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Abstract—Breast cancer is the leading cause of cancer mortal-
ity in women between the ages of 15 and 54. During mammog-
raphy screening, radiologists use a strict lexicon (BI-RADS) to
describe and report their findings. Mammography records are
then stored in a well-defined database format (NMD). Lately,
researchers have applied data mining and machine learning
techniques to these databases. They successfully built breast
cancer classifiers that can help in early detection of malignancy.
However, the validity of these models depends on the quality of
the underlying databases. Unfortunately, most databases suffer
from inconsistencies, missing data, inter-observer variability and
inappropriate term usage. In addition, many databases are
not compliant with the NMD format and/or solely consist of
text reports. BI-RADS feature extraction from free text and
consistency checks between recorded predictive variables and
text reports are crucial to addressing this problem.

We describe a general scheme for concept information retrieval
from free text given a lexicon, and present a BI-RADS features
extraction algorithm for clinical data mining. It consists of a
syntax analyzer, a concept finder and a negation detector. The
syntax analyzer preprocesses the input into individual sentences.
The concept finder uses a semantic grammar based on the
BI-RADS lexicon and the experts’ input. It parses sentences
detecting BI-RADS concepts. Once a concept is located, a lexical
scanner checks for negation. Our method can handle multiple
latent concepts within the text, filtering out ultrasound concepts.
On our dataset, our algorithm achieves 97.7% precision, 95.5%
recall and an F1-score of 0.97. It outperforms manual feature
extraction at the 5% statistical significance level.

Keywords-BI-RADS; free text; lexicon; mammography; clinical
data mining

I. INTRODUCTION

Breast cancer is the most common type of cancer among

women. Researchers estimated that 636, 000 cases occurred

in developed countries and 514, 000 in developing countries

during 2002 [1]. Currently, a woman living in the US has a

12.3% lifetime risk of developing breast cancer [2]. There is

considerable evidence that mammography screening is effec-

tive at reducing mortality from breast cancer [3].

The American College of Radiology (ACR) developed a

specific lexicon to homogenize mammographic findings and

reports. The BI-RADS (Breast Imaging Reporting and Data

System [4]) lexicon consists of 43 descriptors organized in a

hierarchy (Fig. 1).

Mammography practice is heavily regulated and mandates

quality assurance audits over the generated data. Radiologists

often use structured reporting software to support required

audits. The ACR developed a database format, the National

Mammography Database (NMD), which standardizes data

collection [5]. NMD is a structured database that combines

BI-RADS features with various demographic variables. Ra-

diologists can describe and record their mammography in-

terpretations directly into a NMD-compliant form. Databases

containing BI-RADS and NMD features have been used to

build successful breast-cancer models and classifiers [6]–[9].

Nevertheless, NMD databases suffer from inconsistencies.

There is still a substantial inter-observer variability in the ap-

plication of the BI-RADS lexicon [10], including inappropriate

term usage and missing data. Consistency checks between

recorded predictive variables and text reports are necessary

before the data can be used for decision support [6]. Natural

language processing techniques can parse textual records and

recover missing data. Extracting BI-RADS features from free-

text can help address these problems.

The need for BI-RADS feature extraction is further am-

plified by the fact that many databases are not compliant

with the NMD format and/or solely consist of text reports.

Radiologists variably follow the BI-RADS guidelines to write

semi-structured free-text reports, and any further analysis of

such databases needs mammography terminology indexing

using words or concepts.

This paper presents a general method for information ex-

traction from loosely structured free-text as a prerequisite

for clinical data mining. Our method takes full advantage

of the available lexicon and incorporates expert knowledge.

We apply this method to a free-text mammography database.

We compare our method to a 100-record subset manually

indexed by a practicing radiologist, who is one of the authors,

fellowship-trained in breast imaging [11].

II. BACKGROUND

Only one prior study addresses BI-RADS information ex-

traction from compliant radiology reports. This research used

a Linear Least Squares Fit to create a mapping between mam-

mography report words-frequency and BI-RADS terms [11].
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Fig. 1. BI-RADS lexicon

It makes minimal use of lexical techniques. However, several

researchers tackled the similar problem of clinical information

extraction from medical discharge summaries.

Most approaches to processing clinical reports heavily rely

on natural language processing techniques. For instance, the

MedLEE processor [12], [13] is capable of complex concept

extraction in clinical reports. It first parses the text, using a

semantic grammar to identify its structure. It then standardizes

the semantic terms and maps them to a controlled vocabulary.

In parallel, the emergence of medical dictionaries em-

phasizes a phrase-match approach. The National Library of

Medicine’s (NLM) Unified Medical Language System [14]

(UMLS) compiles a large number of medical dictionaries

and controlled vocabulary into a metathesaurus, a thesaurus

of thesauri, which provides a comprehensive coverage of

biomedical concepts. The UMLS metathesaurus was used to

index concepts and perform information extraction on medical

texts [15], [16]. Similar approaches have been used with

more specialized terminology metathesauri, like caTIES and

SNOMED CT [17]. The BI-RADS lexicon can be seen as a

metathesaurus for our task.

Negation presents another substantial challenge for infor-

mation extraction from free text. In fact, pertinent nega-

tive observations often comprise the majority of the content

in medical reports [18]. Fortunately, medical narrative is a

sublanguage limited in its purpose, and its documents are

lexically less ambiguous than unrestricted documents [19].

Clinical negations thus tend to be much more direct and

straightforward, especially in radiology reports [20]. A very

small set of negation words (“no”, “not”, “without”, “denies”)

accounts for the large majority of clinical negations [20], [21].

Negation detection systems first identify propositions, or

concepts, and then determine whether the concepts are

negated. Basic negation detection methods are based on regular

expression matching [20], [21]. More recent approaches add

grammatical parsing [22], triggers [23] and recursion [24].

Finally, most clinical reports are dictated. They contain

a high number of grammatically incorrect sentences, mis-

spellings, errors in phraseology, transcription errors, acronyms

and abbreviations. Very few of these abbreviations and

acronyms can be found in a dictionary, and they are highly

idiosyncratic to the domain and local practice [25]. For this

reason, expert knowledge can contribute to effective data

extraction.

III. MATERIALS AND METHODS

We next present our algorithm and further describe the

dataset on which we evaluated it.

A. Algorithm Overview

The BI-RADS lexicon clearly depicts 43 distinct mammog-

raphy features. In radiology reports, these concepts are not

uniformly described. Radiologists use different words to refer

to the same concept. Some of these synonyms are identified in

the lexicon (e.g. “equal density” and “isodense”), while others

are provided by experts (e.g. “oval” and “ovoid”). Some lexi-

con words are ambiguous, referring to more than one concept,

or to no concept at all. The word “indistinct” may refer to the

“indistinct margin” or to the “amorphous/indistinct calcifica-

tion” concepts. Or it may be used in a non-mammography

context, like “the image is blurred and indistinct”.

Therefore, to map words and phrases in the text into

concepts, we cannot solely rely on the lexicon. We supplement

it by a semantic grammar. The grammar consists of rules

specifying well-defined semantic patterns and the underlying

BI-RADS categories into which they are mapped.

Our algorithm has three main modules (Fig. 2). Given the

free-text BI-RADS reports, it applies a syntax preprocessor.

Then the semantic parser maps subsentences to concepts.

Finally a lexical scanner detects negated concepts and outputs

the BI-RADS features.
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Fig. 2. Algorithm flowchart

B. Syntax Analyzer

The first module in our system is a preprocessing step

that performs syntactic analysis. Since BI-RADS concepts

do not cross sentence boundaries, we process the reports

by individual sentences. We simply assume that punctuation

delimits sentence boundaries. This is not perfect—for example

“St. Jude’s Hospital” would be improperly partitioned—but

we have not found this to be an issue in our testbed. We

then remove all remaining punctuation. We keep stop words

because some of them are used in the negation detection phase.

C. Concept Finder

The concept finder module takes the syntactic token (a

sentence) and applies grammar rules to search for concepts.

We base the semantic grammar on the lexicon and augment

it using manual scanning and semiautomated learning with

experts’ input to closely capture the clinical practice. Experts

provide, among other things, domain synonyms, acronyms

and idiosyncrasies. We formulate the rules as a context free

grammar, and express them using Perl’s pattern matching

capacities [26].

We found that a clearly defined list of terms (describing

important, domain-specific patterns of usage) was critical for

our data extraction task. For example, the “regional distribu-

tion” concept requires the presence of the word “regional”

without being followed by the words “medical” or “hospital”,

while the concept of “skin lesion” is shown by the presence

of both words “skin” and “lesion” within close proximity. We

established the order, if any, of these words and their proximity

degree by monitoring the rule performance over the training

set.

Due to different word forms and misspellings, we use

stem-words and ease our matching constraints. For example,

we map the words “pleomorph”, “pleomorphic”, “plimorph”,

“plemorph” and “plmorfic”, among others, to the “pleomor-

phic calcifications” concept.

For example, the “oval shape” concept is defined by two

rules. The first is the word “oval” or “ovoid” followed, within

a ten words span, by words containing “dens”, “mass”, “struc”,

“asym” or “nodul”. The second rule is a word containing

“mass” or “nodul”, followed by the word “oval” or “ovoid”

within a five words span. The experts provided the syn-

onym “ovoid” as well as the delimiting words. Representing

“density” as a word containing “dens” allows us to match

“isodense”, “dense” and “densities”. We varied the proximity

degrees and opted for the ones with the best accuracy over the

training set (ten and five, respectively).

Using the grammar rules, we parse the whole report search-

ing for concepts. The concept finder outputs extracted subsen-

tences that are mapped to concepts. These subsentences can

overlap. For example, the “oval shape” concept subsentence,

“oval 12 x 18 mm circumscribed density”, contains a “cir-

cumscribed margin” concept formed by the “circumscribed”

subsentence. Each of these two subsentences, within the same

sentence, is a different token. If the same concept occurs

repeatedly, we treat each occurrence individually. We can thus

report features for multiple findings in a single mammogram.

D. Negation Detector

Once the semantic grammar detects a concept occurrence,

it hands the subsentence token to the negation detection

module. The negation detection module is a lexical scanner

that searches for negation signals using regular expressions. It

analyzes their negation scope to determine if they apply over

the concept.

Following the approach of Gindl et al. [23], we identify

adverbial (“not”, if not preceded by “where”) and intra-phrase

(“no”, “without”) negation triggers. Similar to previous find-

ings [20], we find that negation triggers usually precede, but

sometimes succeed, the concepts they act upon. In addition, we

report negation from within the concept. Since our approach

maps a concept to a subsentence, the negation trigger may

appear within the concept’s underlying indexed text structure.

For instance, the word “mass” followed by “oval” within 5
words, is a rule for the “oval shape” concept. The subsentence

“mass is not oval” is a negation within the concept.

We also note that there may be several words between the

negation trigger and the concept it negates, and a single trigger

may negate several concepts. The maximum degree of word

separation between a trigger and its concept, referred to as the

negation scope, differs among concepts. Accurate analysis of

scope may involve lexical, syntactic, or even semantic analysis.

We establish each concept’s negation scope by counting and

looking at a subset of the trigger’s hits over the unlabeled

training set. Starting with a high scope, we assess the number
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of false positives we get. With smaller scopes, we can assess

the number of false negatives. We choose the scope that

minimizes the error ratio. For example, we allow a maximum

of 5 words between a negation trigger and the “round shape”

concept’s subsentence; while the scope is 8 words for the

“grouped distribution” concept.

Since we treat each concept occurrence individually, we

can correctly detect a concept in a sentence containing both

the concept and its negation. We hence avoid the pitfall of

erroneously rejecting a concept encountered by Chapman et

al. [21], who negated the entire concept if a single instance of

that concept was negated.

While analyzing negation errors, Mutalik et al. [20] reported

errors caused by double negatives. We address this issue

using the same approach to detect negation triggers. We

identify a set of double-negation triggers which, when coupled

with negation triggers, deactivate them. These signals are:

“change”, “all”, “correlation”, “differ” and “other”. Therefore

“there is no change in rounded density” does not negate the

concept “round shape”.

As a working example, the concept finder detects the “round

shape” concept and passes the subsentence “rounded density”

as a token to the negation detector. The negation detector

searches for a set of negation triggers before and within

the subsentence, and finds the trigger “no”. The trigger is

located two words before the subsentence, well within its

negation scope of five words. The subsentence token becomes

“no change in rounded density”. The negation detector now

searches for a set of double-negation triggers within the

subsentence, and finds the trigger “change”. It concludes that

the concept is not negated.

Given a concept subsentence token, the negation detector

outputs a Boolean value: 0 for a negated subsentence, and 1
for a non-negated subsentence. For each mammography report,

our algorithm sums the Boolean outputs into a feature vector,

which depicts the number of times a concept occurred in a

certain report.

E. Handling Latent Concepts

Multiple latent concepts may exist in a given report. For

instance, our mammography reports often contain ultrasound

concepts. Ultrasound and mammography concepts can have

common underlying words, thus the need to discriminate them.

A “round mass” is a BI-RADS feature, while a “round hypoe-

choic mass” is an ultrasound feature. We use an ultrasound

lexicon, composed of the concepts “echoic” and “sonogram”

and apply the same approach (Fig. 2) to detect ultrasound

concepts. We require that a BI-RADS concept not share

common subsentences with an ultrasound concept. Our method

is thus able to handle multiple latent concepts within the text.

F. Dataset

Our database consists of 146 972 consecutive mammograms

recorded at the University of California San Francisco Medical

Center (UCSFMC) between January 6, 1997 and June 27,

2007. This database does not follow the NMD format and

contains BI-RADS free-text reports. As a preprocessing step,

we wrote a program to match the mammograms to their reports

and remove redundancies. We were left with 146 198 reports

for our analysis. An information extraction step is crucial

for any subsequent clinical data mining or modeling of the

UCSFMC database.

To test our method, we compare our algorithm’s results

to manual information extraction performed by radiologists.

Our testing set consists of 100 records from the database that

a radiologist on our team manually indexed in 1999 [11].

Each record has a Boolean feature vector of 43 elements

representing the BI-RADS lexicon categories (see Fig. 1).

The information extraction task is to correctly populate the

43 × 100 = 4300 elements matrix by assigning an element

to 1 if its corresponding BI-RADS feature is present in the

report, and to 0 otherwise. The manual method extracted a

total of 203 BI-RADS features, leaving 4097 empty slots.

IV. RESULTS

A. First Run

We first perform a double-blind run. We manually altered

the algorithm using the UCSFMC database except for the 100
hand-curated records, which are solely used for testing. The

algorithm extracts a total of 216 BI-RADS features, out of

which 188 are in agreement with the manual extraction. In

43 cases, only one of the methods claims the presence of a

BI-RADS feature. Upon review of these disparate results, a

radiologist determined that our algorithm correctly classified

28 cases while the manual method correctly classified 15.

Clearly the manual method, applied in 1999, does not

constitute ground truth. In fact, correctly labeling a text corpus

is complicated enough that even experts need several passes

to reduce labeling errors [27]. Due to the high labeling cost,

in practice one must rely on the imperfect judgments of

experts [28]. Since time spent cleaning labels is often not

as effective as time spent labeling extra samples [29], our

reviewing radiologist reexamined only the diverging cases.

We consider as ground truth the features that both compu-

tational and manual methods agree on, in addition to the rela-

beling of diverging cases by experts. This approach is likely

underestimating the number of true features. The omission

error of a method is bounded by the number of diverging

cases correctly labeled by the other method. We assume

that the classifier and the labelers make errors independently,

since humans and computers generally classify samples using

different methodologies. We use Lam and Stork’s method

of handling noisy labels [29]: we treat the classification

differences between the two methods as apparent errors, and

the classification differences between each method and ground

truth as labeling errors. We factor both error terms to get the

true classification errors and the confusion matrices for both

our algorithm and the manual method (Table I).

To compute test statistics, we treat the present features as

positives and the absent features as negatives. Our data being

highly skewed, we employ precision-recall analysis instead

of accuracy. For the double-blind run, the manual method
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TABLE I
AUTOMATED AND MANUAL EXTRACTION, 1st RUN

Actual

Method Predicted Feature present Feature absent

Automated Feature present 211 5

Feature absent 10 4074

Manual Feature present 198 5

Feature absent 23 4074

TABLE II
AUTOMATED AND MANUAL EXTRACTION, 2nd RUN

Actual

Method Predicted Feature present Feature absent

Automated Feature present 219 2

Feature absent 4 4075

Manual Feature present 198 5

Feature absent 25 4072

achieves a 97.5% precision, a 89.6% recall rates and a 0.93 F1-

score. Our algorithm achieves a much better recall (95.5%) and

F1-score (0.97) for a similar precision (97.7%). It correctly

classifies 65.1% of the disputed cases.

To compare both methods, we use the probabilistic interpre-

tation of precision, recall and F -score [30]. Using a Laplace

prior, the probability that the computational method is superior

to the manual method is 97.6%. Our result is statistically

significant at the 5% level (p-value = 0.024).

B. Second Run

Before the first run, we only adjusted the algorithm using

unlabeled data. After performing the first run on labeled data,

the experts suggested slight changes to some of the rules.

We consider this modified version our final algorithm and

use it for extracting terms from the UCSFMC database. This

approach can be viewed as utilizing both labeled and unlabeled

data to modify the algorithm [31]. Using the final version of

the algorithm, we perform a second run over the test data

(Table II). Note that the test set is no longer a valid test set,

since we looked at it to modify the algorithm. We are showing

the results as a confirmation step, due to the lack of ground

truth and the small number of labeled data.

During the second run, the algorithm correctly classifies

some of its previous mismatches, dropping its false positive

and false negative counts. It now achieves a precision of

99.1%, a recall of 98.2% and an F1-score of 0.99. In addition,

the algorithm discovers two more previously unrecognized true

positives, which increases the manual method’s false negative

count.

V. DISCUSSION

As in most clinical data, false negative mammograms are

critical and often more costly than false positive ones [32].

Many technical or human errors cause missed or delayed

diagnosis of breast cancer. Among the several reasons are

observer error, unreasonable diagnostic evaluation, and prob-

lems in communication [33]. Therefore, it is notable that the

main gain of our algorithm is in recall, by achieving low false

negative counts. The algorithm’s recall rate of 95.5% is higher

than the manual method’s 89.6% and the Linear Least Squares

Fit method’s reported 35.4% recall rate [11].

To account for higher false negative costs, we use the

generalized F -score statistic. By attaching β times as much

importance to recall (r) as precision (p), the general Fβ-score

becomes:

Fβ = (1 + β2)
p × r

β2 × p + r
. (1)

As β increases, the difference between the computational and

manual method’s Fβ-scores increases. Taking into account

the relative weight of false negatives further improves the

algorithm’s performance.

These results show that the algorithm may match or surpass

the manual method for information extraction from free text

mammography reports. Our algorithm can thus be used, with

high confidence, for consistency checks, data preprocessing

and information extraction for clinical data mining. We applied

the second version of the algorithm to the UCSFMC data and

generated a BI-RADS features database. We intend to use it

to improve our current breast-cancer classifier [6].

In addition to information extraction, our algorithm allows

the assessment of radiologist’s labeling of mammography

reports. By comparing the features extracted by the radiologist

to the algorithm’s output, we can detect repeatedly missed

concepts and suggest areas for improvement. This may be

useful for radiology trainees.

In an effort to increase the accuracy of mammography

interpretation, the Institute of Medicine notes that data collec-

tion is inadequate without resources for accurate and uniform

analysis [34]. It points at double reading and computer-aided

detection (CAD) as potential methods for increasing recall.

Given a manually indexed report, our algorithm may act as a

double reader. For partly-labeled or missing data, it may act

as a CAD method. In both events, it may be able to provide

decision support for physicians, which helps decrease medical

errors. Further tests regarding our algorithm’s decision support

capacities are needed to assess this claim.

VI. FUTURE WORK

Compared to state-of-the-art procedures, our syntax, seman-

tic and lexical scanners are simple. Achieving high recall

(95.5%) and precision (97.7%) values, it can be argued that

a more complex natural language processor would add little

performance for a high complexity price. Nevertheless, we

plan on refining our parser by adding a part-of-speech tagger.

Another concern is the small number of the labeled dataset

(100 records). Manually indexing reports is a laborious time-

consuming task. Although many studies in the medical diag-

nostics domain have similar data ranges [11], [12], [16], [20],

[22], [23], we plan on expanding our testing set.
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Finally, it would be interesting to study the impact of inter-

observer variability on our method. We can have multiple

test sets each indexed by a different radiologist, and compare

our algorithm’s performance on each. We can also train our

algorithm on reports written by one radiologist and train on a

test set indexed by another.

VII. CONCLUSION

We describe a general scheme for concept information

retrieval from free text given a lexicon, and present a BI-

RADS features extraction algorithm for clinical data mining.

On our dataset, our algorithm achieves 97.7% precision, 95.5%
recall and an F1-score of 0.97. It outperforms manual feature

extraction at the 5% statistical significance level. It particularly

achieves a high recall gain over manual indexing. We stipulate

that our method can help avoid clinical false negatives by

performing consistency checks and providing physicians with

decision support.
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