MKL-based sample enrichment and customized
outcomes enable smaller AD clinical trials

Chris Hinrichs’»2 N. Maritza Dowling??3 Sterling C. Johnson?
Vikas Singh??! *

Depts. of Computer Sciences’, Biostatistics & Med. Informatics® Medicine®
University of Wisconsin—-Madison
{hinrichs}@cs.wisc.edu, {scj}@medicine.wisc.edu
{mdowlin,vsingh}@biostat.wisc.edu

Abstract. Recently, the field of neuroimaging analysis has seen a large
number of studies which use machine learning methods to make pre-
dictions about the progression of Alzheimer’s Disease (AD) in mildly
demented subjects. Among these, Multi-Kernel Learning (MKL) has
emerged as a powerful tool for systematically aggregating diverse data
views, and several groups have shown that MKL is uniquely suited to
combining different imaging modalities into a single learned model. The
next phase of this research is to employ these predictive abilities to design
more efficient clinical trials. Two issues can hamper a trial’s effectiveness:
the presence of non-pathological subjects in a study, and the sensitivity
of the chosen outcome measure to the pathology of interest. We offer
two approaches for dealing with these issues: trial enrichment, in which
MKL-derived predictions are used to screen out subjects unlikely to ben-
efit from a treatment; and custom outcome measures which use an SVM
to select a weighted voxel average for use as an outcome measure. We
provide preliminary evidence that these two strategies can lead to sig-
nificant reductions in sample sizes in hypothetical trials, which directly
gives reduced costs and higher efficiency in the drug development cycle.

1 Introduction

There is an extensive (and growing) interest focused on developing Disease Mod-
ifying (DM) interventions for Alzheimer’s Disease (AD) in the hope of slowing or
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deferring the associated cognitive and functional decline. As the neurological at-
rophy caused by AD is irreversible, early diagnosis is critical. In its early stages,
AD progresses slowly — with measurable anatomical changes preceding cognitive
losses by up to two decades — meaning that subjects enrolled in a clinical trial
must be in as early a phase of AD as possible, in order to gauge the efficacy of a
new pharmaceutical or other treatment when there is still time to avert cognitive
decline and AD-type dementia. Thus, subjects diagnosed with Mild Cognitive
Impairment (MCI), often a precursor to AD, are a primary focus in treatment
procedures. Paradoxically, the emphasis on early-stage AD forces us to estimate
pathological burdens when signs such as cortical atrophy or hypometabolism are
at their weakest, making the need for reliable markers of disease progression a
dominant concern.

Significant effort has been directed towards developing predictive markers
which utilize brain imaging, (including e.g., Magnetic Resonance (MR) for macro-
structural information, and '8Fluoro-Deoxy Glucose Positron Emission Tomog-
raphy (FDG-PET) for metabolic measures) combined with machine learning
algorithms. The learned model’s parameters can be interpreted as a discrimina-
tive disease pattern, while its outputs predict which subjects will develop AD
[112]. The machine learning approach is motivated by the observation that AD,
(and other neurodegenerative disorders,) have many confounding factors, as well
as significant heterogeneity. By extracting a pattern which specifically differen-
tiates diseased and healthy populations, machine learning methods can avoid
some of these pitfalls.

As methods of discriminating subjects who already have AD from controls
have become more accurate, attention has shifted to the more difficult problem
of discriminating MCI subjects from controls [3l4], and hardest of all, discrim-
inating which MCI subjects will convert to AD [5l6] from the patients whose
diagnoses will remain stable. One way of attacking this problem is to combine
different imaging modalities for improved accuracy without incurring statistical
penalties relating to the increased dimensionality of the data [7J56]. More re-
cently, the focus has again shifted towards translational applications of imaging-
derived predictive measures in clinical trials, with the promise of increasing sen-
sitivity and relaxing cohort size requirements. In this context, discriminating
converters from non-converters is particularly relevant because a large subgroup
of non-converters can mask real treatment effects; even if the treatment is ef-
fective, it will have little or no measurable effect on subjects who do not suffer
from the disease. Given that on average only 10-15% of MCI subjects convert
annually, we can expect this to be a serious problem. For example, Visser et al.
[8] suspected that several AD trials may have failed for exactly this reason.

Second, consider the difficulty of using cognitive markers as an outcome mea-
sure. A common practice in clinical trials is to measure changes over time in var-
ious neuropsychological status measures such as the Mini-Mental State Exam
(MMSE) [9]. Unfortunately, such measures are subject to a large amount of
inter- and intra-subject variation, and produce meager group effect sizes when
measured by annual change. Recent results have shown [I0/11] that with imaging-



based outcome measures, cohort sizes can be greatly reduced — by up to a factor
of 8 in [II]. We propose to move beyond these studies by using a predictive
marker based on learning methods rather than summary statistics of atrophy
over Regions Of Interest (ROIs). In the following we present evidence that by
using better imaging-derived markers we can enrich the sample population to
remove a large portion of the non-converters, and we can train more sensitive
custom outcome measures in place of ROI summary statistics.

The contributions of this paper are: (1) We propose a new method of using a
multi-modality predictive marker as a selection criterion for clinical trial sample
enrichment; (2) we propose a new discriminative marker based on Tensor-Based
Morphometry (TBM) to produce custom outcome measures; and (3) through
experiments on the ADNI image dataset, we show that substantial reductions
in sample sizes over standard methods are possible.

2 Preliminaries
2.1 Multi Kernel Learning (MKL):

Support Vector Machines (SVM) [12] classify subjects into separate categories
(e.g., diseased and healthy) by finding a separating hyperplane which balances
classification accuracy with separating margin between the classes. In the AD
setting, each subject’s brain image is a feature vector with each dimension corre-
sponding to a single voxel intensity value, or other imaging-derived feature. We
seek a separating hyperplane which not only places the controls on one side, and
the AD subjects on the other (classification accuracy), but also puts the greatest
possible distance between the two groups of points, (separating margin). We can
express the SVM training procedure as a quadratic program (QP) of the form,
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where each subject / label pair is written as (z;,y;), w is a weight vector which
determines the separating hyperplane, and £ is a vector of “slack variables”
which allow the algorithm to make errors in case the data are not completely
separable. Each constraint encodes the desired outcome that one training subject
be placed at least a “unit” distance away from the hyperplane, (with &; taking
up the slack). The actual “units” by which the margin is measured are given
by 1/||w||, which we maximize by minimizing ||w|?/2. C expresses a trade-off
between accuracy and margin. The dual problem is:
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where o denotes element-wise multiplication. Notice that the examples x; only
appear as inner products xiij, which we substitute with a kernel matrix K.
Various non-linear functions of the kernel matrix (X > 0) correspond to non-
linear transformations of the data, allowing for a richer set of classifiers.

In the context of multi-modality kernel learning, each separate modality gen-
erates a series of linear and non-linear kernels. A common methodology for com-
bining these kernels is Multi-Kernel Learning (MKL) [BIGIT3IT4]. MKL solves
this problem by simultaneously choosing a linear combination of kernels, and
estimating a max-margin classifier. To preserve the margin, the coefficients
must also be regularized, which gives the MKL primal problem [14]:
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where ¢,, transforms the observed data to the mth kernel space. The constraints
now express the classifier as a sum of contributions from each kernel space. Thus,
we construct a series of kernels based on all imaging modalities, distinct image
processing pipe-lines, feature selection methods, and kernel functions, which are
then used to train an MKL classifier. We will interpret the output from the model
on MCI participants as a Multi Kernel Learning based Inclusion Criterion (MKL-
IC). Subjects who do not satisfy this inclusion criteria (have a high likelihood
of not converting) will not be included in the trial — leading to an “enriched”
population. Our objective then is to analyze an outcome measure of interest (e.g.,
atrophy, cognitive decline), calculate its variance in the enriched cohort, and
assess the number of subjects needed to observe a pre-selected level of difference
in that outcome due to the treatment at a given power.

2.2 Power calculation

Having selected an outcome measure for use in a clinical trial, the principal
question becomes, what number of subjects (sample size) do we need to recruit
in order to observe (e.g., at 80% power) the induced variations in the outcome
measure. This calculation is transparent to the actual drug under study, and is
fully determined by the wvariance and effect size (difference of means between
placebo / treatment groups). For a two sample ¢-test, the power function for
testing the null hypothesis Hy : 6 = py — ptp = 0 against the alternate hy-
pothesis H, : 0 = ps — pp # 0 is given by P{z > Z,p0or 2 < —Z,2} =
1 —D[Zy2(6/0)(\/1/2)] + P[~Zys2 — (6/0)(1/n/2)], where @ is the standard
X —X
oJ2/n
Z)2 is the upper a/2 percentile from the standard normal distribution. After
a simple algebraic manipulation and assuming a two-tailed test, the sample size
per group is,

normal cumulative distribution function, z =
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- 20%(Z1_ay2 + Z1-p)?
B (%) '



where (1— /) is the desired power and §* = A(4) is the effect size. In this context,
A denotes the expected percentage of reduction in mean annual atrophy rate (as
determined by the outcome measure,) § the estimated average annual change for
the group, and o2 the variance of the outcome measure across individuals. Note
that these calculations depend only on the mean and variance of the outcome
measure (among the selected cohort), and do not depend on the type of treatment
being administered, so long as it can be assumed to affect the measured atrophy
rate. Crucially, this allows us to use data in which no treatment is under trial to
evaluate various outcome measures and inclusion criteria in terms of their effects
on required sample sizes.

2.3 Custom TBM measure

In addition to the MKL-derived screening criteria, we also examined the effec-
tiveness of an SVM-derived custom outcome measure. Rather than the voxel
intensity mean, (which, in the case of TBM data corresponds to a kind of aver-
age atrophy), we chose a weighted average of atrophy. The rationale in doing so
is the observation that SVMs choose a linear function of the observed features
which is far more discriminative than a simple weighted average; if this were
not so, then there would be no need for SVMs in the first place. To construct
this outcome measure, we trained an SVM classifier using the AD and normal
control populations, and negated voxels with negative mean change so that the
SVM weights came out all positive. We then normalized the SVM weights to
sum to 1, so that our outcome measure can be considered a legitimate weighted
average.

3 Experimental Design

Our experiments to assess the efficacy of the enrichment procedure and custom
outcome measure described above were conducted on an extensive dataset of dif-
ferent image types and cognitive scores acquired as part of Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [I5] (ADNI is a public-private partnership to
evaluate whether brain imaging can detect early signs of AD better than cogni-
tive and biological measures [IOJITJI6].) Our goal was to calculate sample sizes
required in a hypothetical placebo-controlled parallel clinical trial to observe a
given reduction in the rate of atrophy (via an outcome measure) at a given level
of statistical power. To highlight potential gains, we provide power calculations
both with and without the new MKL-derived inclusion criteria, which we refer
to as “MKL-IC”, and custom SVM-derived outcome measure, which we refer

to as “Custom-SVM”. For comparison we also used mean TBM values in the
chosen ROI, as in [10/11] (“Mean TBM” in Table [1} )

3.1 Dataset and pre-processing

Our data included 48 AD cases, 66 controls and 119 MCI patients. All scans were
non-linearly warped to a DARTEL template. Voxel-Based Morphometry (VBM)
and Tensor-Based Morphometry (TBM) processing pipelines were applied to MR,



data to extract baseline Gray Matter(GM) density and longitudinal deformation
maps. FDG-PET scans from baseline and at 24 months were also included, for
a total of four groups of images — which provided the kernels used in our MKL
model (for the MKL-IC measure). For our evaluations, we computed t-statistics
from each voxel using the AD and control population only, and then thresholded
the voxels at p < 0.05 to produce a statistical ROI. TBM deformation maps were
used to compute outcome measures of interest (atrophy). A natural question is
whether TBM can be used both for learning the MKL-IC (albeit from AD and
controls) and as an outcome measure for the MCI group. Making this choice
is similar to the common practice of using e.g., hippocampal volume measures
both as covariates and atrophy as an outcome measure [16]. However, if desired
(and in the interest of being more conservative), one may prefer not to use such
measures in both MKL-IC and in outcome measures. We discuss both results
in the following section (see “TBM/No-TBM” columns in Table . MKL was
implemented with the Shogun package in Matlab [13], using a (non-sparse) 2-
norm regularizer on kernel mixing weights. AD and control subjects were used
for training the classifier, (i.e., learning the disease pattern), and for feature
selection (i.e., for selecting Regions of Interest (ROI)). We then computed the
classifier’s output which provided the desired MKL Inclusion Criterion (MKL-
IC). We retained the 25% of subjects whose MKL-IC was most indicative of an
AD-like pattern of atrophy, and excluded the remainder. This choice is consistent
with the number of subjects expected to convert to AD within 24 months.

3.2 Exploratory analysis
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parameter values (25% in-
clusion, TBM voxels with
p < 0.05 used in comput-
ing the outcome measures), we also computed a map of sample cohort sizes
for a range of voxel selection thresholds and number of subjects included (and
excluded). This analysis was exploratory in nature, (the voxels and inclusion
quantile having been chosen before-hand,) and allows us to examine qualitatively
(for this particular dataset), the choices available. The result of this analysis is
shown in Fig. |1} Note the decreasing trend in n80 numbers (i.e., sample sizes
at 80% power — shown as cooler colors) as the inclusion criteria become more
strict (i.e., excluding more stable MCI subjects) highlighting the value of sample

Fig.1. Cohort sizes as a function of number of TBM
voxels (x-axis), and number of MCI subjects (y-axis).



Schott
Outcome Mean TBM Custom-| ADAS- 1\ 1qp ot al.
measure SVM Co [16]
Inclusion MKL-IC MKL-IC MKL-IC|MKL-IC _ _ _
Criterion TBM No TBM Baseline | Baseline
Power
0.80 71 90 166 88 1,023 1,557 122
0.85 80 103 190 100 1,170 1,781 -
0.90 94 121 222 117 1,369 2,084 —

Table 1. Estimated sample cohort sizes for multi-modal inclusion criteria. TBM / NO TBM refers
to whether longitudinal TBM-derived kernels were used in computing the MKL-IC. “Baseline” MKL-
IC was derived only from data available at Month 0. Custom SVM is an SVM-derived outcome
measure (weighted average over ROI).

enrichment for improving detection of effects on atrophy. Notably, there appears
to be a trough at about the top 25%, which is consistent with our assumptions.

4 Results and Discussion

Table [ presents the main results. Our primary concern is the number of subjects
needed (per arm) to detect a 25% reduction in atrophy resulting from treatment.
Using standard clinical and cognitive measures would require anywhere from
1000 to over 2000 subjects per arm to detect the treatment effect with power
from 80% to 90%, type I error rate of 0.05. In contrast, by using enriched samples
and imaging-based outcomes, dramatic reductions are achievable. Even without
using any longitudinal inclusion criteria, we can reduce sample sizes by a factor of
5 to 10 (see column “Mean TBM /MKL-IC Baseline”). We also see that further
improvements can result from using an SVM-derived weighted statistical ROI.
Column “Custom SVM” shows numbers that are comparable to column “No
TBM”, (in which longitudinal FDG-PET data were used in the MKL-IC, but
not longitudinal TBM data,) which strongly suggests that the gain in sensitivity
from using an SVM-derived outcome measure is comparable to using longitudinal
data in the inclusion criterion itself. These results compared favorably to recently
reported findings [I6/ITI0] — our study uses only MCI participants, which are a
more challenging group than AD participants.

In general, clinical trials designed
to study the effect of DM com-
pounds in AD are likely to require
large sample sizes, and long-term
duration [I7]. Most DM trials es-
timate sample sizes using a mea-
sure of cognition as primary end-
point (see clinicaltrials.gov).
Instead, we propose a new multi-
modality screening criterion to en-
rich the sample by screening out subjects unlikely to benefit from the treatment,
and, move beyond average ROI values to use weighted ROIs derived from an
SVM. Our evaluations on ADNI data have shown that there exists a significant
potential to improve on current practices.

Fig. 2. Brain regions used in the TBM custom
outcome measure. (Custom-SVM)
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