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1 Abstract interpretation

Abstract interpretation is a semantics-based program analysis method. The
semantics of a programming language can be specified as a mapping of pro-
grams to mathematical objects that describes the input-output function for
the program. In an abstract interpretation the program is given a mathe-
matical meaning in the same way as with a normal semantics. This however
is not necessarily the standard meaning, but it can be used to extract infor-
mation about the computational behaviour of the program.

1.1 Abstract interpretation

The central idea in abstract interpretation is to construct two different mean-
ings of a programming language where the first gives the usual meaning of
programs in the language, and the other can be used to answer certain
questions about the runtime behaviour of programs in the language.

The standard meaning of programs can typically be described by their
input-output function, and the standard interpretation will then be a func-
tion 1 which maps programs to their input-output functions.

The abstract meaning will be defined by a function 2 which maps pro-
grams to mathematical objects that can be used to answer the question
raised by a program analysis problem.

The correctness (or soundness) of this approach to program analysis can
be established by proving a relationship between these two interpretations.
An abstract interpretation of a language consists of the two function 1
and 2 together with a relation R between the meanings provided by these
functions such that for all programs p the relationship holds:

1[[p]] R 2[[p]]

The relationship R between the two meanings describes which real program
behaviours are described by an abstract meaning.
This can be sketched as
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1.2 Overview
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A final, fourth, component of an abstract interpretation is an intended
use or application of the abstract meaning. This last part is normally the
least formal. The abstract information is often used to guide a transforma-
tion or implementation of the program being analysed, and it is then argued
that the resulting program behaves in an equivalent way to the original.

The aim in abstract interpretation is twofold. We prove the correctness
of the abstract semantics with respect to the standard semantics and then
use the specification of the semantics as a basis for an implementation.
Compared to more ad hoc methods of program analysis such a framework
may add a high degree of reliability and a structure which facilitates the
specification of more complex analyses.

This general scheme has been used in a number of variations. The two
meanings of a program are normally expressed in the form of fixed point
semantics and the relationship can be constructed from functions which
map abstract meanings to sets of possible standard meanings.

1.2 Overview

The notes are centered around some examples of abstract interpretations.

• Strictness Analysis of lazy functional languages.

• Live Variable Analysis of an imperative language.

• Groundness Analysis of a logical language. (This part is not yet in-
cluded in the notes).
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1.3 Rule-of-sign

• Implementation techniques for abstract interpretation.

• Top-down vs. bottom-up analysis.

1.3 Rule-of-sign

The general idea of abstract interpretation is to interpret program text using
some kind of non-standard values. The standard introductory example is
the familiar rule-of-sign interpretation of integer expressions. We may in
some situations be able to predict whether the result of an expression is
positive or negative by only using the sign of the constants in the expression.
Let us consider an expression built from integer constants, addition and
multiplication. In the real world the expression can be evaluated as one may
expect giving an integer result.

As an example consider the expression −413 ∗ (2571 + 879). We can
deduce that the result is negative without actually performing the addition
and the multiplication since we know that adding two positive numbers gives
a positive result and that multiplying a negative and a positive number gives
a negative result. We will here make this a bit more formal while introducing
the notation used in the rest of these notes.

Syntax. Expressions are built from constants, addition and multiplication
using this little grammar.

exp ::= n number
| exp + exp addition
| exp ∗ exp multiplication

Standard interpretation. The usual evaluation or interpretation of ex-
pressions can be specified by a function which computes the value of the
expression. This evaluation function will here be written as a semantic func-
tion from denotational semantics. The shape or form of brackets and function
symbols, however, is not important.

Estd[[exp]] : Z
Estd[[ni]] = ni

Estd[[exp1 + exp2]] = Estd[[exp1]] + Estd[[exp2]]
Estd[[exp1 ∗ exp2]] = Estd[[exp1]] ∗ Estd[[exp2]]
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1.3 Rule-of-sign

Abstract interpretation. It is not always possible to predict the sign of
an expression from the sign of constants. The result of adding a positive and
a negative number can both be positive and negative. In our sign interpreta-
tion we will operate with four different values: {zero, pos, neg, num} where
zero indicates that the number is zero, pos that the number is positive, neg
that the number is negative, and num that we don’t know. We will call the
set of these values Sign.

Sign = {zero, pos, neg, num}

The rule-of-sign interpretation of addition and multiplication can then be
specified in two tables. These interpretations may be viewed as binary oper-
ations on signs or as “abstract” additions and multiplications. We will write
them as infix operations: ⊕ and ⊗ respectively.

⊕ : Sign× Sign→ Sign ⊗ : Sign× Sign→ Sign

⊕ zero pos neg num
zero zero pos neg num
pos pos pos num num
neg neg num neg num
num num num num num

⊗ zero pos neg num
zero zero zero zero zero
pos zero pos neg num
neg zero neg pos num
num zero num num num

Recalling the example above, the abstract version of −413 ∗ (2571 + 879) is
neg⊗ (pos⊕ pos) which can be evaluated as neg.

Using these binary operations we can now define the abstract evaluation
function for expressions. This function will compute the “sign” of the result.

Eros[[exp]] : Sign
Eros[[ni]] = sign(ni)
Eros[[exp1 + exp2]] = Eros[[exp1]]⊕ Eros[[exp2]]
Eros[[exp1 ∗ exp2]] = Eros[[exp1]]⊗ Eros[[exp2]]

where

sign(x) = if x > 0 then pos else if x < 0 then neg else zero
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1.3 Rule-of-sign

Relation. The standard and the “sign” evaluation functions are closely
related. They work on different kinds of values but the flow of information
is the same. We may formalise the connection between signs and numbers
by considering signs as representing the set of numbers with the given sign.
In this way zero represents the singleton set {0}, pos represents the set of
all positive numbers, neg represents the set of negative numbers and num is
any number in Z. Thus signs represent certain sets of numbers and we may
also, given a non-empty set of numbers, find a description of its sign. For a
given set we let its sign be the sign that denotes the least set containing the
given set.

γ : Sign→ P(Z) \ {∅} α : P(Z) \ {∅} → Sign
γ(zero) = {0} α(X) = if X = {0} then zero else
γ(pos) = {x | x > 0} if ∀x ∈ X. x > 0 then pos else
γ(neg) = {x | x < 0} if ∀x ∈ X. x < 0 then neg else num
γ(num) = Z

The relationship between γ and α is then that

∀s ∈ Sign. α(γ(s)) = s
∀X ∈ P(Z) \∅. γ(α(X)) ⊇ X

These functions are called concretisation (γ ' c) and abstraction (α ' a)
functions.

Using these functions we may explain how addition and multiplication
were defined on signs

s1 ⊕ s2 = α({x1 + x2 | x1 ∈ γ(s1) ∧ x2 ∈ γ(s2)})
s1 ⊗ s2 = α({x1 ∗ x2 | x1 ∈ γ(s1) ∧ x2 ∈ γ(s2)})

Safety. The relationship between the standard and sign evaluation func-
tion may be stated as the following relation.

∀exp. {Estd[[exp]]} ⊆ γ(Eros[[exp]])

Notice, however, that α({Estd[[exp]]}) and Eros[[exp]] not necessarily are
equal. In other words, the sign evaluation function may not be able to predict
the sign of the expression but if it does it will be correct. The relationship is
often referred to as a safety or soundness condition. Safety proofs normally
contain two parts: a local proof based on structural induction and a global
proof based on fixpoint induction. In this case we only need the first part
since no fixpoints are involved in the evaluation.
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1.3 Rule-of-sign

Structural induction over expressions is similar to normal induction. The
induction start is to prove the given property for simple expressions:

∀n ∈ Z. {Estd[[n]]} ⊆ γ(Eros[[n]])
or ∀n ∈ Z. {n} ⊆ γ(sign(n))

This follows by case analysis on the possible signs of numbers.
In the induction step we assume the property has been proved for subex-

pressions and prove that it holds for composite expressions.

∀n1, n2 ∈ Z, s1, s2 ∈ Sign. {n1} ⊆ γ(s1) ∧ {n2} ⊆ γ(s2)⇒
{n1 + n2} ⊆ γ(s1 ⊕ s2) ∧ {n1 ∗ n2} ⊆ γ(s1 ⊗ s2)

This follows from the relations between α, γ and the operations on signs.
From the induction start and the induction step we conclude that the

relation holds for all finite expressions built from numbers using addition
and multiplication.
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2 Strictness analysis

A function f on a domain D is said to be strict if it maps the bottom element
⊥ to the bottom element. In symbols it means that

f(⊥) = ⊥

Why is this so interesting? Well, this rather trivial property has been the
foundation for one of the most important semantics based program analyses.
If f is a function in a lazy functional language with this property it means
that if the computation of the argument does not terminate then the compu-
tation of the function result will not terminate either. Hence if we compute
the argument before the call we then have two possibilities: either the argu-
ment can be evaluated and no harm has been done or the evaluation of the
argument will fail to terminate. In the latter case, with a strict function, we
know that the computation of the function result would have failed anyway.
The only difference is that it now may happen a bit earlier. Strictness of a
function means that we may use a call-by-value strategy rather than call-by-
need and this should hopefully make it possible to implement the function
more efficiently.

There can be two reasons why a function of one variable can be strict.
The function will either use its argument in all circumstances as in say,

f(x) = if x = 0 then 1 else x ∗ f(x− 1)

or the function will not terminate for any argument values:

f(x) = f(1)

The last possibility is not especially interesting for functions of one variable
but we may be able to deduce strictness for functions of several variables by
a combination of the two situations.

g(x, y) = if y = 0 then x else g(x + 1, y − 1)

This function is strict in both arguments. We can deduce strictness in the
first argument without examining whether the function is total (and thus
uses its argument). We know, however, that the function will either termi-
nate and use its argument or fail to terminate. In both cases the function
will be strict.
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2.1 A lazy functional language

2.1 A lazy functional language

We will here use a functional language which is quite similar to the functional
language presented in the domain theory notes. The only difference is that
function calls will now be done by call-by-need or call-by-name rather than
call-by-value. We cannot denotationally distinguish between call-by-need and
call-by-name if programs have no side effects. The difference lies only in the
number of times an expression is computed and not in possible values of
programs or expression.

We will here describe the semantics for this small lazy functional lan-
guage. This semantics will later be referred to as the the standard semantics
or the standard interpretation as opposed to a rather special semantics we
will see later. The word standard is a somewhat abused word but should
here only be seen in contrast to the analysis we will construct later.

Semantics domains.

D = V⊥ —values
Φ = (Dk → D)n —function denotations

Semantics functions.

E[[exp]] : Φ→ Dk → D
P[[prog]] : Φ

Definition.

E[[ci]]φν = consti

E[[xi]]φν = νi

E[[ai(e1, . . . , ek)]]φν = strict basici〈E[[e1]]φν, . . . , E[[ek]]φν〉
E[[if e1 then e2 else e3]]φν = cond(E[[e1]]φν, E[[e2]]φν, E[[e3]]φν)
E[[fi(e1, . . . , ek)]]φν = φi〈E[[e1]]φν, . . . , E[[ek]]φν〉

P[[ f1(x1, . . . , xk) = e1
...

fn(x1, . . . , xk) = en]] = fixλφ. 〈E[[e1]]φ, . . . , E[[en]]φ〉

with

strictf〈v1, . . . , vk〉 = if v1 = ⊥ ∨ · · · ∨ vk = ⊥ then ⊥ else f(v1, . . . , vk)
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2.2 Abstract domain

The semantics is very similar to the call-by-value semantics presented earlier.
The only difference is that the function strict is no longer called at function
calls.

2.2 Abstract domain

We will use a two-point domain to examine the strictness of functions. The
domain is called 2 with the two elements 0 and 1 ordered by 0 v 1.

2 = {0, 1}, 0 v 1

There are two interesting operations on the two-point domain: minimum and
maximum. We will frequently use an infix notation for these operations:

d1 ∧ d2 = min(d1, d2)
d2 ∨ d2 = max(d1, d2)

In domain theory we do not normally think of these operations as min and
max but as respectively greatest lower bound (infimum or glb) and least
upper bound (supremum or lub). For a domain as 2, however, this really is
the same.

The domain 2 will be used to describe whether an element in D is defined,
that is the bottom element ⊥ or not. For this purpose we can define a so-
called abstraction function

α : D→ 2
α(d) = if d = ⊥ then 0 else 1

where it holds that ∀d ∈ D. d = ⊥ ⇔ α(d) = 0. We will not define a
concretisation function here. We do not need it and there is no obvious
candidate which embeds the domain 2 in D.

2.3 Strictness function

Now, let f : Dk → D be a function whose strictness properties we would
like to examine. Let us further assume that we have defined a function
f• : 2k → 2 which satisfies

∀〈d1, . . . , dk〉 ∈ Dk. α(f(d1, . . . , dk)) = f•(α(d1), . . . , α(dk))

If that is the case we then know that if

f•(1, . . . , 1, 0, 1, . . . , 1) = 0
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2.3 Strictness function

where all arguments are 1 except for the j’th, then f is strict in its j’th
argument. This tells us that if all arguments, except the j’th, are well-defined,
then the result will be undefined. The advantage with this description of
strictness is that the function f• is finite. Each argument can only have two
different values so we can tabulate the function by computing its value for
all the possible arguments.

Undecidable. Unfortunately is it not always possible to construct a f•

function. A function as

g(x, y) = if x = 0 then y else 0

is strict in its first argument, but will only use its second argument if the
first argument is 0. More generally the strictness property is undecidable, so
even if a function always uses one of its arguments then we cannot expect a
finite description (such as f•) to show it.

Approximations. Since we cannot expect to construct a function such
as f• which gives a precise description of the strictness of f , then we can try
and make two functions where one give too high values and the other too
low values. This means that we would like to construct two functions which
satisfy the following properties.

∀〈d1, . . . , dk〉 ∈ Dk. α(f(d1, . . . , dk)) v f ](α(d1), . . . , α(dk))

∀〈d1, . . . , dk〉 ∈ Dk. α(f(d1, . . . , dk)) w f [(α(d1), . . . , α(dk))

The notation here is taken from the world of music where ] (sharp) and [
(flat) respectively lift and lower a note by half a tone. We are always able
to construct such functions since we may use the constant function 0 as a
candidate for f [ and the constant function 1 as f ]. We are normally able to
construct better approximations using a little bit of ingenuity.

We can also examine strictness of a function using these functions. We know
that if

f ](1, . . . , 1, 0, 1, . . . , 1) = 0

where all arguments are 1 except the j’th, then f is strict in its j’th argument.
We can conclude this since f ] gives an upper bound, and if the upper bound
is the least element 0 then f must return the bottom element when its j’th
argument is undefined. The function f ] is clearly the most interesting of the
two approximations when we want to analyse strictness. We will examine
this function more closely in the rest of this section.
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2.4 Strictness interpretation

Examples. Let us now see how we can construct f ] functions for some
well-known functions.

Previously, we have used multiplication lifted to N⊥:

mul⊥ : N⊥ × N⊥ → N⊥
mul⊥(x, y) = if x = ⊥ ∨ y = ⊥ then ⊥ else x ∗ y

The constant function 1 will, of course, be a safe candidate for mul], but we
can do better since we can use

mul](x, y) = x ∧ y = min(x, y)

If one or both arguments of the multiplication is undefined (0) then we
know that the result is undefined, otherwise the result is defined (1). This
is precisely the minimum of the two values.

We have not discussed what happens in case of run-time errors such
as overflow. A function like integer division can be undefined even if both
arguments are defined. This does not give any problems since

div](x, y) = x ∧ y

is still a safe candidate as a ]-function, since even though div](1, 1) = 1 and
div(7, 0) = ⊥ then it only tells us that the ]-function is an upper bound.

Another function we frequently use is cond. In this case the ]-function is a
bit more complicated since we can use

cond](b, x, y) = b ∧ (x ∨ y)

To check this we only need to consider the various possible values of the
arguments. We can also read the definition as follows: If the conditional
expression should be defined then both the condition and at least one of the
other arguments must be defined.

2.4 Strictness interpretation

We are now ready to present our first real abstract interpretation. The idea is
that we will make a semantics for the language where the meanings have the
same relation to the standard meaning as f ] had to f above. We construct a
semantics for the language, which computes in zeroes and ones. Really, this
is quite straight forward. We just substitute all the D’s in the semantics
with the domain 2 and see what happens.
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2.4 Strictness interpretation

Semantic functions. The semantics uses two semantic functions, just as
in the semantics that described the usual meaning. We will mark the seman-
tic functions with a sharp (]) so as to distinguish them from the standard
semantics.

E][[exp]] : (2k → 2)n → 2k → 2
P][[prog]] : (2k → 2)n

Definition.

E][[ci]]φν = 1
E][[xi]]φν = νi

E][[ai(e1, . . . , ek)]]φν = E][[e1]]φν ∧ · · · ∧ E][[ek]]φν
E][[if e1 then e2 else e3]]φν = E][[e1]]φν ∧ (E][[e2]]φν ∨ E][[e3]]φν)
E][[fi(e1, . . . , ek)]]φν = φi〈E][[e1]]φν, . . . , E][[ek]]φν〉

P][[ f1(x1, . . . , xk) = e1
...

fn(x1, . . . , xk) = en]] = fixλφ. 〈E][[e1]]φ, . . . , E][[en]]φ〉

So far so good. This, however, is only the first step since we must show that
this semantics gives a safe description of the strictness of programs.

Correctness. We will show that the semantics function P] satisfies the
following property.

∀ρ, i : α((P[[p]] ↓ i)ρ) v (P][[p]] ↓ i)〈α(ρ1), . . . , α(ρk)〉

The proof consists of two parts: a local part using structural induction and
a global part using fixpoint induction. The proof is fairly easy but we will
go through it in small steps since it is the first time we have a proof of this
kind in the notes.
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2.4 Strictness interpretation

Proof. To a start we introduce a relation between real functions and strict-
ness functions. Functions f : Dk → D and f ] 2k → 2 are related if they
satisfy the following condition.

f R f ] ⇔ ∀ρ ∈ Dk, ρ] ∈ 2k . α(ρ1) v ρ]1 ∧ · · · ∧ α(ρk) v ρ]k ⇒ α(f(ρ)) v f ](ρ])

The relation is inductive (limit preserving) since α is strict and that the
relation here is the logical lifted relation to the function domain. We can, of
course, also show this directly but there is no reason to do the work twice
when we can get the result for free.

The condition we want to prove is that the two semantics for programs are
related with respect to this relation.

P[[p]] ↓ i R P][[p]] ↓ i

for i = 1, . . . , n and all programs p.

Local part. In the local part of the proof we will show the relation between
the semantic functions E and E]. We will now show that

∀φ ∈ (Dk → D)n, φ] ∈ (2k → 2)n. φ1 R φ]1 ∧ · · · ∧ φn R φ]n ⇒ E[[e]]φ R E][[e]]φ]

for all expression e.

We will now prove the relation between E[[e]] and E][[e]] by structural induc-
tion over possible expression. This means that we to a start will show that it
holds for constants and parameters, and afterwards we consider composite
expression under the assumption that it has been proved for the subexpres-
sions. We have then argued that it holds for all expressions.
For constants ci we should show that

∀ρ ∈ Dk, ρ] ∈ 2k . α(ρ1) v ρ]1 ∧ · · · ∧ α(ρk) v ρ]k ⇒ α(ci) v 1

For parameters xi we should show that

∀ρ ∈ Dk, ρ] ∈ 2k . α(ρ1) v ρ]1 ∧ · · · ∧ α(ρk) v ρ]k ⇒ α(ρi) v ρ]i
Both parts are trivially satisfied.
For standard operations ai(e1, . . . , ek) we know that the relation holds for
the subexpressions. Let φ, φ], ρ, ρ] satisfy

∀j. φj R φ]j and ∀j. α(ρj) v ρ]j
We know that

∀j. α(E[[ej]]φρ) v E][[ej]]φ]ρ]
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2.4 Strictness interpretation

and we should show that

α(strict basici(v1, . . . , vk)) v v]1 ∧ . . . ∧
]
k

with

vj = E[[ej]]φρ and v]j = E][[ej]]φ]ρ]

If all v]j are 1 there is nothing to show. If, on the other hand, one of the

values v]` are equal to 0 we know that v` = ⊥ and hence

strict basici(v1, . . . , vk) = ⊥

Consequently the relation is also satisfied for the standard operation. The
proof for the conditional expression follows a similar pattern.
For function calls fi(e1, . . . , ek) we assume that the condition has been
proved for subexpressions and thus that α(vj) v v]j where vj = E[[ej]]φρ and

v]j = E][[ej]]φ]ρ]. We should prove that

α(φj(v1, . . . , vk) v φ]j(v
]
1, . . . , v]k)

but this follows from the assumption that φ and φ] are related.

Global part. The global part uses fixpoint induction to prove that the fix-
points

fixλφ. 〈E[[e1]]φ, . . . , E[[en]]φ〉
and

fixλφ]. 〈E][[e1]]φ], . . . , E][[en]]φ]〉

are related. This follows directly from the inductiveness of the relation R.
End of proof
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2.5 Finding fixpoints

Example. Let us now return to the example from the start of this section.

g(x, y) = if y = 0 then x else g(x + 1, y − 1)

The strictness interpretation gives us the following meaning

g](x, y) = y ∧ (x ∨ g](x, y))

or more precisely

g](x, y) = fix(λφ. y ∧ (x ∨ φ(x, y)))

In the analysis of the strictness of the function we will compute g](1, 0) and
g](0, 1). The first value is easy to find since

g](1, 0) = 0 ∧ (1 ∨ g](1, 0)) = 0

since minimum of 0 and anything is 0. In it second case we have

g](0, 1) = 1 ∧ (0 ∨ g](0, 1))

and seen as an equation it will both have g](0, 1) = 0 and g](0, 1) = 1 as
solutions. We are interested in the least solution so we can conclude that
g](0, 1) = 0 and thus that the function is strict in both arguments. Well,
that was that.

2.5 Finding fixpoints

Strictness functions looks almost like our usual recursive functions but there
is a difference. A function such as

h(x) = h(x)

will not terminate for any arguments. The similar strictness function should
certainly terminate and return the value 0 for all arguments.

In the example above we found the fixpoint of the equation defining
g] using some reasoning about least elements etc. Although the discussion
was quite straightforward it may sound difficult to automate and use in
compilers.

We could, however, also have found the fixpoint as the limit of the ascending
Kleene chain. We want to find a fixpoint in the domain 22 → 2 and as usual
we start with the least element and compute better approximations using
the functional equation.
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2.5 Finding fixpoints

The least element in the domain 22 → 2 is the constant function 0 since
0 is the least element in 2 The elements in the ascending Kleene chain are
then

g]0 = [(0, 0) 7→ 0, (1, 0) 7→ 0, (0, 1) 7→ 0, (1, 1) 7→ 0]

g]1 = [(0, 0) 7→ 0, (1, 0) 7→ 0, (0, 1) 7→ 0, (1, 1) 7→ 1]

g]2 = [(0, 0) 7→ 0, (1, 0) 7→ 0, (0, 1) 7→ 0, (1, 1) 7→ 1]

We reached the fixpoint quite fast although it did require some more com-
putation compared to the more intuitive reasoning above. We do, however,
know that we always will be able to compute these strictness description and
that the computation will terminate. It is therefore safe to use such analyses
in a compiler without the risk that the compiler will not stop. The fixpoint
can be found in many ways but we know that it always can be done.

Complexity. We have argued that a strictness analysis will terminate.
We know that the analysis is described as a fixpoint over a finite domain
since there are 2k elements in the set 2k. In the set 2k → 2 there are 2(2k)

elements and of these not all are continuous. Each of these can be described
by 2k different function values and a chain of such function can at most
contain 2k + 1 different elements. This means that an implementation will
terminate and we may say that the analysis is decidable.

It is not really a requirement that the domain is finite. We only require
that there are no chains with infinitely many different values in the domain.
Domains with this property are often referred to satisfying the ascending
chain condition.

These calculations of the number of iterations show a problem with strict-
ness analysis. If there are many parameters to functions then the maximal
number iterations and function results which should be saved and tested,
will be rather large. We need to evaluate 2k values up to 2k + 1 times where
k is the number of arguments to the function. Now, we rarely write function
with 50 or 100 arguments but it could happen and the the compiler may
then need hundreds of years and lots of hard disks to complete the anal-
ysis. Programs generated by other programs frequently have a form that
surprise compiler writers. The alternative is to find more clever ways to
compute fixpoints. A simple iteration of values until convergence is the di-
rect implementation, but depending of the situation one can use depth-first
computations, tree structure representation of function values or something
else. We will return to this in a later section.
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3 Higher-order strictness analysis

Last section considered strictness analysis of a first-order functional lan-
guage. In this section we will extend that method to higher-order typed
languages.

3.1 Language

Consider a language of recursion equation system with higher order func-
tions.

p : f1 = e1 : τ1
...
fn = en : τn

e : xi Parameters
| ci Constants
| fi Functions
| λxj : τj. e Abstraction
| e1(e2) Application

Expressions are assumed to be strongly (monomorphically) typed as func-
tions or base values.

τ : τ1 → τ2

| Base
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3.2 Standard interpretation

3.2 Standard interpretation

The semantics uses a recursively defined domain of values

D ' Base⊥ + D→ D

where Base is a set of base values. We also need the following semantic
domains.

Var = {x1, x2, . . .} Parameters
ρ ∈ Var→ D Parameter environment
φ ∈ Φ = Dn Function environment

Using these definitions the type of the semantic functions are as follows.

M[[p]] : Dn

E[[e]] : Dn → (Var→ D)→ D

E[[xi]]φρ = ρ(xi)
E[[ci]]φρ = consti

E[[fi]]φρ = φi

E[[λxj : τj. e]]φρ = λv. E[[e]]φρ[xj 7→ v]
E[[e1(e2)]]φρ = (E[[e1]]φρ)(E[[e2]]φρ)
M[[f1 = e1 : τ1 · · · fn = en : τn]] = fixλφ. 〈E[[e1]]φρ0, . . . , E[[en]]φρ0〉

where ρ0 = λx. ⊥D

with constants consti ∈ D for constants ci in the program.
Notice that this semantics may also be used if the language is not strongly

typed. The strictness analysis we will construct here will, however, only be
finite if the language is typed.
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3.3 Abstraction

3.3 Abstraction

The purpose of the strictness analysis is to give a safe description of the
termination properties of the functions. The safety condition is quite simple
in the first-order case where functions either terminate or fail to terminate.
In the higher-order case, a function may return a function which is strict in
some arguments but not in others.

Before we define the analysis we want to describe what the best possible
approximation is. We may then prove that the strictness analysis is a safe
approximation to this best approximation. The difference is that the strict-
ness analysis is decidable (computable) whereas this best approximation is
not.

The best approximation is constructed recursively using an abstraction
function. If a value is of base type (Base) then the termination properties
may be described using the abstraction function from first-order strictness
analysis.

αBase : Base⊥ → 2
αBase(d) = if d = ⊥ then 0 else 1

where

2 = {0, 1}, 0 v 1

For a function f : Base⊥ → Base⊥ on base values we may construct a best
approximation as follows

αBase→Base : (Base⊥ → Base⊥)→ (2→ 2)
αBase→Base(f) = λx. if x = 0 then αBase(f(⊥))

else max{αBase(f(y)) | y ∈ Base}

Remember that in strictness analysis we want to detect guaranteed non-
termination. Only if f fails to terminate for all defined arguments should
αBase→Base(f)(1) return 0.

Now let Dt be the subset of D of objects with type t and let Bt be
the domain of strictness functions for type t. The generalisation to more
complex types is

αt1→t2 : Dt1→t2 → Bt1→t2

αt1→t2(f) = λx. {αt2(f(y)) | αt1(y) v x}

where we have written instead of max and used v instead of equality.
The latter should not change anything but it makes it easier to prove that
the abstraction function is continuous.
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3.4 Strictness interpretation

Lemma. The central property of the abstraction function is

∀x : t1. αt2(f(x)) v αt1→t2(f)(αt1(x))

Lemma. The abstraction function αt is continuous for all types t.

Comments. As the abstraction function is defined recursively on the type
structure, it requires the argument to be strongly typed. This is the reason
why we require the language to be strongly typed.

We will omit the type index to the abstraction function when the type
is clear from the context.

3.4 Strictness interpretation

The only difference between the strictness interpretation and the standard
interpretation is for constants ci.

E][[xi]]φρ = ρ(xi)

E][[ci]]φρ = const]i
E][[fi]]φρ = φi

E][[λxj : τj. e]]φρ = λv. E][[e]]φρ[xj 7→ v]
E][[e1(e2)]]φρ = (E][[e1]]φρ)(E][[e2]]φρ)

where

α(consti) v const]i
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3.4 Strictness interpretation

Theorem. Given φ, φ′, ρ, ρ′ such that

α(φi) v φ′i, α(ρ(v)) v ρ′(v) ∀i, v

we should prove that

α(E[[e]]φρ) v E][[e]]φ′ρ′

The proof is by structural induction over expressions. Assume it has been
proved for subexpressions, then prove:

α(E[[λxj : τj. e]]φρ) = α(λv. E[[e]]φρ[xj 7→ v])
= λx. {α(E[[e]]φρ[xj 7→ y]) | α(y) v x}
v λx. E][[e]]φ′ρ′[xj 7→ x]
= E][[λxj : τj. e]]φ′ρ′

and

α(E[[e1(e2)]]φρ) = α((E[[e1]]φρ)(E[[e2]]φρ))
v α(E[[e1]]φρ)(α(E[[e2]]φρ))
v (E][[e1]]φ′ρ′)(E][[e2]]φ′ρ′)
= E][[e1(e2)]]φ′ρ′

Theorem. Define

ψ = M[[f1 = e1 : τ1 · · · fn = en : τn]] = fixλφ. 〈E[[e1]]φρ0, . . . , E[[en]]φρ0〉
where ρ0 = λx. ⊥D

ψ′ = M][[f1 = e1 : τ1 · · · fn = en : τn]] = fixλφ′. 〈E][[e1]]φ′ρ′0, . . . , E][[en]]φ′ρ′0〉
where ρ′0 = λx. 0

then

∀i. α(ψi) v ψ′i

The proof is by fixpoint induction using that the relation α(φ) v φ′ is
inductive (preserve limits).
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3.5 Power domains

3.5 Power domains

The safety of the strictness analysis is here described using only an abstrac-
tion function. We have established a relationship of the form α(ψi) v ψ′i.
We can prove that this relationship is correct but we have not proved that
α or E[[e]] are correct. Somehow α is our definition of what we mean by non-
termination and E[[e]] is the meaning of the programs and as such, they are
the foundation or axioms of the theory. The use of the abstraction function
to explain what we mean by non-termination may feel a bit unnatural as
it maps values into the abstract meanings. Another, maybe more natural,
approach could be to define which real program behaviours are described
by a strictness function. We can then argue that for all these programs that
certain transformations are allowed. This would require the definition of a
so-called concretisation function:

γt : Bt → P(Dt)
γt(b) = {f | α(f) = b}

This function, however, is not continuous so we can not prove a relationship
of the form

ψi ∈ γ(ψ′i)

using fixpoint induction. Instead we may achieve continuity with a slight
change in the definition:

γt(b) = {f | α(f) v b}

This concretisation function will map strictness functions to downwards
closed sets of real function. The set of downwards closed subsets of a domain
is normally called the Hoare power domain.

3.6 Examples

Top and bottom. In the higher-order case the strictness analysis may
need functional arguments and produce functional results. How do we then
check whether a function is top element or bottom in the domain? Well, there
is a simple method to do that since strictness functions are monotonic:

Define top and bot recursively as

top2 = 1
topu→t = λx. topt

bot2 = 0
botu→t = λx. bott
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3.6 Examples

Check whether a value is bottom or top:

x2 = top2 ⇔ x2 = 1
xu→t = topu→t ⇔ x(botu) = topt
x2 = bot2 ⇔ x2 = 0
xu→t = botu→t ⇔ x(topu) = bott

Example. Now consider this small program:

g f x y = x + f(y)
h u = g(λu. v ∗ u) 5 4

The strictness versions are:

g] f x y = x ∧ f(y)
h] u = g](λv. v ∧ u) 1 1

The strictness analysis will then consider the following calls of the strictness
functions.

g](λz. 0) 1 1 = 0
g](λz. 1) 0 1 = 0
g](λz. 1) 1 0 = 1
h 0 = g](λv. 0) 1 1 = 0

Example. Original program

hof g x y = g(hof(k(0), x, y − 1))+
if y = 0 then x else hof(i, 3, y − 1)

k x y = x;
i x = x;

The strictness versions are

hof g x y =
g(hof(k(1), x, y)) ∧ y ∧ (x ∨ hof(i, 1, y));

k x y = x;
i x = x;
top x = 1;
bot x = 0;
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3.6 Examples

The strictness analysis will then consider the following calls of the strictness
functions.

hof(bot(), 1, 1) = 0
hof(top(), 0, 1) = 1
hof(top(), 1, 0) = 0
k(0, 1) = 0
k(1, 0) = 1
i(0) = 0
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4 Live variable analysis

Live variable analysis is one of the traditional data-flow analysis problem.
It is normally stated for imperative programs, often in a flow-chart form.
Abstract Interpretation was introduced to show that such analyses could be
given a semantic basis. We will here present the live variable analysis as an
abstract interpretation of an imperative language.

4.1 A small language

The following little language will be used to illustrate the use of a seman-
tic framework for abstract interpretation. It is a flow-chart language with
assignment statements and unrestricted jumps.

The language will be introduced with a context-free grammar and an
informal description of its semantics. A formal semantics for the language
will be given later.

program ::= stmt

stmt ::= `i : stmt
| stmt ; stmt
| goto `i
| xi := exp
| if exp then stmt else stmt

exp ::= exp + exp
| exp – exp
| ci

| xi

The semantics of the various language constructs are generally as ex-
pected. The goto command will of course normally send control to the
command with the same label. If a label occurs more than once the goto
command will select the first. A goto command to an undefined label causes
a jump to the end of the program.

The output from the program is the contents of a given variable (say
“x0”) at the end of the execution. This means that a program will end with
an implicit print(x0) command. Another possibility would have been to let
the values of all variables be available at the end of the program but this
would make a live-variable analysis less interesting.
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4.2 Standard interpretation

4.2 Standard interpretation

This section introduces the standard interpretation for the language. In prac-
tice the design of the standard interpretation will often go hand in hand with
the abstract interpretation and the soundness proof. The general idea in the
interpretations is to use a backward or continuation style semantics such
that the meaning of a statement describes “the rest of the computation”. In
the case of the standard interpretation it is a mapping of the environment at
the start of the statement to the final answer. For the abstract interpretation
it is the set of variables which may be used in this or later statements along
possible execution paths. A variable is said to be live at a given program
point if it may be used in any execution path before it is assigned a new
value. The relationship between these two interpretations can informally be
stated as: if a variable is not live (ie. dead) then the standard interpretation
will not change if that variable is made undefined. We will formalise this in
section 4.4.

4.2.1 Semantic framework

We could now just have specified the standard semantics of the language
as a denotational semantics and afterwards constructed the abstract inter-
pretation. We will instead separate each interpretation into two parts where
the first part will be common to the two interpretation. This first part is
a skeleton semantics where certain symbols are left uninterpreted and an
interpretation should then assign a meaning to these symbols. A skeleton
semantics of this form is often referred to as a semantic framework .

The semantic framework will show the flow of information in the program
but will leave the actual interpretation unspecified. The framework defines
a continuation style (or backward) semantics. Meanings of statements are
continuations: mappings of the state before the statement to a final result.
The framework will use a label environment to keep the meanings of labels.
The label environment is a mapping of label names to the continuation
where the label appear in the program. The semantic function S takes two
arguments c and ξ, where c is the continuation after the statement and ξ is
the label environment. The result will be a tuple with the continuation from
the state before the statement as first component and a label environment
of labels that appear in the statement as second component.

P[[program]] = letrec〈r, ξ〉 = S[[program]]Final ξ in ξ

S[[`i : stmt]]c ξ = let〈r, ρ〉 = S[[stmt]]c ξ in 〈r, ρ[`i 7→ r]〉
S[[stmt1 ; stmt2]]c ξ = let〈r2, ρ2〉 = S[[stmt2]]c ξ and 〈r1, ρ1〉 = S[[stmt1]]r2 ξ
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4.2 Standard interpretation

in〈r1, Join(ρ1, ρ2)〉
S[[goto `i]]c ξ = 〈Goto(ξ, `i), Nil〉
S[[xi := exp]]c ξ = 〈Update(c, xi, E[[exp]]), Nil〉
S[[if exp then stmt else stmt]]c ξ = let〈r1, ρ1〉 = S[[stmt1]]c ξ and 〈r2, ρ2〉 = S[[stmt2]]c ξ

in〈If(E[[exp]], r1, r2), Join(ρ1, ρ2)〉
E[[exp1 + exp2]] = Add(E[[exp1]], E[[exp2]])

E[[exp – exp]] = Sub(E[[exp1]], E[[exp2]])

E[[ci]] = Const(ci)

E[[xi]] = Var(xi)

The actual flow of information between labelled commands and goto’s is
not described in the above scheme. This flow can be specified independently
of the interpretations with these definitions

Goto(ξ, l) = if ξ(l) = Undef then Final else ξ(l)
Nil = λl. Undef
Join(ξ1, ξ2) = λl. if ξ1(l) = Undef then ξ2(l) else ξ1(l)

where Undef is a special symbol to indicate that no labels have been defined.
The label environment is defined as a fixpoint. We have used a letrec

expression but we could also have written the fixpoint directly:

P[[program]] = snd(fix(λ〈r, ξ〉. S[[program]]Final ξ))

In the standard interpretation the fixpoint may be implemented using a
letrec expression in a functional language but the abstract interpretation
will require fixpoint iteration where the bottom element is not represented
as undefined.
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4.2 Standard interpretation

4.2.2 Types

The semantic framework can be seen as a polymorphic function definition. It
is possible to type-check the scheme and give types to the operator symbols.
Let M, D, U, A, N be type variables. The types of the semantic functions
are then

P[[program]] : M
S[[stmt]] : (M× (A→ (M + U)))→ (M× (A→ (M + U)))
E[[exp]] : D

The types of the defined symbols are

Goto : (A→ (M + U))×A→M
Nil : A→ (M + U)
Join : (A→ (M + U))× (A→ (M + U))→ (A→ (M + U))
Undef : U

and the types for the operator symbols are

Update : M×A×D→M
If : D×M×M→M
Final : M
Add : D×D→ D
Sub : D×D→ D
Const : N→ D
Var : A→ D

In the interpretations the type variables M and D can vary their meanings.
U will always be the singleton set {Undef}, N is the domain of integers Z,
and A the domain of identifiers A.

In both interpretations M and D will be given the same interpretation.
Their intuitive meaning is different—respectively the meaning of “the rest
of the program” and the meaning of “the expression”—so we will keep them
separate in the interpretations and the proof. It is possible to define an
abstract interpretation where these types are bound to different domains.
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4.3 Live-variable analysis

4.2.3 Standard interpretation

In the standard interpretation the meaning (of type M) of a statement will
be a mapping of the environment before the statement to the final result.
The final result is the value of the variable “x0” at the end of the program.

For expressions the meaning (of type D) is a mapping of the environment
to the value of the expression.

The standard interpretation uses the following interpretation of type
names:

M : env→ Z
D : env→ Z
env : A→ Z

and the interpretation of operator symbols are

Update(Cn, n, e) = λx. Cn(x[n 7→ e(x)])
If(e, Ct, Cf) = λx. if e(x) then Ct(e) else Cf(e)
Final = λe. e(“x”)
Add(e1, e2) = λe. e1(e) + e2(e)
Sub(e1, e2) = λe. e1(e)− e2(e)
Const(n) = λe. n
Var(v) = λe. e(v)

4.3 Live-variable analysis

The live-variable analysis will be specified as an interpretation of the above
semantic framework The meaning of a statement is the set of live variables
at the start of the statement, and the meaning of an expression is the set of
variables used in it.

The interpretations of the type names are

M : P(A)
D : P(A)

This is the powerset of variable names ordered by set inclusion. The inter-
pretation of the operator symbols are
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4.4 Correctness proof of the abstract interpretation

Update(Cn, n, e) = e ∪ (Cn\{n})
If(e, Ct, Cf) = e ∪Ct ∪Cf
Final = {“x0”}
Add(e1, e2) = e1 ∪ e2
Sub(e1, e2) = e1 ∪ e2
Const(n) = ∅
Var(v) = {v}

All these functions can easily be seen to be continuous.

4.4 Correctness proof of the abstract interpretation

In the correctness proof we will introduce a relationship between values in
the two interpretations of the base types. The index s will be used for the
standard interpretation and a for the abstract interpretation. Thus we will
establish a relation DM between Ms and Ma and a relation DD between Ds
and Da. The relation can be extended to other types in our type structure
as described in the domain theory notes.

The proof is in two parts. In the first part we prove that the two inter-
pretations of the operator symbols can be related. In the second part we
prove that the relation is inductive and hence can be extended to fixpoints.
From this we conclude that the results of the two interpretations will be
related for all programs.

To prove a relation between two interpretations of the language we must
make sure that

• all semantic rules are continuous functions.

• a relation holds between values of the base types (M and D).

• that the relations relate the interpretations of the operator symbols

• that the relation is inductive and hence can be extended to composite
types as a logical relation and to fixpoints.
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4.4 Correctness proof of the abstract interpretation

4.4.1 Relation

The relation for M and D is the same and is defined as

cs DM ca ⇔ ∀x. x 6∈ ca ⇒ ∀e. cs(e) = cs(e[x 7→ ⊥])

This can be interpreted as: if a variable is not live then the standard in-
terpretation of the rest of the program will not change if its value is made
undefined. The interpretation for D is the same except “the rest of the
program” should be “the whole of the expression”.

The relation does not say that a live variable will be used in later state-
ments but only that if a variable is not live, it will not be used.

4.4.2 Local correctness

The correctness proof requires that the relation is proved for the interpreta-
tions of the operator symbol. The proof is essentially no more than symbol
manipulation. It should be done for all the operator symbols but we will
only include the proof for the Update.

We will prove that

Updates D(M×A×D)→M Updatea

or equivalently that

∀cs, ca, vs, va, es, ea :
cs DM ca, vs = va, es D ea ⇒ Updates(cs, vs, es) DM Updatea(ca, va, ea)

Let cs ∈ Ms, ca ∈ Ma, vs ∈ A, va ∈ A, es ∈ Ds, ea ∈ Da be any values
such that

cs DM ca, vs = va, es D ea

We need to prove that

Updates(cs, vs, es) DM Updatea(ca, va, ea)

Let v = va = vs and let x be any variable such that x 6∈ ea and e any
environment e ∈ envs. The relationship we seek is then

cs(e[v 7→ es(e)]) = cs(e[x 7→ ⊥][v 7→ es(e[x 7→ ⊥])])

using es(e) = es(e[x 7→ ⊥]) gives

cs(e[v 7→ es(e)]) = cs(e[x 7→ ⊥][v 7→ es(e)])
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4.5 Example

if v = x then there is no more to prove; else assume x 6∈ ca

cs(e[v 7→ es(e)]) = cs(e[v 7→ es(e)][x 7→ ⊥])

and with e1 = e[v 7→ es(e)] we have

cs(e1) = cs(e1[x 7→ ⊥])

This is true by the assumption (cs DM ca ∧ x 6∈ ea).
The proof for the other operator symbols is performed in the same fash-

ion.

4.4.3 Fixpoint induction

The final part of the proof is to show that the relation DM is inductive.
That is to prove that for any chain X ⊆ DM that X ⊆ DM. This follows
from the fact that Ma is finite (there is only a finite number of variables in
a program) and that ∀e. cs(e) = cs(e[x 7→ ⊥]) is an inductive predicate on
Ms. This follows again from the continuity of cs.

4.5 Example

Consider the program

`1 : x1 := x2 − 1
x0 := x1 + 1
if x1 = 0 then goto `3 else goto `2

`2 x2 := x1 − 1
goto `1

`3 x0 := x0 + 1

The live variable analysis will produce the following label environment of
liveness information at each label:

`1 : {x2}
`2 : {x1}
`3 : {x0}

The result is obtained by propagating liveness information backwards through
the flow-chart.
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4.6 Denotational abstract interpretation

4.6 Denotational abstract interpretation

The idea of using a semantic framework can be taken a step further. When
we write a denotational semantics we define the meaning of expressions
using a domain-theoretic meta-language. This meta-language consists of λ-
abstraction, function application and a number of continuous functions such
as mul⊥, cond, fix, fst, snd, isl, inl, outl, etc. If we gave these meta-language
constructs an abstract meaning we would also have given any language with
a denotational semantics an abstract meaning. Thus, if we are able to give
the metalanguage an abstract interpretation we can then use this as an
analysis of any language. The seems to be two main problems with this
approach. The domain-theoretic metalanguage is very powerful and it is
difficult to construct good analyses which may work for any language. The
second problem is that it is not that obvious how to relate information about
meta-language constructs to the original programs.
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5 Constant propagation

The strictness analysis for first-order functions extracted properties of the
functions in a finite form. The analysis was compostional or modular in the
sense that a function could be analysed independently of the context in
which it appeared. The strictness of a function is a denotational property
since it can be expressed in terms of the denotation of functions. In this
section we will consider an example of an analysis which cannot directly be
expressed in this way. The example will be a constant propagation analysis
which gives a safe (not too small) description of the possible arguments to
functions in internal calls of a recursion equation system.

5.1 Language

We will here consider a language of recursion equations. A program consists
of n functions each of k arguments.

e ::= ci constants
| xi parameters 1 ≤ i ≤ k
| ai(e1, . . . , ek) basic operations
| fj(e1, . . . , ek) function calls 1 ≤ j ≤ n

and programs prog have the form:

prog ::= f1(x1, . . . , xk) = e1
...

fn(x1, . . . , xk) = en

All functions are first order over some domain (chain-complete partial order)
D with a normal order evaluation strategy for arguments to function calls.
The domain D may be a flat cpo or it may be a reflexive domain describing
lazy data structures. Expressions are constructed from a set of constants
ci and basic operations ai using parameters and function calls. For each
constant ci there must be a corresponding element consti ∈ D and for each
basic operation ai there must be a continuous function basici : Dk →c D.
We may include a conditional function as a basic operation; in this case we
may expect the domain D to contain the boolean values true and false.
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5.2 Constant propagation

Standard semantics. The usual fixpoint semantics for this type of lan-
guage may be defined as follows. The semantics will use the following do-
mains

d ∈ D values
ν ∈ Dk parameter environment
φ ∈ Φ = (Dk →c D)n function environment

There are two semantic functions:
E[[e]] : Φ→c Dk →c D
U[[prog]] : Φ

with the definitions
E[[ci]]φν = consti
E[[xi]]φν = νi
E[[aj(e1, . . . , ek)]]φν = basicj(E[[e1]]φν, . . . , E[[ek]]φν)
E[[fj(e1, . . . , ek)]]φν = φj(E[[e1]]φν, . . . , E[[ek]]φν)

and

U[[f1(x1, . . . , xk) = e1, . . . , fn(x1, . . . , xk) = en]] = fixλφ. 〈E[[e1]]φ, . . . , E[[en]]φ〉
The well-definedness of the fixpoint is guaranteed by the continuity of the
semantic function E.

5.2 Constant propagation

The constant propagation should give a safe description of the possible ar-
guments to the functions in a recursion equation system when only one of
the functions can be called externally. In a constant propagation analysis we
describe sets of possible arguments using the domain D> where elements in
D describe singleton sets of values from D and the extra element > describe
that an argument may have several different values. If an argument is de-
scribed by a value in D then that argument in all internal calls must be a
constant and the program can then be optimised accordingly.

⊥
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true false 0 1 · · ·
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%
%
%
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��
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E
EE
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A
A
A
A

J
J
J
J

The domain D>
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5.3 Argument needs

We can construct concretisation and abstraction functions between D>

and P(D) as follows:

α : P(D)→ D>

α(∅) = ⊥D

α({x}) = x
α({x1, . . .}) = >

γ : D> → P(D)
γ(>) = D
γ(x) = {x}

Basic operations on D can easily be extended to operations on this extended
domain D>.

basic>j (v1, . . . , vk) = if some vi = > then > else basicj(v1, . . . , vk)

Using this extension we may extend the semantics of programs to the domain
D>.

E>[[ci]]φν = consti

E>[[xi]]φν = νi

E>[[aj(e1, . . . , ek)]]φν = basic>j (E>[[e1]]φν, . . . , E>[[ek]]φν)
E>[[fj(e1, . . . , ek)]]φν = φj(E>[[e1]]φν, . . . , E>[[ek]]φν)

and

U>[[f1(x1, . . . , xk) = e1, . . . , fn(x1, . . . , xk) = en]] = fixλφ. 〈E>[[e1]]φ, . . . , E>[[en]]φ〉

Our aim here, however, is to find needed arguments in internal calls and not
just mappings of possible arguments to results. This requires a formalisation
of the notion of neededness.

5.3 Argument needs

We will now consider a given program prog and assume that it may only be
called from outside through the first function with a given set of arguments
V0 ⊆ Dk. Our aim is to describe the indirect calls to the functions in the
program; that is all the possible calls to the functions which can be reached
from this set of initial calls. We may formalise the notion of reachability as
follows.

We define the function A[[e]] to return the set of argument tuples in calls
to user-defined functions that will occur when evaluating the expression e.
Possible calls are represented as closures of function numbers and arguments.

〈i, ν〉 ∈ C = {1, . . . , n} ×Dk
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5.4 Propagation of abstract needs

The function A[[e]] is defined as follows.

A[[e]] : Φ→ Dk → P(C)

A[[xi]]φν = ∅
A[[ci]]φν = ∅
A[[opi(e1, . . . , ek)]]φν = A[[e1]]φν ∪ · · · ∪ A[[ek]]φν
A[[fi(e1, . . . , ek)]]φν = {〈i, E[[e1]]φν, . . . , E[[ek]]φν〉} ∪ A[[e1]]φν ∪ · · · ∪ A[[ek]]φν

Using this function we may find the indirect calls to the functions in the
program.

A[[prog]]φS0 = fix(λS. S0 ∪
⋃

〈i, ν〉∈S

A[[ei]]φν)

The fixpoint is well-defined as the union operation is continuous. It is worth
noting that the function A[[e]] is not necessarily continuous in either of its
arguments. The function A[[prog]] is continuous in its second argument.

In the program

prog = f1(x1, . . . , xk) = e1, . . . , fn(x1, . . . , xk) = en

with the initial call set V0 the indirect needs are A[[prog]](U[[prog]]){〈1, ν〉 |
ν ∈ V0}.

5.4 Propagation of abstract needs

The abstraction of argument needs is an interpretation which for each ar-
gument and each function assigns an abstract value in D>. The abstract
argument need interpretation is then defined as follows.

C> = (D>)k

A>[[e]] : Φ> → (C>)k → (C>)n

A>[[xi]]φν = ∅
A>[[ci]]φν = ∅
A>[[opi(e1, . . . , ek)]]φν = A>[[e1]]φν t · · · t A>[[ek]]φν
A>[[fi(e1, . . . , ek)]]φν = onlyi(E>[[e1]]φν, . . . , E>[[ek]]φν) t A>[[e1]]φν t · · · t A>[[ek]]φν

Using this function we may find the indirect calls to the functions in the
program.

A>[[prog]]φS0 = fix(λ〈v1, . . . , vn〉. 〈S0, ⊥C, . . .〉 t A>[[e1]]φv1 t · · · t A>[[en]]φvn)
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5.4 Propagation of abstract needs

Example. Consider the following program

g(x) = f(1, x)
f(x, y) = h(x, y − 1)
h(x, y) = if y = 1 then x else h(x + 1, y − 1)

and let us assume that only the function g can be called externally. The
initial description of abstract needs will be

φ0 = 〈〈>〉, 〈⊥, ⊥〉, 〈⊥, ⊥〉〉

The first iteration will register a call to f

φ1 = 〈〈>〉, 〈1, >〉, 〈⊥, ⊥〉〉

The next iteration will see a call to h

φ2 = 〈〈>〉, 〈1, >〉, 〈1, >〉〉

From this description of argument we will reach the following new calls

φ2′ = 〈〈>〉, 〈1, >〉, 〈2, >〉〉

which then should be lub’ed with φ2 giving

φ3 = 〈〈>〉, 〈1, >〉, 〈>, >〉〉

With this the iteration stabilises and only the first argument to f has been
recognised as constant.
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6 Fixpoint iteration

In strictness analysis we may construct functions over the domain 2 = {0, 1}
with 0 ≤ 1. We want to evaluate the function

f ](x, y, z) = (y ∧ z) ∨ f ](z, x, f ](y, 1, 1))

for the arguments 〈0, 1, 1〉, 〈1, 0, 1〉, and 〈1, 1, 0〉. Although the f ] function
looks like an ordinary function in a programming language, its implemen-
tation is not that simple. When we implement ordinary function we let the
bottom value be represented as undefined or non-termination. This is not
very attrictive when we evaluate the f ] function since exactly the bottom
element (0) is the interesting result which we would like to detect.

6.1 Fixpoint iteration

The safe way to evaluate a strictness function is to construct the ascending
Kleene sequence, where we tabulate functions and iterate the function graph
until stability. For the function

f ](x, y, z) = (y ∧ z) ∨ f ](z, x, f ](y, 1, 1))

we start the fixpoint iteration with the bottom element: the constant func-
tion 0 and reevaluate the function for all possible arguments.

HHHHHNo
Args

〈0, 0, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 〈0, 1, 1〉 〈1, 0, 0〉 〈1, 0, 1〉 〈1, 1, 0〉 〈1, 1, 1〉
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 0 1 1 1 1 1
3 0 1 0 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1

In practice we are only interested in the function graph for some of the
possible arguments. In this case we need the values of the following calls to
detect the strictness.

f(0, 1, 1) f(1, 0, 1) f(1, 1, 0)
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6.1 Fixpoint iteration

When we evaluate these values we may need to evaluate the function for
other arguments, so in general we will to tabulate the function for all possible
arguments.

In some situations we may, however, restrict the iteration to a smaller set
of arguments, and thus greatly simplify the computational task of finding
the fixpoint. If we analyse the strictness of the function

h(x, y, z, v, p) =if x + y = z + v then p else h(x− 1, y − 1, z− 1, v − 1, p + 4)

then there are 25 = 32 arguments in the function graph but we only need 5
arguments. In this section we will formalise the notion of needed arguments
and show how it may be used to improve fixpoint iteration.

Language. As a start we will consider a simple language consisting of
one recursively defined function over a complete partially ordered set D.
Programs p in this language will have the form

p : letfix f(x1, . . . , xk) = ef in e

where the expressions ef and e are built from parameters, constants, basic
operations, and function calls.

e : xi

| ci

| opi(e1, . . . , ek)
| f(e1, . . . , ek)

We may specify the semantics of this language using the functions M and
E.

M[[letfix f(x1, . . . , xk) = ef in e]] : D
E[[e]] : (Dk → D)→ Dk → D

with

M[[letfix f(x1, . . . , xk) = ef in e]] = E[[e]](fixE[[ef ]])⊥Dk

E[[xi]]φρ = seli(ρ)
E[[ci]]φρ = ci

E[[opi(e1, . . . , ek)]]φρ = opi(E[[e1]]φρ, . . . , E[[ek]]φρ)
E[[f(e1, . . . , ek)]]φρ = φ(E[[e1]]φρ, . . . , E[[ek]]φρ)
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6.2 Argument needs

for constants ci ∈ D and standard operations opi ∈ Dk → D. The function
seli selects the ith element in the tuple given as argument and “fix” finds
the least fixpoint of its argument. To guarantee the well-definedness of this
definition we must require that the function E[[ef ]] is continuous. This can be
done by only using continuous standard operations opi. It is, however, not
necessary for all subexpressions of ef to be continuous. Only the argument
to “fix” needs to be continuous. In some applications (eg. data flow analysis)
it is often natural locally to use non-monotonic operations while the fixpoint
is found for a continuous function.

Fixpoint iteration. Consider the expression

letfix f(x1, . . . , xk) = ef in f(v1, . . . , vk)

with constants vi ∈ D and expression ef . The value of this expression is
defined as

fix(E[[ef ]])〈v1, . . . , vk〉 =

(
i
(E[[ef ]])iλρ. ⊥D

)
〈v1, . . . , vk〉

Our aim is to find an approximation to fix(E[[ef ]]) which has the correct
value for 〈v1, . . . , vk〉.

6.2 Argument needs

If we want to evaluate the expression letfix f(x1, . . . , xk) = ef in f(v1,
. . . , vk) we do not necessarily need to compute the fixpoint of f for all
arguments in Dk. Only arguments which may be reached from the call f(v1,
. . . , vk) can influence the result. We may formalise the notion of reachability
as follows.

We define the function A[[e]] to return the set of argument tuples in calls
to the function f that will occur when evaluating the expression e

A[[e]] : (Dk → D)→ Dk → P(Dk)

A[[xi]]φρ = ∅
A[[ci]]φρ = ∅
A[[opi(e1, . . . , ek)]]φρ = A[[e1]]φρ ∪ · · · ∪ A[[ek]]φρ
A[[f(e1, . . . , ek)]]φρ = {〈E[[e1]]φρ, . . . , E[[ek]]φρ〉} ∪ A[[e1]]φρ ∪ · · · ∪ A[[ek]]φρ
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6.3 Iteration

It is worth noting that the function A[[e]] is not necessarily continuous in
any of its arguments. This is because we have used a power set construction
P(Dk) rather than a power domain and thereby forgetting the structure of
D. Continuity is, however, only important when we compute a fixpoint and
in this case we may achieve continuity in a different way. Instead we define
the function A as follows

A[[e]]φS0 = fix(λS. S0 ∪
⋃
ρ∈S

A[[e]]φρ)

In the expression

letfix f(x1, . . . , xk) = ef in f(v1, . . . , vk)

the immediate argument need is ρ0 = 〈v1, . . . , vk〉. The indirect needs
are A[[ef ]]φ{ρ0}. This definition depends on the function environment φ =
fix(E[[ef ]]). The next step will be to show how argument needs may be used
to simplify the fixpoint iteration. The definition is not directly useful since
it depends on the fixpoint itself.

6.3 Iteration

For the expression

letfix f(x1, . . . , xk) = ef in f(v1, . . . , vk)

define the function

FV(φ) = λρ. if ρ ∈ V then E[[ef ]]φρ else φ(ρ)

which computes a better approximation to φ for arguments ρ ∈ V ⊆ Dk.
An iteration sequence is a sequence of function denotations φ0, φ1, . . .

and sets Vi ⊆ D such that

φ0 = λρ. ⊥D

φi+1 = FVi(φi)

An iteration sequence is then completely determined by the sets Vi. The
natural aim of fixpoint iteration is to keep these sets as small as possible
while securing that the sequence of function denotations stabilise quickly
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6.4 Improving the iteration

with the correct value for f(v1, . . . , vk). A simple way to achieve this is to
use the function A to find the recursive needs from the initial needs.

V := {〈v1, . . . , vk〉}
φ := λρ. ⊥D

repeat
φ′ := φ

V′ := V
φ := FV(φ′)
V := A[[ef ]]φ′V′

until φ = φ′ ∧ V = V′

This algorithm will terminate if the domain D has finite height and the
function environment φ will have the correct values of fixE[[ef ]] for arguments
in the final value of V.

6.4 Improving the iteration

The algorithm presented above is quite simple but it may include arguments
in the iteration which are not really needed. Such arguments are needed in
early approximations but not needed in the fixpoint. We will here explain
how that can happen and how they can be removed.

Example. Consider the function f over the powerset of {“ a” , “ b” , “ c”}
with the subset ordering.

f(d) = f(f(f(d ∪ {“ a”}) ∪ {“ b”}) ∪ {“ c”}) ∪ d

and an initial call f({“ a”}).

φ0 = λx. {}
V0 = {{“ a”}}
φ1 = φ0[{“ a”} 7→ {“ a”}]
V1 = {{“ a”}, {“ a” , “ b”}, {“ c”}}
φ2 = φ1[{“ a” , “ b”} 7→ {“ a”}, {“ c”} 7→ {“ a”}]
...
Vs = {{“ a”}, {“ a” , “ b”}, {“ c”}, {“ a” , “ c”}, {“ a” , “ b” , “ c”}}
φs = λs. {“ a” , “ b” , “ c”}
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6.4 Improving the iteration

With the fixpoint φs, however, we have

A[[ef ]]φs{“ a”} = {{“ a” , “ b” , “ c”}}
A[[ef ]]φs{“ a” , “ b” , “ c”} = {{“ a” , “ b” , “ c”}}

So only the initial call f({“ a”}) and f({“ a” , “ b” , “ c”}) are really needed.
The other calls are only needed in the approximations and iterating them
to a fixpoint is not necessary.

Observation. The observation in the example is that we only need to
evaluate the function for the needs that can be reached from the initial call.
In other words (or symbols) we only need to compute approximations for
arguments in A[[ef ]]φ{ρ0}.

φ0 = λρ. ⊥D

V0 = {ρ0}
φ1 = FV0(φi)
V1 = A[[ef ]]φ1V0

...
φi+1 = FVi(φi)
Vi+1 = A[[ef ]]φi+1V0

This may also be expressed as a small program

Fixpoint algorithm. We may compute the fixpoint efficiently using the
following algorithm.

given V0

φ = λρ. ⊥
repeat

S = V0 {calls,which should be analysed}
V = ∅ {calls,which have been analysed}
for ρ ∈ S

V = V + {ρ}
S = S + A[[ef ]]φρ−V
φ = φ[ρ 7→ E[[ef ]]φρ]

end
until V and φ stable
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6.5 Example

An interesting property of this iteration strategy is that it will compute the
correct fixpoint from possibly wrong (or imprecise) intermediate results. We
know, however, that we approximate the solution from below so if we find
a fixpoint, it will be the least.

In the algorithm we may use that the evaluations A[[ef ]]φρ and E[[ef ]]φρ
can be done at the same time. The algorithm may be further optimised by
using a depth-first strategy when collecting needed calls.

6.5 Example

Consider the strictness function

f ](x, y, z) = (y ∧ z) ∨ f ](0, y, f ](x, y, z))

with the call f ](0, 1, 1)

φ0 = λρ. 0
V0 = {〈0, 1, 1〉}
φ1 = φ0[〈0, 1, 1〉 7→ 1]
V1 = {〈0, 1, 1〉, 〈0, 1, 0〉}
φ2 = φ1[〈0, 1, 0〉 7→ 0]
V2 = V0

φ3 = φ2

V3 = V0

With the stabilised value only the initial call is needed but during the iter-
ation also the call f(0, 1, 0) was used.

45



7 Bibliography

This section contains a bibliography of some important articles and books
about abstract interpretation and domain theory. The list is far from com-
plete but it can be used as a starting point for further search for references
in these areas.

The majority of the articles concerning abstract interpretation where
first published in the proceedings of a conference. These proceedings are
sometimes published as a volume of journal. Especially Lecture Notes of
Computer Science from Springer-Verlag is often used to publish such pro-
ceedings but also Sigplan Notices from ACM do publish proceedings. When
we refer to a conference or a journal we often use an abbreviation. They are
not always that easy to understand for people outside the area so to a start
we list some often seen abbreviations.

Journals
Act Inf Acta Informatica.
C.ACM Communications of the ACM.
J.ACM Journal of the ACM.
LNCS Lecture Notes in Computer Science.
SCP Science of Computer Programming.
Sigplan Not ACM Sigplan Notices.
TCS Theoretical Computer Science.
TOPLAS ACM Transactions on Programming Languages and Sys-

tems.

Conferences
ESOP European Symposium on Programming.
FPCA Functional Programming and Computer Architecture.
ICALP Int. Coll. on Automata, Languages and Programming.
LFP Lisp and Functional Programming.
MFCS Mathematical Foundation of Computer Science.
PLILP Programming Language Implementation and Logic Pro-

gramming.
POPL Principles of Programming Languages.

The DIKU Library contain most of these journals and conference proceed-
ings. Many of the references in this bibliography are to articles in LNCS,
which has its own bookcase in the library. Some articles can be found in Sig-
plan Not. (see under S) and the POPL proceedings are published by ACM
(see under A).
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7.1 Books

7.1 Books

There are no real text books on abstract interpretation but some books
are useful as starting points for further search for references. An overview
of some methods and techniques in abstract interpretation may be found
in [1,7] and [9] is a good introduction to domain theory and denotational
semantics.

[1] S Abramsky and C Hankin, editors. Abstract Interpretation of Declar-
ative Languages. Ellis-Horwood, 1987.

[2] A V Aho, R Sethi, and J D Ullman. Compilers: Principles, Techniques,
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Revised edition. North-Holland, 1984.
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guages: An Introduction. Springer-Verlag, 1979.
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Prentice-Hall, 1987.
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Development. Allyn and Bacon, Newton, MA, 1986.
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Programming Language Theory. MIT Press, 1977.
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7.2 Abstract interpretation

Abstract interpretation started as an area with some articles by Patrick
and Radhia Cousot in the late seventies. It is often [13] which is referenced
as the founding article in the area. Abstract interpretation was introduced
as a proof method for some program analyses method known as data flow
analysis (see eg. [23,20]).

[11] F E Allen and J A Cocke. A program data flow analysis procedure. C.
ACM 19(3), pp. 137–147, 1976.

[12] P Cousot and R Cousot. Static determination of dynamic properties
of programs. In 2nd International Symposium on Programming, Paris,
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logic programs. In PLILP’88, Orléans (P Deransart, B Lorho, and J
Maluszynski, eds.), pp. 68–82. Volume 348 of LNCS. Springer-Verlag,
May, 1988.

[118] D Plaisted. The Occur-Check problem in Prolog. In Proc. 1984 Sym-
posium on Logic Programming, pp. 272–280, 1984.

[119] H Søndergaard. An application of abstract interpretation of logic pro-
grams: occur-check reduction. In ESOP’86, Saarbrucken, Germany,
pp. 327–338. Volume 213 of LNCS. Springer-Verlag, 1986.

[120] H Søndergaard. Semantics-Based Analysis and Transformation of
Logic Programs. Ph.D. Thesis 89/22. DIKU, Univ. of Copenhagen,
Denmark, 1989.

[121] R Warren, M Hermenegildo, and S K Debray. On the practicality of
global flow analysis of logic programs. In International Conference on
Logic Programming, 1988.

57



7.6 Analysis of imperative languages

7.6 Analysis of imperative languages

The earliest work on abstract interpretation [13] was based on a flow-diagram
language. Since then most of the attentions has been centered around logic
and functional languages. There are some works on analysis of imperative
languages, mainly from the group around Cousot.

[122] F Bourdoncle. Interprocedural abstract interpretation of block
structured languages with nested procedures, aliasing and recursivity.
In PLILP’90, pp. 307–323. Volume 456 of LNCS. Springer-Verlag, 1990.

[123] P Cousot and N Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th POPL, Tuscon, AR, Jan., 1978.

[124] A Deutsch. On determining lifetime and aliasing of dynamically allo-
cated data in higher-order functional specifications. In 17th POPL, San
Fransisco, California, pp. 157–168. ACM Press, Jan., 1990.

[125] P Granger. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics, pp. 165–199, 1989.

[126] P Granger. Static analysis of linear congruences among variables of a
program. Tech. Rep. LIX, Paris, France, 1990.

7.7 Analysis of other languages

Besides the more usual programming languages analyses of parallel lan-
guages and attribute grammars have also been expressed as abstract inter-
pretations.

[127] H Christiansen. Structure sharing in attribute grammars. In PLILP’88,
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