1, \pm i, 1]$, where $x^4 \notin \{0, 1\}$.

- For $h = [1, 0, x]$ with $x^4 \notin \{0, 1\}$, we have $g' = \partial_h(g) = [3 - x, \pm 2i, -1 - x, \mp 2xi, -1 + 3x]$. The signature g' is non-degenerate because $(\pm 2i)(\mp 2xi) \neq (-1 - x)^2$ by $x \neq 1$. Moreover, g' satisfies the second recurrence relation with type $\{1, \mp 2i, -1\}$. Thus $g' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{H}$ by Lemma A.11. Moreover, by $x \neq \pm 1$, we have $3 - x \neq \pm (-1 + 3x)$, so $g' \notin \mathcal{H}$ by Corollary A.17. So Pl-#CSP$^2(g')$ is #P-hard by Theorem D.5. Thus Pl-#CSP$^2(\mathcal{F})$ is #P-hard.

- If $h = [0, 1, 0]$, then $\partial_h(g) = [\pm 2i, -1, 0, -1, \mp 2i]$. Then we are done by Lemma E.4.

- If $h = [1, \pm i, 1]$, by connecting two copies of $[1, \pm i, 1]$ we have $\pm 2i[0, 1, 0]$. Then we are done by the proof of the previous case.

- If $h = [1, 0]^2 \otimes 2$, then we have $g'' = \partial_h^2(g) = [3, \pm 2i, -1]$. By Corollary A.9, we have $g'' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{H}$. Then by Theorem A.21', Pl-#CSP$^2(g'')$ is #P-hard. Thus Pl-#CSP$^2(\mathcal{F})$ is #P-hard.

- If $h = [0, 1]^2 \otimes 2$, we apply the transformation $[0 1 0]$ and it follows from the previous case.

\textbf{Lemma E.7.} Let \mathcal{F} be any set of symmetric signatures of even arities, and suppose \mathcal{F} contains signatures f and h, where $f \notin \mathcal{H} \setminus (\mathcal{P} \cup \mathcal{A})$, and h is any nonzero binary signature other than $\lambda[1, 0, 1]$. Then either $\mathcal{F} \subseteq \mathcal{H}$ or Pl-#CSP$^2(\mathcal{F})$ is #P-hard.

\textbf{Proof.} If f has arity 2, then $f = [1, b, -1]$ by Lemma A.14. Then we are done by Lemma E.4.

If f has arity $2n \geq 4$, then by Lemma A.14, we have $f = [s, ti] \otimes 2n \pm [t, si] \otimes 2n$ with $st \neq 0$, $s^4 \neq t^4$, or $f_k = (\pm i)^k(2n - 2k)$ up to a scalar. These two cases are proved in Lemma E.5, and E.6 respectively.

\textbf{Remark 6.} Lemma E.3 and Lemma E.7 will substantially simplify the succeeding proof for No-Mixing Lemmas concerning \mathcal{H} and \mathcal{H}^1. Thus it is natural that we wish to do the same for \mathcal{A}, and that means we would like to construct $[1, \omega]^2$ with $\omega \neq 0$ in Pl-#CSP$^2(f)$ for $f \in \mathcal{A}$. Unfortunately, for most cases of $f \in \mathcal{A}$ this is impossible.

First, for a signature $f \in \mathcal{A}$, if f satisfies parity constraints, then all signatures constructed in Pl-#CSP$^2(f)$ satisfy parity constraints, since all \mathcal{Q}_2 also satisfy parity constraints. So it is impossible to construct $[1, \omega]^2$ with $\omega \neq 0$ in Pl-#CSP$^2(f)$.

If a signature $f \in \mathcal{A}$ is degenerate and does not satisfy parity constraints, then $f = [1, \pm i]^2 \otimes 2n$ or $f = [1, \pm i]^2 \otimes 2n$ up to a scalar. For $f = [1, \pm 1]^2 \otimes 2n$, we have $\partial_{-1}^n(f) = 2^{n-1}[1, \pm 1]^2$. For $f = [1, \pm i]^2 \otimes 2n$ and $2n \equiv 2 \mod 4$, we have $\partial_{-1}^n(f) = 2^{n-1}[1, \pm i]^2$. Thus in these two particular cases we can get $[1, \omega]^2$ with $\omega \neq 0$. We will show that these are the only cases that this is possible.

Let $f = [1, \pm i]^2 \otimes 2n$ and $2n \equiv 0 \mod 4$. After a holographic transformation by $Z = [\frac{1}{2} \frac{1}{2}]$, we have

$$\text{Pl-#CSP}^2(f) \equiv_T \text{Pl-Holant}([0, 1, 0], [1, 0, 1, 0], \ldots \mid \hat{f}),$$

where $\hat{f} = (Z^{-1}) \otimes 2n f$, i.e., $\hat{f} = [1, 0]^2 \otimes 2n$ or $\hat{f} = [0, 1]^2 \otimes 2n$. In Pl-Holant([0, 1, 0], [1, 0, 1, 0], \ldots \mid \hat{f})$, all signatures of arity $\equiv 0 \mod 4$ have even parity and all signatures of arity $\equiv 2 \mod 4$ have odd parity. By the same proof in Remark 6, all nonzero binary signatures that can be constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0], \ldots \mid \hat{f}) are multiples of $[0, 1, 0]$. In terms of signatures that can be constructed before the Z-transformation, this is equivalent to say that all nonzero binary signatures that can be constructed in Pl-#CSP$^2(f)$ must be multiples of $[1, 0, 1]$. In particular, one cannot construct $[1, \omega]^2$ with $\omega \neq 0$ in Pl-#CSP$^2(f)$.
If \(f \in \mathcal{A} \) is non-degenerate and does not satisfy parity constraints, then \(f = [1, i]^{\otimes 2n} \pm i [1, -i]^{\otimes 2n} \) or \(f = [1, 1]^{\otimes 2n} \pm i [1, -1]^{\otimes 2n} \). If we can construct \([1, \omega]^{\otimes 2} \) with \(\omega \neq 0 \) in \(\text{Pl-#CSP}^2(f) \), then \([1, \omega]^{\otimes 2}\) must be in \(\mathcal{A} \). Thus \([1, \omega]^{\otimes 2} = [1, \pm 1]^{\otimes 2} \) or \([1, \pm i]^{\otimes 2}\).

For \(f = [1, i]^{\otimes 2n} \pm i [1, -i]^{\otimes 2n} \), \(f = [1, \pm 1, -1, \mp 1, \ldots, (-1)^n] \) up to the scalar \(1 \pm i \). In any construction in \(\text{Pl-#CSP}^2(f) \), if we ignore a global scalar factor which is a power of \(1 \pm i \), all entries of the constructed signature are real numbers. Thus the ratio of any two nonzero entries is a real number. But this is not the case with \([1, \pm i]^{\otimes 2}\). This implies that we cannot construct \([1, \pm i]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction.

Moreover, we claim that it is impossible to get \([1, \pm 1]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction. After a holographic transformation by \(Z = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \), we have

\[
\text{Pl-#CSP}^2(f) \equiv_f \text{Pl-Holant}(0, 1, 0, 1, 0, 1, \ldots | \hat{f}),
\]

where \(\hat{f} = (Z^{-1})^{\otimes 2n} f = [1, 0, \ldots, 0, \pm i] \). All signatures in \(\text{Pl-Holant}(0, 1, 0, 1, 0, 1, \ldots | \hat{f}) \) satisfy parity constraints. Thus we cannot construct \((Z^{-1})^{\otimes 2} [1, \pm 1]^{\otimes 2} = \mp \frac{i}{2} [1, \pm i]^{\otimes 2}\), which does not satisfy parity constraints, by gadget construction. Thus we cannot get \([1, \pm 1]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction.

For \(f = [1, 1]^{\otimes 2n} \pm i [1, -1]^{\otimes 2n} \), after a holographic transformation by \([1 \ 0]_i \), we can use the same argument as the previous case for \([1, \pm i]^{\otimes 2}\) to prove that we cannot get \([1, \pm 1]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction. Moreover, it is also impossible to get \([1, \pm i]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction. After a holographic transformation by \(H = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \), we have

\[
\text{Pl-#CSP}^2(f) \equiv_f \text{Pl-Holant}(1, 0, 1, 0, 1, 0, 1, \ldots | \hat{f}),
\]

where \(\hat{f} = (H^{-1})^{\otimes 2n} f = [1, 0, \ldots, 0, \pm i] \). All signatures in \(\text{Pl-Holant}(1, 0, 1, 1, 0, 1, 0, 1, \ldots | \hat{f}) \) satisfy parity constraints. Thus we cannot construct \((H^{-1})^{\otimes 2} [1, \pm i]^{\otimes 2} = \mp \frac{i}{2} [1, \pm i]^{\otimes 2}\) by gadget construction. This implies that we cannot get \([1, \pm i]^{\otimes 2}\) in \(\text{Pl-#CSP}^2(f) \) by gadget construction.

F No-Mixing of a Pair of Signatures of Even Arity

The general theme of this section and the next is that, for planar \(\text{Pl-#CSP}^2 \) problems, various tractable signatures of different types cannot mix. In these two sections, all signatures are of even arity. In this section we prove a No-Mixing theorem for a pair of signatures. This will be extended to a set of signatures in the next section.

The general form of the No-Mixing theorem to be proved in this section is as follows: Let \(f \) and \(g \) be two symmetric signatures of even arity. Suppose for some \(1 \leq j < i \leq 5 \), \(f \in S_j \setminus S_i \) and \(g \in S_j \setminus S_i \), and for all \(1 \leq k \leq 5 \), \(\{f, g\} \not\subseteq S_k \). Then \(\text{Pl-#CSP}^2(f, g) \) is \#P-hard. We will call such a statement No-Mixing-(\(i, j\)).

It is easy to see that, with possibly switching the names \(f \) and \(g \), the condition stated above is equivalent to the following assumption:

\[
\{f, g\} \subset \bigcup_{k=1}^{5} S_k \text{ but for any } 1 \leq k \leq 5, \text{ we have } \{f, g\} \not\subseteq S_k.
\]

However under this assumption, we make the following observation that any index \(i \) for which \(f \in S_i \) can be chosen as the distinguishing index:

```
If \( f \in S_i \) for some \( i \), then there exists some \( j \neq i \) such that \( g \in S_j \setminus S_i \) and \( f \in S_i \setminus S_j \).

In particular, neither \( f \) nor \( g \) can be identically 0.

We will prove the No-Mixing theorem-(\( i, j \)) in a reverse lexicographic order of \( (i, j) \): We order the statements as \((5, 4), (5, 3), (5, 2), (5, 1), (4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1)\). After having proved all No-Mixing theorems-(\( i', j' \)) preceding \((i, j)\) in this order, we assume there are two signatures \( f \) and \( g \) such that \( f \in S_i \setminus S_j \) and \( g \in S_j \setminus S_i \). Now we may make the following additional assumption:

\[
f, g \notin \bigcup_{i<k \leq 5} S_k \text{ and } g \notin \bigcup_{j<k \leq i} S_k.
\]

Indeed, if \( f \) or \( g \) belongs to \( S_k \) for some \( k > i \), then let \( k \) be the maximum index such that \( S_k \) contains either \( f \) or \( g \). Then by the observation above, there exists some \( j \neq k \) such that one signature belongs to \( S_j \setminus S_k \), and the other one belongs to \( S_k \setminus S_j \). By the maximality of \( k \), we have \( k > j \). Since \( k > i \) and No-Mixing theorem-(\( i, j \)) has already been proved, we have \( \text{Pl-}\#\text{CSP}^2(f, g) \) is \#P-hard. Moreover, if \( g \in \bigcup_{j<\ell \leq i} S_\ell \), then \( g \in S_i \) for some \( j < \ell < i \), as \( g \notin S_i \). Then \( f \in S_i \setminus S_\ell \) since \( \{f, g\} \nsubseteq S_\ell \), and also \( g \in S_\ell \setminus S_i \). Hence \( \text{Pl-}\#\text{CSP}^2(f, g) \) is \#P-hard by No-Mixing-(\( i, k \)) already proved.

We now proceed with this plan. We first prove a preliminary result, which allows us to construct signatures of arbitrarily high even arities from a given binary signature.

**Lemma F.1.** For any binary signature \([a, b, c]\), any integer \( k \geq 1 \), and any signature set \( \mathcal{F} \),

\[
\text{Pl-}\#\text{CSP}^2([a, b]^{\otimes 2k} + [b, c]^{\otimes 2k}, \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2([a, b, c], \mathcal{F}).
\]

**Proof.** We take \( 2k \) copies of \([a, b, c]\) and connect one input of each \([a, b, c]\) to an edge of \( =_{2k} \). The resulting signature is \([a, b]^{\otimes 2k} + [b, c]^{\otimes 2k} \), since \([a, b]^{\otimes n} ([1]^{\otimes n} + [0]^{\otimes n}) = [a]^{\otimes n} + [b]^{\otimes n} \). □

In the next lemma, we will prove that for any symmetric signature \( f \in \mathcal{A} \setminus \mathcal{P} \) of even arity, we can construct an arity 4 signature \( g \in \mathcal{A} \setminus \mathcal{P} \) in \( \text{Pl-}\#\text{CSP}^2(\{f\} \cup \mathcal{F}) \). Thus we can assume that we have an arity 4 signature \( g \in \mathcal{A} \setminus \mathcal{P} \) in the proof of the No-Mixing lemma of \( \mathcal{A} \) versus \( \mathcal{A} \), namely No-Mixing-(\( 5, 4 \)). We can prove a similar result for \( \mathcal{A}^\dagger \setminus \mathcal{P} \). This is for the proof of No-Mixing-(\( 5, 3 \)).

**Lemma F.2.** For any symmetric signature \( f \in \mathcal{A} \setminus \mathcal{P} \) (respectively, \( f \in \mathcal{A}^\dagger \setminus \mathcal{P} \)) of even arity \( 2n \geq 2 \), there exists a symmetric signature \( g \in \mathcal{A} \setminus \mathcal{P} \) (respectively, \( g \in \mathcal{A}^\dagger \setminus \mathcal{P} \)) of arity 4, such that for any set \( \mathcal{F} \),

\[
\text{Pl-}\#\text{CSP}^2(\{g\} \cup \mathcal{F}) \leq_T \text{Pl-}\#\text{CSP}^2(\{f\} \cup \mathcal{F}).
\]

**Proof.** If \( f \) has arity \( 2n = 4 \), then there is nothing to prove. Suppose \( 2n \neq 4 \). For \( f \in \mathcal{A} \setminus \mathcal{P} \), if \( 2n = 2 \), then \( f = [1, \alpha, -\alpha^2] \) by Corollary A.9. By Lemma F.1, \( g = [1, \alpha]^{\otimes 4} - [1, -\alpha]^{\otimes 4} \), since \( \alpha^4 = -1 \). Clearly \( g \in \mathcal{A}^\dagger \) and is non-degenerate. Note that \( g \) satisfies a second recurrence relation of type \((-\alpha^2, 0, 1)\), since the eigenvalues of the recurrence are \( \pm \alpha \) with trace 0 and product \(-\alpha^2 \). Thus \( g \notin \mathcal{P} \) by Lemma A.11. For \( 2n \geq 6 \), we have \( f = [1, \alpha]^{\otimes 2n} + i^r[1, -\alpha]^{\otimes 2n} \) by definitions (see Figure 35). Then by our calculus, we have \( \partial^{n-2}(f) = (1 + \alpha^2)^{n-2}[1, \alpha]^{\otimes 4} + i^r[1, -\alpha]^{\otimes 4} \). Clearly it is in \( \mathcal{A}^\dagger \) and is non-degenerate. It also has type \((-\alpha^2, 0, 1)\) and therefore it is not in \( \mathcal{P} \).
For \( f \in \mathcal{A} \setminus \mathcal{P} \), if \( 2n = 2 \), then \( f = [1, \rho, -\rho^2] \) by Corollary A.9. By Lemma F.1, we have \( g = [1, \rho]^{\otimes 4} + [1, -\rho]^{\otimes 4} \), since \( \rho^4 = 1 \). Clearly \( g \in \mathcal{A} \) and is non-degenerate. Note that \( g \) has type \( (0, 0, 1) \), since the eigenvalues of its second recurrence relation are \( \pm \rho \) with trace 0 and product \( -\rho^2 \). Thus \( g \not\in \mathcal{P} \) by Lemma A.11.

For \( 2n \geq 6 \), we have \( f = [1, \rho]^{\otimes 2} + \alpha \) by definitions (see Figure 35). If \( 2n \equiv 0 \pmod{4} \), then \( n \) is even, and we have \( \partial_{\mathcal{A}}(f) = 2^{n-2}\{[1, \rho]^{\otimes 4} + \alpha \} \) that is in \( \mathcal{A} \), and not in \( \mathcal{P} \) by its type \( (0, 0, 1) \). For \( 2n \equiv 2 \pmod{4} \), we have \( h = \partial_{\mathcal{A}}(f) = 2^{n-2}\{[1, \rho]^{\otimes 2} + \alpha \} \) that is in \( \mathcal{A} \), and not in \( \mathcal{P} \) by its type \( (0, 0, 1) \).

- If \( r = 2 \), then we have \( h = 2^{n-1}\{[1, 0, 2, 0, 0] \} \). Note that \( \partial_{\mathcal{A}}(f) = (2\rho - 1)\{[1, \rho]^{\otimes 4} + \alpha \} \) that is in \( \mathcal{A} \), and not in \( \mathcal{P} \) by its type \( (0, 0, 1) \).

- If \( r \neq 2 \), then \( h = 2^{n-1}(1 + \alpha)\{[1, 0, 2, 0, 0] \} \). Then we have \( \partial_{\mathcal{A}}(f) = (2\rho - 1)\{[1, \rho]^{\otimes 4} + \alpha \} \) that is in \( \mathcal{A} \), and not in \( \mathcal{P} \) by its type \( (0, 0, 1) \).

We note that the complication for the case \( f \in \mathcal{A} \setminus \mathcal{P} \) is unavoidable since if \( \rho = \pm i \), then \( \partial(f) = 0 \), therefore we need to use \( \partial_{\mathcal{A}}(f) \).

### F.1 Mixing with \( \mathcal{P} \)

In this subsection, we prove No-Mixing-(5, j), for \( 1 \leq j \leq 4 \), namely the No-Mixing of one signature in \( \mathcal{P} \) and another signature in a different tractable set. Thus we assume there is some \( f \in S_k = \mathcal{P} \), and some \( g \in S_k \) for some \( 1 \leq k \leq 4 \), and for no \( 1 \leq k \leq 5 \), \( \{f, g \} \subseteq S_k \). Under this assumption we show that \( \text{Pl-}\#\text{CSP}(f, g) \) is \( \#\text{P}\)-hard. As explained earlier, for \( j < k < 5 \), when we prove No-Mixing-(5, j), we can make logical use of No-Mixing-(5, k).

**Lemma F.3.** Let \( \{f, g\} \subseteq \bigcup_{k=1}^{5} S_k \) and \( \{f, g\} \not\subseteq S_j \) for every \( 1 \leq j \leq 5 \). Assume that \( f \in \mathcal{P} \), then \( \text{Pl-}\#\text{CSP}(f, g) \) is \( \#\text{P}\)-hard.

**Proof.** As explained earlier, since \( f \in \mathcal{P} \), there exists some \( 1 \leq k \leq 4 \), such that \( g \in S_k \setminus \mathcal{P} \) and \( f \in \mathcal{P} \setminus S_k \). Since \( \beta \neq 0 \) and \( \beta \neq 0 \), we know that \( f \) is not a multiple of \( \beta \). Then by \( f \in \mathcal{P} \) (see Figure 35), we have \( f = [a, b]^{\otimes 2} \) with \( a \) and \( b \) not both 0 (because \( f \) is not identical 0), or \( f = [1, 0, \ldots, 0, x] \) with \( x \neq 0 \).

We first consider the case \( f = [a, b]^{\otimes 2} \), with \( (a, b) \neq (0, 0) \). It has three subcases.

- If \( ab \neq 0 \) (i.e., \( a \) and \( b \) both nonzero) and \( a^2 + b^2 \neq 0 \), then we have \( \partial_{\mathcal{A}}(f) = (a^2 + b^2)^n [a, b]^{\otimes 2} \). We are done by Lemma B.3.

- If \( ab \neq 0 \) and \( a^2 + b^2 = 0 \), then \( f = [1, \pm i]^{\otimes 2} \) up to a nonzero scalar. Note that \( f \in \mathcal{P} \setminus \mathcal{A} \). Hence \( g \in \mathcal{A} \cup \mathcal{A} \cup \mathcal{A} \) or \( g \in \mathcal{A} \setminus \mathcal{P} \). Therefore we are done by Lemma E.3.

The other case is \( g \in \mathcal{A} \setminus \mathcal{P} \), then a fortiori, \( g \in \mathcal{A} \setminus \mathcal{P} \). For \( r = 2 \), we have \( \partial(f) = 2\alpha(1 + \alpha)\{[1, 0, 1, 0] \} \) and \( \partial_{\mathcal{A}}(f) = (\pm 2i)^n [1, \pm i]^{\otimes 2} \). Then we are done by Lemma B.3. For \( r \neq 2 \), we have on LHS

\[
\partial_{\mathcal{A}}(f) = \partial_{\mathcal{A}}(1, \alpha)^{\otimes 4}(f) + \alpha \partial_{\mathcal{A}}(1, -\alpha)^{\otimes 4}(f) = [1, 0, \alpha^4] + i\alpha^2[1, 0, (\alpha)^4] = (1 + i\alpha)[1, 0, -1]
\]

and \( \partial_{\mathcal{A}}(f) = 2\alpha^{n-1} [1, \pm i]^{\otimes 2} \). Then again we are done by Lemma B.3.
For $f = [1, 0] \otimes 2n$ or $[0, 1] \otimes 2n$, we have $\partial^{n-1}(f) = [1, 0] \otimes 2$ or $[0, 1] \otimes 2$. Note that $f \in \mathcal{P} \cap \mathcal{A} \cap \mathcal{A}^{\uparrow}$.

Thus $g \in \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$. If $g \in \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$, then we are done by Lemma E.3. If $g \in \mathcal{M}^{\uparrow} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$, then we are done by Lemma E.7, where the binary signature is supplied by $\partial^{n-1}(f) = [1, 0] \otimes 2$ or $[0, 1] \otimes 2$.

The remaining case is $f = [1, 0, \ldots, 0, x]$ with $x \neq 0$. We have $\partial^{n-1}(f) = [1, 0, x]$.

Suppose $g \in \mathcal{A}$. As $f \in \mathcal{P}$, we have $g \notin \mathcal{P}$. Then we have an arity 4 signature $g' \in \mathcal{A} \setminus \mathcal{P}$ by Lemma F.2. Moreover, by definition (see Figure 35), we have $g' = [1, \gamma] \otimes 4 + i' [1, -\gamma] \otimes 4$ where $\gamma = 1$. Depending on whether $g \in \mathcal{A}$ or $\mathcal{A}^{\uparrow}$, we have either $f \in \mathcal{P} \setminus \mathcal{A}$, or $f \in \mathcal{P} \setminus \mathcal{A}^{\uparrow}$. Then we claim that $x^{4} \neq 1$. Note that $f$ has even parity 2. If $x^{4} = 1$, then $f = [1, 0, \ldots, 0, x] \in \mathcal{A}$ as well as $[1, 0] \otimes 2n = [1, 0, \ldots, 0, x^{n+1}] \in \mathcal{A}$ thus $f \in \mathcal{A}^{\uparrow}$. This is a contradiction. Thus we have $x^{4} \neq 0, 1$.

Let $\tilde{g}' = [1, x^{-1} \gamma^{2}] \otimes 4 + i' [1, -x^{-1} \gamma] \otimes 4$. Then by Lemma C.8, Pl-$\#\text{CSP}^{2}(\tilde{g}') \leq \text{Pl-$\#\text{CSP}^{2}(f, g)$}$. Note that $g'$ has type $(x^{-1}, \gamma, 2, 0, 1)$ by calculating the trace and product of the eigenvalues of the second recurrence relation. Note that $(x^{-1} \gamma^{2})^{4} = x^{-4} \neq 0, 1$. Thus $\tilde{g}' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$ by Lemma A.11. This implies that Pl-$\#\text{CSP}^{2}(\tilde{g}')$ is #P-hard by Theorem D.5. So Pl-$\#\text{CSP}^{2}(f, g)$ is #P-hard.

Now we may assume that $g \notin \mathcal{A}$. Thus $g \in \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$. If $g \in \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$, then we are done by Lemma E.3. If $g \notin \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$, then $f \in \mathcal{P} \setminus \tilde{\mathcal{M}}$. In this case we claim that $x \neq 1$. Suppose for a contradiction that $x = 1$, then we show that $f \in \mathcal{M}^{\uparrow}$. Notice that $f = [1, 0, \ldots, 0, 1] = (e_{2n})$ and $\mathcal{M}^{\uparrow} = \mathcal{Z} \mathcal{A}$, where $\mathcal{Z} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Crucially recall that $f$ has even parity. Then, up to a nonzero scalar, $(\mathcal{Z}^{-1}) \otimes 2n f = [1, 0, 1, \ldots, 0, 1] \in \mathcal{M}$ of arity $2n$ (if $n$ is even) or $(\mathcal{Z}^{-1}) \otimes 2n f = [0, 1, 0, \ldots, 1, 0] \in \mathcal{M}$ of arity $2n$ (if $n$ is odd). Hence $x \neq 1$. Then we are done by Lemma E.7, with $g \in \tilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A}^{\uparrow})$, and the help of $\partial^{n-1}(f) = [1, 0, x]$.

\section*{F.2 Mixing with $\mathcal{A}$}

In this subsection, we prove the No-Mixing lemma of $\mathcal{A}$ with other tractable sets. Because we have already proved Lemma F.3, the No-Mixing lemma for $S_{5} = \mathcal{P}$, we only need to consider No-Mixing-(4, j) of $S_{5} = \mathcal{P}$ with $S_{j} = \mathcal{A}$ for $1 \leq j \leq 3$.

There is a particular case involving $\mathcal{A}$ and $\mathcal{A}^{\uparrow}$ that requires some special care. This is when two signatures $f \in \mathcal{A}$ and $g \in \mathcal{A}^{\uparrow}$ both satisfy the parity constraint. We deal with this case first. Furthermore, by Lemma F.2, for two signatures $f \in \mathcal{A} \setminus \mathcal{P}$ and $g \in \mathcal{A}^{\uparrow} \setminus \mathcal{P}$ we may assume the signatures $f$ and $g$ have arity 4. Hence the next lemma considers signatures $f$ and $g$ of arity 4.

\begin{lemma}
Let $f = [1, \rho] \otimes 4 \pm [1, -\rho] \otimes 4 \in \mathcal{A}$ and $g = [1, \alpha] \otimes 4 \pm [1, -\alpha] \otimes 4 \in \mathcal{A}^{\uparrow}$. Then Pl-$\#\text{CSP}^{2}(f, g)$ is #P-hard.
\end{lemma}

\begin{proof}
There are four cases depending on the combination of the two $\pm$ signs. Suppose $f = [1, \rho] \otimes 4 + [1, -\rho] \otimes 4$ and $g = [1, \alpha] \otimes 4 + [1, -\alpha] \otimes 4$. Consider the gadget in Figure 32a. We assign $g$ to the circle vertex and $f$ to the triangle vertex. Since both $f = 2[1, 0, \rho, 0, 1]$ and $g = 2[1, 0, \alpha^{2}, 0, -1]$. 

\end{proof}
have even parity, the signature of this gadget also has even parity. It is also clearly a redundant
signature by design. Hence there are only five signature entries we need to compute. E.g., the
entry of Hamming weight 0 is $g_0 f_0 + g_2 f_2 = 4(1 + \alpha^2 \rho^2)$. Up to a factor of 4, the signature of this
gadget has signature matrix

$$\begin{bmatrix}
\alpha^2 \rho^2 + 1 & 0 & 0 & \alpha^2 + \rho^2 \\
0 & 2\alpha^2 \rho^2 & 2\alpha^2 \rho^2 & 0 \\
0 & 2\alpha^2 \rho^2 & 2\alpha^2 \rho^2 & 0 \\
\alpha^2 - \rho^2 & 0 & 0 & \alpha^2 - \rho^2 - 1
\end{bmatrix},$$

which becomes

$$\begin{bmatrix}
\alpha^2 \rho^2 + 1 & 0 & 0 & 2\alpha^2 \rho^2 \\
0 & \alpha^2 - \rho^2 & 2\alpha^2 \rho^2 & 0 \\
0 & 2\alpha^2 \rho^2 & \alpha^2 + \rho^2 & 0 \\
2\alpha^2 \rho^2 & 0 & 0 & \alpha^2 - \rho^2 - 1
\end{bmatrix}$$

ger a 90° counterclockwise rotation of the gadget. (See Figure 2 in Part I for an illustration
of the rotation operation.) Taking the four corner entries, we define the binary signature $h =
[\alpha^2 \rho^2 + 1, 2\alpha^2 \rho^2, \alpha^2 \rho^2 - 1]$. By domain pairing, Pl-#CSP$(h) \leq_T \text{Pl-#CSP}^2(f, g)$. (Domain pairing
is the following reduction: In an instance of Pl-#CSP$(h)$ replace every occurrence of $h$ by a copy
of the 90° counterclockwise rotated gadget, and replace both edges of $h$ by two parallel edges each,
and replace every $(=k)$ in the Pl-#CSP$(h)$ instance by $(=2k)$ in Pl-#CSP$(f, g)$. Note that the
rotation is necessary to create a symmetric binary signature $h$ in the paired domain.)

Note that $\alpha^2 = \pm i$ and $\rho^2 = \pm 1$, so $\alpha^2 \rho^2 = \pm 1$ has norm $\sqrt{2}$, while $2\alpha^2 \rho^2$
has norm 2. Also $\alpha^2 \rho^2 + 1 \neq \alpha^2 \rho^2 - 1$. Hence $h \notin \mathcal{P} \cup \mathcal{A}$ by Corollary
\ref{corollary:pl-csp-hardness} and also $h \notin \mathcal{M}$ by Lemma \ref{lemma:domain-pairing}. Thus
Pl-#CSP$(h)$ is #P-hard by Theorem \ref{theorem:pl-csp-hardness}. So Pl-#CSP$^2(f, g)$ is #P-hard.

Suppose $f = [1, \rho] \oplus^4 - [1, -\rho] \oplus^4$ and $g = [1, \alpha] \oplus^4 - [1, -\alpha] \oplus^4$. Consider the same construction.
Up to a nonzero factor of $4\rho$, the signature of this gadget has the signature matrix

$$\begin{bmatrix}
2 & 0 & 2\rho^2 \\
0 & 1 + \alpha^2 \rho^2 & 1 + \alpha^2 \rho^2 \\
0 & 1 + \alpha^2 \rho^2 & 1 + \alpha^2 \rho^2 \\
2\alpha^2 & 0 & 0
\end{bmatrix},$$

which becomes

$$\begin{bmatrix}
2 & 0 & 0 & 1 + \alpha^2 \rho^2 \\
0 & 2\alpha^2 & 1 + \alpha^2 \rho^2 & 0 \\
0 & 1 + \alpha^2 \rho^2 & 2\rho^2 & 0 \\
1 + \alpha^2 \rho^2 & 0 & 0 & 2\alpha^2 \rho^2
\end{bmatrix}$$

ger a 90° counterclockwise rotation of the gadget. Let $h = [2, 1 + \alpha^2 \rho^2, 2\alpha^2 \rho^2]$. By domain pairing,
we have Pl-#CSP$(h) \leq_T \text{Pl-#CSP}^2(f, g)$. Note that $1 + \alpha^2 \rho^2 = 1 \pm i$ has norm $\sqrt{2}$ while $2\alpha^2 \rho^2 \neq \pm 2$
but has norm 2. Hence $h \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$ by Corollary \ref{corollary:pl-csp-hardness} and Lemma \ref{lemma:domain-pairing}. Thus we are done by
Theorem \ref{theorem:pl-csp-hardness}.

Suppose $f = [1, \rho] \oplus^4 - [1, -\rho] \oplus^4$ and $g = [1, \alpha] \oplus^4 + [1, -\alpha] \oplus^4$. Consider the gadget in Figure 32b.
We assign $f$ to the circle vertices and $g$ to the triangle vertex. Up to a nonzero factor of $16\alpha^2 \rho^2$,
the signature of this gadget has the signature matrix

$$\begin{bmatrix}
2 & 0 & 2\rho^2 \\
0 & \rho^2 & \rho^2 \\
0 & \rho^2 & \rho^2 \\
2\rho^2 & 0 & 0
\end{bmatrix},$$

which becomes

$$\begin{bmatrix}
2 & 0 & 0 & \rho^2 \\
0 & 2\rho^2 & \rho^2 & 0 \\
0 & \rho^2 & 2\rho^2 & 0 \\
\rho^2 & 0 & 0 & 2
\end{bmatrix}$$

ger a 90° rotation of the gadget. Let $h = [2, \rho^2, 2, \rho^2]$. We also have $g^\times = 2[1, \alpha^2] \oplus^2$ by domain pairing
with $g$ (see Lemma \ref{lemma:domain-pairing}). Then Pl-#CSP$(g^\times, h) \leq_T \text{Pl-#CSP}^2(f, g)$. Note that $|\rho^2| = 1 \neq 2$, so
by Lemma \ref{lemma:domain-pairing} and Corollary \ref{corollary:pl-csp-hardness}, $h \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A})$. Also by Lemma \ref{lemma:domain-pairing} and $(\alpha^2)^2 = -1 \neq 1$
we have $g^\times \notin \mathcal{M}$. Thus we are done by Theorem \ref{theorem:pl-csp-hardness}. Note that in this case, the rotation is
necessary to create a non-degenerate binary signature $h$ in the paired domain.
Finally, suppose $f = [1, \rho]^{\otimes 4} + [1, -\rho]^{\otimes 4}$ and $g = [1, \alpha]^{\otimes 4} - [1, -\alpha]^{\otimes 4}$. Consider the gadget in Figure 32b. We assign $g$ to the circle vertices and $f$ to the triangle vertex. Up to a nonzero factor of $16\alpha^2 \rho^2$, the signature of this gadget has the signature matrix

$$
\begin{bmatrix}
2 & 0 & 0 & 2\alpha^2 \\
0 & \alpha^2 & \alpha^2 & 0 \\
0 & \alpha^2 & \alpha^2 & 0 \\
2\alpha^2 & 0 & 0 & -2
\end{bmatrix},
$$

which becomes

$$
\begin{bmatrix}
2 & 0 & 0 & \alpha^2 \\
0 & \alpha^2 & 2\alpha^2 & 0 \\
0 & 2\alpha^2 & \alpha^2 & 0 \\
\alpha^2 & 0 & 0 & -2
\end{bmatrix}
$$

after a 90° rotation of the gadget. Let $h = [2, \alpha^2, -2]$, then $\text{Pl-}\#\text{CSP}(h) \leq_T \text{Pl-}\#\text{CSP}^2(f, g)$ by domain pairing. Since $|\alpha^2| = 1 \neq 2$, we have $h \notin \mathcal{P} \cup \mathcal{A}$ by Corollary A.9 and also $h \notin \mathcal{P} \cup \mathcal{A}$ by Lemma A.8. Thus we are done by Theorem A.22. Note that in this case, the rotation is also necessary to create a non-degenerate binary signature $h$ in the paired domain. 

**Remark 7.** The use of a more complicated construction in the third case is necessary. Notice that $g = [1, \alpha]^{\otimes 4} + [1, -\alpha]^{\otimes 4} = 2[1, 0, \alpha^2, 0, -1]$ has an even parity, while $f = [1, \rho]^{\otimes 4} - [1, -\rho]^{\otimes 4} = 2\rho[0, 1, 0, \rho^2, 0]$ has an odd parity. Then in any construction of a signature using $f$ and $g$, if the number of occurrences $N_f$ of $f$ is odd (resp. even), then the resulting signature also has an odd (resp. even) parity. To see this, let $H$ be an arbitrary $\{f, g\}$-gate with $N_f$ occurrences of $f$. Suppose $\sigma$ is a $\{0,1\}$-assignment to all the edges of $H$, including internal and external edges, that has a nonzero evaluation on $H$. Then each copy of $f$ has an odd number of incident edges assigned to 1. Summing these numbers (mod 2) over all copies of $f$ we get a number $\equiv N_f \pmod{2}$, since each of these numbers is $\equiv 1 \pmod{2}$. Similarly each copy of $g$ has an even number of incident edges assigned to 1. Summing these numbers (mod 2) over all copies of $g$ we get a number $\equiv 0 \pmod{2}$. On the other hand, if we add these two sums together we get $2X + Y$ where $X$ is the number of internal edges and $Y$ is the number of external edges assigned to 1 by $\sigma$. This is because each internal edge assigned to 1 appears exactly twice in the sum. Hence this number is $\equiv Y \pmod{2}$. We conclude that $N_f \equiv Y \pmod{2}$, the Hamming weight of $\sigma$ on the external edges.

If $N_f$ is odd, from any constructed signature of arity 4, by rotation and domain pairing we can only get the identically zero binary signature. Thus we must use $f$ an even number of times. Using $g$ alone will not get out of $\mathcal{A}$, which is a tractable set. Thus we must use $f$ at least twice. Also using $g$ alone will not get out of $\mathcal{A}$, another tractable set. Therefore we must use $g$ at least once. Therefore the construction we give is the simplest possible.

The same consideration applies for the construction in the fourth case.

The next Lemma deals with the situation when we have a binary signature in $\mathcal{A} \setminus \mathcal{P}$ and an arity 4 signature in $\mathcal{A} \setminus \mathcal{P}$.

**Lemma F.5.** Let $f = [1, \rho, -\rho^2]$ and $g = [1, \alpha]^{\otimes 4} + i^r[1, -\alpha]^{\otimes 4}$. Then $\text{Pl-}\#\text{CSP}^2(f, g)$ is $\#\text{P}$-hard.

**Proof.** By our calculus, we have $\theta_{[1, \rho, -\rho^2]}(g) = \lambda(1, \alpha)^{\otimes 4} + i^r\mu[1, -\alpha]^{\otimes 2}$, where $\lambda = 1 - \rho^2\alpha^2 + 2\rho\alpha$ and $\mu = 1 - \rho^2\alpha^2 - 2\rho\alpha$. Note that $1 - \rho^2\alpha^2 = 1 \pm i$ has norm $\sqrt{2}$ and $|2\rho\alpha| = 2$, we have $\lambda \neq 0$. Let $x = i^r\mu/\lambda$, then $\partial_{[1, \rho, -\rho^2]}(g) = \lambda(1 + x)[1, \frac{1-x}{1+x}, \alpha, \alpha^2]$. By norm, $(1 - \rho^2\alpha^2)^2 \neq (2\rho\alpha)^4$ and $(1 - \rho^2\alpha^2)(2\rho\alpha) \neq 0$, we have $x^4 \neq 0, 1$ by Lemma A.3. By Lemma A.3 again, we have $(\frac{1-x}{1+x})^4 \neq 0, 1$. Thus $[1, \frac{1-x}{1+x}, \alpha, \alpha^2] \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{\tilde{A}}$ by Corollary A.9. This implies that $\text{Pl-}\#\text{CSP}^2([1, \frac{1-x}{1+x}, \alpha, \alpha^2])$ is $\#\text{P}$-hard by Theorem A.21. Thus $\text{Pl-}\#\text{CSP}^2(f, g)$ is $\#\text{P}$-hard. 

102
The next lemma is the No-Mixing lemma of \( \mathcal{A} \) with the other tractable sets, namely the statements No-Mixing-(4, j) for 1 \( \leq j \leq 3 \). Having already proved Lemma F.3, we can assume that both \( f \) and \( g \) are not in \( S_5 = \mathcal{P} \).

**Lemma F.6.** Let \( \{f, g\} \subseteq \left( \bigcup_{k=1}^{4} S_k \right) \setminus S_5 \) and \( \{f, g\} \not\subseteq S_j \) for every 1 \( \leq j \leq 4 \). Assume that \( f \in \mathcal{A} \), then \( \text{Pl-\#CSP}^2(f, g) \) is \( \#P \)-hard.

**Proof.** By \( f \in \mathcal{A} \), we have \( g \notin \mathcal{A} \). Thus, \( g \in (\mathcal{A} \uparrow \cup \bar{\mathcal{A}} \cup \bar{\mathcal{A}}) \setminus (\mathcal{P} \cup \mathcal{A}) \).

1. Suppose \( g \in \mathcal{A} \uparrow \setminus \mathcal{P} \). Then a fortiori, \( g \in \mathcal{A} \uparrow \setminus \mathcal{P} \). As \( f \in \mathcal{A} \setminus \mathcal{P} \), by Lemma F.2, we have some \( f' \in \mathcal{A} \setminus \mathcal{P} \) and \( g' \in \mathcal{A} \uparrow \setminus \mathcal{P} \), both of arity 4. Without loss of generality, we will assume the given \( f \) and \( g \) are of arity 4. By definition (see Figure 35), we can assume that

\[
f = [1, \rho]^{\otimes 4} + i^s [1, -\rho]^{\otimes 4} \quad \text{and} \quad g = [1, \alpha]^{\otimes 4} + i^s [1, -\alpha]^{\otimes 4}
\]

where \( s, r, s = 0, 1, 2, 3 \).

- If both \( r, s \equiv 0 \) (mod 2), then \( f = [1, \rho]^{\otimes 4} \pm [1, -\rho]^{\otimes 4} \) and \( g = [1, \alpha]^{\otimes 4} \pm [1, -\alpha]^{\otimes 4} \). This is the case where both \( f \) and \( g \) satisfy the parity constraint, and it is proved in Lemma F.4.

- If \( r \equiv 1 \) (mod 2) then \( f = [1, \rho]^{\otimes 4} \pm i[1, -\rho]^{\otimes 4} \). For \( \rho^2 = 1 \), by our calculus we have

\[
\partial(f) = 2\left([1, \rho]^{\otimes 2} i[1, -\rho]^{\otimes 2}\right) = 2(1 + i)[1, \mp i\rho, \rho^2] = 2(1 + i)[1, \rho', -\rho''] \]

where \( \rho' = \mp i\rho \) and \( \rho^4 = 1 \). Thus \( \text{Pl-\#CSP}^2([1, \rho', -\rho''], g) \) is \( \#P \)-hard by Lemma F.5. So \( \text{Pl-\#CSP}^2(f, g) \) is \( \#P \)-hard.

For \( \rho^2 = -1 \), we cannot use \([1, 0, 1]\) to reduce the arity of \( f \), because \( \partial(f) = 0 \) in this case. Instead we construct a suitable binary signature from \( g \). If \( s \neq 2 \), then we have \( g_0 = 1 + i^s \neq 0 \) and \( g_4 = \alpha^4 + i^s(-\alpha)^4 = -(1 + i^s) = -g_0 \), and therefore \( \partial_g = g_0[1, 0, -1] \) on the LHS. Then we have \( \partial_{[1, 0, -1]}(f) = 2\left([1, \rho]^{\otimes 2} i[1, -\rho]^{\otimes 2}\right) = 2(1 + i)[1, \mp i\rho, \rho^2] = 2(1 + i)[1, \rho', -\rho''] \), where \( \rho' = \mp i\rho \) and \( \rho^4 = 1 \). Then we are done by Lemma F.5. If \( s = 2 \), then \( \partial_g = (1 + \alpha^2)((\alpha^{\otimes 2} - [1, -\alpha]^{\otimes 2}) \), a nonzero multiple of \([0, 1, 0]\). Thus we have \( \partial_{[0, 1, 0]}(f) = 2\rho\left([1, \rho]^{\otimes 2} i[1, -\rho]^{\otimes 2}\right) = 2\rho(1 + i)[1, \pm i\rho, \rho^2] = 2\rho(1 + i)[1, \rho', -\rho''] \), where \( \rho' = \pm i\rho \) and \( \rho^4 = 1 \). Then we are done by Lemma F.5 again.

- If \( r \equiv 0 \) (mod 2) and \( s \equiv 1 \) (mod 2), i.e., \( f = [1, \rho]^{\otimes 4} \pm [1, -\rho]^{\otimes 4} \) and \( g = [1, \alpha]^{\otimes 4} \pm i[1, -\alpha]^{\otimes 4} \), then we will construct a binary signature \( h = [1, b, \pm 1] \). Note that \( h \in \bar{\mathcal{A}} \) by Lemma A.8. Furthermore, we will ensure that \( b^4 \neq 0, 1 \), thus \( h \notin \mathcal{P} \cup \mathcal{A} \) by Corollary A.9. Then we are done byLemma E.3 and Lemma E.7.

We have \( \partial_g = (1 + \alpha^2)(([1, \alpha]^{\otimes 2} \pm i[1, -\alpha]^{\otimes 2}) = (1 + \alpha^2)(1 + i)[1, \mp \alpha i, \alpha^2] \), a nonzero multiple of \([1, \alpha', -\alpha'']\), where \( \alpha' = \mp \alpha i \) and \( \alpha^4 = 1 \). Moreover, we have \( h = \partial_{[1, \alpha', -\alpha'']} = \lambda[1, \rho]^{\otimes 2} \pm \mu[1, -\rho]^{\otimes 2} \), where \( \lambda = 1 - \rho^2 \alpha^2 + 2\rho \alpha' \) and \( \mu = 1 - \rho^2 \alpha^2 - 2\rho \alpha' \). Then \( h = \lambda(1 + x)[1, \rho, \rho^2] \), where \( x = \mu/\lambda \) and \( a = \frac{1 + x}{1 + x^2} \). Note that \( 1 - \rho^2 \alpha^2 = 1 \pm i \) has norm \(|\sqrt{2}| = 2 \), thus \( \lambda \neq 0 \) and \( 1 - \rho^2 \alpha^2 \neq 0 \) by norm, therefore \( x^4 \neq 0 \) by Lemma A.3. Then by Lemma A.3 again, \( a^4 \neq 0, 1 \), and so \( (a^4) \neq 0, 1 \) as well. As \( \lambda \neq 0 \), \( 1 \neq x \neq 0 \), \( \rho^2 = \pm 1 \), we have a nonzero multiple of \([1, \alpha, \pm 1]\), our desired binary signature, and we are done by Lemma E.3 and Lemma E.7.

In the following we may assume \( g \notin \mathcal{A} \).
3. Suppose \( g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), then \( g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). Now \( f \in \mathcal{A} \setminus (\mathcal{P} \cup \mathcal{M}) \). Note that \( [1, 1]^{\otimes 2n} \pm [1, -1]^{\otimes 2n} \in \mathcal{M} \). This can be verified as follows: Let \( Z = \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \), then \( \mathcal{M} = Z \mathcal{M} \), and \( Z^{-1} = \frac{1}{2} \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \). We first verify that \( [1, 0]^{\otimes 2n} \pm [0, 1]^{\otimes 2n} \in \mathcal{M} \), by

\[
\left[ \begin{array}{cc} 1 & -i \\ -i & 1 \end{array} \right]^{\otimes 2n} \left\{ \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \pm \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \right\} = \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]^{\otimes 2n} \pm (-i)^{2n} \left[ \begin{array}{cc} 1 \\ -1 \end{array} \right]^{\otimes 2n}
\]

Then notice that

\[
\left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]^{\otimes 2n} \pm \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]^{\otimes 2n} \left\{ \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \pm \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \right\} \in \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \mathcal{M}.
\]

However

\[
\left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \left[ \begin{array}{cc} 1 + i & -1 \end{array} \right], \quad \left[ \begin{array}{cc} 1 & 1 \\ -i & i \end{array} \right] = \left[ \begin{array}{cc} 0 & 1 - i \end{array} \right], \quad \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \left[ \begin{array}{cc} 1 + i & -i \\ 1 - i & i \end{array} \right]
\]

and \( \left[ \begin{array}{cc} 0 & 1 - i \\ 1 + i & 0 \end{array} \right] \mathcal{M} = \mathcal{M} \), therefore \( \left[ \begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right] \mathcal{M} = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] Z \mathcal{M} = \mathcal{M} \left[ \begin{array}{cc} 0 & 1 - i \\ 1 + i & 0 \end{array} \right] \mathcal{M} = \mathcal{M} \mathcal{M} = \mathcal{M} \). (Also see Figure 36). Since \( [1, 1]^{\otimes 2n} \pm [1, -1]^{\otimes 2n} \in \mathcal{M} \) and \( f \notin \mathcal{M} \), \( f \) cannot take the form \([1, 1]^{\otimes 2n} \pm [1, -1]^{\otimes 2n}\). Then by definition (see Figure 35) \( f \) takes the form

\[
[1, \rho, -\rho^2], \text{ or } [1, 1]^{\otimes 2n} \pm i[1, -1]^{\otimes 2n}, \text{ or } [1, i]^{\otimes 2n} + i^r[1, -i]^{\otimes 2n}, \text{ where } 2n \geq 4.
\]

The following three cases are immediately done by Lemma E.7:

- \( f = [1, \rho, -\rho^2] \).
- \( f = [1, 1]^{\otimes 2n} \pm i[1, -1]^{\otimes 2n} \) with \( 2n \geq 4 \), then we have \( \partial^{n-1} \left( f \right) = 2^{n-1}[1 \pm i, 1 \mp i \pm i] \) which is not \( \lambda[1, 0, 1] \).
- \( f = [1, i]^{\otimes 2n} + i^r[1, -i]^{\otimes 2n} \) with \( 2n \equiv 2 \) (mod 4), then we have \( \partial^{n-1} \left( f \right) = 2^{n-1} [1 + i^r, 1 - i^r] \) which is not \( \lambda[1, 0, 1] \), no matter what value \( r \) takes.

The remaining case is that \( f = [1, i]^{\otimes 2n} + i^r[1, -i]^{\otimes 2n} \) with \( 2n \equiv 0 \) (mod 4). In this case, we have

\[
\partial^{n-2} \left( f \right) = 2^{n-2} \left\{ [1, i]^{\otimes 4} + i^r[1, -i]^{\otimes 4} \right\}.
\]

We will denote by \( f' = [1, i]^{\otimes 4} + i^r[1, -i]^{\otimes 4} \). If \( g \) has arity 2, then up to a nonzero scalar, \( g = [1, b, -1] \) with \( b^4 \neq 0, 1 \) by Lemma A.14, and we are done by Lemma E.7. In the following, assume that \( g \) has arity \( 2m \geq 4 \). By Lemma A.14, either \( g = [s, ti]^{\otimes 2m} \pm [t, si]^{\otimes 2m} \) with \( s^4 \neq t^4 \) and \( st \neq 0 \), or \( g \) has arity \( 2m \) and \( g_k = (\pm i)^k(2m - 2k) \).

- If \( g \) has arity \( 2m \geq 4 \) and \( g_k = (\pm i)^k(2m - 2k) \) up to a nonzero scalar, then let \( \hat{g} = (Z^{-1})^{\otimes 2m} g \), where \( Z = \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \). Then \( \hat{g} = [0, 1, 0, \ldots, 0] \) or \( \hat{g} = [0, \ldots, 0, 1, 0] \) of arity \( 2m \). By Corollary B.5, we have

\[
\Pi \#\text{CSP}^2(\hat{g}) \leq \Pi \#\text{CSP}^2(f', g).
\]

Let \( g' = \partial^{n-2}(\hat{g}) = [0, 1, 0, 0, 0] \) or \( [0, 0, 0, 1, 0] \). Clearly \( g' \) is non-degenerate. It also has a second order recurrence of type \( \langle 0, 0, 1 \rangle \) or \( \langle 1, 0, 0 \rangle \). By Lemma A.11, \( g' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \). Then \( \Pi \#\text{CSP}^2(g') \) is \( \#\text{P}-\text{hard} \) by Theorem D.5 and we are done.
• If \( g = [s, ti]^{\otimes 2m} \pm [t, si]^{\otimes 2m} \), we have
\[
g' = o^{m-2}(g) = (s^2 - i^2)^{m-2} \{ [s, ti]^{\otimes 4} \pm (-1)^{m-2}[t, si]^{\otimes 4} \}
\]
and from \( f' \) we get \([1, 0, -1]^{\otimes 2}\) on LHS by Lemma A.20, thus
\[
\text{Pl-Holant}([1, 0, -1]^{\otimes 2} \cup \mathcal{E}Q_2 \mid f', g') \leq \text{Pl-}\#\text{CSP}^2(f, g).
\]
After a holographic transformation using \( T = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \), we have
\[
\text{Pl-Holant}([1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 1], \ldots \mid \hat{f}', \hat{g}') = \text{Pl-Holant}([1, 0, -1]^{\otimes 2} \cup \mathcal{E}Q_2 \mid f', g'),
\]
where \( \hat{f}' = (T^{-1})^{\otimes 4} f' = [1, 1]^{\otimes 4} + 2[i, -1]^{\otimes 4} \) and \( \hat{g}' = (T^{-1})^{\otimes 4} g' \). Note that \( \hat{f}' \) satisfies a second order recurrence of type \((-1, 0, 1)\). Thus \( \hat{f}' \notin \mathcal{M} \) by Lemma A.11. Also note that \( \mathcal{P} \) and \( \mathcal{A} \) are invariant under \( T \), and since \( g' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), we have \( \hat{g}' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). In the following, we will construct \([1, 0, 1]^{\otimes 2}\) on RHS for
\[
\text{Pl-Holant}([1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 1], \ldots \mid \hat{f}', \hat{g}').
\]
Since we have \([1, 0, 1]^{\otimes 2}\) on LHS, we can get \([\hat{f}']^{\otimes 2} = 4[1 + i^2, 1 - i^2, 1 + i^2]^{\otimes 2}\) on RHS.
- If \( r = 0 \), then we directly have \([1, 0, 1]^{\otimes 2}\) on RHS.
- If \( r = 2 \), then we have \([0, 0, 0]^{\otimes 2}\) on RHS. Thus we can move \([1, 0, 1]^{\otimes 2}\) on LHS to RHS.
- If \( r = 1 \) or \( 3 \), then \([1, \pm i, 1]^{\otimes 2}\) on RHS. By connecting two copies of \([1, \pm i, 1]^{\otimes 2}\) by \([1, 0, 1]^{\otimes 2}\) of LHS, we have a nonzero multiple of \([0, 0, 0]^{\otimes 2}\) on RHS. Then we can move \([1, 0, 1]^{\otimes 2}\) on LHS to RHS.
From the above, we have
\[
\text{Pl-Holant}([1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 1], \ldots \mid \hat{f}', \hat{g}', [1, 0, 1]^{\otimes 2}) \\
\leq \text{Pl-Holant}([1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 1], \ldots \mid \hat{f}', \hat{g}').
\]
Note that we have all of \( =_{4k} \) on the LHS. Thus by Lemma B.4,
\[
\text{Pl-}\#\text{CSP}^2(\hat{f}', \hat{g}') \leq \text{Pl-Holant}([1, 0, 1]^{\otimes 2}, [1, 0, -1], [1, 0, 0, 0, 1], \ldots \mid \hat{f}', \hat{g}', [1, 0, 1]^{\otimes 2}).
\]
Recall that \( \hat{g}' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \) and \( \hat{f}' \notin \mathcal{M} \). Thus we are done by Lemma E.3.

\section*{F.3 Mixing with \( \mathcal{A}^\dagger \)}

In this subsection, we prove the No-Mixing lemma for \( \mathcal{A}^\dagger \) with other tractable sets, namely the statements No-Mixing-(3, j), for \( 1 \leq j \leq 2 \). Because we have already proved Lemma F.3 and Lemma F.6, the No-Mixing lemmas for \( S_5 = \mathcal{P} \) and \( S_4 = \mathcal{A} \) respectively, we only need to consider the mixing of \( S_3 = \mathcal{A}^\dagger \) with \( S_j \) for \( 1 \leq j \leq 2 \). Thus we may assume \( f \in \mathcal{A}^\dagger \) and \( g \in \mathcal{M} \setminus \mathcal{A}^\dagger \). Moreover, we can assume that \( f, g \notin \mathcal{P} \cup \mathcal{A} \).

\begin{lemma}
Let \( \{f, g\} \subseteq \left( \bigcup_{k=1}^{3} S_k \right) \setminus (S_4 \cup S_5) \) and \( \{f, g\} \notin S_j \) for \( 1 \leq j \leq 3 \). Assume that \( f \in \mathcal{A}^\dagger \), then \( \text{Pl-}\#\text{CSP}^2(f, g) \) is \#P-hard.
\end{lemma}
Proof. Firstly, we have \( f \in \mathcal{A}^1 \setminus \mathcal{P} \), thus \( f \in \{[1,\alpha, -\alpha^2], [1,\alpha]^\otimes 2n + i^r[1, -\alpha]^\otimes 2n \mid 2n \geq 4\} \) (see Figure 35). Clearly \([1,\alpha, -\alpha^2]\) is not \( \lambda[1,0,1] \). If \( f = [1,\alpha]^\otimes 2n + i^r[1, -\alpha]^\otimes 2n \), then we have 
\[
\partial^{n-1}(f) = (1+\alpha^2)^{n-1}\{[1,\alpha]^\otimes 2 + i^r[1, -\alpha]^\otimes 2\} = (1+\alpha^2)^{n-1}[1+i^r,(1-i^r)\alpha,(1+i^r)\alpha^2]
\]
which is not \( \lambda[1,0,1] \). Hence we can always obtain a nonzero binary signature that is not \( \lambda[1,0,1] \) from \( f \).

Note that \( g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). If \( g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), we are done by Lemma E.3. For \( g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), since we have a nonzero binary signature that is not \( \lambda[1,0,1] \), we are done by Lemma E.7. \( \square \)

### F.4 Mixing with \( \mathcal{M} \)

In this subsection, we prove the No-Mixing lemma for \( \mathcal{M} \) with other tractable sets. Because we have already proved Lemma F.3, Lemma F.6, and Lemma F.7, the No-Mixing lemmas for \( S_5 = \mathcal{P} \), \( S_4 = \mathcal{A} \), and \( S_3 = \mathcal{A}^1 \) respectively, we only need to consider the No-Mixing of \( S_2 = \mathcal{M} \) with \( S_1 = \mathcal{M}^1 \).

**Lemma F.8.** Let \( \{f,g\} \subseteq \left(\bigcup_{k=1}^5 S_k\right) \setminus (S_3 \cup S_4 \cup S_5) \) and \( \{f,g\} \not\subseteq S_j \) for \( 1 \leq j \leq 2 \). Then \( \text{Pl-}\#\text{CSP}(f,g) \) is \#P-hard.

**Proof.** Either \( f \) or \( g \in \mathcal{M} \), otherwise \( \{f,g\} \subseteq \mathcal{M}^1 \). As they do not belong to \( S_3 \cup S_4 \cup S_5 = \mathcal{P} \cup \mathcal{A} \), we have a signature in \( \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \). Thus we are done by Lemma E.3. \( \square \)

By Lemma F.3, Lemma F.6, Lemma F.7 and Lemma F.8, we have the following No-Mixing theorem for two signatures with even arities.

**Theorem F.9.** Let \( f \) and \( g \) be two symmetric signatures of even arity. If \( \{f,g\} \subseteq \bigcup_{k=1}^5 S_k \) and 
\( \{f,g\} \not\subseteq S_j \) for \( 1 \leq j \leq 5 \), then \( \text{Pl-}\#\text{CSP}(f,g) \) is \#P-hard.

### G No-Mixing of Even Arity Signature Set

In this section, we extend Theorem F.9, the No-Mixing theorem for a pair of two signatures of even arity, to Theorem G.4, the No-Mixing theorem for a set of signatures of even arity. For convenience, we explicitly list some signature sets that are be used in the proof of Theorem G.4.

**Lemma G.1.** For nonzero even arity signatures, ignoring a nonzero factor, we have

1. \( \mathcal{A}^1 \cap (\mathcal{P} \cup \mathcal{A}) \) is the set
   \[
   \{[1,\alpha]^{\otimes 2n}, [1,0]^{\otimes 2n}, [0,1]^{\otimes 2n}, [0,1,0], [1,0,\ldots,0,i^r] \mid n \geq 1, 0 \leq r \leq 3\}.
   \]

2. \( \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \) is the set
   \[
   \{[1,\pm i]^{\otimes 2n}, [0,1,0], [1,\pm i,1], [1,0,\ldots,0,\pm 1], [1,i]^{\otimes 2n} \pm [1,-i]^{\otimes 2n} \mid m \geq 1, n \geq 2\}.
   \]

3. \( \mathcal{M}^1 \cap (\mathcal{P} \cup \mathcal{A}) \) is the set
   \[
   \{[1,\pm i]^{\otimes 2n}, [0,1,0], [1,\pm i,1], [1,0,\ldots,0,\pm 1], [1,1]^{\otimes 2n} \pm [1,-1]^{\otimes 2n} \mid m \geq 1, n \geq 2\}.
   \]

4. \( \bigcap_{3\leq k\leq 5} S_k \) is the set
   \[
   \{[1,0]^{\otimes 2n}, [0,1]^{\otimes 2n}, [0,1,0], [1,0,\ldots,0,i^r] \mid n \geq 1, 0 \leq r \leq 3\}.
   \]
5. \( \bigcap_{1 \leq k \leq 5} S_k = \bigcap_{2 \leq k \leq 5} S_k \) is the set \( \{0, 1, 0, [1, 0, \ldots, 0, \pm 1]\} \).

**Proof.** For all five cases, it is easy to show that the listed signatures in the displayed set are indeed members of the respective stated intersection, bear in mind that the signatures all have even arity. E.g., the signature \( f = [1, 0, \ldots, 0, i^r] \) is clearly in \( \mathcal{P} \) (as well as \( \mathcal{A} \)), and it has even arity \( 2n \), and thus under the transformation \( T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), \((T^{-1})^{2n} f = [1, 0, \ldots, 0, i^r] \in \mathcal{A} \), for some \( 0 \leq s \leq 3 \). Thus \( f \in \mathcal{A}^t \).

In the following, we prove that if \( f \) has even arity and is in the stated intersection then it is among the listed types.

1. (a.) Firstly, suppose that \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \) is degenerate, i.e., \( f = [a, b]^{2n} \). If \( f = [1, 0]^{2n} \) or \([0, 1]^{2n}\) up to a nonzero scalar, then \( f \) is among the listed. Suppose \( ab \neq 0 \). Then up to a nonzero scalar, \( f = [1, \omega]^{2n} \), for some \( \omega \neq 0 \). By \( f \in \mathcal{A}^t \), we have \([0, 1]^{2n} f = [1, \alpha \omega]^{2n} \in \mathcal{A} \). Thus \((\alpha \omega)^t = 1\), i.e., \( \omega^t = -1 \). So \( f \) is among the listed types.

(b.) If \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \) is a non-degenerate binary signature, by \( f \in \mathcal{A}^t \) and Lemma A.8, we have \( f = [1, \alpha, -\alpha^2] \), or \([0, 1, 0] \), or \([1, 0, \rho] \) up to a scalar, where \( \alpha^t = 1 \), \( \rho^t = 1 \). Note that \([1, \alpha, -\alpha^2] \notin \mathcal{P} \cup \mathcal{A} \) by Corollary A.9. Thus \( f = [0, 1, 0] \) or \([1, 0, \rho] \); these are among the listed types.

(c.) If \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \) is non-degenerate and and has arity \( 2n \geq 4 \), by \( f \in \mathcal{A}^t \) and Lemma A.11, \( f \) has type \((0, 1, 0)\) or \((1, 0, \pm i)\) and the second order recurrence relation is unique up to a scalar. If \( f \) has type \((1, 0, \pm i)\), then \( f \notin \mathcal{P} \cup \mathcal{A} \) by Lemma A.11. This contradicts that \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \). If \( f \) has type \((0, 1, 0)\), then \( f = [1, 0, \ldots, 0, x] \) with \( x \neq 0 \) up to a nonzero scalar, because \( f \) is non-degenerate. Moreover, if \( x^t \neq 1 \), bear in mind that \( f \) has even arity, then \( f \notin \mathcal{A}^t \) and this contradicts that \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \). Hence \( x^t = 1 \) and \( f = [1, 0, \ldots, 0, i^r] \), for some \( 0 \leq r \leq 3 \); this is among the listed types.

Summarizing, we proved that if \( f \in \mathcal{A}^t \cap (\mathcal{P} \cup \mathcal{A}) \) then \( f \) is among the listed types.

2. (a.) Suppose \( f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \) is a nonzero degenerate signature, i.e., \( f = [a, b]^{\otimes 2n} \). By \( f \in \mathcal{M} \) we have \([1, 1]^{\otimes 2n} f = [a + b, a - b]^{\otimes 2n} \in \mathcal{M} \), which must satisfy the parity constraints. Thus \( a = \pm b \) and \( f = [1, \pm 1]^{\otimes 2n} \) up to a nonzero scalar.

(b.) If \( f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \) is a non-degenerate binary signature, by \( f \in \mathcal{M} \) and Lemma A.8, we have \( f = [0, 1, 0] \), or \([1, b, 1] \), or \([1, 0, -1] \) up to a nonzero scalar. If \( f = [1, b, 1] \) and \( b^t \neq 0, 1 \), then \( f \notin \mathcal{P} \cup \mathcal{A} \), by Corollary A.9. This contradicts that \( f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \). Thus, \( f = [0, 1, 0] \), \([1, 0, 1] \), \([1, i^r, 1] \) or \([1, 0, -1] \), where \( 0 \leq r \leq 3 \). Note that if \( r = 0 \) or 2, then \([1, i^r, 1] = [1, \pm 1, 1] = [1, \pm 1]^{\otimes 2} \). Thus all these binary signatures are in the listed types.

(c.) If \( f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \) is non-degenerate and has arity \( 2n \geq 4 \), by \( f \in \mathcal{M} \) and Lemma A.11, \( f \) has type \((0, 1, 0)\) or \((1, c, 1)\), and the second order recurrence relation is unique up to a scalar. If \( f \) has type \((1, c, 1)\) with \( c \neq 0 \), then \( f \notin \mathcal{P} \cup \mathcal{A} \) by Lemma A.11 and this contradicts that \( f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A}) \). If \( f \) has type \((1, 0, 1)\), then there exist constants \( x \) and \( y \) such that \( f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} \). By non-degeneracy, we get \( xy \neq 0 \), and by its type \((1, 0, 1)\), \( f \notin \mathcal{P} \) by Lemma A.11. Thus \( f \in \mathcal{A} \). In fact by Lemma A.11 and its type \((1, 0, 1)\), \( f \notin \mathcal{A} \cap \mathcal{P} \), thus it follows that \( f \in \mathcal{A} \setminus \mathcal{P} \). Then there are two possibilities: Either \( f = [1, 1]^{\otimes 2n} \{[1, 0]^{\otimes 2n} + i^r[0, 1]^{\otimes 2n}\} \), or \( f = [1, 1]^{\otimes 2n} \{[1, 0]^{\otimes 2n} + i^r[0, 1]^{\otimes 2n}\} \), up to a nonzero scalar, where \( 0 \leq r \leq 3 \). By \( [1, 1]^{-1} Z = \frac{1}{2} Z \begin{bmatrix} 0 & 1-i \\ 1+i & 0 \end{bmatrix} \), the first possibility quickly reaches a contradiction. Thus \( f = [1, i]^{\otimes 2n} + i^r[1, -i]^{\otimes 2n} \) up to a nonzero scalar, for some \( 0 \leq r \leq 3 \). If \( f = [1, i]^{\otimes 2n} \pm i[1, -i]^{\otimes 2n} \), then \([1, 1]^{\otimes 2n} f \) is a nonzero multiple of the
form \([1, i] \otimes 2n \pm i[1, -i] \otimes 2n\), which does not satisfy parity, and hence not in \(\mathcal{M}\). So \(f\) is not in \(\mathcal{M}\). Hence \(f = [1, i] \otimes 2n \pm [1, -i] \otimes 2n\), which is among the listed types.

If \(f\) has type \((0, 1, 0)\), then \(f = [1, 0, \ldots, 0, x]\) with \(x \neq 0\), up to a nonzero scalar. By \(f \in \mathcal{M}\) and Lemma A.16, we have \(x^2 = 1\). Thus \(f' = [1, 0, \ldots, 0, \pm 1]\), which is among the listed types.

Summarizing, we proved that if \(f \in \mathcal{M} \cap (\mathcal{P} \cup \mathcal{A})\), then \(f\) is among the listed types.

3. Note that \(\mathcal{P} \cup \mathcal{A}\) is unchanged under the transformation by \([0 \ 1]\). Thus

\[
\mathcal{M}^\dagger \cap (\mathcal{P} \cup \mathcal{A}) = [0 \ 1] \left(\mathcal{M} \cap (\mathcal{P} \cup \mathcal{A})\right).
\]

Then the proof of this case follows from the previous case by a transformation using \([1 \ 0]\).

4. If \(f \in \bigcap_{k=3}^{5} S_k\), then a fortiori, \(f \in \mathcal{A} \cap (\mathcal{P} \cup \mathcal{A})\). This implies that

\[
f \in \{[1, \alpha] \otimes 2n, [1, 0] \otimes 2n, [0, 1] \otimes 2n, [0, 1, 0, \ldots, 0, i'] \mid n \geq 1, 0 \leq r \leq 3\}.
\]

Note that \([1, \alpha] \otimes 2n \not\in \mathcal{A}\). Thus \(f = [1, 0] \otimes 2n\), or \([0, 1, 0, \ldots, 0, i']\). All of these four types are among the listed.

5. We already have

\[
\{[0, 1, 0], [1, 0, \ldots, 0, \pm 1]\} \subseteq \bigcap_{1 \leq k \leq 5} S_k \subseteq \bigcup_{2 \leq k \leq 5} S_k.
\]

If \(f \in \bigcap_{k=2}^{5} S_k\), then \(f \in \bigcap_{k=3}^{5} S_k\). This implies that

\[
f \in \{[1, 0] \otimes 2n, [0, 1] \otimes 2n, [0, 1, 0, \ldots, 0, i'] \mid n \geq 1, 0 \leq r \leq 3\}.
\]

Moreover, if \(f = [1, 0] \otimes 2n\), or \([0, 1] \otimes 2n\) or \([1, 0, \ldots, 0, i]\), then \(f \not\in \mathcal{M}\), because \([1 \ -1] \otimes 2n\) \(f\) does not satisfy parity constraints. Hence \(f = [0, 1, 0]\), or \([1, 0, \ldots, 0, \pm 1]\), and both types are among the listed.

\[\square\]

We state the following simple lemma which allows us to replace a signature set \(\mathcal{F}\) in the proof of the No-Mixing Theorem by a smaller set \(\mathcal{F}'\) that subtracts from \(\mathcal{F}\) those signatures that belong to all common tractable signature sets.

**Lemma G.2.** Let \(\mathcal{F}\) be a set of symmetric signatures such that for all \(1 \leq k \leq 5\), \(\mathcal{F} \not\subseteq S_k\). Let \(\mathcal{F}' = \mathcal{F} \setminus (\bigcup_{k=1}^{5} S_k)\). Then for all \(1 \leq k \leq 5\), \(\mathcal{F}' \not\subseteq S_k\) and \(\text{Pl-\#CSP}(\mathcal{F}') \leq \text{Pl-\#CSP}(\mathcal{F})\).

**Proof.** Suppose for some \(1 \leq k \leq 5\), \(\mathcal{F}' \subseteq S_k\), then clearly \(\mathcal{F} \subseteq S_k\). The reduction is trivial since \(\mathcal{F}' \subseteq \mathcal{F}\). \(\square\)

Suppose \(\mathcal{F}\) is as given in Lemma G.2, and \(\mathcal{F} \cap (\bigcup_{k=1}^{5} S_k) \neq \emptyset\). Let \(j = \min\{k \mid \mathcal{F} \cap S_k \neq \emptyset, 1 \leq k \leq 5\}\). Then \(j\) is well defined. The same proof shows that \(\mathcal{F}' = \mathcal{F} \setminus (\bigcap_{k=j}^{5} S_k)\) also has the property that \(\mathcal{F}' \not\subseteq S_k\), for \(j \leq k \leq 5\), and \(\mathcal{F}' \cap S_k = \emptyset\) for \(1 \leq k < j\).

**Corollary G.3.** Let \(\mathcal{F}\) be a set of symmetric signatures such that for all \(1 \leq k \leq 5\), \(\mathcal{F} \not\subseteq S_k\). Furthermore suppose \(\mathcal{F} \cap (\bigcup_{k=1}^{5} S_k) \neq \emptyset\) and let \(j = \min\{k \mid \mathcal{F} \cap S_k \neq \emptyset, 1 \leq k \leq 5\}\). Let \(\mathcal{F}' = \mathcal{F} \setminus (\bigcap_{k=j}^{5} S_k)\). Then for all \(1 \leq k \leq 5\), \(\mathcal{F}' \not\subseteq S_k\) and \(\text{Pl-\#CSP}(\mathcal{F}') \leq \text{Pl-\#CSP}(\mathcal{F})\).

Recall that \(S_1 = \mathcal{M}\), \(S_2 = \mathcal{M}^\dagger\), \(S_3 = \mathcal{A}\), \(S_4 = \mathcal{A}\) and \(S_5 = \mathcal{P}\).
Theorem G.4. Let $F \subseteq \bigcup_{k=1}^{5} S_k$ be a set of symmetric signatures of even arities. If $F \subseteq S_k$ for some $1 \leq k \leq 5$, then $\text{Pl-}\#\text{CSP}^2(F)$ is tractable. Otherwise, $\text{Pl-}\#\text{CSP}^2(F)$ is $\#P$-hard.

Proof. If $F \subseteq S_k$ for some $1 \leq k \leq 5$, then tractability follows from the definition of $\mathcal{P}$-transformability, $\mathcal{A}$-transformability, and $\mathcal{M}$-transformability.

Now suppose $F \not\subseteq S_k$ for all $1 \leq k \leq 5$. We first replace $F$ by $F' = F \setminus \bigcap_{k=1}^{5} S_k$. This also excludes the identically 0 signature. By Lemma G.2, we still have $F' \not\subseteq S_k$ for $1 \leq k \leq 5$, and we only need to prove $\text{Pl-}\#\text{CSP}^2(F')$ is $\#P$-hard.

We will treat the tractable sets in the order $S_1, S_2, ..., S_5$, starting with $S_1 = \widehat{M}$.

1. Suppose that $F' \cap S_1 \neq \emptyset$.

Let $G_1 = F' \cap S_1$, and $H_1 = F' \setminus S_1$. Then $G_1 \neq \emptyset$, and since $F' \not\subseteq S_1$ we also have $H_1 \neq \emptyset$. If there exists $g \in G_1$ such that $g \in \widehat{M} \setminus (\mathcal{P} \cup \mathcal{A})$, then we are done by Lemma E.3. Otherwise, $G_1 \subseteq \widehat{M} \setminus (\mathcal{P} \cup \mathcal{A})$.

By the forms given in Lemma G.1, ignoring nonzero scalars, $G_1 \subseteq \{[1, \pm i, 1], [1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n} \mid m \geq 1, n \geq 2\}$. Note that we have excluded $\bigcap_{k=1}^{5} S_k$ in $F'$, hence also in $G_1$. By Lemma G.1, $[1, 0, ..., 0, \pm 1], [0, 1, 0] \not\in F'$.

If $[1, \pm i]^{\otimes 2n} \in G_1$ for some $m \geq 1$, then we can construct $\partial^{m-1}([1, \pm i]^{\otimes 2n}) = 2^{m-1}[1, \pm i]^{\otimes 2}$, and we are done by Lemma B.3.

Otherwise, by the forms in

$$G_1 \subseteq \{[1, \pm i, 1], [1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n} \mid n \geq 2\}, \tag{G.24}$$

we have $G_1 \subseteq \mathcal{A}$. If $H_1 \subseteq \mathcal{A}$, then we would have $F' \subseteq \mathcal{A}$, a contradiction. Thus $H_1 \not\subseteq \mathcal{A}$.

Thus there exists $h \in H_1 \setminus \mathcal{A}$. By definition of $H_1$, $h \not\in \widehat{M}$. Also $H_1 \subseteq \bigcup_{k=1}^{5} S_k$, thus $h \in (\mathcal{P} \cup \mathcal{A}^\dagger \cup \widehat{M}) \setminus (\mathcal{P} \cup \mathcal{A})$. By the forms of signatures in the nonempty set $G_1$ in (G.24) we have $G_1 \cap (\mathcal{P} \cup \mathcal{A}^\dagger \cup \widehat{M}) = \emptyset$. To check this: for the binary $[1, \pm i, 1]$, we apply Lemma A.8; for $[1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n}$ we use its second order recurrence of type $(1, 0, 1)$ and then we apply Lemma A.11. Thus $\text{Pl-}\#\text{CSP}^2(F')$ is $\#P$-hard by Theorem F.9.

2. We have $F' \cap S_1 = \emptyset$. We replace $F'$ by $F'' = F' \setminus (\bigcap_{k=2}^{5} S_k)$. By Corollary G.3, we still have $F'' \not\subseteq S_k$ for $2 \leq k \leq 5$, $F'' \cap S_1 = \emptyset$, and we only need to prove $\text{Pl-}\#\text{CSP}^2(F'')$ is $\#P$-hard.

Now suppose that $F'' \cap S_2 \neq \emptyset$.

By Lemma G.1, $[1, 0, ..., 0, \pm 1], [0, 1, 0] \not\in F''$.

Let $G_2 = F'' \cap S_2$ and $H_2 = F'' \setminus S_2$. Both $G_2, H_2 \neq \emptyset$ and by definition $H_2 \cap \widehat{M} = \emptyset$.

Thus there exists $h \in H_2 \setminus \widehat{M}$. If there exists $g \in G_2$ such that $g \in \widehat{M} \setminus (\mathcal{P} \cup \mathcal{A})$, then $\text{Pl-}\#\text{CSP}^2(f, g)$ is $\#P$-hard by Theorem F.9.

Otherwise, $G_2 \subseteq \widehat{M} \setminus (\mathcal{P} \cup \mathcal{A})$. Then $G_2 \subseteq \{[1, \pm i]^{2m}, [1, \pm i, -1], [1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n} \mid m \geq 1, n \geq 2\}$ by Lemma G.1. By its form $G_2 \subseteq \mathcal{A}$. If $H_2 \subseteq \mathcal{A}$, then we would have $F'' \subseteq \mathcal{A}$, a contradiction. Thus $H_2 \not\subseteq \mathcal{A}$. Hence there exists $h' \in H_2 \setminus \mathcal{A}$. By definition of $H_2$, $h' \not\in \mathcal{M}$. As $F'' \subseteq \bigcup_{k=2}^{5} S_k$, $h' \in \mathcal{P} \cup \mathcal{A}^\dagger \setminus (\mathcal{P} \cup \mathcal{A})$. If $G_2$ includes either $[1, \pm i, -1]$ or $[1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n}$ for some $n \geq 2$, both are not in $\mathcal{P} \cup \mathcal{A}^\dagger$. To see this, we apply Corollary A.9 to the binary $[1, \pm i, -1]$. For $[1, i]^{\otimes 2n} \pm [1, -i]^{\otimes 2n}$ with $n \geq 2$, we note its recurrence type $(-1, 0, 1)$ and then apply Lemma A.11. Then $\text{Pl-}\#\text{CSP}^2(F'')$ is $\#P$-hard by Theorem F.9.

We are left with the case where the nonempty set $G_2 \subseteq \{[1, \pm i]^{2m} \mid m \geq 1\}$. By its form $G_2 \subseteq \mathcal{P} \cap \mathcal{A} \cap \mathcal{M} \setminus \mathcal{M}$ and $G_2 \cup \mathcal{A} \setminus \mathcal{M} = \emptyset$. If there exists $h'' \not\in H_2 \setminus (\mathcal{A} \cup \mathcal{P})$, then by definition of $H_2$ this $h'' \not\in \mathcal{M}$ as well, and we conclude that $\text{Pl-}\#\text{CSP}^2(F'')$ is $\#P$-hard by Theorem F.9.
So we may assume $\mathcal{H}_2 \subseteq \mathcal{A} \cup \mathcal{P}$. If $\mathcal{H}_2 \subseteq \mathcal{A}$, then we would have $\mathcal{F}'' \subseteq \mathcal{A}$, a contradiction. Thus there exists $h'' \in (\mathcal{H}_2 \cap \mathcal{P}) \setminus \mathcal{A}$. Considering the forms of signatures in $\mathcal{P} \setminus \mathcal{A}$, it takes the form $h'' = [a, b]^\otimes 2n$ with $a^4 \neq b^4$, $ab \neq 0$, or $h'' = [1, 0, \ldots, 0, x]$ of arity $2n$, with $x^4 \neq 0, 1$, for some $n \geq 1$. Taking $h^{(i)} = \partial^{n-1}(h'')$, we get a nonzero multiple of either $[a, b]^\otimes 2$ or $[1, 0, x]$. Then taking $\partial^{n-1}_{h''}(1, \pm i)^\otimes 2m$, for some $m \geq 1$, where $[1, \pm i]^\otimes 2m \in \mathcal{G}_2$ which is nonempty, we get a nonzero multiple of $[1, \pm i]^\otimes 2$, and we are done by Lemma B.3.

3. Now we have $\mathcal{F}'' \cap S_2 = \emptyset$.

We replace $F''$ by $F'' = F'' \setminus (\bigcap_{k=3}^5 S_k)$. By Lemma G.2, we still have $F'' \notin S_k$ for $3 \leq k \leq 5$, $F'' \cap (S_1 \cup S_2) = \emptyset$, and we only need to prove $\text{Pl-}\#\text{CSP}^2(F'')$ is #P-hard. Suppose that $F'' \cap S_3 \neq \emptyset$.

By Lemma G.1, the following signatures $[1, 0, \ldots, 0, i^r]$ of arity $2n$, $[0, 1, 0], [1, 0]^{\otimes 2n}, [0, 1]^{\otimes 2n}$ are all out of $F''$, for any $0 \leq r \leq 3$ and any $n \geq 1$.

Let $\mathcal{G}_3 = F'' \cap S_3$, $\mathcal{H}_3 = F'' \setminus S_3$. Both $\mathcal{G}_3, \mathcal{H}_3 \neq \emptyset$. Thus there exists $h \in \mathcal{H}_3$ such that $h \in (\mathcal{P} \cup \mathcal{A}) \setminus (\mathcal{A}^\uparrow \cup \mathcal{M})$. If there exists $g \in \mathcal{G}_3$ such that $g \in \mathcal{A}^\uparrow \setminus \mathcal{P}$, then by Corollary A.12, $g \notin \mathcal{A}$. Thus $\text{Pl-}\#\text{CSP}^2(h, g)$ is #P-hard by Theorem F.9.

Otherwise, we have $\mathcal{G}_3 \subseteq \mathcal{A}^\uparrow \setminus \mathcal{P}$. Thus we have $\mathcal{G}_3 \subseteq \{[1, \alpha]^{\otimes 2m} \mid m \geq 1\}$. Note that by Lemma G.1, we have excluded $[1, 0, \ldots, 0, i^r]$ of arity $2n$, $[0, 1, 0], [1, 0]^{\otimes 2n}, [0, 1]^{\otimes 2n}$ which are all in $\bigcap_{k=3}^5 S_k$. (See Figure 35.)

Then we have $\partial^{m-1}(1, \alpha)^{\otimes 2n} = (1 + \alpha^2)[1, \alpha]^{\otimes 2}$ and we are done by Lemma B.3.

4. Finally we have $\mathcal{F}'' \cap S_3 = \emptyset$.

We have $F'' \notin S_k$ for $4 \leq k \leq 5$, $F'' \cap (S_1 \cup S_2 \cup S_3) = \emptyset$, and thus $F'' \subseteq S_4 \cup S_5$. Then we are done directly by Theorem F.9.

H Dichotomy Theorem for an Even-Arity Signature

In this section, we prove the dichotomy theorem for $\text{Pl-}\#\text{CSP}^2(f)$, where $f$ has a general even arity $2n$. If $2n = 2$ or 4, then it has been proved in Theorem A.21' and Theorem D.5 respectively. Thus we will assume $2n \geq 6$.

The next simple lemma is to determine if a symmetric signature satisfies a second order recurrence relation. In the following proof, we often argue that a signature $f$ does not belong to $\mathcal{P} \cup \mathcal{A}^\uparrow \cup \mathcal{M}$ by Lemma A.11, and by showing that $f$ does not satisfy any second order recurrence relation.

Lemma H.1. For a symmetric signature $f = [f_0, f_1, \ldots, f_n]$, let $M_f = \begin{bmatrix} f_0 & f_1 & f_2 \\ f_1 & f_2 & f_3 \\ \vdots & \vdots & \vdots \\ f_{n-2} & f_{n-1} & f_n \end{bmatrix}$, then $f$ satisfies a second order recurrence relation iff $\text{rank}(M_f) \leq 2$.

Proof. The signature $f$ satisfies a second order recurrence relation $af_k + bf_{k+1} + cf_{k+2} = 0$ for $0 \leq k \leq n - 2$ iff the linear system $M_f X = 0$ has a nonzero solution $(a, b, c)^T$ iff $\text{rank}(M_f) \leq 2$.

We often use the following argument to prove hardness: Firstly, we prove $f \notin \mathcal{P} \cup \mathcal{A}^\uparrow \cup \mathcal{M}$ using Lemma H.1. Moreover, if we can get $[1, \omega]^{\otimes 2}$ in $\text{Pl-}\#\text{CSP}^2(f)$ for some $\omega \neq 0$, then $\text{Pl-}\#\text{CSP}^2(f, [1, \omega]^{\otimes 2})$ is #P-hard by Lemma B.3. Or if we can get a signature $g \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}^\uparrow)$ in $\text{Pl-}\#\text{CSP}^2(f)$, then $\text{Pl-}\#\text{CSP}^2(f, g)$ is #P-hard by Lemma E.3.
The next three lemmas are some special cases of Theorem H.5 which is the main result of this section. We prove these lemmas separately to facilitate the presentation of the proof of Theorem H.5.

**Lemma H.2.** Suppose $ab \neq 0$ and $f = [1, a, 0, -a, 0, a, b]$, then Pl-\#CSP$^2(f)$ is \#P-hard.

**Proof.** Note that $M_f = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ has rank 3. Thus $f$ does not satisfy any second order recurrence relation by Lemma H.1. So $f \notin \mathcal{P} \cup \mathcal{Q} \cup \mathcal{M}$ by Lemma A.11.

Moreover, we have $\partial_{x,y}(f) = [1,2a,b]$. If $[1,2a,b]$ is degenerate, then $[1,2a,b] = [1,2a]^{\otimes 2}$. We are done since Pl-\#CSP$^2([1,2a]^{\otimes 2})$ is \#P-hard by Lemma B.3. Otherwise,

- For $b^1 \neq 1$, we have $[1,2a,b] \notin \mathcal{P} \cup \mathcal{Q} \cup \mathcal{M}$ by Corollary A.9 and Lemma A.8. Thus Pl-\#CSP$^2([1,2a,b])$ is \#P-hard by Theorem A.21 and we are done.
- For $b^2 = -1$, we have $\partial_{[2,1,a,b]}([=6]) = [1,0,-1]$ on the left and we have $f^1 = \partial_{[1,0,-1]}(f) = [1,2a,0,-2a,-b]$. Note that $f'$ is redundant and the determinant of its compressed signature matrix is $4(b-1)a^2 \neq 0$. Thus Pl-\#CSP$^2(f')$ is \#P-hard by Lemma A.25 and we are done.
- For $b^2 = 1$, if $(2a)^4 \neq 1$, then we have $[1,2a,b] \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{Q})$ by Lemma A.14. Thus Pl-\#CSP$^2([1,2a,b])$ is \#P-hard by Lemma E.3 and Lemma E.7 and we are done.

Otherwise, we have $(2a)^4 = 1$. This implies that $(2a)^2 = \pm b$. Since $[1,2a,b]$ is non-degenerate, we have $(2a)^2 \neq b$, thus $(2a)^2 = -b$. Moreover, we have $f'' = \partial_{[1,2a,b]}(f) = [1+(2a)^2, (1-b)a, -(2a)^2, -(1-b)a, b^2 + (2a)^2]$. Note that $f'' = [0,0,1,0,0]$ for $b = 1$ and $f'' = [2,1-1,1,1,2]$ for $b = -1$. Both of $[0,0,1,0,0]$ and $[2,1-1,1,1,2]$ are redundant and their compressed signature matrices are nonsingular. Thus Pl-\#CSP$^2(f'')$ is \#P-hard by Lemma A.25 and we are done.

The next lemma shows that if $\partial(f) = [1,0]^{\otimes 2n-2} + t[0,1]^{\otimes 2n-2}$ with $t \neq 0$, then either $f = [1,0]^{\otimes 2n} + t[0,1]^{\otimes 2n}$ or Pl-\#CSP$^2(f)$ is \#P-hard. We will use this lemma in Theorem H.5 for the cases where $\partial(f)$ is a non-degenerate generalized equality GEN-EQ.

For $f = [a,b]^{\otimes 2n} = [f_0, f_1, \ldots, f_{2n}]$ we have $f_k = a^{n-k}b^k$. Then it is easy to see that $\hat{f} = [a^2,b^2]^{\otimes 2n} = [f_0, f_2, \ldots, f_{2n}]$, consisting of even indexed entries of $f$. This observation also extends to a sum of tensor powers by linearity. We will use this simple fact in the next lemma.

**Lemma H.3.** Suppose that $(x,y) \neq (0,0)$ and $f = x[1,i]^{\otimes 2n} + y[1,-i]^{\otimes 2n} + [1,0]^{\otimes 2n} + t[0,1]^{\otimes 2n}$, where $2n \geq 6$ and $t \neq 0$, then Pl-\#CSP$^2(f)$ is \#P-hard.

**Proof.** Let $a = x + y$, $b = (x - y)i$, then $(a,b) \neq (0,0)$. Note that

$$f = [a, b, -a, -b, \ldots, \pm b, \mp a] + [1, 0, \ldots, 0, t] = [a + 1, b, -a, -b, a, \ldots, \pm b, \mp a + t].$$
Since $M_f$ has a rank 3 submatrix $\begin{bmatrix} f_0 & f_1 & f_2 \\ f_1 & f_2 & f_3 \\ f_2 & f_3 & f_4 \end{bmatrix}$, $M_f$ has rank 3. By Lemma H.1, $f$ does not satisfy any second order recurrence relation. So $f \notin \mathcal{P} \cup \widetilde{\mathcal{A}} \cup \widetilde{\mathcal{M}}$ by Lemma A.11.

1. For $a \neq 0$, let $\tilde{f} = [f_0, f_2, \ldots, f_{2n}]$, then $\tilde{f} = a[1, -1]^{\otimes n} + [1, 0]^{\otimes n} + t[0, 1]^{\otimes n}$ and $\text{Pl-}\#\text{CSP}(\tilde{f}) \leq \text{Pl-}\#\text{CSP}^2(f)$ by Lemma A.19. Note that $\tilde{f} = [a + 1, -a, a, \ldots, \pm a, \mp a + t]$ has arity $n \geq 3$.
   - For $2n \geq 8$ or $[2n = 6$ and $t \neq -1]$, we claim that $\tilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \widetilde{\mathcal{M}}$.
     For $2n \geq 8$, Since $M_{\tilde{f}}$ has a rank 3 submatrix $\begin{bmatrix} f_0 & f_1 & f_2 \\ f_1 & f_2 & f_3 \\ f_2 & f_3 & f_4 \end{bmatrix}$, $M_{\tilde{f}}$ has rank 3. Thus $\tilde{f}$ does not satisfy any second order recurrence relation by Lemma H.1. So $\tilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \widetilde{\mathcal{M}}$ by Lemma A.11.
     For $2n = 6$ and $t \neq -1$, $M_f$ is a $2 \times 3$ matrix and has rank less than 3. So it always satisfies a second order recurrence relation. But we still show that $\tilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \widetilde{\mathcal{M}}$.
     Note that $\tilde{f} = [a + 1, -a, a, -a + t]$ when $n = 3$.
     - $\tilde{f}$ is non-degenerate by $(f_1) \neq f_0 f_2$ and $\tilde{f}$ is not GEN-Eq since $\tilde{f}_1 \neq 0$, so $\tilde{f} \notin \mathcal{P}$.
     - If $\tilde{f} \in \mathcal{A} \setminus \mathcal{P}$, then $\tilde{f}$ has type $(1, 0, \pm 1)$ by Lemma A.11. By $f_0 - f_2 \neq 0$, $\tilde{f}$ does not have type $(1, 0, -1)$. If $\tilde{f}$ has type $(1, 0, 1)$, then $f_0 + f_2 = 0$, $f_1 + f_3 = 0$. This implies $t = -1$. It is a contradiction. Thus $\tilde{f} \notin \mathcal{A} \setminus \mathcal{P}$.
     - By $\tilde{f}_1 = -f_2 \neq 0$ and Lemma A.16, if $\tilde{f} \in \widetilde{\mathcal{M}}$, then $f_0 = -f_3$. This contradicts that $t \neq -1$. Thus $\tilde{f} \notin \widetilde{\mathcal{M}}$.
     To summarize, $\tilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \widetilde{\mathcal{M}}$ for $2n \geq 8$, or $[2n = 6$ and $t \neq -1]$. Thus $\text{Pl-}\#\text{CSP}(\tilde{f})$ is #P-hard by Theorem A.22. So $\text{Pl-}\#\text{CSP}^2(f)$ is #P-hard.
   - For $2n = 6$ and $t = -1$, we have $f = [a + 1, b, -a, -b, a, b, -a - 1]$. Firstly, we have $\partial^2 f = [1, 0, -1]$ and $f' = \partial_{[1, 0, -1]}(f) = [1 + 2a, 2b, -2a, -2b, 1 + 2a]$. The compressed signature matrix of $f'$ is $\begin{bmatrix} 1 + 2a & 2b & -2a \\ 2b & -2a & -2b \\ -2a & -2b & 1 + 2a \end{bmatrix}$ and its determinant is $-2(4a^2 + 4b^2 + a)$. If $4a^2 + 4b^2 + a \neq 0$, then it is nonsingular, and we are done by Lemma A.25.
   Otherwise we have $4a^2 + 4b^2 + a = 0$. Consider the gadget in Figure 33. We assign $f$ to both vertices. The signature of this gadget is redundant, and its compressed signature matrix is $\begin{bmatrix} 1 + 2a & 8a^2 + 8b^2 & b \\ b & 8a^2 + 8b^2 & -b \\ -2a - 8a^2 - 8b^2 & -b & 1 + 2a + 8a^2 + 8b^2 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 \\ b & -2a & -b \\ 0 & -b & 1 \end{bmatrix}$.
   If $a + b^2 \neq 0$, then this matrix is nonsingular, so we are done by Lemma A.25.
   Otherwise we have $4a^2 + 4b^2 + a = 0$ and $a + b^2 = 0$. Also we have $a \neq 0$. By solving these two equations, $a = \frac{3}{2}$ and $b = \pm \frac{\sqrt{3}}{2}i$. Moreover, we have $\partial_{[a]}(f) = [1 + 2a, 2b, -1 - 2a] = [\frac{5}{2}, \pm \sqrt{3}i, -\frac{5}{2}]$. By Lemma A.14, $\partial_{[a]}(f) \in \widetilde{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})$. Recall that $f \notin \mathcal{M}$. Thus $\text{Pl-}\#\text{CSP}^2(f, [1 + 2a, 2b, -1 - 2a])$ is #P-hard by Lemma E.7 and we are done.

2. For $a = 0$, then $b \neq 0$ by $(a, b) \neq (0, 0)$.
   - if $2n \equiv 0 \pmod{4}$ and $t \neq -1$, then
     $$f'' = \partial_{\frac{n-2}{4}}^n(f) = 2^{\frac{n-2}{4}}x[1, i]^{\otimes 4} + 2^{\frac{n-2}{4}}y[1, -i]^{\otimes 4} + [1, 0]^{\otimes 4} + t[0, 1]^{\otimes 4},$$
Figure 34: Two gadgets used to obtain a signature whose signature matrix is redundant. The dashed subgadgets are assigned \([1,0,1]^{\otimes 2}\) rotated so that it is equivalent to assigning \([1,0,1]\) to the square vertices.

i.e., \(f'' = [1,2^{\frac{n-2}{2}}b,0,-2^{\frac{n-2}{2}}b,t]\). Note that \(f''\) is redundant and the determinant of its compressed signature matrix is \(-2^{n-2}b^2(t+1)\). By \(t \neq -1\) and \(b \neq 0\), the compressed signature matrix is nonsingular. So \(\text{Pl-\#CSP}^2(f'')\) is \(#\text{P}\)-hard by Lemma A.25. Thus \(\text{Pl-\#CSP}^2(f)\) is \(#\text{P}\)-hard.

- If \(2n \equiv 0 \mod 4\) and \(t = -1\), we have \(\partial^{n-1}(f) = [1,0,-1]\) and
  \[ f''' = \partial^{n-3}_{[1,0,-1]}(f) = 2^{n-3}x[1,i]^{\otimes 6} + 2^{n-3}y[1,-i]^{\otimes 6} + [1,0]^{\otimes 6} + (-1)^{n-2}[0,1]^{\otimes 6}, \]
  i.e., \(f''' = [1,2^{n-3}b,0,-2^{n-3}b,0,2^{n-3}b,(-1)^{n-2}]\). By Lemma H.2, \(\text{Pl-\#CSP}^2(f''')\) is \(#\text{P}\)-hard and we are done.

- If \(2n = 2 \mod 4\), we have
  \[ f^{(4)} = \partial^{n-3}_{[1,0]}(f) = 2^{\frac{n-2}{2}}x[1,i]^{\otimes 6} + 2^{\frac{n-2}{2}}y[1,-i]^{\otimes 6} + [1,0]^{\otimes 6} + t[0,1]^{\otimes 6}. \]

Note that \(f^{(4)} = [1,2^{\frac{n-2}{2}}b,0,-2^{\frac{n-2}{2}}b,0,2^{\frac{n-2}{2}}b,t]\). By Lemma H.2, \(\text{Pl-\#CSP}^2(f^{(4)})\) is \(#\text{P}\)-hard and we are done. \(\square\)

We will use the next lemma in the proof of Theorem H.5 for the case that \(\partial(f) = [1,i]^{\otimes 2n-2} + i'[1,-i]^{\otimes 2n-2}\). In this case, we will transform \(\text{Pl-\#CSP}^2\) to \(\text{Pl-\#CSP}^4\) by holographic transformation and gadget construction. This is why we have to deal with \(\text{Pl-\#CSP}^4\) problems in the next lemma.

**Lemma H.4.** Suppose \(f = [0,1,0,\ldots,0,a,0]\) has arity \(2n \geq 6\). If \(a^4 = 1\), then the problem \(\text{Pl-\#CSP}^4(f, [1,0,1]^{\otimes 2}, [1,0,1,0,1])\) is \(#\text{P}\)-hard.

**Proof.** In \(\text{Pl-\#CSP}^4(f, [1,0,1]^{\otimes 2}, [1,0,1,0,1])\), we do not have \(=2\) on the left, so we cannot connect the two edges on the right freely. But we do have \([1,0,1]^{\otimes 2}\) on the right and \(=4\) on the left, so we can do a loop to a pair of \(=4\) on the left respectively and we get \([1,0,1]^{\otimes 2}\) on the left.

Suppose \(a^2 = 1\). Consider the gadget in Figure 34a. We assign \(f\) to the circle vertices and \([1,0,1]^{\otimes 2}\) to the dashed subgadgets rotated so that it is equivalent to assigning \([1,0,1]\) to the square vertices, where there are \(2n-2\) parallel edges connecting the 2 copies of \(f\) with \(2n-2\) square vertices. The signature of this gadget is redundant, and its compressed signature matrix is

\[
\begin{bmatrix}
2n-2 & 0 & 0 \\
0 & 1+a^2 & 0 \\
0 & 0 & (2n-2)a^2
\end{bmatrix},
\]

which is nonsingular, by \(a^2 = 1\). Thus we have

\[
\text{Pl-\#CSP}^2(f') \leq_T \text{Pl-\#CSP}^4(f', [1,0,1]^{\otimes 2}) \leq_T \text{Pl-\#CSP}^4(f, [1,0,1]^{\otimes 2}, [1,0,1,0,1]),
\]

113
where the first \(\leq_T\) is by Lemma B.4. Then we are done by Lemma A.25.

For \(a^2 = -1\), the gadget in Figure 34a cannot work since the compressed signature matrix of its resulting signature is \(\begin{bmatrix} 2n-2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2n+2 \end{bmatrix}\) which is singular.

We consider two cases.
- Suppose \(2n \equiv 0\) (mod 4). Then by Lemma B.4, we have

\[
\text{Pl-}\#\text{CSP}^2(f, [1, 0, 1, 0, 1]) \leq_T \text{Pl-}\#\text{CSP}^4(f, [1, 0, 1, 0, 1], [1, 0, 1]^{\otimes 2}). \quad (H.25)
\]

In Pl-\#CSP^2(f, [1, 0, 1, 0, 1]), we have \(f' = \partial^{n-2}(f) = [0, 1, 0, 0, \pm i, 0]\). Note that \(f' \in \mathcal{A}^+\) by considering \([1 \ 0 \ \alpha]^{\otimes 4} f'\), and also \(f' \notin \mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}}\) by considering its type \((1, 0, \pm i, 0, 0)\), and by Lemma A.11. Furthermore we have \([1, 0, 1, 0, 1] \notin \mathcal{A}\), and also \([1, 0, 1, 0, 1] \notin \mathcal{A}\) by its type \((1, 0, 1, 0, 0)\), and by Lemma A.11. Thus Pl-\#CSP^2(f', [1, 0, 1, 0, 1]) is \#P-hard by Theorem G.4 and we are done.

- For \(2n \equiv 2\) (mod 4), we cannot use Lemma B.4 to get the reduction in (H.25) since Lemma B.4 requires that all signatures on the right have arity \(\equiv 0\) (mod 4). But we have \(f' = \partial^{n-3}(f) = [0, 1, 0, 0, 0, \pm i, 0]\) as well as \(\partial_{-4}(f') = (1 \pm i)[0, 1, 0, 0]\). We may use \([1, 0, 1]^{\otimes 2}\) of the LHS to transport this \([0, 1, 0, 0]\) from the RHS to the LHS as follows: Let \(f(x_1, y_1, x_2, y_2)\) be the function \([1, 0, 1]^{\otimes 2}\) which is 1 iff \(x_1 = y_1\) and \(x_2 = y_2\), and 0 otherwise. Then we connect \(x_1\) and \(x_2\) with the two edges of \([0, 1, 0]\) from the RHS. This creates \([0, 1, 0]\) on the LHS, with which we can take derivative of \(f'\) from the RHS. Then we have \(\partial_{[0,1,0]}(f') = [0, 1, 0, 0, 0, \pm i]\).

Consider the gadget in Figure 34b. We assign \(f'\) to the circle vertices, \([1, 0, 0, 0, 0, \pm i]\) to the triangle vertex, and \([1, 0, 1]^{\otimes 2}\) to the dashed subgadgets rotated so that it is equivalent to assigning \([1, 0, 1]\) to the square vertices. The signature \(f''\) of this gadget is redundant, and its compressed signature matrix is \(\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1+\sqrt{3} & 0 \\ 0 & 0 & \mp 2i \end{bmatrix}\), which is nonsingular. Thus Pl-\#CSP^2(f'') is \#P-hard by Lemma A.25. Moreover, we have

\[
\text{Pl-}\#\text{CSP}^4(f'', [1, 0, 1]^{\otimes 2}) \leq_T \text{Pl-}\#\text{CSP}^4(f, [1, 0, 1, 0, 1], [1, 0, 1]^{\otimes 2})
\]

and

\[
\text{Pl-}\#\text{CSP}^2(f'') \leq_T \text{Pl-}\#\text{CSP}^4(f'', [1, 0, 1]^{\otimes 2})
\]

by Lemma B.4 and we are done. Now Lemma B.4 can work since \(f''\) has arity 4.

Now we are ready to prove the main theorem of this section, the dichotomy of Pl-\#CSP^2(f), where \(f\) has a general even arity \(2n\). We will prove the theorem by induction on the arity \(2n\). The base cases \(2n = 2\) and \(2n = 4\) are already done in Theorem A.21' and Theorem D.5, respectively. We always have \(f' = \partial(f)\) in Pl-\#CSP^2(f) which has arity \(2n - 2\). If \(f' \notin \mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}}\), then Pl-\#CSP^2(f') is \#P-hard by induction and Pl-\#CSP^2(f') is \#P-hard. Otherwise, for \(f' \in \mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}}\), we can explicitly express \(f\) by the integral operator \(\int(f')\). We will prove the theorem in the following order:

1. \(f' \in \mathcal{P}\),
2. \(f' \in \mathcal{A}^+ \setminus \mathcal{P}\),
3. \(f' \in \mathcal{A} \setminus \mathcal{P}\),
4. \(f' \in \overline{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A})\),
5. \(f' \in \overline{\mathcal{M}}^+ \setminus (\mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}})^+\).

Note that by Corollary A.13, Case (4) is equivalent to \(f' \in \overline{\mathcal{M}} \setminus (\mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}})^+\), and Case (5) is equivalent to \(f' \in \overline{\mathcal{M}}^+ \setminus (\mathcal{P} \cup \mathcal{A} \cup \overline{\mathcal{M}})^+\).

In the proof, to use Theorem D.5, we often construct arity 4 signatures by our Calculus with binary signatures or \(= 4\).
Theorem H.5. Let $f$ be a symmetric signature of even arity $2n$. If $f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$, then Pl-\#CSP$(f)$ is tractable. Otherwise, Pl-\#CSP$(f)$ is \#P-hard.

Proof. If $f \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$, then tractability follows from the definition of $\mathcal{P}$-transformability, $\mathcal{A}$-transformability, and $\mathcal{M}$-transformability. Now suppose $f \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$. If $2n \in \{2, 4\}$, then we are done by Theorem A.21' and Theorem D.5 respectively.

For $2n \geq 6$, we will prove the theorem by induction on arity $2n$. If $f' = \partial(f) \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$, then Pl-\#CSP$(f')$ is \#P-hard by induction. Thus Pl-\#CSP$(f)$ is \#P-hard. Otherwise, $f' \in \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$.

1. For $f' \in \mathcal{P}$, we have $f' \equiv 0$ or $f' = [a, b]^{\otimes 2n-2}$ (where $(a, b) \neq (0, 0)$) or $f' = [1, 0]^{\otimes 2n-2} + t[0, 1]^{\otimes 2n-2}$ with $t \neq 0$ by definition. Note that $2n - 2 \geq 4$. Therefore $f' \equiv 0$ or $f' = [a, b]^{\otimes 2n} + y[1, -i]^{\otimes 2n}$ by Proposition A.7 (the Explicit List for $f'(f)$).

   If $x = 0$ or $y = 0$, then $f \in \mathcal{P}$. If $xy \neq 0$ and $x^4 = y^4$, then $f \in \mathcal{A}$. In the following, assume that $xy \neq 0$ and $x^4 \neq y^4$.

   • For $2n \equiv 0 \pmod{4}$, we have $f'' = \partial_{x=4}^n(f) = 2^{-2} x[1, i]^{\otimes 2} + 2^{-2} y[1, -i]^{\otimes 2} = 2^{-2} \left[ a, b, -a \right]$, where $a = x + y, b = (x - y)i$. We remark that $\left[ a, b, -a \right]$ can reduce the arity of $f$, but it involves a case analysis of $a$ and $b$. Instead we use $[a, b, -a]$ to construct a simpler binary signature.

   Note that $a \neq 0$ by $x^4 \neq y^4$. Then we have $\partial_{[a, b, -a]}(=4) = \left[ a, 0, -1 \right]$ on the left. Thus we have $f^{(4)} = \partial_{[1, 0, -1]}^n(f) = 2^{-2} x[1, i]^{\otimes 4} + 2^{-2} y[1, -i]^{\otimes 4}$. By the same reason as in the previous case, $f^{(4)} \notin \mathcal{P} \cup \widetilde{\mathcal{A}} \cup \widetilde{\mathcal{M}}$ by its type, and by $xy \neq 0, x^4 \neq y^4$. Thus Pl-\#CSP$(f^{(4)})$ is \#P-hard by Theorem D.5. So Pl-\#CSP$(f)$ is \#P-hard.

   (b) $f' = [a, b]^{\otimes 2n-2}$ with $ab \neq 0$. If $a^2 + b^2 \neq 0$, we have $\partial_{\otimes 2}^n(f) = (a^2 + b^2)^{n-2}[a, b]^{\otimes 2}$ and we are done by Lemma B.3.

Suppose $a^2 + b^2 = 0$, i.e., $f' = [1, \pm i]^{\otimes 2n-2}$ up to a scalar.

   • For $2n \equiv 0 \pmod{4}$, we have $\partial_{\otimes 4}^n(f') = 2^{-2} [1, \pm i]^{\otimes 2}$ and are done by Lemma B.3.

   • For $2n \equiv 2 \pmod{4}$, we cannot get $[1, \pm i]^{\otimes 2}$ in Pl-\#CSP$(f')$ by Remark 6 (note that the arity of $f'$ is $2n - 2 \equiv 0 \pmod{4}$). To get $[1, \pm i]^{\otimes 2}$, we need the help of $f$. By Proposition A.7 (the Explicit List for $f'(f)$), $f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} + g$, where $g$ has arity $2n$ and $g_k = \frac{1}{4}(\pm i)^k(2n - 2k)$. If $x = y = 0$, then $f \in \mathcal{A}$.

   Otherwise, let $a = x + y, b = (x - y)i$, then $(a, b) \neq (0, 0)$. We have $\partial_{x=4}^n(f) = 2^{-2} x[1, i]^{\otimes 2} + 2^{-2} y[1, -i]^{\otimes 2} + 2^{-2} [1, 0, 1, 1]^{\otimes 2}$, i.e., $\partial_{x=4}^n(f) = 2^{-2} [2a + 1, 1, 2b, -2a + 1]$. If $a \neq 0$, then we have $\partial_{[2a+1, 1, 2b, -2a+1]}^n(=4) = [2a + 1, 0, -2a + 1]$ on the left and $\partial_{[2a+1, 0, -2a+1]}^{n-2}(f') = (4a)^{n-2}[1, \pm i]^{\otimes 2}$. Then we are done by Lemma B.3.

   If $a = 0$, then $b \neq 0$ and we have $[1, 2b, 1]$ and $\partial_{[1, 2b, 1]}^{n-2}(f') = (4bi)^{n-2}[1, \pm i]^{\otimes 2}$. Then we are done by Lemma B.3 again.
(c) $f' = [1, 0]^{\otimes 2n - 2}$. Then $f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} + [1, 0]^{\otimes 2n}$ by Proposition A.7 (the Explicit List for $f(f')$). If $x = y = 0$, then $f \in \mathcal{P}$. In the following, assume that $(x, y) \neq (0, 0)$. Let $a = x + y$, $b = (x - y)i$, then $(a, b) \neq (0, 0)$. We have $\partial^{n-1}(f) = [1, 0]^{\otimes 2}$ and $f'' = \partial^{2n-2}_{1,0}(f) = x[1, i]^{\otimes 4} + y[1, -i]^{\otimes 4} + [1, 0]^{\otimes 4}$, i.e., $f'' = [1 + 2a, b, -a, -b, a]$. Note that $f''$ is redundant. If $a^2 + b^2 \neq 0$, then the compressed signature matrix of $f''$ is nonsingular and we are done by Lemma A.25. Otherwise, we have $a = \pm ib$. We claim that $f'' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$. Note that $ab \neq 0$ by $(a, b) \neq (0, 0)$ and $a = \pm ib$. If $f''$ is degenerate, then by $(f'')^2 = f''_0 f''_2$, we have $-a - a^2 = b^2$. This implies that $a = 0$. It is a contradiction. Moreover, note that $f'' = [1 + 2a, \mp ia, -a, \pm ia, a]$ and has type $(0, 1, \pm i)$. Since $f''$ is non-degenerate and has arity $\geq 3$, the second order recurrence relation $(0, 1, \pm i)$ is unique up to a scalar. Thus $f'' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$ by Lemma A.11. So Pl-\#CSP$_2(f'')$ is \#P-hard by Theorem D.5 and we are done.

(d) $f' = [0, 1]^{\otimes 2n - 2}$. The proof follows from the previous case by a holographic transformation using $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

(e) $f' = [1, 0]^{\otimes 2n - 2} + t[0, 1]^{\otimes 2n - 2}$ with $t \neq 0$. Then $f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} + [1, 0]^{\otimes 2n} + t[0, 1]^{\otimes 2n}$ by Proposition A.7 (the Explicit List for $f(f')$). If $x = y = 0$, then $f \in \mathcal{P}$. Otherwise, we have $(x, y) \neq (0, 0)$ and we are done by Lemma II.3.

2. For $f' \in \mathcal{A} \setminus \mathcal{P}$, we have $f' = [1, 0]^{\otimes 2n - 2} + i\tau[1, -\alpha]^{\otimes 2n - 2}$ by definition (See Figure 35). Then $f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} + \frac{1}{1 + \alpha^2} \{ [1, 0]^{\otimes 2n} + i\tau[1, -\alpha]^{\otimes 2n} \}$ by Proposition A.7 (the Explicit List for $f(f')$). If $x = y = 0$, then $f \in \mathcal{A}^\dagger$. In the following, assume that $(x, y) \neq (0, 0)$. Note that $f'$ has type $(1, 0, \pm i) \cup$ a scalar. And this second order recurrence relation is unique up to a scalar. Thus $f' \in \mathcal{A}^\dagger \setminus (\mathcal{P} \cup \mathcal{A} \cup \mathcal{M})$ by Lemma A.11. In the following, we complete the proof by constructing a signature of even arity in $(\mathcal{P} \cup \mathcal{A} \cup \mathcal{M}) \setminus \mathcal{A}^\dagger$ and apply Theorem G.4, or constructing an arity 4 signature that is not in $\mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$ and apply Theorem D.5.

Firstly, we have $f'' = \partial^{n-3}(f') = (1 + \alpha^2)^{n-3} \{ [1, 0]^{\otimes 4} + 1 + \alpha^2 \}$. We will discard the nonzero factor that are powers of $1 + \alpha^2$. If $r \neq 2$, we have $\partial(f'') = (1 + i\tau)[1, \frac{1}{1 + \alpha^2} \alpha, \alpha^2]$ and we have $\partial_{[1, \frac{1}{1 + \alpha^2} \alpha, \alpha^2]} = [1, 0, \alpha^2]$ on the left. For $r = 2$, $\partial(f'')$ is a nonzero multiple of $[0, 1, 0]$ and we have $\partial_{[0, 1, 0]} = 2[1, 0, \alpha^2]$ on the right. Either way, we can take the derivative (for $[1, 0, \alpha^2]$ we connect it via $(=2)$ of LHS to $f$)

$$f'' = \partial^{n-2}_{[1,0,\alpha^2]}(f) = (1 - \alpha^2)^{n-2} \{ x[1, i]^{\otimes 4} + y[1, -i]^{\otimes 4} \}.$$

Note that $\partial_{[1,0,\alpha^2]}([1, \pm \alpha]^{2n})$ is the identically zero signature, since $\alpha^4 = -1$. If $xy = 0$, or $[x]y \neq 0$ and $x^4 = y^4$, then $f'' \in \mathcal{A} \setminus \mathcal{A}^\dagger$. So Pl-\#CSP$_2(f', f'')$ is \#P-hard by Theorem G.4. Thus Pl-\#CSP$_2(f')$ is \#P-hard.

Otherwise, $xy \neq 0$ and $x^4 \neq y^4$, so $f'' \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M}$ (by the same reason as before: first by its type $(1, 0, 1)$ it could only possibly be in $\mathcal{A}$ among the five classes by Lemma A.11; but $x^4 \neq y^4$ rules that out too). Thus Pl-\#CSP$_2(f'')$ is \#P-hard by Theorem D.5. So Pl-\#CSP$_2(f)$ is \#P-hard.

3. For $f' \in \mathcal{A} \setminus \mathcal{P}$, we have $f' = [1, 0]^{\otimes 2n - 2} + i\tau[1, -\rho]^{\otimes 2n - 2}$ by definition (See Figure 35).

- If $f' = [1, 1]^{\otimes 2n - 2} + i\tau[1, -1]^{\otimes 2n - 2}$, then $f = x[1, i]^{\otimes 2n} + y[1, -i]^{\otimes 2n} + \frac{1}{2} \{ [1, 1]^{\otimes 2n} + i\tau[1, -1]^{\otimes 2n} \}$ by Proposition A.7 (the Explicit List for $f(f')$). If $x = y = 0$, then $f \in \mathcal{A}$. In the following, assume that $(x, y) \neq (0, 0)$. 116
By a holographic transformation using $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, we have

$$\text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots | \hat{f}', \hat{f}) = \text{Pl-} \#\text{CSP}^2(f', f),$$

where $\hat{f}' = (H^{-1}) \otimes 2^{n-2} f' = [1, 0]^{2n-2} + i\hat{r}[0, 1]^{2n-2} = [1, 0, \ldots, 0, i\hat{r}]$, $\hat{f} = (H^{-1}) \otimes 2^n f = x'[1, -i] \otimes 2^n + y'[1, i] \otimes 2^n + \frac{1}{2} \{(1, 0) \otimes 2^n + i\hat{r}[0, 1] \otimes 2^n\}$, where $x' = (1 + i) y\frac{2^{n-2}}{2^n} x$, $y' = \frac{1 - i}{2^{n-2}} y$.

Note that $(x', y') \neq (0, 0)$.

Since we have $[1, 0, 1]$ on the left and $[1, 0, \ldots, 0, i\hat{r}]$ of arity $2n - 2 \geq 4$ on the right in

$$\text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots | \hat{f}', \hat{f}),$$

we can construct $=2_k$ on the right for $k \geq 1$ in the following way: Firstly, connect four copies of $[1, 0, \ldots, 0, i\hat{r}]$ by three copies of $[1, 0, 1]$ in a planar fashion, to form an equality $[1, 0, \ldots, 0, 1]$ of arity $4(2n - 2) - 6 = 8n - 14$. Then use $4n - 9$ copies of $[1, 0, 1]$ to form loops on $(=8n-14)$, and we get $(=4)$. From this, and $(=2) = [1, 0, 1]$ on the left, we can get all $(=2_k)$ on the right for $k \geq 1$. Then by $(=2)$ on the left, we can construct all of $(=2_k$ on the left. Thus

$$\text{Pl-} \#\text{CSP}^2(f', f) \leq \text{Pl-Holant}([1, 0, 1], [1, 0, 1, 0, 1], \ldots | \hat{f}', \hat{f}).$$

By Lemma H.3 Pl-\#CSP2($\hat{f}$) is \#P-hard. Thus Pl-\#CSP2($f$) is \#P-hard.

- If $f' = [1, i] \otimes 2^{n-2} + i\hat{r}[1, -i] \otimes 2^{n-2}$, then $f = x[1, i] \otimes 2^n + y[1, -i] \otimes 2^n + \hat{f}$, where $\hat{f}$ has arity $2n$ and $\hat{f}_k = \frac{1}{4} \{i^k (2n - 2k) + i\hat{r} (-i)^k (2n - 2k)\}$ by Proposition A.7 (the Explicit List for $f'(f')$. Under the holographic transformation by $Z = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, the expressions are more revealing: $f = Z \otimes 2^n [x, 1, 0, \ldots, 0, i\hat{r}, y]$, and $f' = \partial(f) = Z \otimes 2^n [1, 0, \ldots, 0, i\hat{r}]$. However, if we apply the holographic transformation $Z$ to Pl-\#CSP2($f', f'$), we have

$$\text{Pl-Holant}([0, 1, 0], [1, 0, 1, 0, 1], \ldots | \hat{f}', \hat{f}) \equiv \text{Pl-Holant}(\mathcal{E} \otimes_2 f, f'),$$

where $\hat{f} = (Z^{-1}) \otimes 2^n f = [x, 1, 0, \ldots, 0, i\hat{r}, y]$, and $\hat{f}' = (Z^{-1}) \otimes 4 f = [1, 0, \ldots, 0, i\hat{r}]$. Note that now we do not have $=2$ on the left in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots | \hat{f}, \hat{f})$. This is inconvenient to construct gadget. So, in the following steps we first try to construct $[1, 0, -1] \otimes 2$ on the LHS of Pl-\#CSP2($f$) to get Pl-Holant([1, 0, -1] \otimes 2 \cup \mathcal{E} \otimes_2 | f).$ This will be done with the help of Lemma A.20. Then after the holographic transformation by $Z$, we have $[1, 0, -1] \otimes 2 Z \otimes 2 = 4[1, 0, 1] \otimes 2$ on the left.

To apply Lemma A.20, we construct $[1, i] \otimes 4 + i^s [1, -i] \otimes 4$ in Pl-\#CSP2($f, f'$) for some $0 \leq s \leq 3$ as follows.

- If $2n \equiv 2 \pmod{4}$, then we have $\partial_{\frac{2^n}{2^n}}^n(f') = 2^n \frac{2^n}{2^n} \{[1, i] \otimes 4 + i\hat{r}[1, -i] \otimes 4\}^4$.

- If $2n \equiv 0 \pmod{4}$, then we have $\partial_{\frac{2^n}{2^n}}^n(f') = 2^n \frac{2^n}{2^n} \{[1, i] \otimes 2 + i\hat{r}[1, -i] \otimes 2\} = 2^n \frac{2^n}{2^n} [1 + i\hat{r}, 1 - i\hat{r}](1 - i\hat{r}) = (1 - i\hat{r})^2 (1 + i\hat{r})$.

This is a nonzero multiple of $[1, \pm 1, -1]$ if $r \neq 2$, and a nonzero multiple of $[0, 1, 0]$ if $r = 2$.

If $r \neq 2$, then we have $\partial_{[0, 1, 0]}^n(f') = 2^n \{[1, i] \otimes 4 + i\hat{r}(-1)^{n-2}[1, -i] \otimes 4\}.$

If $r = 2$, we have $\partial_{[0, 1, 0]}^n(f') = (2i)^n \{[1, i] \otimes 4 + i\hat{r}(-1)^{n-2}[1, -i] \otimes 4\}.$

117
Thus we have \( f'' = [1, i]^\otimes 4 + i^s[1, -i]^\otimes 4 \), for some \( 0 \leq s \leq 3 \), in \( \text{Pl-}\#\text{CSP}^2(f, f') \). Then by Lemma A.20, we have \([1, 0, -1]^\otimes 2\) on the left, i.e., we have

\[
\text{Pl-Holant}(\mathcal{E}Q_2, [1, 0, -1]^\otimes 2 \mid f, f'') \equiv \text{Pl-}\#\text{CSP}^2(f).
\]

By a holographic transformation using \( Z = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \), we have

\[
\text{Pl-Holant}([1, 0, 1]^\otimes 2, [0, 1, 0], [1, 0, 1, 0], \ldots \mid f', \widetilde{f}'') \equiv \text{Pl-Holant}(\mathcal{E}Q_2, [1, 0, -1]^\otimes 2\mid f, f''),
\]

where \( \widetilde{f} = (Z^{-1})^\otimes 2n f = [x, 1, 0, \ldots, 0, i', y] \), and \( \widetilde{f}'' = (Z^{-1})^\otimes 4 f = [1, 0, 0, 0, i^s] \).

In \( \text{Pl-Holant}([1, 0, 1]^\otimes 2, [0, 1, 0], [1, 0, 1, 0], \ldots \mid f', \widetilde{f}'') \), by \([1, 0, 1]^\otimes 2\) on the left and \( \widetilde{f}'' \) on the right, we get \( =4 \) on the right as follows: Use 4 copies of \( \widetilde{f}'' \), connected together by 3 copies of \([1, 0, 1]^\otimes 2\) in a planar way. Each copy of \([1, 0, 1]^\otimes 2\) connects two edges of one copy of \( \widetilde{f}'' \) to another copy of \( \widetilde{f}'' \). Thus we can move \( f \) to LHS by \([1, 0, 1]^\otimes 2\) because \( f \) has even arity. Thus we have

\[
\text{Pl-Holant}([1, 0, 1]^\otimes 2, [1, 0, 1, 0, 1], \widetilde{f} \mid \mathcal{E}Q_4) \leq \text{Pl-Holant}([1, 0, 1]^\otimes 2, [1, 0, 1, 0, 1], \ldots \mid \widetilde{f}, \widetilde{f}'').
\]

Note that

\[
\text{Pl-}\#\text{CSP}^4(\widetilde{f}, [1, 0, 1, 0, 1], [1, 0, 1]^\otimes 2) \equiv \text{Pl-Holant}([1, 0, 1]^\otimes 2, [1, 0, 1, 0, 1], \widetilde{f} \mid \mathcal{E}Q_4).
\]

We will prove that \( \text{Pl-}\#\text{CSP}^4(\widetilde{f}, [1, 0, 1, 0, 1], [1, 0, 1]^\otimes 2) \) is \( \#\text{P} \)-hard to complete the proof of this case.

Note that \( \begin{bmatrix} \widetilde{f}_0 & \widetilde{f}_1 & \widetilde{f}_2 & \widetilde{f}_3 \\ \widetilde{f}_1 & \widetilde{f}_2 & \widetilde{f}_3 & \widetilde{f}_{2n-3} \\ \widetilde{f}_1 & \widetilde{f}_2 & \widetilde{f}_{2n-2} & \widetilde{f}_{2n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \) has rank 3. Thus \( \widetilde{f} \) does not satisfy any second order recurrence relation by Lemma H.1. So \( \widetilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \) by Lemma A.11.

If \((x, y) = (0, 0)\), we are done by Lemma H.4. In the following, assume that \((x, y) \neq (0, 0)\).

- If \(2n \equiv 0 \pmod{4}\), then

\[
\text{Pl-}\#\text{CSP}^2(\widetilde{f}) \leq \text{Pl-}\#\text{CSP}^4(\widetilde{f}, [1, 0, 1]^\otimes 2) \tag{H.26}
\]

by Lemma B.4.

For \( \text{Pl-}\#\text{CSP}^2(\widetilde{f}) \), we have \( \widetilde{f}''' = \partial^{n-2}(\widetilde{f}) = [x, 1, 0, i^s, y] \). Note that \( \widetilde{f}''' \) is redundant. If \((-1)^s x + y \neq 0\), then the compressed signature matrix of \( \widetilde{f}''' \) is nonsingular and we are done by Lemma A.25.

Otherwise, we have \( x = \pm y\), and thus both \( x, y \neq 0\). It is easy to see that \( \widetilde{f}''' \) does not satisfy the second order recurrence relations \((0, 1, 0), (1, 0, \pm 1), (1, 0, \pm i)\). Thus \( \widetilde{f}''' \notin \mathcal{P} \cup \mathcal{A} \) by Lemma A.11.

We consider three possibilities for \( \widetilde{f}''' \).

- If \( \widetilde{f}''' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A}) \), then \( \text{Pl-}\#\text{CSP}^2(\widetilde{f}, \widetilde{f}''' \) is \( \#\text{P} \)-hard by Lemma E.3, where we have \( \widetilde{f} \notin \mathcal{M} \) because we have noted earlier that \( \widetilde{f} \notin \mathcal{P} \cup \mathcal{A} \cup \mathcal{M} \). Thus \( \text{Pl-}\#\text{CSP}^4(\widetilde{f}, [1, 0, 1]^\otimes 2) \) is \( \#\text{P} \)-hard by (H.26) and we are done.
• If $\hat{f}''' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}})$, then $\hat{f}''' = [x, 1, 0, 1, -x]$ by Corollary A.18 (the other form $[u, v, w, v, u]$ with $(u + w)w = 2v^2$ in Corollary A.18 is impossible because $w = 0$ here and $(u + w)w = 2v^2$ would force $v = 0$). Then we are done by Lemma E.4, because $\hat{f}'''$ plays the role of $g$ in Lemma E.4, and $\hat{f} \notin \hat{\mathcal{M}}$ by $\hat{f} \notin \mathcal{P} \cup \hat{\mathcal{A}} \cup \hat{\mathcal{M}}$.

- For $2n \equiv 2 \pmod{4}$, we cannot use the reduction in (H.26) since Lemma B.4 requires that all signatures on the right have arity $\equiv 0 \pmod{4}$. We get around this difficulty by constructing some arity 4 signatures in $\text{Pl-}\#\text{CSP}^4(\hat{f})$, and then use Lemma B.4 for these arity 4 signatures.

Firstly, we have $\hat{g} = \partial_{x,0,0}(\hat{f}) = [x, 1, 0, 0, 0, i^r, y]$. We also have $\partial_{x,1+i^r,y}(\hat{g}) = [x, 1+i^r, y]$. They are both on the right. Then we have $\partial_{x,1+i^r,y}(\hat{g}) = [x, 0, y]$ on the left. We also connect $[x,0,y]$ and $[x,1+i^r,y]$ and then $[x,0,y]$ in a chain, to get another binary signature $h = [x^3, (1+i^r)xy, y^3]$ on the left. This can be verified by

$$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \begin{bmatrix} x & 1 + i^r \\ 1 + i^r & y \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} x^3 & (1+i^r)xy \\ (1+i^r)xy & y^3 \end{bmatrix}.$$ 

From these we produce two arity 4 signatures on the right:

$$\hat{g}' = \partial_{x,0,0}(\hat{g}) = [x^2, x, 0, i^r y, y^2]$$

$$\hat{g}'' = \partial_{h}(\hat{g}) = [x^4 + 2(1+i^r)xy, x^3, 0, i^r y^3, y^4 + 2i^r(1+i^r)xy].$$

Thus

$$\text{Pl-}\#\text{CSP}^4(\hat{g}', \hat{g}'', [1, 0, 1] \otimes^2, [1, 0, 1, 0, 1]) \leq \text{Pl-}\#\text{CSP}^4(\hat{f}, [1, 0, 1] \otimes^2, [1, 0, 1, 0, 1]).$$

Moreover, note that all signatures in $\{\hat{g}', \hat{g}'', [1, 0, 1, 0, 1]\}$ have arity 4. Then by Lemma B.4, we have

$$\text{Pl-}\#\text{CSP}^2(\hat{g}', \hat{g}'', [1, 0, 1, 0, 1]) \leq \text{Pl-}\#\text{CSP}^4(\hat{g}'', [1, 0, 1] \otimes^2, [1, 0, 1, 0, 1]).$$

It is easy to see that $\hat{g}'$ is non-degenerate and does not satisfy the second order recurrence relations $\{0, 1, 0\}, \{1, 0, \pm 1\}, \{1, 0, \pm i\}$, because $(x, y) \neq (0, 0)$. Thus $\hat{g}' \notin \mathcal{P} \cup \hat{\mathcal{A}}$ by Lemma A.11. If $\hat{g}' \notin \hat{\mathcal{M}}$, then $\text{Pl-}\#\text{CSP}^2(\hat{g}')$ is #P-hard by Theorem D.5 and we are done.

Otherwise, $\hat{g}' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}})$ or $\hat{g}' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}})$. Note that $[1, 0, 1, 0, 1]$ has type $\langle 1, 0, -1 \rangle$ and the second order recurrence relation is unique up to a scalar. Thus $[1, 0, 1, 0, 1] \notin \hat{\mathcal{M}}$ by Lemma A.11. If $\hat{g}' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}})$, then $\text{Pl-}\#\text{CSP}^2(\hat{g}', \hat{g}'', [1, 0, 1, 0, 1])$ is #P-hard by Lemma E.3 and we are done.

Therefore we may assume $\hat{g}' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}} \cup \hat{\mathcal{M}})$. By Corollary A.18, for $\hat{g}' \in \hat{\mathcal{M}} \setminus (\mathcal{P} \cup \hat{\mathcal{A}} \cup \hat{\mathcal{M}})$, it cannot be of the form $[u, v, w, -v, u]$ with $(u - w)w = 2v^2$; for if it were so, then by $w = 0$ in this case, we would have $v = 0$, and this would imply that $x = i^r y = 0$ in $\hat{g}'$. It contradicts that $(x, y) \neq (0, 0)$. So $\hat{g}'$ must be of the form $[u, v, o, v, -u]$, i.e., $x^2 = -y^2$, $x = i^r y$. Thus we have $x = \epsilon iy$ and $i^r = \epsilon i$, for some $\epsilon = \pm 1$, and $x \neq 0$. Hence both $x, y \neq 0$ and $1 + i^r \neq 0$. It follows that $x^3 = -\epsilon iy^3 \neq \epsilon iy^3 = i^r y^3$. 119
Moreover, if \( \hat{g}'' \in \hat{\mathcal{M}} \), it cannot take the form \([u, v, w, -v, u]\) with \((u - w)w = 2u^2\) in Corollary A.18 because if so then \(w = 0\) would force \(v = 0\) and that would force both \(x = y = 0\). Then \(\hat{g}''\) must be of the form \([u, v, 0, v, -u]\). But this would force \(x^3 = i'y^3\), a contradiction. Thus \(\hat{g}'' \notin \hat{\mathcal{M}}\).

If \(\hat{g}'' \notin \mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}}\), then \(\text{Pl-#CSP}^2(\hat{g}''\)) is \(#\text{P}\)-hard by Theorem D.5 and we are done. Otherwise, \(\hat{g}'' \in (\mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}}) \setminus \mathcal{M}\), \(\text{Pl-#CSP}^2(\hat{g}''\), \([1, 0, 1, 0, 1]\)) is \(#\text{P}\)-hard by Lemma E.4 and we are done.

4. For \(f' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A})\), we are done by Lemma E.3.

5. For \(f' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}})\), or equivalently, \(f' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}})\), \(f' = [s, ti] \otimes 2^{n-2} + [t, si] \otimes 2^{n-2}\), \(st \neq 0\), \(s^4 \neq t^4\), or \(f'\) has arity \(2n - 2\) and \(f'_k = (\pm i)^k (2n - 2 - 2k)\) by Lemma A.14. Note that we are done if we have a nonzero binary signature that is not \(\lambda[1, 0, 1]\) by Lemma E.7. Moreover, if we have an arity 4 signature \(h\) that is not in \(\mathcal{M}\) then we are done by the following argument: if \(h \in (\mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}}) \setminus \mathcal{M}\), then \(\text{Pl-#CSP}^2(h, f')\) is \(#\text{P}\)-hard by Theorem G.4 since \(f' \in \mathcal{M} \setminus (\mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}})\); if \(h \notin \mathcal{P} \cup \mathcal{A} \cup \hat{\mathcal{M}}\), then \(\text{Pl-#CSP}^2(h)\) is \(#\text{P}\)-hard by Theorem D.5.

- For \(f' = [s, ti] \otimes 2^{n-2} + [t, si] \otimes 2^{n-2}\) with \(2n \equiv 0 \pmod 4\) or \(f' = [s, ti] \otimes 2^{n-2} - [t, si] \otimes 2^{n-2}\) with \(2n \equiv 2 \pmod 4\), we have \(\partial^0_{n-1}(f) = (s^2 + t^2)(s^4 - t^4)^{n-1}[1, 2^{n-2} - 1] \neq \lambda[1, 0, 1]\).

- For \(f' = [s, ti] \otimes 2^{n-2} + [t, si] \otimes 2^{n-2}\) with \(2n \equiv 2 \pmod 4\), \(f = x[1, i] \otimes 2^n + y[1, -i] \otimes 2^n + \frac{1}{2^n - 2^n}\{[s, ti] \otimes 2^n - [t, si] \otimes 2^n\}\) by Proposition A.7 (the Explicit List for \(f(f')\)). If \(x = y = 0\), then \(f \in \mathcal{M}\). Otherwise, we have

\[
f''' = \partial_{n-2}(f) = 2^{n-1} x[1, i] \otimes 2^n + 2^{n-1} y[1, -i] \otimes 2^n + \frac{(s^4 + t^4)^{n-1}}{s^2 - t^2} \{[s, ti] \otimes 2^n - [t, si] \otimes 2^n\}
\]

\[
= 2^{n-1} x[1, i] \otimes 2^n + 2^{n-1} y[1, -i] \otimes 2^n + \frac{(s^4 + t^4)^{n-1}}{s^2 - t^2} [1, 0, 1, 1]
\]

Let \(a = 2^{-n-1} \chi(x + y)\), \(b = 2^{-n-1} \chi(x - y)\), and \(c = (s^4 + t^4)^{-n-1}\), then \(f''' = [c + a, b, c - a]\).

Note that \((a, b) \neq (0, 0)\). If \(b \neq 0\), it is obvious that \(f''' \neq \lambda[1, 0, 1]\). If \(b = 0\), then \(a \neq 0\). Then \(f''' \neq \lambda[1, 0, 1]\) by \(c + a \neq c - a\).

- For the case that \(f'\) has arity \(2n - 2\) and \(f'_k = (\pm i)^k (2n - 2 - 2k)\) with \(2n \equiv 2 \pmod 4\), we have \(\partial f'' = \partial_{n-3}(f'')\) which has arity 4 and \(f''_k = 2^n (\pm i)^k (4 - 2k)\). Moreover, we have \(\partial(f'') = 2^{n-1} \chi[1, \pm i, -1] \neq \lambda[1, 0, 1]\). We remark that it is necessary to use \(= 4\) that many times, since \(f\) with two loops by \(= 2\) is already identically zero.

- For the case that \(f'\) has arity \(2n - 2\) and \(f'_k = (\pm i)^k (2n - 2 - 2k)\) with \(2n \equiv 0 \pmod 4\), we may consider only the case where the sign is +. Indeed under \(Z = [1, 1]\), for the + sign \(f' = Z^{\otimes (2n-2)}[0, 1, 0, \ldots, 0]\) and for the - sign \(f' = Z^{\otimes (2n-2)}[0, 0, 0, 0, 0, 0, \ldots, 0]\), a reverse under the Z-transformation. If we take a holographic transformation by \(T = [1, 0, 0, 0] \), we have \(TZ = [1, 1] = Z[0, 0, 0]\), and so \((TZ)^{\otimes (2n-2)}[0, 0, 0, 0, 0, 0, 0, 0] = Z^{\otimes (2n-2)}[0, 0, 0, 0, 0, 0, 0, 0]\). Meanwhile, \(E Q_2\) is invariant under \(T\).

Thus we consider \(f'\) of arity \(2n - 2\) where \(f'_k = i^k (2n - 2 - 2k)\) with \(2n \equiv 0 \pmod 4\). Let \(\hat{f}' = (Z^{-1})^{\otimes (2n-2)} f'\) and \(\hat{f} = (Z^{-1})^{\otimes (2n-2)} f\). Then we have \((Z^{-1})^{\otimes (2n-2)} (\partial f)\) up to a scalar. This implies \(\partial_{[0, 0, 0]}(f) = [0, 0, 0, 0, 0, 0, 0, 0]\).

Thus there exist constants \(x\) and \(y\) such that \(\hat{f} = [x, 0, 1, 0, \ldots, 0, y]\). By the holographic transformation using \(Z\), we have

\[
\text{Pl-#CSP}^2(f) \equiv \text{Pl-Holant}([0, 1, 0], [1, 0, 1, 0, 1], \ldots | \hat{f}).
\]
We remark that, in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid \hat{f}) , all signatures have even arities. And all signatures of arity 2m \equiv 2 \pmod{4} satisfy odd parity and all signatures of arity 2m \equiv 0 \pmod{4} satisfy even parity. Then by the statement of Remark 5, any binary signature constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid \hat{f}) can only be of the form \lambda[0, 1, 0, 1]. This implies that the binary signature constructed in Pl-\#CSP^2(f) can only be of the form \lambda[1, 0, 1] before the Z-transformation. This forces us to construct signatures of arity at least 4 to prove hardness.

In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid \hat{f}) , note that by 2n \equiv 0 \pmod{4} we have 2n \geq 8, and \( \hat{g} = \partial^2_{[1,0,1,0,1]}(\hat{f}) = [x + \frac{n-2}{2} \cdot 6, 0, 1, 0, y] \). It has arity 4. If \((x + \frac{n-2}{2} \cdot 6)y \neq 1\), then \( \hat{g} \notin \mathcal{M} \), because symmetric matchgate signatures must form geometric series in alternate terms. Thus we have \( Z^\otimes 4(\hat{g}) \notin \mathcal{M}^4 \) in Pl-\#CSP^2(f, f') and we are done.

If \((x + \frac{n-2}{2} \cdot 6)y = 1\), then \( y \neq 0 \). Firstly, we have an arity 8 signature

\[
\hat{g}' = \partial^2_{[1,0,1,0,1]}(\hat{f}) = [x + \frac{n-4}{2} \cdot 6, 0, 1, 0, 0, 0, 0, y]
\]

(note that \( n \geq 4 \) when \( 2n \equiv 0 \pmod{4} \), and we have \( \partial^2_{[0,1,0]}(\hat{g}') = [1,0]^\otimes 4 \) on the right. So we have \([0,1]^\otimes 4 \) on the left. Moreover, we have \( \partial^2_{[1,0]}(\hat{g}') = y[0,1]^\otimes 4 \) on the right. So we have \([1,0]^\otimes 4 \) on the left. Then we have \( \hat{g}'' = \partial^2_{[1,0]}(\hat{f}) = [x, 0, 1, 0, 0, 0, y] \) on the right. Note that \( \hat{g}'' \notin \mathcal{M} \). Thus we have \( Z^\otimes 4(\hat{g}'') \notin \mathcal{M}^4 \) in Pl-\#CSP^2(f, f') and we are done.

• For the last case of Case 5, \( f' \mid [s, t] \otimes 2n^2 - [t, s] \otimes 2n^2 \) with \( 2n \equiv 0 \pmod{4} \), we let \( u = \frac{s+t}{s-t} \), then \( u^4 \neq 0, 1 \) by Lemma A.3. Let \( Z = [\frac{1}{1}, \frac{1}{1}] \), then

\[
\hat{f}' = (Z^{-1})^\otimes 2n^2 - (f')
\]

\[
= \frac{1}{2^{2n-2}} \left\{ [s + t, s - t]^\otimes 2n^2 - [s + t, t - s]^\otimes 2n^2 \right\}
\]

\[
= \frac{1}{2^{2n-2}} \left\{ [u]^\otimes 2n^2 - [1, -u]^\otimes 2n^2 \right\}
\]

\[
= \lambda[0, u^2, 0, u^4, \ldots, u^{2n-2}, 0],
\]

where \( \lambda = \frac{(s+t)^{2n^2}-2}{2^{2n^2}-4} \neq 0 \). Let \( (Z^{-1})^\otimes 2n^2 f = \hat{f} \), then \( (Z^{-1})^\otimes 2n^2(\partial(f)) = \partial_{[0,1,0]}(\hat{f}) \) up to a scalar. This implies that \( \partial_{[0,1,0]}(\hat{f}) = \lambda[0, u^2, 0, u^4, \ldots, u^{2n-2}, 0] \). Thus there exist constants \( x \) and \( y \) such that \( \hat{f} = (Z^{-1})^\otimes 2n^2 f = \lambda[1 + x, 0, u^2, 0, u^4, \ldots, u^{2n-2}, 0, u^{2n} + y] \), where we append the terms 1 and \( u^{2n} \) for future convenience. (This can be accommodated by naming different x and y.) If \( x = y = 0 \), then \( \hat{f} \in \mathcal{M} \) and \( f \in \mathcal{M}^4 \). In the following, assume that \( (x, y) \neq (0, 0) \). By the holographic transformation using \( Z \), we have

\[
\text{Pl-\#CSP}^2(f) \equiv \text{Pl-Holant}([0, 1, 0], [1, 0, 1, 0, 1], \ldots \mid \hat{f}).
\]

By the same argument as the previous case, it is impossible to construct a “good” binary signature in this case. So we have to construct signatures of arity at least 4 to prove hardness.

We will repeatedly use the following computation in the remainder of this proof: Let \( \hat{g} = \partial_{[0,1,0,v,0,v^2]}(g) \) for some \( v \), then \( \text{arity}(\hat{g}) = \text{arity}(g) - 4 \) and \( \hat{g}_k = g_k + 6v g_{k+2} + v^2 g_{k+4} \).
We will complete the proof by constructing some arity 4 signatures \( \widehat{h} \) in the setting after the Z-transformation Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots | \widehat{f} ) that cannot all belong to \( \mathcal{M} \). We note that if \( \widehat{h} \notin \mathcal{M} \) then \( h = Z^{\otimes 4} \widehat{h} \notin \mathcal{M} \). This will imply Pl-\#CSP^2(h, f') is \#P-hard as noted earlier, thus complete the proof of this Case 5.

In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], \ldots | \widehat{f} ), we have \( \partial_{[0,1,0]}^4(\widehat{f}) \) which is a nonzero multiple of \([1,0,u^2,0,u^4]\). Then we have \([u^4,0,u^2,0,1] = u^4[1,0,u^{-2},0,u^{-4}] \) on the left. Ignoring \( \lambda \neq 0 \), we write

\[
\widehat{f} = [1,0,u^2,0,u^4,0,\ldots,0,u^{2n}] + [x,0,0,0,0,\ldots,0,y]
\]

which has arity \( 2n \geq 8 \), and we have

\[
\widehat{f}^{(4)}(x, y) = \partial_{[1,0,u^{-2},0,u^{-4}]}^{2n}(\widehat{f}) = 8^{-n\over 2}[1,0,u^2,0,u^4,0,u^6,0,u^8] + [x,0,0,0,0,0,0,0,yu^{-2(n-4)}] = \left[ x + 8^{-n\over 2}, 0, 8^{-n\over 2}, u^2, 0, 8^{-n\over 2}, u^4, 0, 8^{-n\over 2}, u^6, 0, 8^{-n\over 2}, u^8 + yu^{-2(n-4)} \right].
\]

Let \( x' = \frac{x}{8^{-n\over 2}} \), \( y' = \frac{yu^{-2(n-4)}}{8^{-n\over 2}} \), then \( \widehat{f}^{(4)} = [x' + 1,0,u^2,0,u^4,0,u^6,0,u^8 + y'] \) up to the scalar \( 8^{-n\over 2} \). Further, we have \( \widehat{f}^{(5)} = \partial_{[1,0,u^{-2},0,u^{-4}]}^{2n}(\widehat{f}^{(4)}) = [x' + 8,0,8u^2,0,8u^4 + y'u^{-4}] \).

If \( x' = 0 \) or \( y' = 0 \), then \( \widehat{f}^{(5)} \notin \mathcal{M} \) by \((x' + 8)(8u^4 + y'u^{-4}) \neq (8u^2)^2 \) and we are done. So we can assume that \( x'y' \neq 0 \) in the following.

In the following, if we have the signature \([1,0,v,0,v^2]\) with \( v \neq 0 \) on the left, then we have \( \partial_{[1,0,v,0,v^2]}^{2n}(\widehat{f}^{(4)}) = [x' + c, 0, cu^2, 0, y'v^2 + cu^4] \), where \( c = 1 + 6u^2v + u^4v^2 \). If \( c = 0 \), then we have \([x',0,0,0,y'v^2] \notin \mathcal{M} \) and we are done. So in the following, we always suppose that \( c = 1 + 6u^2v + u^4v^2 \neq 0 \). Moreover, if \((x' + c)(y'v^2 + cu^4) \neq (cu^2)^2 \), then \([x' + c, 0, cu^2, 0, y'v^2 + cu^4] \notin \mathcal{M} \) and we are done. So we assume that \((x' + c)(y'v^2 + cu^4) = (cu^2)^2 \). This implies that \( x' + c \neq 0 \) and \( x'y'v^2 + (x'v^4 + y'v^4)c = 0 \). To summarize, in the following if we have \([1,0,v,0,v^2]\) with \( v \neq 0 \) on the left, then we have

\[
\begin{align*}
  c &= 1 + 6u^2v + u^4v^2 \neq 0, \\
  x' + c &= 0, \\
  x'y'v^2 + (x'v^4 + y'v^4)c &= 0. 
\end{align*}
\] (H.27)

Firstly, by \( \widehat{f}^{(5)} = \partial_{[1,0,u^{-2},0,u^{-4}]}^{2n}(\widehat{f}^{(4)}) = [x' + 8,0,8u^2,0,8u^4 + y'u^{-4}] \) and (H.27), we have

\[
\begin{align*}
  x' + 8 &= \neq 0, \\
  x'y'u^4 + 8(x'u^4 + y'u^{-4}) &= 0. 
\end{align*}
\] (H.28)

Note that we have \([1,0,1,0,1]\) on the left, so we have \( \widehat{f}^{(6)} = \partial_{[1,0,1,0,1]}^{2n}(\widehat{f}^{(4)}) = [x' + c_1, 0, cu^2, 0, y' + c_1u^4] \), where \( c_1 = 1 + 6u^2 + u^4 \). Then by (H.27), we have \( c_1 \neq 0 \) and

\[
\begin{align*}
  x' + c_1 &= 0, \\
  x'y' + (x'u^4 + y')c_1 &= 0. 
\end{align*}
\] (H.29)
By (H.28), (H.29), and \( x'y' \neq 0 \), we have
\[
1 + \left( \frac{u^8}{y'} + \frac{1}{x'} \right) s = 0,
\]
\[
1 + \left( \frac{u^4}{y'} + \frac{1}{x'} \right) c_1 = 0.
\]

Then we have
\[
\frac{1}{x'} = \frac{c_1 - 8u^4}{8c_1(u^4 - 1)} = -\frac{1 + 7u^2}{8(1 + u^2)(1 + 6u^2 + u^4)},
\]
\[
\frac{1}{y'} = \frac{8 - c_1}{8c_1(u^8 - u^4)} = -\frac{7 + u^2}{8u^4(1 + u^2)(1 + 6u^2 + u^4)}.
\]

Since \( x' \neq 0 \), we have \( 1 + 7u^2 \neq 0 \).

For \( f(5) \), \( f(6) \), let \( v_2 = \frac{x' + 8}{8u^2} \) and \( v_3 = \frac{x' + c_1}{c_1u^2} \), then \( v_2 \neq 0, v_3 \neq 0 \) by \( x' + 8 \neq 0 \) and \( x' + c_1 \neq 0 \), and \( f(5) = [1, 0, v_2^{-1}, 0, v_2^{-2}] \), \( f(6) = [1, 0, v_3^{-1}, 0, v_3^{-2}] \) up to the scalars \( x' + 8 \), \( x' + c_1 \) respectively. So we have \( [1, 0, v_2, 0, v_2^2], [1, 0, v_3, 0, v_3^2] \) on the left. Moreover, let \( c_2 = 1 + 6u^2v_2 + u^4v_2^2, c_3 = 1 + 6u^2v_3 + u^4v_3^2 \), then we have by (H.27)
\[
x'y'v_2^2 + (x'u^4 + y'v_2^2)c_2 = 0,
\]
\[
x'y'v_3^2 + (x'u^4 + y'v_3^2)c_3 = 0.
\]

In (H.30), we have
\[
c_1 = 1 + 6u^2 + u^4,
\]
\[
\frac{1}{x'} = \frac{c_1 - 8u^4}{8c_1(u^4 - 1)} = -\frac{7u^2 + 1}{8(u^2 + 1)(u^4 + 6u^2 + 1)},
\]
\[
\frac{1}{y'} = \frac{8 - c_1}{8c_1(u^8 - u^4)} = -\frac{u^2 + 7}{8u^4(1 + u^2)(u^4 + 6u^2 + 1)}.
\]
\[
v_2 = \frac{x' + 8}{8u^2} = -\frac{7u^2 - u^4}{7u^2 + 1},
\]
\[
c_2 = 1 + 6u^2v_2 + u^4v_2^2 = \frac{u^{12} + 14u^{10} + 7u^8 - 300u^6 + 7u^4 + 14u^2 + 1}{(7u^2 + 1)^2},
\]
\[
v_3 = \frac{x' + c_1}{c_1u^2} = -\frac{7 + u^2}{u^2(1 + 7u^2)},
\]
\[
c_3 = 1 + 6u^2v_3 + u^4v_3^2 = \frac{8u^4 - 272u^2 + 8}{(1 + 7u^2)^2}.
\]

Note that all of them are functions of \( u \). Thus (H.30) gives two equations of \( u \) as following:
\[
\frac{8u^4c_1^2(1 + u^2)^2 \cdot p_1(u)}{(1 + 7u^2)^4} = 0,
\]
\[
\frac{3072u^2(1 + u^2)^2c_1 \cdot p_2(u)}{(1 + 7u^2)^4} = 0,
\]
where $p_1(u) = u^{12} + 14u^{10} - 49u^8 - 700u^6 - 49u^4 + 14u^2 + 1$, $p_2(u) = 7u^4 + 2u^2 + 7$.

Note that $q_1(u)p_1(u) + q_2(u)p_2(u) = 244224$, where $q_1(u) = -188 - 315u^2$, $q_2(u) = 34916 - 9555u^2 - 32872u^4 - 2058u^6 + 644u^8 + 45u^{10}$, thus $\gcd(p_1(u), p_2(u)) = 1$. Then by $u^4 \neq 0, 1$, $c_1 \neq 0$, the two equations in (H.30) have no common solution in $u$. This is a contradiction and we finish the proof.

We hereby finish the proof of Theorem H.5, and hence we complete the proof of the main theorem of Part II—Theorem A.2 is a straightforward combination of Theorem C.13, Theorem H.5 and Theorem G.4.

References


Figure 35: A Venn diagram of the $\#\text{CSP}^2$ tractable sets $\mathcal{A}$, $\mathcal{A}^\dagger$, and $\mathcal{P}$. Note that $\rho^4 = 1$, $\alpha^4 = -1$, and $n \geq 1$. Excluded are tensor products of unary signatures.
Figure 36: A Venn diagram of the Pl-\#CSP$^2$ tractable sets $\wM$ and $\wM^\dagger$ along with the set $\wA \cup \wP$ of all tractable #CSP$^2$ signatures. Note that $\rho^4 = 1$, $\alpha^4 = -1$, and $n \geq 1$. Excluded are tensor products of unary signatures.