
Q-MKL: Matrix-induced Regularization in Multi-Kernel
Learning with Applications to Neuroimaging∗

Chris Hinrichs†§ Vikas Singh§† Jiming Peng‡ Sterling C. Johnson¶
†Computer Sciences §Biostatistics & Med. Informatics ‡Industrial & Enterprise Sys. Eng. ¶Wisconsin AD Research Center

University of Wisconsin University of Wisconsin University of Illinois University of Wisconsin

{hinrichs,vsingh}@cs.wisc.edu pengj@illinois.edu scj@medicine.wisc.edu

Abstract

Multiple Kernel Learning (MKL) generalizes SVMs to the setting where one simultaneously trains a
linear classifier and chooses an optimal combination of given base kernels. Model complexity is typ-
ically controlled using various norm regularizations on the base kernel mixing coefficients. Existing
methods neither regularize nor exploit potentially useful information pertaining to how kernels in
the input set ‘interact’; that is, higher order kernel-pair relationships that can be easily obtained via
unsupervised (similarity, geodesics), supervised (correlation in errors), or domain knowledge driven
mechanisms (which features were used to construct the kernel?). We show that by substituting the
norm penalty with an arbitrary quadratic function Q � 0, one can impose a desired covariance
structure on mixing weights, and use this as an inductive bias when learning the concept. This for-
mulation significantly generalizes the widely used 1- and 2-norm MKL objectives. We explore the
model’s utility via experiments on a challenging Neuroimaging problem, where the goal is to pre-
dict a subject’s conversion to Alzheimer’s Disease (AD) by exploiting aggregate information from
many distinct imaging modalities. Here, our new model outperforms the state of the art (p-values
� 10−3). We briefly discuss ramifications in terms of learning bounds (Rademacher complexity).

1 Introduction
Kernel learning methods (such as Support Vector Machines) are conceptually simple, strongly rooted in statistical
learning theory, and can often be formulated as a convex optimization problem. As a result, SVMs have come to
dominate the landscape of supervised learning applications in bioinformatics, computer vision, neuroimaging, and
many other domains. A standard SVM-based ‘learning system’ may be conveniently thought of as a composition of
two modules [1, 2, 3, 4]: (1) Feature pre-processing, and (2) a core learning algorithm. The design of a kernel (feature
pre-processing) may involve using different sets of extracted features, dimensionality reductions, or parameterizations
of the kernel functions. Each of these alternatives produces a distinct kernel matrix. While much research has focused
on efficient methods for the latter (i.e., support vector learning) step, specific choices of feature pre-processing are
frequently a dominant factor in the system’s overall performance as well, and may involve significant user effort.
Multi-kernel learning [5, 6, 7] transfers a part of this burden from the user to the algorithm. Rather than selecting a
single kernel, MKL offers the flexibility of specifying a large set of kernels corresponding to the many options (i.e.,
kernels) available, and additively combining them to construct an optimized, data-driven Reproducing Kernel Hilbert
Space (RKHS) – while simultaneously finding a max-margin classifier. MKL has turned out to be very successful
in many applications: on several important Vision problems (such as image categorization), some of the best known
results on community benchmarks come from MKL-type methods [8, 9]. In the context of our primary motivating
application, the current state of the art in multi-modality neuroimaging-based Alzheimer’s Disease (AD) prediction
[10] is achieved by multi-kernel methods [3, 4], where each imaging modality spawns a kernel, or set of kernels.

In allowing the user to specify an arbitrary number of base kernels for combination MKL provides more expressive
power, but this comes with the responsibility to regularize the kernel mixing coefficients so that the classifier gen-
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eralizes well. While the importance of this regularization cannot be overstated, it is also a fact that commonly used
`p norm regularizers operate on kernels separately, without explicitly acknowledging dependencies and interactions
among them. To see how such dependencies can arise in practice, consider our neuroimaging learning problem of
interest: the task of learning to predict the onset of AD. A set of base kernels K1, . . . ,KM are derived from several
different medical imaging modalities (MRI; PET), image processing methods (morphometric; anatomical modelling),
and kernel functions (linear; RBF). Some features may be shared between kernels, or kernel functions may use sim-
ilar parameters. As a result we expect the kernels’ behaviors to exhibit some correlational, or other cluster structure
according to how they were constructed. (See Fig. 2 (a) and related text, for a concrete discussion of these behaviors
in our problem of interest.) We will denote this relationship as Q ∈ RM×M .

Ideally, the regularization process should reflect these dependencies encoded by Q, as they can significantly impact
the learning characteristics of a linearly combined kernel. Some extensions work at the level of group membership
(e.g., [11]), but do not explicitly quantify these interactions. Instead, rather than penalizing covariances or inducing
sparsity among groups of kernels, it may be beneficial to reward such covariances, so as to better reflect a latent
cluster structure between kernels. In this paper, we show that a rich class of regularization schemes are possible under
a new MKL formulation which regularizes on Q directly – the model allows one to exploit domain knowledge (as
above) and statistical measures of interaction between kernels, employ estimated error covariances in ways that are
not possible with `p-norm regularization, or, encourage sparsity, group sparsity or non-sparsity as needed – all within
a convex optimization framework. We call this form of multi-kernel learning, Q-norm MKL or “Q-MKL”. This paper
makes the following contributions: (a) presents our new Q-MKL model which generalizes 1- (and 2-) norm MKL
models, (b) provides a learning theoretic result showing that Q-MKL can improve MKL’s generalization error rate,
(c) develops efficient optimization strategies (to be distributed as a part of the Shogun toolbox), and (d) provides
empirical results demonstrating statistically significant gains in accuracy on the important AD prediction problem.

1.1 Background
The development of MKL methods began with [5], which showed that the problem of learning the right kernel for an
input problem instance could be formulated as a Semi-Definite Program (SDP). Subsequent papers have focused on
designing more efficient optimization methods, which have enabled its applications to large-scale problem domains.
To this end, the model in [5] was shown to be solvable as a Second Order Cone Program [12], a Semi-Infinite Linear
Program [6], and via gradient descent methods in the dual and primal [7, 13]. More recently, efforts have focused on
generalizing MKL to arbitrary p-norm regularizers where p > 1 [13, 14] while maintaining overall efficiency. In [14],
the authors briefly mentioned that more general norms may be possible, but this issue was not further examined. A non-
linear “hyperkernel” method was proposed [15] which implicitly maps the kernels themselves to an implicit RKHS,
however this method is computationally very demanding, (it has 4th order interactions among training examples).
The authors of [16] proposed to first select the sub-kernel weights by minimizing an objective function derived from
Normalized Cuts, and subsequently train an SVM on the combined kernel. In [17, 2], a method was proposed for
selecting an optimal finite combination from an infinite parameter space of kernels. Contemporary to these results, [18]
showed that if a large number of kernels had a desirable shared structure (e.g., followed directed acyclic dependencies),
extensions of MKL could still be applied. Recently in [8], a set of base classifiers were first trained using each kernel
and were then boosted to produce a strong multi-class classifier. At this time, MKL methods [8, 9] provide some of
the best known accuracy on image categorization datasets such as Caltech101/256 (see www.robots.ox.ac.uk/
˜vgg/software/MKL/). Next, we describe in detail the motivation and theoretical properties of Q-MKL .

2 From MKL to Q-MKL
MKL Models. Adding kernels corresponds to taking a direct sum of Reproducing Kernel Hilbert spaces (RKHS), and
scaling a kernel by a constant c scales the axes of it’s RKHS by

√
c. In the MKL setting, the SVM margin regularizer

1
2‖w‖

2 becomes a weighted sum 1
2

∑M
m=1

‖wm‖2Hm

βm
over contributions from RKHS’s H1, . . . ,HM , where the vector

of mixing coefficients β scales each respective RKHS [14]. A norm penalty on β ensures that the units in which the
margin is measured are meaningful (provided the base kernels are normalized). The MKL primal problem is given as

min
w,b,β≥0,ξ≥0

1

2

M∑
m

‖wm‖2Hm

βm
+ C

n∑
i

ξi + ‖β‖2p s.t. yi

(
M∑
m

〈wm, φm(xi)〉Hm + b

)
≥ 1− ξi, (1)
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where φm(x) is the (potentially unknown) transformation from the original data space to the mth RKHS Hm. As in
SVMs, we turn to the dual problem to see the role of kernels:

max
0≤α≤C

αT1− 1

2
‖G‖q, G ∈ RM ;Gm = (α ◦ y)TKm(α ◦ y), (2)

where ◦ denotes element-wise multiplication, and the dual q-norm follows the identity 1
p+ 1

q = 1. Note that the primal
norm penalty ‖β‖2p becomes a dual-norm on the vector G. At optimality, wm = βm(α ◦ y)Tφm(X), and so the term

Gm = (α ◦ y)TKm(α ◦ y) =
‖wm‖2Hm

β2
m

is the vector of scaled classifier norms. This shows that the dual norm is tied
to how MKL measures the margin in each RKHS.

The Q-MKL model. The key characteristic of Q-MKL is that the standard (squared) `p-norm penalty on β, along with
the corresponding dual-norm penalty in (2), is substituted with a more general class of quadratic penalty functions,
expressed as βTQβ = ‖β‖2Q. ‖β‖Q =

√
βTQβ is a Mahalanobis (matrix-induced) norm so long as Q � 0. In this

framework, the burden of choosing a kernel is deferred to a choice of Q-function. This approach gives the algorithm
greater flexibility while controlling model complexity, as we will discuss shortly. The model we optimize is,

min
w,b,β≥0,ξ≥0

1

2

M∑
m

||wm||2Hm

βm
+ C

n∑
i

ξi + βTQβ s. t. yi

(
M∑
m

〈wm, φm(xi)〉Hm + b

)
≥ 1− ξi, (3)

where the last objective term provides a bias relative to βTQβ. The dual problem becomes maxα α
T1 −

1
2

√
GTQ−1G. It is easy to see that if Q = 1M×M , we obtain the p = 1 form of (1), i.e., 1-norm MKL, as a

special case because βT1M×Mβ = ‖β‖21. On the other hand, setting Q to IM×M (identity), reduces to 2-norm MKL.

3 The case for Q-MKL
Extending the MKL regularizer to arbitrary quadratics Q � 0 significantly expands the richness of the MKL frame-
work; yet we can show that for reasonable choices of Q, this actually decreases MKL’s learning-theoretic complexity.
Joachims et al. [19] derived a theoretical generalization error bound on kernel combinations which depends on the
degree of redundancy between support vectors in SVMs trained on base kernels individually. Using this type of cor-
relational structure, we can derive a Q function between kernels to automatically select a combination of kernels
which will maximize this bound. This type of Q function can be shown to have lower Rademacher complexity, (see
below,) while simultaneously decreasing the error bound from [19], which does not directly depend on Rademacher
complexity.

3.1 Virtual Kernels, Rademacher Complexity and Renyi Entropy
If we decompose Q into its component eigen-vectors, we can see that each eigen-vector defines a linear combination
of kernels. This observation allows us to analyze Q-MKL in terms of these objects, which we will refer to as Virtual
Kernels. We first show that as Q−1’s eigen-values decay, so do the traces of the virtual kernels. Assuming Q−1

has a bounded, non-uniform spectrum, this property can then be used to analyze, (and bound), Q-MKL’s Rademacher
complexity, which has been shown to depend on the traces of the base kernels. We then offer a few observations on
how Q−1’s Renyi entropy [20] relates to these learning theoretic bounds.

Virtual Kernels. In the following, assume that Q � 0, and has eigen-decomposition Q = V ΛV , with V =
{v1, · · · , vM}. First, observe that because Q’s eigen-vectors provide an orthonormal basis of RM , β ∈ RM can
be expressed as a linear combination in this basis with γ as its coefficients: β =

∑
i γivi = V γ. Substituting in

βTQβ we have

βTQβ = (γTV T )V ΛV T (V γ) = γT (V TV )Λ(V TV )γ = γTΛγ =
∑
i

γ2
i λi (4)

This simple observation offers an alternate view of what Q-MKL is actually optimizing. Each eigen-vector vi of Q
can be used to define a linear combination of kernels, which we will refer to as virtual kernel K̃i =

∑
m vi(m)Km.

Note that if K̃i � 0, ∀ i, then they each define an independent RKHS. This can be ensured by choosing Q in a specific
way, if desired. This leads to the following result:

Lemma 1. If K̃i � 0,∀i, then Q-MKL is equivalent to 2-norm MKL using virtual kernels instead of base kernels.
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Proof. Let µi = γi
√
λi. Then βTQβ = ‖µ‖22, (eq. 4) and K∗ =

∑
m βmKm =

∑M
m

∑M
i γivi(m)Km =∑M

i µiλ
− 1

2

∑M
m vi(m)Km =

∑M
i µiK̃i, where K̃i = λ−

1
2

∑M
m vi(m)Km is the ith virtual kernel. The learned ker-

nel K∗ is a weighted combination of virtual kernels, and the coefficients are regularized under a squared 2-norm.

Rademacher Complexity in MKL. With this result in hand, we can now evaluate the Rademacher complexity of
Q-MKL by using a recent result for p-norm MKL. We first state a theorem from [21], which relates the Rademacher
complexity of MKL to the traces of its base kernels.
Theorem 1. ([21]) The empirical Rademacher complexity on a sample set S of size n, with M base kernels is given
as follows (with η0 = 23

22 ),

RS(HMp) ≤
√
η0q‖u‖q
n

(5)

where u = [Tr(K1), · · · ,Tr(KM )]
T and 1

p + 1
q = 1.

The bound in (5) shows that the Rademacher complexity RS(·) depends on ‖u‖q , which is a norm on the traces of
the base kernels. Assuming the base kernels are normalized to have unit trace, the bound for p = q = 2-norm MKL
is governed by ‖u‖2 =

√
M . However, in Q-MKL the virtual kernels traces are not equal, and are in fact given by

Tr(K̃i) = 1T vi√
λi

. With this expression for the traces of the virtual kernels, we can now prove that the bound given in
(5) is strictly decreased as long as the eigen-values ψi of Q−1 are in the range (0, 1]. (Adding 1 to the diagonal of Q
is sufficient to guarantee this.)

Theorem 2. If Q−1 6= IM×M and K̃i � 0 ∀i then the bound on Rademacher complexity given in (5) is strictly lower
for Q-MKL than for 2-norm MKL.

Proof. By Lemma 1, we have that the bound in (5) will decrease if ‖u‖2, the norm on the virtual kernel traces,
decreases. As shown above, the virtual kernel traces are given as Tr(K̃i) =

√
ψi1

T vi, meaning that ‖u‖22 =∑N
i ψi(1

T vi)
2 =

∑N
i ψi1

T viv
T
i 1 = 1TQ−11. Clearly, this sum is maximal for ψi = 1, ∀i, which is true if

and only if Q−1 = IM×M . This means that when Q 6= IM×M , then the bound in (5) is strictly decreased.

Note that requiring the virtual kernels to be p.s.d., while achievable (see supplements,) is somewhat restrictive. In
practice, such a Q matrix may not differ substantially from the identity matrix. We therefore provide the following
result which frees us from this restriction, and has more practical significance.
Theorem 3. Q-MKL is equivalent to the following model:

min
w,b,µ,ξ≥0

1

2

M∑
m

‖wm‖2Vm
µm

+ C

n∑
i

ξi + ‖µ‖22 (6)

s.t. yi

(
M∑
m

〈wm, φm(xi)〉Vm + b

)
≥ 1− ξi, Q−

1
2 µ ≥ 0,

where φm() is the feature transform mapping data space to the mth virtual kernel, denoted as Vm.

While the virtual kernels themselves may be indefinite, recall that µ = Q
1
2 β, and so the constraint Q−

1
2µ ≥ 0 is

equivalent to β ≥ 0, guaranteeing that the combined kernel will be p.s.d. This formulation is slightly different than
the 2-norm MKL formulation, however it does not alter the theoretical guarantee of [21], providing a stronger result.

Renyi Entropy. Renyi entropy [20] significantly generalizes the usual notion of Shannon entropy [22, 23, 24], has
applications in Statistics and many other fields, and has recently been proposed as an alternative to PCA [22]. Thm. 2
points to an intuitive explanation of where the benefit from a Q regularizer comes from as well, if we analyze the Renyi
entropy of the distribution on kernels defined by Q−1, if we treat Q−1 as a kernel density estimator. The quadratic
Renyi entropy of a probability measure is given as,

H(p) = − log

∫
p2(x)dx.

Now, if we use a kernel function (i.e., Q−1), and a finite sample (i.e., base kernels), as a kernel density estimator, (cf.
[15],) then with some normalization we can derive an estimate of the underlying probability p̂, which is a distribution
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over base kernels. We can then interpret its Renyi entropy as a complexity measure on the space of combined kernels.
Eq. (5.2) in [23] relates the virtual kernel traces to the Renyi entropy estimator of Q−1 as

∫
p̂2(x)dx = 1

N21
TQ−11,1

which leads to a nice connection to Thm. 2. This view informs us that setting Q−1 = IM×M , (i.e., 2-norm MKL),
has maximal Renyi entropy because it is maximally uninformative; adding structure to Q−1 concentrates p̂, reducing
both its Renyi entropy, and Rademacher complexity together.

This series of results suggests an entirely new approach to analyzing the Rademacher complexity of MKL methods.
The proof of Thm. 2 relies on decreasing a norm on the virtual kernel traces, which we now see directly relates to
the Renyi entropy of Q−1, as well as with decreasing the Rademacher complexity of the search space of combined
kernels. It is even possible that by directly analyzing Renyi entropy in a multi-kernel setting, this conjecture may be
useful in deriving analogous bounds in, e.g., Indefinite Kernel Learning [25], because the virtual kernels are indefinite
in general.

3.2 Special Cases: Q-SVM and relative margin
Before describing our optimization strategy, we discuss several variations on the Q-MKL model.

Q-SVM. An interesting special case of Q-MKL is Q-SVM, which generalizes several recent, (but independently
developed,) models in the literature [26, 27, 28]. If it were the case that the base kernels were rank-1, (i.e., singleton
features,) then each coefficient βm effectively becomes a feature weight, and a 2-norm penalty on β is a 2-norm penalty
on weights. Q-MKL therefore reduces to a form of SVM in which the margin regularizer ‖w‖2 becomes wTQw.
Thus, in such cases we can reduce the Q-MKL model to a simple QP, which we call Q-SVM . Please refer to the
supplements for details, and some experimental results.

Relative Margin. Several interesting extensions to the SVM and MKL frameworks have been proposed which focus
on the relative margin methods [29, 30] which maximize the margin relative to the spread of the data. In particular
Q-MKL can be easily modified to incorporate the Relative Margin Machine (RMM) model [29] by replacing Module
1 as in (7) with the RMM objective. Our alternating optimization approach, (described next,) is not affected by this
addition; however, the additional constraints would mean that SMO-based strategies would not be applicable.

4 Optimization
We now present the core engine to solve (3). Most MKL implementations make use of an alternating minimization
strategy which first minimizes the objective in terms of the SVM parameters, and then with respect to the sub-kernel
weights β. Since the MKL problem is convex, this method leads to global convergence [7, 14] and minor modifications
to standard SVM implementations are sufficient. Q-MKL generalizes ‖β‖2p to arbitrary convex quadratic functions,
while the feasible set is the same as for MKL. This directly gives,

Property 1. The Q-MKL model in (3) is convex.

We will broadly follow this strategy, but as will become clear shortly, interaction between sub-kernel weights makes
the optimization of β more involved (than [6, 14]), and requires alternative solution mechanisms. We may consider
this process as a composition of two modules: one which solves for SVM dual parameters (α) with fixed β, and the
other for solving for β with fixed α:

(Module 1) (Module 2)

max
0≤α≤C

αT1− αTY KY α

s.t. αT y = 0 (7)

min
β≥0

∑
m

‖wm‖2

βm

s.t. βTQβ ≤ 1 (8)

Using a result from [14] we can replace the βTQβ objective term with a quadratic constraint, which gives the problem
in (8). Notice that (8) has a sum of ratios with optimization variables in the denominator, while the constraint is
quadratic – this means that standard convex optimization toolkits may not be able to solve this problem without
significant reformulation from its canonical form in (8).

1Note that this involves a Gaussian assumption, but [24] provides extensions to non-Gauss kernels.
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Our approach is to search for a stationary point by representing the gradient as a non-linear system. Writing the
gradient in terms of the Lagrange multiplier δ, and setting it equal to 0 gives:

‖wm‖2Hm

β2
m

− δ(Qβ)m = 0, ∀m ∈ {1, · · · ,M}. (9)

We now seek to eliminate δ so that the non-linear system will be limited to quadratic terms in β, allowing us to use a
non-linear system solver. Let W = Diag(‖w1‖2H1

, . . . , ‖wM‖2HM
), and β−2 = (β−21 , . . . , β−2M ). We can then write

Wβ−2 = δ(Qβ). Now, solving for β (on the right hand side) gives

β =
1

δ
Q−1Wβ−2 (10)

Because Q � 0, and β ≥ 0, at optimality the constraint βTQβ ≤ 1 must be active. So, we can plug in the above
identity to solve for δ,

1 =

(
1

δ
Q−1Wβ−2

)T
Q

(
1

δ
Q−1Wβ−2

)
δ =

√
(Wβ−2)TQ−1(Wβ−2) = ‖Wβ−2‖Q−1 , (11)

which shows that δ effectively normalizes Wβ−2 according to Q−1. We can now solve (10) in terms of β using a
nonlinear root finder, such as the GNU Scientific Library; in practice this method is quite efficient, typically requiring
10 to 20 outer iterations. Putting these parts together, we can propose following algorithm for optimizing Q-MKL:

Algorithm 1. Q-MKL
Input: Kernels {K1, · · · ,KM}; Q � 0 ∈ RM×M ; labels y ∈ {±1}N .
Outputs: α, b, β
β(0) = 1

M ; t = 0 (iterations)
while not optimal do
K(t) ←

∑
m β

(t)
m Km

α(t), b(t) ← SVM(K(t), C, y) (Module 1, (7))
Wmm = α(t)TK

(t)
m α(t)(β

(t)
m )2

β(t+1) ← arg min (Problem(8)) (Module 2, (8))
t = t+ 1

end while

4.1 Convergence
We can show that our model can be solved optimally by noting that Module 2 can be precisely optimized at each step.
If Module 2 cannot be solved precisely, then Algorithm 1 may not converge. The following result assures us that
indeed Module 2 can be solved precisely by reducing it to a convex Semi-Definite Program (SDP).
Theorem 4. The solution to Problem (8) is the same as the solution to the following SDP:

min
ν≥0,β≥0,Z∈RM×M

wT ν (12)

subject to
[
νm 1
1 βm

]
� 0, ∀m

[
1 βT

β Z

]
� 0, Tr(QZ) ≤ 1. (13)

Proof. The first PSD constraint (13) requires that νm = β−1m , meaning that objective (12) is the same as that of Problem
(8). From the second we have Z = ββT , and so Tr(QZ) = βTQβ; therefore the feasible sets are equivalent.

The last PSD constraint is only necessary to ensure that βTQβ ≤ 1, and can be replaced with that quadratic constraint.
Doing so yields a Second-Order Cone Program (SOCP) which is also amenable to standard solvers. Note that it is not
necessary to solve for β as an SDP, though it is concievable that in some cases this will nevertheless be an effective
solution mechanism, depending on the size and characteristics of the problem.
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(a) (b) (c) (d)

Figure 1: Comparison of spatial smoothness of the weights chosen by Q-SVM and SVM with computed gray matter
(GM) density maps. Left (a-b): classifier weights given by a standard SVM; Right (c-d): classifier weights given by
Q-SVM .

5 Experiments
We performed extensive experiments to validate the Q-MKL model, examine the effect our regularization scheme has
on β, and to assess its advantages in the context of our motivating neuroimaging application. In these main experi-
ments, we demonstrate how domain knowledge can be adapted to improve the algorithm’s performance. Our focus on
a practical application is intended as a demonstration of how domain knowledge can be seamlessly incorporated into
a learning model, giving significant gains in accuracy. We also performed experiments on the UCI repositories, which
are described in detail in the supplements. Briefly, in these experiments Q-MKL performed as well as, or better than,
1- and 2-norm MKL on most datasets, showing that even in the absence of significant domain knowledge, Q-MKL can
still perform about as well as existing MKL methods.

5.1 Image preprocessing and methodology
Our main numerical experiments evaluate Q-MKL in the context of the motivating scenario described above, in
which we wish to train a discriminative disease model of Alzheimer’s Disease (AD) using brain imaging data. In these
experiments, we used brain scans of Alzheimer’s Disease (AD) patients and Cognitively Normal healthy controls (CN)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31] in a set of cross-validation experiments. ADNI
is a landmark study sponsored by the NIH, major pharmaceuticals and others to determine the extent to which multi-
modal brain imaging can help predict on-set, and monitor progression of, AD. To this end, MKL type methods have
already defined the state of the art for this application [3, 4]. For our experiments, 48 AD subjects and 66 controls were
chosen who had both T1-weighted MR scans and Fluoro-Deoxy-Glucose PET (FDG-PET) scans at two time-points
two years apart. Standard diffeomorphic methods, known generally as Voxel-Based Morphometry (VBM), (see SPM,
www.fil.ion.ucl.ac.uk/spm/) were used to register scans to a common template and calculate Gray Matter
(GM) densities at each voxel in the MR scans. We also used Tensor-Based Morphometry (TBM) to calculate maps of
longitudinal voxel-wise expansion or contraction over a two year period. Feature selection was performed separately
in each set of images by sorting voxels by t-statistic (calculated using training data), and choosing the highest 2000,
5000, 10000,. . . ,250000 voxels in 8 stages. We used linear, quadratic, and Gaussian kernels: a total of 24 kernels per
set, (GM density maps, TBM maps, baseline FDG-PET, FDG-PET at 2-year follow up) for a total of 96 kernels. For
Q-matrix we used the Laplacian of covariance between single-kernel α parameters, (recall the motivation from [19]
in Section 3,) plus a block-diagonal representing clusters of kernels derived from the same imaging modalities.

5.2 Spatial SVM
Before describing out main experiments, we first return to the Q-SVM model briefly mentioned in Section 3.2. To
demonstrate that regularizers in the form of a Q matrix can indeed influence the learned classifier, we performed
classification experiments with the Laplacian of the inverse distance between voxels as a Q matrix, and voxel-wise
GM density (VBM) as features. Using 10-fold cross-validation with 10 realizations, Q-SVM ’s accuracy was 0.819,
compared to the regular SVM’s accuracy of 0.792. These accuracies are significantly different at the α = 0.0005 level
under a paired t-test. In Fig. 1 we show a comparison of weights trained by a regular SVM (a–b), and those trained by
a spatially regularized SVM, (c–d). Note the greater spatial smoothness, and lower incidence of isolated “pockets”.

5.3 Multi-modality Alzheimer’s disease (AD) prediction
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Next, we performed multi-modality AD prediction experiments using all available kernels. Several different types
of imaging modalities are available, each of which highlights a different aspect of disease pathology; MR provides
structural information, while FDG-PET assesses hypo-metabolism. Further, we may use several image processing
pipelines. Due to the inherent similarities in how the various kernels are derived, there are clear cluster structures
/ behaviors among the kernels, which we would like to exploit using Q-MKL. We used 10-fold cross-validation
with 30 realizations, for a total of 300 folds. Accuracy, sensitivity and specificity were averaged over all folds. For
comparison we also examined 1-, 1.5-, and 2-norm MKL. As MKL methods have emerged as the state of the art in
this domain [3, 4], and have performed favorably in extensive evaluations against various baselines such as single-
kernel methods, and naı̈ve combinations, we therefore focus our analysis on comparison with existing MKL methods.
Results are shown in Table 1. Q-MKL had the highest performance overall, reducing the error rate from 12.5% to
11.2%. (Significant at the α = 0.001 level.) Note that the in vivo diagnostic error rate for AD is believed to be near
8–10%, meaning that this improvement is quite significant. The primary benefit of current sparse MKL methods is
that they effectively filter out uninformative or noisy kernels, however, the kernels used in these experiments are all
derived from clinically relevant neuroimaging data, and are thus highly reliable. Q-MKL’s performance gives some
evidence that it is able to combine the kernels in a way which boosts the overall accuracy.

Regularizer Acc. Sens. Spec.
‖β‖1-MKL 0.864 0.771 0.931
‖β‖1.5-MKL 0.875 0.790 0.936
‖β‖2-MKL 0.875 0.789 0.938

Covα 0.884 0.780 0.942
Lap.(Covα) 0.884 0.785 0.955

Lap.(Covα) + diag 0.888 0.786 0.956

Table 1: Comparison of Q-MKL & MKL. Bold nu-
merals indicate methods which did not differ from
the best at the 0.01 level using a paired t-test. Lap. =
“Laplacian”; diag = “Block-diagonal”.

Virtual kernel analysis. We next turn to an analysis of the
covariance structures found in the data empirically as a con-
crete demonstration of the type of patterns towards which the
Q-MKL regularizer is biasing β. Recall that the eigen-vectors
of a Q matrix can show which patterns are encouraged or de-
terred, in proportion to their eigen-values. In Fig. 2, we com-
pare the Q matrix used in the ADNI experiments, based on
the correlations of single-kernel α parameters (a), the 3 least
eigenvectors of its graph Laplacian (b–d), and the β vector op-
timized by Q-MKL . In (a), we can see that while the VBM
(first block of 24 kernels) and TBM (second block of kernels)
are highly correlated, they appear to be fairly uncorrelated to
one another, while the FDG-PET kernels (last 48 kernels) are
much more strongly interrelated. Interestingly, the first eigen-
vector is almost entirely devoted to two large blocks of kernels
– those which come from MRI data, and those which come from FDG-PET data. The positive elements in the off-
diagonal encourage sparsity within these two super-blocks of kernels. Somewhat to the contrary, the next two eigen-
vecors have negative weights in the region between TBM and VBM kernels, encouraging non-sparsity between these
two blocks. In (d) we see that the optimized β discards most TBM kernels, (but not all,) putting the strongest weight
on a few VBM kernels, and keeps a wider distribution of the FDG-PET kernels.

6 Conclusion
MKL is an elegant method for aggregating multiple data views, and is being extensively adopted for a variety of prob-
lems in machine learning, computer vision, bioinformatics, and neuroimaging. Q-MKL extends this framework to
account for and exploit higher order interactions between kernels – derived from supervised, unsupervised, or domain-
knowledge driven. This flexibility can impart greater control over how the model utilizes cluster structure among
kernels, and effectively encourage cancellation of errors wherever possible. We have presented a convex optimiza-
tion model to efficiently solve the resultant model, and shown experiments on a challenging problem of identifying
Alzheimer’s disease based on multi modal brain imaging data (obtaining statistically significant improvements). Our
implementation will be made available within the Shogun toolbox (www.shogun-toolbox.org).

(a) (b) (c) (d) (e)
Figure 2: Covariance Q used in AD experiments (a); three least eigen-vectors of its graph Laplacian (b-d); outer
product of optimized β (e). Note the block structure in (a) relating to the imaging modalities and kernel functions.
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