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Proof of Theorem 3.1

Denote that 1 non-zero eigenvalues of @ = UWWTUT € RV by \; > Ay >,..., A\, > 0; and let S beawv xt
random matrix such that S; ; ~ N (0, 02), with unknown o, As v,t — oo such that 7 K 1, the eigenvalues \; of the
perturbed matrix Q + SST will satisfy

|Xz_)\z|<§)\z t=1,...,7; ):1<6)\r t=r+1,...,0 (%)

for some 0 < § < 1, whenever % < %

Proof. The first half of the proof emulates Theorem 2.1 from [1]. Consider the matrix X = /tS. By the structure
of S, each entry of X is i.i.d.Gaussian with zero-mean and variance o%t. Let Y = %XXT and denote its ordered
eigenvalues as v;,¢ = 1, ..., v (large to small). Consider the random spectral measure

po(A) = 14{~; € A}, ACR

The Marchenko-Pastur law [2] states that as v,¢ — oo such that 7 < 1, the random measure y,, — p, where dy is
given by

dp(a) = gromma/ (s — a)(a —7-)1p,_ 4, da

where v = ¥. Here 1|, ,,] is an indicator function that is non—zero on [y_,v4]. 7+ = o%t(14,/7)? are the extreme
points of the support of x. It is well known that the extreme eigenvalues converge almost surely to v4 [3]. Since
v,t — ooand v = ¥ < 1, the length of [y_, ;] is much smaller than the values in it. Hence we have,

e~ o(1£27) 5 Vg —a)a-a) <a

and the new dy(a) is given by

V(02 (1+2,7) —a)(a—o?t(1 —2,/7))
dp(a) = GRS Loz(1-27) 021427140
1

 2myott?

= VAyoit? — (a — 02)2 1(524(1-2./7),0%t(142,7) 40

The form we have derived for du(a) shares some similarities with dux (z) in Section 3.1 of [[1]. The analysis in
[1]] takes into account the phase transition of extreme eigen values. This is done by imitating a time—frequency type
analysis on compact support of extreme spectral measure i.e. using Cauchy transform. For our case, the Cauchy
transform of p(a) is

1
= 5ooip (z — 0%t — sgn(2)\/(z — 02t)2 — 47041?2)
o

for 2z € (00,02t(1 — 2/7)) U (¢%t(1 + 2\/7), )
Since we are interested in the asymptotic eigen values (and v < 1), G, (v+) and the functional inverse G;l (9) are

GM(Z)



Gu(7+) = m ; Gu(Wf) = _#\M ; Gﬁl(e) =0t + % +WU4t29

Hence, the asymptotic behavior of the eigen values of perturbed matrix Q + SS” is (observing that SS” =Y and Q
has r non—zero positive eigen values)

)\i(izl,...,’/’)

- - {)\i + ot + %4# for \; > yo’t )

~volt else

Ni=r+1,...,0) ~ o%t(1-2/())

With /\~i,i = 1,...,v in hand, we now bound the unknown variance o2 such that (x) is satisfied. We only have two
cases to consider,

) XNi>vo%t,i=1,...,r 2) M\ <vyo%t,i=k,...,r (forsome k > 1)
We constrain the unknown ¢ such that case (2) does not arise. Substituting for \; s from (%) in (%), we get,

o2+ G <8N 1 A0t 5 o2H(1-2y/(7)) < O\

These inequalities will hold when o2 < % (sincey=< 1, <land A\y > Ao >,..., ).

Proof of Theorem 3.2

Let m; = max; P, ; be the maximum observed test statistic at permutation trial t, and similarly let 1 = max; P; ; be

the maximum reconstructed test statistic. Further, let the maximum reconstruction error be €, such that |P; , —P; ;| <
€. Then we have,

Pr mt—mt—(b—j))>ke} <%

where b is the bias term described in Section 2, and b is its estimate from the training phase.

Proof. Recall that there is a bias term in estimating the distribution of the maximum which must be corrected for this

is because var(.S) underestimates var(S) due to the bias/variance tradeoff. Let b be this difference:
b=E,; [max Pi,t} —E; [max Pi,t} .
7 K3

Further, recall that we estimate b by taking the difference of mean sample maxima between observed and reconstructed

test statistics over the training set, giving b, which is an unbiased estimator of b — it is unbiased because a difference
in sample means is an unbiased estimator of the difference of two expectations.

Let 9y = my — ;. To show the result we must derive a concentration bound on ¢, which we will do by applying
Chebyshev’s inequality. In order to do so, we require an expression for the mean and variance of J;. First, we derive
an expression for the mean. Taking the expectation over ¢ of m; — 1, we have,

E; [my — 1] = Ey {max P;; —max Pivt - B]
—E, [max Py | — B [maxPy| - b
=b—0»

where the second equality follows from the linearity of expectation.

Next, we require an expression for the variance of d;. Let ¢ be the index at which the maximum observed test statistic
occurs for permutation trial ¢, and likewise let j be the index at which the maximum reconstructed test statistic occurs.



Thus we have,
P, <Pi;+e <Pj;+e
P, >P;; >P;;—ce,

and so we have that
|mt - mt| < 2€
and so
var(m; —my) < €2.
Applying Chebyshev’s bound,
Pr mt—fnt—(b—i))>k6 < ﬁ
which completes the proof.
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Figure 1: KL (blue) and BD (red) measures between the true max. null distribution (given by the full matrix P) and that recovered
by our method (thick lines), along with the baseline naive subsampling method (dotted lines). Each plot corresponds to one of the
four datasets used in our evaluations. Note that the y—axis is in log scale.



Fig 2. : All 4 datasets
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Figure 2: Computation time of our model compared to that of computing the entire matrix P. Each plot corresponds to one of
the four datasets A, B, C and D (in that order). The horizontal line (magenta) shows the time taken for computing the full matrix
P. The other three curves include : subsampling (blue), GRASTA recovery (red) and total time taken by our model (black). Plots
correspond to the low sampling regime (< 1%) and note the jump in y—axis (black boxes). For reference the speedup at 0.4%
sampling rate is reported at the bottom of each plot.
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