Random Cluster Dynamics for the Ising model is Rapidly Mixing

Heng Guo
Queen Mary, University of London

Joint work with Mark Jerrum

Oxford
Nov 03 2016
The model and its dynamics
The random cluster model [Fortuin, Kasteleyn 1969]

Parameters $0 \leq p \leq 1$ (edge weight), $q \geq 0$ (cluster weight).

Given graph $G = (V, E)$, the measure on subgraph $r \subseteq E$ is defined as

$$\pi_{RC}(r) \propto p^{|r|} (1 - p)^{|E\setminus r|} q^{\kappa(r)},$$

where $\kappa(r)$ is the number of connected components in (V, r).

(1 - p)^4 q^4

$p^2 (1 - p)^2 q^2$

$p^4 q$
The random cluster model [Fortuin, Kasteleyn 1969]

The partition function (normalizing factor):

\[Z_{RC}(p, q) = \sum_{r \subseteq E} p^{|r|} (1 - p)^{|E \setminus r|} q^{\kappa(r)}. \]

Equivalent to the Tutte polynomial \(Z_{Tutte}(x, y) \):

\[q = (x - 1)(y - 1) \quad \quad p = 1 - \frac{1}{y} \]
The random cluster model [Fortuin, Kasteleyn 1969]

\[\pi_{RC}(r) \propto p^{r_1}(1 - p)^{|E \setminus r_1|} q^{K_r} \]

The motivation is to unify:

- Ising model
- Potts model
- Bond percolation
- Electrical network
The random cluster model [Fortuin, Kasteleyn 1969]

\[\pi_{RC}(r) \propto p^{|r|} (1 - p)^{|E\setminus r|} q^{|K_r|} \]

The motivation is to unify:

- Ising model \(q = 2 \)
- Potts model
- Bond percolation
- Electrical network
The random cluster model [Fortuin, Kasteleyn 1969]

$$\pi_{RC}(r) \propto p^{|r|}(1 - p)^{|E\setminus r|} q^{K(r)}$$

The motivation is to unify:

- Ising model \(q = 2 \)
- Potts model \(q > 2 \), integer
- Bond percolation
- Electrical network
The random cluster model [Fortuin, Kasteleyn 1969]

\[\pi_{RC}(r) \propto p^{|r|} (1 - p)^{|E \setminus r|} q^{|K(r)|} \]

The motivation is to unify:

- Ising model \(q = 2 \)
- Potts model \(q > 2, \text{integer} \)
- Bond percolation \(q = 1 \) (On \(K_n \), Erdős-Rényi random graph)
- Electrical network
The random cluster model [Fortuin, Kasteleyn 1969]

\[\pi_{RC}(r) \propto p^{|r|}(1 - p)^{|E\setminus r|} q^{K(r)} \]

The motivation is to unify:

- Ising model \(q = 2 \)
- Potts model \(q > 2 \), integer
- Bond percolation \(q = 1 \) (On \(K_n \), Erdős-Rényi random graph)
- Electrical network \(q \to 0 \) (Spanning trees if \(p \to 0 \) and \(\frac{q}{p} \to 0 \))
The random cluster model [Fortuin, Kasteleyn 1969]

\[\pi_{RC}(r) \propto p^{|r|}(1 - p)^{|E \setminus r|} q^{|K(r)|} \]

The motivation is to unify:

- **Ising model** \(q = 2 \)
- **Potts model** \(q > 2, \) integer
- **Bond percolation** \(q = 1 \) (On \(K_n \), Erdős-Rényi random graph)
- **Electrical network** \(q \to 0 \) (Spanning trees if \(p \to 0 \) and \(\frac{q}{p} \to 0 \))
Glauber dynamics (single edge update) P_{RC} (Metropolis):

Current state $x \subseteq E$

1. With prob. $1/2$ do nothing. (Lazy)

2. Otherwise, choose an edge e u.a.r.

3. Move to $y = x \oplus \{e\}$ with prob. $\min\left\{ 1, \frac{\pi_{RC}(y)}{\pi_{RC}(x)} \right\}$.

Detailed balance:

$$\pi(x)P(x, y) = \pi(y)P(y, x) = \min\{\pi(x), \pi(y)\}$$
Glauber dynamics

Glauber dynamics (single edge update) P_{RC} (Metropolis):

$$P_{RC}(x, y) = \begin{cases}
\frac{1}{2m} \min \left\{ 1, \frac{\pi_{RC}(y)}{\pi_{RC}(x)} \right\} & \text{if } |x \oplus y| = 1; \\
1 - \frac{1}{2m} \sum_{e \in E} \min \left\{ 1, \frac{\pi_{RC}(x \oplus \{e\})}{\pi_{RC}(x)} \right\} & \text{if } x = y; \\
0 & \text{otherwise.}
\end{cases}$$

We are interested in the mixing time $\tau_\epsilon(P_{RC})$:

$$\tau_\epsilon(P_{RC}) = \min \left\{ t : \|P_{RC}^t(x_0, \cdot) - \pi\|_{TV} \leq \epsilon \right\}.$$
A simple example

Let $p < 1/2$.

\[
\min \left\{ 1, \frac{\pi_{RC}(X \cup \{e\})}{\pi_{RC}(X)} \right\}
\]

\[
= \begin{cases}
 \frac{p}{1-p} & \text{if } e \text{ is not a cut edge} \\
 \frac{p}{q(1-p)} & \text{if } e \text{ is a cut edge}
\end{cases}
\]
A simple example

Let $p < 1/2$.

$$\min \left\{ 1, \frac{\pi_{RC}(x \cup \{e\})}{\pi_{RC}(x)} \right\}$$

$$= \begin{cases} \frac{p}{1-p} & \text{if } e \text{ is not a cut edge} \\ \frac{p}{q(1-p)} & \text{if } e \text{ is a cut edge} \end{cases}$$
A simple example

Let $p < 1/2$.

$$\min \left\{ 1, \frac{\pi_{RC}(x \cup \{e\})}{\pi_{RC}(x)} \right\}$$

$$= \begin{cases} \frac{p}{1-p} & \text{if } e \text{ is not a cut edge} \\ \frac{p}{q(1-p)} & \text{if } e \text{ is a cut edge} \end{cases}$$
A simple example

Let $p < 1/2$.

$$\min \left\{ 1, \frac{\pi_{RC}(x \cup \{e\})}{\pi_{RC}(x)} \right\}$$

$$= \begin{cases} \frac{p}{1-p} & \text{if } e \text{ is not a cut edge} \\ \frac{p}{q(1-p)} & \text{if } e \text{ is a cut edge} \end{cases}$$
Let $p < 1/2$.

\[
\min \left\{ 1, \frac{\pi_{RC}(x \cup \{e\})}{\pi_{RC}(x)} \right\} = \begin{cases}
\frac{p}{1-p} & \text{if } e \text{ is not a cut edge} \\
\frac{p}{q(1-p)} & \text{if } e \text{ is a cut edge}
\end{cases}
\]
Brief History

Studied extensively for special graphs, such as the complete graph (mean-field) and the lattice \mathbb{Z}^2.

- **Mean-field:** [Gore, Jerrum 1999]

 [Blanca, Sinclair 2015]

- **\mathbb{Z}^2:** [Borgs et al. 1999]

 [Blanca, Sinclair 2016]

 [Gheissari, Lubetzky 2016]

$q > 2$: Slow mixing for the complete graph.

$0 \leq q \leq 2$: No known fast mixing bound for general graphs.
Main theorem

Theorem

For the random cluster model with parameters $0 < p < 1$ and $q = 2$,

$$\tau_{\epsilon}(P_{RC}) \leq 10n^4m^2(\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1}).$$

For $q > 2$, there exists p such that P_{RC} is slow mixing on complete graphs. [Gore, Jerrum 1999] [Blanca, Sinclair 2015]

For $q > 2$ and $0 < p < 1$, it is $\#BIS$-hard to approximate $Z_{RC}(p, q)$. [Goldberg, Jerrum 2012]

For $0 \leq q < 2$, there is no known obstacle.
Main theorem

Theorem

For the random cluster model with parameters $0 < p < 1$ and $q = 2$,

$$
\tau_{\epsilon}(P_{RC}) \leq 10n^4 m^2 (\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1}).
$$

- For $q > 2$, there exists p such that P_{RC} is slow mixing on complete graphs. [Gore, Jerrum 1999] [Blanca, Sinclair 2015]

- For $q > 2$ and $0 < p < 1$, it is \#BIS-hard to approximate $Z_{RC}(p, q)$.
 [Goldberg, Jerrum 2012]

- For $0 \leq q < 2$, there is no known obstacle.
For the random cluster model with parameters $0 < p < 1$ and $q = 2$,
\[\tau_\epsilon(P_{RC}) \leq 10n^4m^2(\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1}). \]

- For $q > 2$, there exists p such that P_{RC} is slow mixing on complete graphs. [Gore, Jerrum 1999] [Blanca, Sinclair 2015]

- For $q > 2$ and $0 < p < 1$, it is $\#BIS$-hard to approximate $Z_{RC}(p, q)$. [Goldberg, Jerrum 2012]

- For $0 \leq q < 2$, there is no known obstacle.
Main theorem

Theorem

For the random cluster model with parameters $0 < p < 1$ and $q = 2$,

$$
\tau_\epsilon(P_{RC}) \leq 10n^4m^2(\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1}).
$$

- For $q > 2$, there exists p such that P_{RC} is slow mixing on complete graphs. [Gore, Jerrum 1999] [Blanca, Sinclair 2015]
- For $q > 2$ and $0 < p < 1$, it is #BIS-hard to approximate $Z_{RC}(p, q)$. [Goldberg, Jerrum 2012]
- For $0 \leq q < 2$, there is no known obstacle.
Swendsen-Wang algorithm
Ferromagnetic Ising model [Ising, Lenz 1925]

Parameter $\beta > 1$.

A configuration $\sigma : V \to \{+, -\}$.

$$\pi_{Ising}(\sigma) \propto \beta^{mono(\sigma)} = \beta^{m-cut(\sigma)}$$

Partition function $Z_{Ising}(\beta) = \sum_{\sigma} \beta^{mono(\sigma)}$
Equivalence at $q = 2$

Let $\beta = \frac{1}{1-p}$.

$$Z_{Ising}(\beta) = |E| \beta Z_{RC}(p, 2)$$

A global Markov chain to sample Ising configurations.

Current configuration σ

1. Mark all monochromatic edges under σ as M
2. Remove each edge in M with probability β^{-1} (Recall $\beta^{-1} = 1 - p$)
3. Assign a random spin to each component of (V, M)

Practically very fast for the Ising model, but difficult to analyze.

Conjectured to be rapidly mixing for all graphs.

(Open problem since 90s.)
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Another simple example

1. Activate mono edges
2. Re-randomize mono edges
3. Color components
Previous Results

- Swendsen-Wang algorithm on the complete graph:

 [Gore, Jerrum 1999]

 [Cooper, Dyer, Frieze, Rue 2000]

 [Long, Nachimus, Ning, Peres 2011]

 [Borgs, Chayes, Tetali 2011]

 [Galanis, Štefankovič, Vigoda 2015]

Theorem (Ullrich 2014)

\[\tau_\epsilon(P_{SW}) \leq \tau_\epsilon(P_{RC}) \]
Previous Results

- Swendsen-Wang algorithm on the complete graph:

 [Gore, Jerrum 1999]
 [Cooper, Dyer, Frieze, Rue 2000]
 [Long, Nachimus, Ning, Peres 2011]
 [Borgs, Chayes, Tetali 2011]
 [Galanis, Štefankovič, Vigoda 2015]

Theorem (Ullrich 2014)

\[\tau_\epsilon(P_{SW}) \leq \tau_\epsilon(P_{RC}) \]
Theorem (Ullrich 2014)

$$\tau_\varepsilon(P_{SW}) \leq \tau_\varepsilon(P_{RC})$$

Combine with our theorem:

the Swendsen-Wang algorithm is rapidly mixing at $q = 2$,
namely, for the ferromagnetic Ising model at any temperature.

- The Swendsen-Wang algorithm is conjectured to have a $n^{1/4}$ mixing time
 (by Peres and Sokal).
Consequence — Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 2014)

\[\tau_\epsilon(P_{SW}) \leq \tau_\epsilon(P_{RC}) \]

Combine with our theorem:

the Swendsen-Wang algorithm is **rapidly mixing** at \(q = 2 \), namely, for the ferromagnetic Ising model at any temperature.

- The Swendsen-Wang algorithm is conjectured to have a \(n^{1/4} \) mixing time (by Peres and Sokal).
Even subgraphs
Another equivalent formulations at $q = 2$

Even subgraphs

Let $r \subseteq E$ such that every vertex in (V, r) has an even degree.

$$\pi_{\text{even}}(r) \propto p^{|r|} (1 - p)^{|E \setminus r|}$$

Partition function $Z_{\text{even}}(p)$

- $(1 - p)^4$: \(\pi_{\text{even}}(r) \propto p^4 \) (even)
- NOT EVEN
- \(p^4 \)
Equivalence at \(q = 2 \)

Let \(\beta = \frac{1}{1-p} \).

\[
Z_{\text{Ising}}(\beta) = \beta^{\lvert E \rvert} Z_{RC}(p, 2) = 2^{\lvert V \rvert} \beta^{\lvert E \rvert} Z_{\text{even}} \left(\frac{p}{2} \right)
\]
Equivalence at $q = 2$

Random-cluster
$(p, 2)$

Ising model
$\beta = (1 - p)^{-1}$

Even subgraphs
$p/2$

[Fortuin, Kasteleyn 1969]

[van der Waerden 1941]

[Edwards, Sokal 1988]

[Fortuin, Kasteleyn 1969]

[Fortuin, Kasteleyn 1969]

[Fortuin, Kasteleyn 1969]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

Even subgraphs $p/2$

Ising model
$\beta = (1 - p)^{-1}$

[Fortuin, Kasteleyn 1969]
[van der Waerden 1941]

[Edwards, Sokal 1988]
[Fortuin, Kasteleyn 1969]
[Grimmett, Janson 2009]

Slow mixing
FPRAS
[Jerrum, Sinclair 93]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

Ising model

$\beta = (1 - p)^{-1}$

Even subgraphs $p/2$

[Edwards, Sokal 1988]

[Fortuin, Kasteleyn 1969]

[Grimmett, Janson 2009]

[van der Waerden 1941]

FPRAS [Jerrum, Sinclair 93]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

Even subgraphs $p/2$

Ising model

$\beta = (1 - p)^{-1}$

[Edwards, Sokal 1988]

[van der Waerden 1941]

[Edwards, Sokal 1988]

[Grimmett, Janson 2009]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

Even subgraphs $p/2$

Ising model $\beta = (1 - p)^{-1}$

Slow mixing

[Edwards, Sokal 1988]

[Edwards, Sokal 1988]

[Grimmett, Janson 2009]

[van der Waerden 1941]

[Heng Guo (QMUL) Random Cluster 2016/11/03 21 / 41]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

[Edwards, Sokal 1988]

[Griffint, Janson 2009]

Ising model
$\beta = (1 - p)^{-1}$

Slow mixing

Even subgraphs $p/2$

FPRAS [Jerrum, Sinclair 93]

[van der Waerden 1941]
Equivalence at $q = 2$

Random-cluster $(p, 2)$

Ising model
$\beta = (1 - p)^{-1}$

Even subgraphs $p/2$

Slow mixing

This talk

FPRAS [Jerrum, Sinclair 93]

[Grimmer, Janson 2009]

[Edwards, Sokal 1988]

[van der Waerden 1941]
Grimmett-Janson coupling

Given a graph G, draw a random even subgraph $S \subseteq E$ with $p \leq \frac{1}{2}$:

$$\Pr(S = s) = \pi_{even}(s).$$

Then we add every edge $e \notin S$ with probability $p' = \frac{p}{1-p}$.

Call this subgraph R.

Theorem (Grimmett, Janson 2009)

$$\Pr(R = r) = \pi_{RC;2p,2}(r).$$
Grimmett-Janson coupling

Given a graph G, draw a random even subgraph $S \subseteq E$ with $p \leq \frac{1}{2}$:

$$\Pr(S = s) = \pi_{\text{even}}(s).$$

Then we add every edge $e \notin S$ with probability $p' = \frac{p}{1-p}$.

Call this subgraph R.

Theorem (Grimmett, Janson 2009)

$$\Pr(R = r) = \pi_{RC;2p,2}(r).$$
The Proof
A Markov chain is a random walk on its state space (exponentially large).

There are \(2^j\) configurations. Two configurations are adjacent if they differ by exactly one edge.

Rapidly mixing, the state space is very well connected.
A Markov chain is a random walk on its state space (exponentially large).

- There are \(2^{|E|}\) many configurations.
- Two configurations are adjacent if they differ by exactly one edge.
Bound the mixing time

- A Markov chain is a random walk on its state space (exponentially large).

- There are $2^{|E|}$ many configurations.

- Two configurations are adjacent if they differ by exactly one edge.

- Rapidly mixing \iff The state space is very well connected.
Construct a set Γ of canonical paths γ_{xy} for all pairs of states (x, y).

The key quantity of Γ is its congestion:

$$\rho(\Gamma) := \max_{(z, z') \in \Omega^2, P(z, z') > 0} \frac{L}{\pi(z) P(z, z')} \sum_{x, y \in \Omega^2, \gamma_{xy} \ni (z, z')} w(\gamma_{xy}),$$

where

$$w(\gamma_{xy}) = \pi(x) \pi(y).$$

Theorem (Sinclair 1992)

$$\tau_\varepsilon(P) \leq \rho(\Gamma) (\ln \pi(x_0)^{-1} + \ln \varepsilon^{-1}).$$
Fix $\Gamma = \{\gamma_{xy}\}$ and an integer $k \leq L$.

1. Draw the initial and final states I and F independently according to $\pi(\cdot)$.

2. A random path $\gamma_{IF} \in \Gamma$.

$$\mu(\gamma_{IF}) = w(\gamma_{IF}) = \pi(I)\pi(F)$$

3. Let Z_k be the kth state of γ_{IF}.

 (Assume all paths in Γ have the same length L.)

The congestion $\rho(\Gamma)$ is polynomial related with $\max_k \frac{\Pr(Z_k=z)}{\pi(z)}$.
Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.
Alternative view in action

Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.

\begin{equation}
G:
\end{equation}

\begin{align*}
I & \quad \rightarrow \quad F \\
\end{align*}
Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.
Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.
Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.
Let $q = 1$. Then $\pi_{RC}(\cdot)$ is a product measure.

\[
\begin{align*}
\Pr(Z_k = z) &= 1
\end{align*}
\]
Instead of one path from x to y, we can have a random path from x to y.

Flow Γ is a collection of paths equipped with weights $w(\cdot)$ such that

$$
\sum_{\gamma \text{ is from } x \text{ to } y} w(\gamma) = \pi(x)\pi(y).
$$

Z_k is defined similarly.

1. Random initial and final states I and F
2. A random path γ from I to F according to $w(\cdot)$.
3. Z_k is the kth state of γ.

We will look at $\frac{\Pr(Z_k = z)}{\pi(z)}$.
Lifting canonical paths

In an ideal world . . .

- Suppose we have canonical paths Γ_{even} for even subgraphs with low congestion. (similar to [Jerrum, Sinclair 93])

- Then use Grimmert-Janson to lift Γ_{even} to a flow for random cluster.

\[l = W_0 \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_{L-1} \rightarrow W_L = F \]

- \(w(\zeta) = w(\gamma) \Pr(\gamma \rightarrow \zeta) \)
Ideal lifting

If W_k deviates from $\pi_{\text{even}}(\cdot)$ by at most polynomial, then so does Z_k from $\pi_{\text{RC}}(\cdot)$.

$$
\frac{\Pr(W_k = w)}{\pi_{\text{even}}(W)} \leq n^{O(1)} \rho(\Gamma)
$$

$$
\Pr(Z_k = z) = \sum_{w \subseteq z, w \text{ even}} \Pr(W_k = w) \left(\frac{p}{1 - p} \right)^{|z \setminus w|} \left(\frac{1 - 2p}{1 - p} \right)^{|E \setminus z|}
$$

$$
\leq n^{O(1)} \rho(\Gamma) \sum_{w \subseteq z, w \text{ even}} \pi_{\text{even}}(w) \left(\frac{p}{1 - p} \right)^{|z \setminus w|} \left(\frac{1 - 2p}{1 - p} \right)^{|E \setminus z|}
$$

$$
= n^{O(1)} \rho(\Gamma) \pi_{\text{RC}}(Z)
$$

(by GJ)
If W_k deviates from $\pi_{\text{even}}(\cdot)$ by at most polynomial, then so does Z_k from $\pi_{\text{RC}}(\cdot)$.

\[
\frac{\Pr(W_k = w)}{\pi_{\text{even}}(w)} \leq n^{O(1)} \rho(\Gamma)
\]

\[
\Pr(Z_k = z) = \sum_{w \subseteq z, w \text{ even}} \Pr(W_k = w) \left(\frac{p}{1-p} \right)^{|z \setminus w|} \left(\frac{1-2p}{1-p} \right)^{|E \setminus z|}
\]

\[
\leq n^{O(1)} \rho(\Gamma) \sum_{w \subseteq z, w \text{ even}} \pi_{\text{even}}(w) \left(\frac{p}{1-p} \right)^{|z \setminus w|} \left(\frac{1-2p}{1-p} \right)^{|E \setminus z|}
\]

\[
= n^{O(1)} \rho(\Gamma) \pi_{\text{RC}}(Z)
\]

(by GJ)
In the real world . . .

Two issues:

1. We do not have good canonical paths for even subgraphs —
 Jerrum-Sinclair chain moves among all subgraphs!

2. **Grimmett-Janson** adds independent edges —

 Z_i and Z_{i+1} are not adjacent states!

 They may differ by a lot of edges.
In the real world . . .

Two issues:

1. We do not have good canonical paths for even subgraphs — Jerrum-Sinclair chain moves among all subgraphs!

2. Grimmett-Janson adds independent edges — Z_i and Z_{i+1} are not adjacent states!
 They may differ by a lot of edges.
Issue 1: need canonical paths for even subgraphs.

Construct paths $\Gamma_{\text{even}} = \{\gamma_{xy}\}$ where x and y are both even subgraphs.

- $x \oplus y$ is also even.

 $x \oplus y$ can be covered by edge-disjoint cycles.

- Pick a canonical ordering of edges. Unwind each cycle:

 $W_0 = x, \ W_i = W_{i-1} \oplus e_i$

- Enlarge the state space to all even and near-even subgraphs.

 Every path is in the augmented space.

- Γ_{even} has low congestion — same reason as [Jerrum, Sinclair 1993].
Issue 1: need canonical paths for even subgraphs.

- Construct paths $\Gamma_{\text{even}} = \{\gamma_{xy}\}$ where x and y are both even subgraphs.
 - $x \oplus y$ is also even.
 - $x \oplus y$ can be covered by edge-disjoint cycles.
 - Pick a canonical ordering of edges. Unwind each cycle:
 $$W_0 = x, \ W_i = W_{i-1} \oplus e_i$$
 - Enlarge the state space to all even and near-even subgraphs.
 Every path is in the augmented space.

- Γ_{even} has low congestion — same reason as [Jerrum, Sinclair 1993].
Issue 1: need canonical paths for even subgraphs.

- Construct paths $\Gamma_{even} = \{\gamma_{xy}\}$ where x and y are both even subgraphs.
 - $x \oplus y$ is also even.
 - $x \oplus y$ can be covered by edge-disjoint cycles.
- Pick a **canonical** ordering of edges. **Unwind** each cycle:
 $$W_0 = x, \quad W_i = W_{i-1} \oplus e_i$$
- Enlarge the state space to all even and near-even subgraphs.
 Every path is in the augmented space.

- Γ_{even} has low congestion — same reason as [Jerrum, Sinclair 1993].
Patch 1

Issue 1: need canonical paths for even subgraphs.

- Construct paths $\Gamma_{even} = \{ \gamma_{xy} \}$ where x and y are both even subgraphs.
 - $x \oplus y$ is also even.
 - $x \oplus y$ can be covered by edge-disjoint cycles.
 - Pick a canonical ordering of edges. Unwind each cycle:
 - $W_0 = x$, $W_i = W_{i-1} \oplus e_i$
 - Enlarge the state space to all even and near-even subgraphs.
 - Every path is in the augmented space.

- Γ_{even} has low congestion — same reason as [Jerrum, Sinclair 1993].
Issue 1: need canonical paths for even subgraphs.

- Construct paths $\Gamma_{\text{even}} = \{ \gamma_{xy} \}$ where x and y are both \textit{even} subgraphs.
 - $x \oplus y$ is also even.
 - $x \oplus y$ can be covered by edge-disjoint cycles.
 - Pick a \textit{canonical} ordering of edges. \textbf{Unwind} each cycle:
 \[W_0 = x, \quad W_i = W_{i-1} \oplus e_i \]
 - Enlarge the state space to all \textit{even} and \textit{near-even} subgraphs.
 - Every path is in the augmented space.

- Γ_{even} has low congestion — same reason as [Jerrum, Sinclair 1993].
Issue 1: need canonical paths for even subgraphs.

\[x = Z_0 \quad \quad \quad x \oplus y \quad \quad \quad y = Z_6 \]
Issue 1: need canonical paths for even subgraphs.

\[x = Z_0 \]

\[x \oplus y \]

\[y = Z_6 \]
Issue 1: need canonical paths for even subgraphs.

\[
x = Z_0
\]

\[
x \oplus y
\]

\[
y = Z_6
\]
Issue 1: need canonical paths for even subgraphs.
Issue 1: need canonical paths for even subgraphs.
Issue 1: need canonical paths for even subgraphs.

\[x = Z_0 \]
\[x \oplus y \]
\[y = Z_6 \]

\[Z_1 \]
\[Z_2 \]
\[Z_3 \]
\[Z_4 \]
\[Z_5 \]
Issue 1: need canonical paths for even subgraphs.
Issue 1: need canonical paths for even subgraphs.
Issue 1: need canonical paths for even subgraphs.

Γ_{even} has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any $y_{xy} \ni (z, z')$, let $u = x \oplus y \oplus z$. This mapping is injective.
Issue 1: need canonical paths for even subgraphs.

Γ_{even} has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any $\gamma_{xy} \ni (z, z')$, let $u = x \oplus y \oplus z$. This mapping is injective.
Issue 1: need canonical paths for even subgraphs.

Γ_{even} has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any $\gamma_{xy} \ni (z, z')$, let $u = x \oplus y \oplus z$. This mapping is injective.
Issue 1: need canonical paths for even subgraphs.

\(\Gamma_{\text{even}} \) has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any \(\gamma_{xy} \ni (z, z') \), let \(u = x \oplus y \oplus z \). This mapping is injective.

\[
\pi(x)\pi(y) = \pi(z)\pi(u)
\]
Issue 1: need canonical paths for even subgraphs.

\(\Gamma_{\text{even}} \) has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any \(\gamma_{xy} \ni (z, z') \), let \(u = x \oplus y \oplus z \). This mapping is injective.

\[
\sum_{\gamma_{xy} \ni (z, z')} \pi(x) \pi(y) \leq \pi(z) \sum_u \pi(u)
\]
Issue 1: need canonical paths for even subgraphs.

\(\Gamma_{\text{even}} \) has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any \(\gamma_{xy} \ni (z, z') \), let \(u = x \oplus y \oplus z \). This mapping is injective.

\[
\sum_{\gamma_{xy} \ni (z, z')} \pi(x)\pi(y) \leq \pi(z) \sum_u \pi(u) \leq \pi(z)
\]
Issue 1: need canonical paths for even subgraphs.

One final problem for issue 1:

- W_0 and W_L are both even,
 but intermediate W_i’s can be near-even.

A generalization of Grimmett-Janson:

- Give each near-even subgraph a penalty of $1/n^2$.
- Add independent edges with prob. $\frac{p}{1-p}$ as before.
 Call the resulting measure $\widehat{\pi}(\cdot)$.

$$\frac{\widehat{\pi}(x)}{\pi_{RC}(x)} = \Theta(1).$$
Issue 1: need canonical paths for even subgraphs.

One final problem for issue 1:

- W_0 and W_L are both even, but intermediate W_i's can be near-even.

A generalization of Grimmett-Janson:

- Give each near-even subgraph a penalty of $1/n^2$.
- Add independent edges with prob. $\frac{p}{1-p}$ as before. Call the resulting measure $\hat{\pi}$.
- $\frac{\hat{\pi}(x)}{\pi_{RC}(x)} = \Theta(1)$.

RC (x)
Issue 2: Z_i and Z_{i+1} differ by more than 1 edge.

- An easy fix: insert intermediate states to change edges one by one in $Z_i \oplus Z_{i+1}$, which has a product measure on $E \setminus (W_i \cup W_{i+1})$.

- The distribution of Z_i^j is the same as that of Z_i ($j < m$).

- Total length is mL.
Better patch 2

Issue 2: Z_i and Z_{i+1} differ by more than 1 edge.

- Lift W_{i+1} to Z_{i+1} conditional on Z_i such that Z_{i+1} and Z_i are adjacent and the marginal of Z_{i+1} is correct.

- The marginal distributions of Z_0 and Z_L are correct, but their joint distribution is not — Z_0 and Z_L are correlated.

- Append a tail on the path after Z_L to re-randomize edges that are not in W_L. This removes the correlation.

- Total length is at most $L + m$.
Putting everything together

\[Z_0 \quad \overset{\text{Re-randomization}}{\longrightarrow} \quad Z_L + m \]
Putting everything together

$$\begin{align*}
 Z_0 &= \text{Grimmett-Janson} \\
 W_0 &= \\
 Z_1 &= \text{prob. } p' \\
 Z_2 &= \text{prob. } 1 - p' \\
 Z_{L+m} &= \text{Grimmett-Janson} \\
 W_L &=
\end{align*}$$
Putting everything together

\[Z_0 \]

\[W_0 \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_L \]

\[Z_{L+m} \]

Grimmett-Janson

Heng Guo (QMUL) Random Cluster 2016/11/03 38 / 41
Putting everything together

\[W_1 = W_0 \cup \{e\} \quad \Rightarrow \quad Z_1 = Z_0 \cup \{e\} \]
Putting everything together

\[W_1 = W_0 \cup \{e\} \quad \Rightarrow \quad Z_1 = Z_0 \cup \{e\} \]

\[W_2 = W_1 \setminus \{e'\} \quad \Rightarrow \quad Z_2 = \begin{cases} Z_1 & \text{prob. } p' \\ Z_1 \setminus \{e'\} & \text{prob. } 1 - p' \end{cases} \]
Putting everything together

\[W_1 = W_0 \cup \{e\} \quad \Rightarrow \quad Z_1 = Z_0 \cup \{e\} \]

\[W_2 = W_1 \setminus \{e'\} \quad \Rightarrow \quad Z_2 = \begin{cases} Z_1 & \text{prob. } p' \\ Z_1 \setminus \{e'\} & \text{prob. } 1 - p' \end{cases} \]
Putting everything together

\[W_1 = W_0 \cup \{e\} \quad \Rightarrow \quad Z_1 = Z_0 \cup \{e\} \]

\[W_2 = W_1 \setminus \{e'\} \quad \Rightarrow \quad Z_2 = \begin{cases}
Z_1 & \text{prob. } p' \\
Z_1 \setminus \{e'\} & \text{prob. } 1 - p'
\end{cases} \]
Future directions
Tutte polynomial \([Goldberg, Jerrum 08,12,14]\)

\[q = (x - 1)(y - 1) \]

- **Tractable**
- **FPRAS**
- **NP-hard**
 - (most \#P-hard)
- **\#PM-equivalent**
- **\#BIS-hard**

Open:
- All white
- \(0 \leq q < 1\)
- \(1 < q < 2\)
Recap

Theorem

At $q = 2$, $\tau_\epsilon(P_{RC}) \leq 10n^4m^2(\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1})$.

- $q = 2$ tighter mixing time bound?
- $1 < q < 2$ (monotone) *fast mixing*?
- $0 \leq q < 1$ (e.g. Tutte(2,1) = #Forests) *fast mixing***?
Recap

Theorem

At $q = 2$, $\tau_\epsilon(P_{RC}) \leq 10n^4m^2(\ln \pi_{RC}(x_0)^{-1} + \ln \epsilon^{-1})$.

- $q = 2$ tighter mixing time bound?
- $1 < q < 2$ (monotone) fast mixing?
- $0 \leq q < 1$ (e.g. Tutte(2,1) = #Forests) fast mixing???

Thank You!

Paper available: arxiv.org/abs/1605.00139