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Abstract. A typical classification problem involves building a model
to correctly segregate instances of two or more classes. Such a model
exhibits differential prediction with respect to given data subsets when
its performance is significantly different over these subsets. Driven by a
mammography application, we aim at learning rules that predict breast
cancer stage while maximizing differential prediction over age-stratified
data. In this work, we present the first multi-relational differential predic-
tion (aka uplift modeling) system, and propose three different approaches
to learn differential predictive rules within the Inductive Logic Program-
ming framework. We first test and validate our methods on synthetic
data, then apply them on a mammography dataset for breast cancer
stage differential prediction rule discovery. We mine a novel rule linking
calcification to in situ breast cancer in older women.
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1 Introduction

A recurrent problem in social sciences is to understand why two or more differ-
ent populations exhibit differences in a trait. In psychology [8, 20, 36], one may
want to assess the fairness of a test over several different populations. In market-
ing [17, 27, 21], one may want to compare subjects and controls in order to study
the effectiveness of an advertising campaign. Similar tasks thus arise in several
domains and depending on the domain, the problem is known as differential
prediction, differential response analysis, or uplift modeling.

In contrast to most studies of differential prediction in psychology, market-
ing’s uplift modeling assumes an active agent. But, given that in both cases
we have two populations that have been subjected to an external agent, we
argue that the concepts and techniques originally developed for uplift mar-
keting can, and should, apply to the task of differential prediction (and vice
versa). Differential prediction has been studied extensively in the context of
multi-attribute data [30, 28]. One approach is to generate different classifiers for
each sub-population, and to look for differences between the classifiers. Further
progress requires building models driven by evaluation functions that take into



account the differential nature of uplift modeling [29]. Also, techniques such as
uplift curves have made it possible to evaluate and compare differential models.

An important differential problem arises in the area of breast cancer research.
Breast cancer is the most common type of cancer among women, with a 12%
probability of incidence in a lifetime [3]. Breast cancer has two basic stages: an
earlier in situ stage where cancer cells are still confined where they developed,
and a subsequent invasive stage where cancer cells infiltrate surrounding tissue.
Since nearly all in situ cases can be cured [2], current practice is to treat in situ
occurrences in order to avoid progression into invasive tumors [3]. Nevertheless,
the time required for an in situ tumor to reach invasive stage may be sufficiently
long for a woman to die of other causes; raising the possibility that the diagnosis
and treatment may not have been necessary, a phenomenon called overdiagnosis.

Cancer occurrence and stage are determined through biopsy, a costly, in-
vasive, and potentially painful procedure. Actual treatment is costly, and may
generate undesirable side-effects. For these reasons, the 2009 US National In-
stitutes of Health consensus conference on ductal carcinoma in situ highlighted
the need for methods that can accurately identify patient subgroups that would
benefit most from treatment, as well as those who do not need treatment [1]. In
recent work, Nassif et al. [25] reported that different pre-biopsy mammographic
features can indeed be used to classify cancer as invasive or in situ for different
age groups. They identified invasive/in situ classification rules that have signifi-
cantly different performance across age strata. This finding confirms that, based
on age, different mammographic features can be used to classify cancer stage.
The key motivation to this work is to understand how breast cancer evolves dif-
ferently across different age groups, and what features exhibit differential cancer
stage prediction across age.

Differential breast cancer prediction introduces two novel problems to differ-
ential prediction. First, in order to classify a sample, best results require taking
into account previous and simultaneous samples for the same patient [9]. This
demands a multi-relational data representation. We thus need a relational differ-
ential model. Second, it is of utmost importance that experts be able to interpret
the results and identify patient subgroups. Both challenges can be addressed by
using rules to represent the model.

We hereby introduce a rule-based multi-relational differential classifier, and
demonstrate its applicability on medical data. This work makes three main con-
tributions. First, we present the first multi-relational differential modeling sys-
tem, and introduce, implement and evaluate novel methods to guide search in
a rule-based differential setting. We propose three general methods that are im-
plemented within the Inductive Logic Programming (ILP) framework [23, 11],
a commonly used approach for relational data mining. We opt for ILP-based
rule learning instead of decision-tree-based rule learning because the latter is
a special case of the former [6, 34]. Second, we present a detailed evaluation of
the applicability and usefulness of our approach under different data sizes and
noise rates through simulated data. Third, we demonstrate that the system can
indeed obtain differential rules of interest to an expert on real data.



2 Related Work

To the best of our knowledge, differential prediction was first used in psychology
to assess the fairness of cognitive and educational tests. In this area, it is defined
as the case where consistent nonzero errors of prediction are made for members
of a given subgroup [8], and it is detected by fitting a common regression equa-
tion and checking for systematic prediction discrepancies for given subgroups,
or by building regression models for each subgroup and testing for differences
between the resulting models [20, 36]. The standard approach uses moderated
multiple regression, where the criterion measure is regressed on the predictor
score, subgroup membership, and an interaction term between the two [5, 33].
If the predictive model differs in terms of slopes or intercepts, it implies that
bias exists because systematic errors of prediction would be made on the basis
of group membership.

An example is assessing how college admission test scores predict first year
cumulative grades for males and females. For each gender group, we fit a regres-
sion model. We then compare the slope, intercept and/or standard errors for
both models. If they differ, then the test exhibits differential prediction and may
be considered unfair.

The same concept arises in case-control studies, and is referred to as differ-
ential misclassification. Instances are cross-classified by case-control status and
exposure category. An exposure misclassification is defined as differential if the
probabilities of misclassification differ for instances with different case-control
categories. Similarly, a case-control misclassification is defined as differential if
the probabilities of misclassification differ for instances with different exposure
categories [7, 13]. This concept is the basis of the related machine learning con-
cept of “differential misclassification cost”, incorporating different misclassifica-
tion costs into a cost sensitive classifier [31].

An important application of differential prediction is in marketing studies,
where it can be used to understand the best targets for an advertising campaign
and it is often known as uplift modeling. Seminal work includes Radcliffe and
Surry’s true response modeling [27], Lo’s true lift model [21], and Hansotia and
Rukstales’ incremental value modeling [17]. As an example, Hansotia and Ruk-
stales construct a regression and a decision tree, or CHART, model to identify
customers for whom direct marketing has sufficiently large impact. The split-
ting criterion is obtained by computing the difference between the estimated
probability increase for the attribute on the treatment set and the estimated
probability increase on the control set.

Recent work by Rzepakowski and Jaroszewicz [29] suggests that performance
of a tree-based uplift model may improve by using a divergence statistic. The
authors propose three postulates that should be obeyed by tree-based split-
ting criteria. First, the value of the splitting criterion is minimum if and only
if the class distributions in treatment and control groups are the same in all
branches. Second, splitting criterion is zero if treatment and control are inde-
pendent. Third, if the control group is empty, the criterion reduces to the case
measure. They introduce two new statistics, one based on Kullback-Leibler di-



vergence, the other based on Euclidean distance. Evaluation on prepared data
suggests improved performance. Radcliffe and Surry [28] criticize one of the pos-
tulates and the fact that the measures are independent of population size, a
parameter that they consider crucial in practical applications.

We observe that the task of discriminating between two dataset strata is
closely related to the problem of Relational Subgroup Discovery (RSD), that is,
“given a population of individuals with some properties, find subgroups that are
statistically interesting” [37]. In the context of multi-relational learning systems,
RSD applies a first propositionalization step and then applies a weighted covering
algorithm to search for rules that can be considered to define a sub-group in the
data. Although the weighting function is defined to focus on unexplored data
by decreasing the weight of covered examples, RSD does not explicitly aim at
discovering the differences between given partitions.

3 Differential Predictive Concept Definition

Given data that can be partitioned into a set of strata, we define a differential
predictive concept as a concept whose measure is significantly different over one
stratum as compared to the others. To be more precise, we define a stratified
dataset as one composed of disjoint partitions, where each partition contains at
least one instance of each target class.

Definition 1 (Stratified Dataset). Let tc be a target class defined over the
set of instances X, and let D = {〈x, tc(x)〉} be a set of training examples labeled
according to tc. Let {D1, . . . , Dn} be n disjoint subsets of D, and let Dl

i be the
set of training examples of Di with class label l, such that:

(∀(i, j) ∈ [1, n], i 6= j) Di ⊂ D, Di ∩Dj = ∅, ∀l Dl
i 6= ∅. (1)

A k-strata dataset D over the set of instances X is the union of k such
subsets Di, with 2 ≤ k ≤ n, such that:

D = {Di | 1 ≤ i ≤ k}. (2)

After specifying the instance space, we define a differential predictive concept.

Definition 2 (Differential Predictive Concept). Let c be a concept over the
set of instances X, and let D be a k-strata dataset. Let S(c|Di) be the classifica-
tion performance score for c over the subset Di. A stratum-j specific differential
predictive concept is a concept cj such that:

∀i 6= j, S(cj |Dj)� S(cj |Di). (3)

Score difference (�) can be evaluated using statistical significance tests or
by comparing against a threshold. In this work we will focus on 2-strata 2-class
differential problems.



4 Learning Differential Predictive Rules

This work uses Inductive Logic Programming (ILP) [11] to build the first rela-
tional differential classifier. The benefit of using ILP in this context is twofold.
First, we can use a first-order logic formulation to represent complex relational
patterns spanning the patient and mammogram levels. In our motivating appli-
cation, we can represent data on one mammogram and relate it to prior mam-
mograms for the same patient. Second, we shall take advantage of ILP’s ability
to learn easily-comprehensible logical rules.

Used for differential prediction, ILP — as a rule-learning technique — has a
major advantage: each individual rule can be viewed as a feature describing a
subgroup. We can investigate the performance of each rule on a given dataset,
identify rules that only apply to particular data subsets, and isolate subgroups
covered by a particular rule. Given a stratified dataset, we can examine the
performance of rules on the various strata, and select stratum-specific rules that
have significantly different performances across strata.

We propose and evaluate three different approaches to learn differential pre-
dictive rules. All three approaches can be applied to any ILP algorithm, and
can be used with any scoring function S. We use m-estimate to represent the
probability of an example given a rule. We set both m and the minimum number
of positive examples to be covered by an acceptable clause to 10% of the number
of positive examples per stratum and class.

An important concern in real-life situations is population size [28]. Probabil-
ity estimates tend to favor highly precise estimates (even taking into account the
m count) and may be prone to overfitting, a difficult problem in ILP given the
number of rules we generate and their complexity. In this work, we heuristically
compensate for population size by weighing over the rule positive cover on the
case set, as shown below.

4.1 Baseline Approach

As a running example, suppose we are given a 2-strata 2-class dataset of breast
cancer records, with class labels in situ and invasive, and strata older and
younger. Our task is to find rules that exhibit a differential performance over
the two strata. More precisely, we want rules that correctly predict in situ versus
invasive in the older stratum, but have a significantly worse performance over
the younger stratum. Our target stratum Dt is thus older, while younger is the
other stratum Do.

A simple approach is to merge both strata together while including the strat-
ifying attribute as an additional predicate in the background knowledge. Thus
older stratum examples will have stratum(Example, older) as an additional
feature, while stratum(Example, younger) will describe younger instances. We
run ILP over the whole dataset and select theory rules that have the condi-
tion stratum(Example, older) in their body. Such rules are specific to the older
stratum. We call this approach the baseline approach (BASE).



We score each rule R by considering its positive cover and m-estimate over
the merged strata:

SBASE(R|Dt, Do) = poscover(R|Dt ∪Do)×mestimate(R|Dt ∪Do). (4)

4.2 Model Filtering Approach

Our second method is a model filtering (MF) approach based on [25]. It follows
similar principles to the Two Model approach [21, 28]. We start by construct-
ing a predictive ILP model over a given stratum. The model outputs a high-
performance stratum-specific theory. By construction, the theory rules perform
well on their stratum, according to a given scoring function S. We test each the-
ory rule on the other stratum, and select rules with a poor performance, hence
filtering the original model. According to this model, the greater the performance
difference, the more differential predictive a rule should be.

Fig. 1 flowchart outlines the construction of in situ rules specific to the older
stratum. Starting with the older subset, we construct an ILP model that dis-
criminates between in situ and invasive. The generated rules are expected to
have good performance over the older stratum. We then test each rule on the
younger stratum, and keep rules that perform poorly.

Older
cohort
reports

ILP
classifier

In situ 
rules

Younger
cohort
reports

Differential
prediction

Older-specific
in situ
rules

Fig. 1. Model Filtering approach to identify older-specific in situ rules

During the MF search phase, we score a rule R over strata Dt using SBASE(R|Dt).
Given the final theory, we score each theory rule Rt according to:

SMF (Rt|Dt, Do) = SBASE(Rt|Dt)− SBASE(Rt|Do). (5)

4.3 Differential Prediction Search Approach

Our third method, differential prediction search (DPS), builds a differential pre-
diction ILP classifier by altering the ILP search. Unlike our generate-then-test
model filtering method, DPS uses test-incorporation by altering the ILP search
space. It defines a new clause evaluation function that considers both strata



during search-space exploration and rule construction. This allows ILP to return
rules specifically selected for their differential prediction score, that it would have
overlooked otherwise. This is achieved through a differential-prediction-sensitive
score that measures the performance difference of a rule over both strata.

Definition 3 (Differential-Prediction-Sensitive Scoring). Let R be a clause
(rule) over the set of instances X, and let D be a 2-strata dataset over X. We
define a differential-prediction-sensitive scoring function Q as a function of R,
Dt and Do, such that Q is positively correlated to the performance of R over Dt,
and negatively correlated to the performance of R over Do.

For the DPS method, we introduce the following differential-prediction-sensitive
scoring function:

QDPS(R|Dt, Do) = poscover(R|Dt)× (mestimate(R|Dt)−mestimate(R|Do)).
(6)

Note that this function is non-monotonic, as are most user-defined scoring func-
tions, which prohibits us from custom-pruning the search space.

It is enlightening to relate this scoring function with the postulates described
in [29]. Postulate 2 is trivially satisfied: if the condition is independent from
treatment than the measure should indeed be zero. In contrast to postulate
1, we select rules that do better in one strata, and not rules that do differently.
This is standard in ILP, where the search aims at covering the positive examples,
E+. In fact, in this setting, the standard techniques to explain negatives is to
perform another search, switching E+ and E−. The last postulate concerns the
case where the control set is empty. In this case, this measure indeed reduces to
a classic non-differential ILP scoring function.

Our work thus obeys the main postulates followed by prior work in uplift
modeling. Regardless, we observe that, to the best of our knowledge, this the
first approach directly designed to learn differential rules. Instead, prior work on
differential prediction has focused on learning trees or logistic regression models
that can estimate differential performance. Instead, our work focuses on under-
standing factors that describe differential performance.

Fig. 2 flowchart outlines the construction of older-specific in situ rules. The
differential-prediction classifier takes both strata as input. It constructs, scores
and selects rules according to their differential-prediction-sensitive score.

5 Experimental Setting

We implement our three differential predictive rule learning methods using Aleph
[34]. We invoke induce max, which induces a theory that is unaffected by the
order of the examples. We set depth = 100000, i = 10, nodes = 50000 and
clauselength = 5. We perform experiments with the YAP Prolog compiler [32].

When using synthetic data, we know the ground truth. We then can com-
pare the predicted rules to the original rules. We consider identical rules (up
to variable renaming) as true findings. We label the remaining theory rules as
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Fig. 2. Differential prediction search approach to identify older-specific in situ rules

false positive findings, and the missing original rules as false negative findings.
We rank the theory rules by their score, and compute their precision-recall (PR)
curve using [10]. Since we do not have scores associated with the missing false
negative findings, we truncate the PR curve at the recall returned by the theory.
Note that this yields a PR curve on recovered rules rather than on data.

We compare the different classifiers using their PR area under the curve
(AUC-PR). We use the Mann-Whitney test to compare two sets of experiments.
When comparing multiple sets, we use the Friedman test with a Hommel ad-
justed two-tailed Wilcoxon for the post-hoc pairwise tests. We chose these tests
based on the recommendation of [12]. We set the confidence level to 95%.

Lacking differential rule ground truth, we can not use this method for real
world data. Uplift curves are often used to address this problem [29]. Using 5-
folds cross-validation, we use the learned theory rules as attributes to a TAN
classifier [14] to assign a probability to each example. Given a threshold p, we
compute the lift Li, defined as the number of positive examples amongst the
fraction p of examples that are ranked the highest on strata i. We generate an
uplift curve by ranging p from 0 to 1 and plotting {p, L1 − L2}.

6 Synthetic Dataset

Before going to our target application, we use synthetic data to evaluate the
ability of our approaches to uncover ground truth differential rules, and to study
their sensitivity to variations in noise and in dataset size, two major concerns in
real-world data. The multi-relational Michalski-trains dataset [19] is often used
by ILP researchers to evaluate system performance in a controlled environment.
Given two sets of trains, eastbound and westbound, the original problem consists
of finding a concept which explains the eastbound trains. Each train includes
multiple carriages of varying size, content and shape. Concept complexity is
parametrized by generating more complex explanations of eastbound trains.

To test for differential prediction, we define two categories of trains, red
and blue. We thus have a 2-strata (red, blue) 2-class (east, west) dataset. We
randomly create up to 5 eastbound rules that are common for both red and blue
trains. We then randomly create two additional sets of eastbound rules, each



set is specific to one stratum, red or blue. These are color-specific eastbound
differential predictive rules. We ensure that all rules are unique, and that color-
specific rules are not subsets of common rules nor of each other.

We generate the eastbound trains using the stratum’s common and specific
rules. We define westbound trains as non-eastbound trains. Our aim is to recover
the color red differential predictive eastbound rules. They are our target rules.

As an example, suppose we have the following eastbound rules. Common
eastbound rule:

east(T ) :- infront(T,C1, C2), short(C1), long(C2). (7)

Stratum red specific eastbound rule (target rule):

east(T ) :- has car(T,C), jagged(C). (8)

Stratum blue specific eastbound rule:

east(T ) :- has car(T,C), double(C). (9)

Fig. 3(a) shows red trains, where eastbound trains 1, 3 and 4 have a short
carriage in front of a long one (common rule), while train 2 has a jagged roof
carriage (red specific rule). Fig. 3(b) shows blue trains, where eastbound trains 3
and 4 follow the common rule, while trains 1 and 2 have a double-hulled carriage
(blue specific rule). Note a jagged roof on blue westbound train 5, it would have
been classified eastbound if it was red.

We devise two scenarios, the first with one red target rule to recover, and the
second with up to 5 red target rules. For both scenarios we have up to 5 blue-
specific rules. For each scenario, we randomly generate 30 different 2-strata 2-
class train problems. For every problem, we use a random train generator [24] to
randomly construct 1000 eastbound and 1000 westbound trains for each strata,
for a total of 4000 trains per experiment. We ensure that each red eastbound
target rule covers at least 10% of the eastbound red trains. We refer to this
noise-free data as clean1000. To test the scalability of our algorithms, we also
construct clean100, which consists of the first 100 trains (for each strata, class
and problem) of clean1000. Since real world data is hardly clean, we also create
noisy versions. For each problem, we randomly swap the target class of 5% of
our instances, creating the noisy1000 and noisy100 datasets.

We end up with 30 simulations for each scenario, noise level, size and method
combination. Table 1 reports the AUC-PR mean and standard deviation of each
experimental block. When using the clean sets, we don’t allow any negative
examples to be covered by an acceptable clause. When using the noisy sets, we
allow a negative rule cover of up to 10% of the number of red trains.

We compare two methods by using a paired Mann-Whitney test on all their
corresponding experiments. Our results show that MF outperforms BASE on all
testbeds (p-value = 0.00048). BASE outperforms DPS on size 100 sets (p-value
= 0.019), while DPS outperforms BASE on size 1000 (p-value = 0.01). On large
noisy sets, DPS outperforms both BASE (p-value = 0.0018) and MF (p-value
= 0.0374).
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Fig. 3. A 2-strata 2-class Michalski-train problem

Table 1. AUC-PR mean and standard deviation for each scenario, noise level, size and
method combination. Each experimental block is composed of 30 experiments.

Dataset clean100 clean1000 noisy100 noisy1000
Method BASE MF DPS BASE MF DPS BASE MF DPS BASE MF DPS

One target rule scenario
Mean 0.73 0.83 0.62 0.87 0.90 0.88 0.57 0.62 0.54 0.63 0.80 0.87
Std dev 0.45 0.34 0.40 0.35 0.24 0.29 0.50 0.47 0.42 0.49 0.36 0.31

Multiple target rules scenario
Mean 0.61 0.70 0.42 0.75 0.86 0.77 0.38 0.52 0.31 0.52 0.55 0.65
Std dev 0.33 0.28 0.29 0.33 0.24 0.30 0.37 0.28 0.32 0.39 0.27 0.29

6.1 Discussion

As one expects, performance improves with larger sets of training examples, and
decreases with multiple target rules and noisy sets. The noisy runs are harder
for three reasons. First is the noise effect per se, randomly assigning the wrong
target class to 5% of the trains. Second is the 10% minimum positive cover
threshold per rule. If a target rule originally narrowly passed this threshold, the
addition of noise may decrease its positive coverage below the threshold, and the
rule becomes undetectable. Third is the maximum negative cover threshold: in
clean runs, we only consider rules that don’t cover any westbound train, which
drastically reduces the number of evaluated rules. In noisy runs, we allow up to



10% of negative cover. Even if no noise is injected, the exponential expansion
of the search space increases the probability that some non-target rule scores
better than a target.

It is interesting to note that DPS is the least affected by noise. In each
experimental block, DPS suffers the least decrease in mean AUC-PR, none being
significant. In the one-target rule and large-set block, adding noise decreases DPS
mean by just 1 point, from 0.88 to 0.87 (p-value = 0.94). On the other hand,
MF and BASE drop by 10 and 24 percentage points (Table 1). In the four sets
of experiments where noise is a variable, DPS drops an average of 8 percentage
points, compared to 21.5 for BASE and 20 for MF.

Similarly, DPS improves the most with increasing sample size. In each of
the four sets of experiments where size is a variable, DPS displays the highest
increase in mean AUC-PR, all of which are significant. In these experiments,
DPS increases an average of 32 percentage points, compared to 12 for BASE
and 11 for MF (Table 1).

Although no clear pattern emerges from comparing different methods on
both one-target and multiple-target scenarios, DPS seems to be slightly more
sensitive to the number of target rules. DPS suffers an average decrease of 19
AUC-PR percentage points over the four experimental blocks where target rule
scenario is a variable, compared with 13.5 for BASE and 13 for MF (Table 1).
Nevertheless, this performance decrease does not alter the method ranking over
each experimental block.

In summary, our experiments show that MF is more suitable for either clean
data or small datasets. But for large and noisy data, which is what most real
world applications are, DPS is more appropriate. In addition, DPS performance
increases at a faster rate than MF, and thus may outperform MF for larger clean
datasets. DPS, by navigating the differential prediction search space, requires
more training examples and generates a set of rules as a consistent theory which
explains the data. In contrast, MF and BASE select individual rules that may
be suboptimal.

7 Breast Cancer Diagnosis

Our motivating application is to learn older-specific in situ breast cancer differ-
ential predictive rules. We apply our three methods to the breast cancer data
used in [25]. The data consists of two cohorts: patients younger than 50 years
old form the younger cohort, while patients aged 65 and above form the older
cohort. The older cohort has 132 in situ and 401 invasive cases, while the younger
one has 110 in situ and 264 invasive.

The data is organized in 20 extensional relations that describe the mam-
mogram, and 35 intensional relations that connect a mammogram with related
mammograms, discovered at the same or in prior visits. The background knowl-
edge also maintains information on prior surgeries.

We use the same experimental setting as for the synthetic data, but set
nodes = 200, 000 since the number of predicates is much larger. The BASE



method does not return any rule, which highlights the difficulty of this task.
Lacking ground truth, we use uplift curves to compare MF and DPS (Fig. 4).
DPS consistently outperforms MF, which in turn consistently outperforms a
baseline random classifier. DPS has an area under the curve (taken to the base-
line) of 16.5, almost double the 9.1 of MF.
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Fig. 4. Uplift curve for breast cancer stage

MF returns 4 differential predictive rules that have a significantly better
precision and recall [16] over the older cohort. DPS returns 15. A practicing
radiologist, fellowship-trained in breast imaging, examined and assessed all the
rules. One MF rule was not found meaningful, while the remaining three are
redundant to each other and translate to:

1. Tumor is older-specific in situ if its principal mammographic finding is cal-
cification or single dilated duct, and patient does not have prior surgery.

Single dilated duct is a rare finding and was combined with calcification in our
data for convenience. Based on this rule, the more common finding, calcification,
is a differential predictor of in situ disease in older patients, which is a novel and
interesting result. A possible explanation is that, in asymptomatic women, in
situ disease is often associated with screen-detected micro-calcifications; while
in symptomatic women, in situ is associated with a palpable mass or pathological
nipple discharge [26]. Younger women tend to have more rapidly proliferating
cancers that develop into a palpable mass [15], in contrast to more indolent,
non-palpable in situ disease manifest as micro-calcification in older patients.
This previously unreported finding merits further investigation.

DPS provides a more complete picture of older-specific in situ differential
predictors. All 15 returned rules are meaningful and, in addition to extracting



the rule described above, four additional themes emerge. DPS is thus able to
detect more differentially predictive features than MF, offering a better insight
into the medical problem. We select representative clauses from each theme.
Tumor is older-specific in situ if:

2. Patient had prior in situ biopsy, and examined-breast had a BI-RADS score
of 1 during a previous mammogram, which was not the first visit.

3. Patient had prior in situ biopsy, its examined-breast BI-RADS increased by
at least 3 since a previous visit, whereas its other-breast BI-RADS remained
constant.

4. Principal mammographic finding is calcification or single dilated duct, examined-
breast BI-RADS score increased by at least 3 since a previous visit, and
patient had an even earlier screening mammogram.

5. Patient has a breast density of 2, is having a unilateral exam, doesn’t have
a focal asymmetric density, and principal mammographic finding is calcifi-
cation or single dilated duct.

Besides calcification, the second DPS rules theme is the presence of a prior
in situ biopsy (rules 2, 3). A prior history of biopsy revealing in situ disease is
thus a better predictor of in situ recurrence in older women. This observation
is partially explained by the longer life span of older women which offers more
time for a recurrence to manifest. But this rule may also relate to the indolent
nature of in situ breast cancer in older women. In fact, both invasive and in
situ tumors in older patients tend to be less aggressive and have lower rates of
local recurrence than tumors in younger patients [15]. More specifically, younger
women with in situ disease are more likely to progress to an invasive recurrence
rather than develop another in situ tumor when they recur [35].

The third theme is the increase in the examined breast BI-RADS score (rules
3, 4). The BI-RADS score is a number that summarizes the examining radiol-
ogist’s opinion and findings concerning the mammogram [4]. The radiologist
assigns a score for each examined breast. An increase in the BI-RADS score over
multiple visits reflects increasing suspicion of malignancy. This may be a more
pronounced feature in older women because they have more prior mammograms.

The next observation, whereas screening visits predict in situ in older women
(rule 4), may also relate to the greater opportunity for screening in older patients.
Regular screening mammography is usually recommended for women aged 40
and above. Younger women are more likely to seek care for a palpable lump
detection rather than via screening [15]. Thus older women tend to have more
screening exams because of regular visits after age 40.

Finally we note a class 2 breast density, out of an increasing density scale of 1
to 4 (rule 5). This is a relatively low breast density, more common in older women,
since breast density decreases with age [18]. This rule is of special relevance since
it doesn’t link to any previous mammogram or history predicate, hence leveling
the playing field between younger and older in terms of time. It requires a class
2 breast density and an observed calcification during a unilateral (and hence
diagnostic) exam. A lower breast density significantly increases mammogram
sensitivity [22], allowing for easier micro-calcification detection.



8 Future Work

This work can be extended in several directions. First, our differential prediction
search can be tested and validated using a larger experimental set. We can
systematically vary the sample size to establish a performance-size curve, and
try different scoring functions. We can also fine grain the construction of the
Michalski-trains sets by monitoring the coverage of each target or common rule.
Noting that we defined westbound as not-eastbound, it would be interesting to
gauge model differences if westbound was defined using a separate set of rules.

Second, this work assumes the presence of a stratified dataset. Given a non-
stratified dataset, we may be able to select the best dividing attribute that
maximizes differential predictive rules performance. We can repeatedly stratify
the data using each of its attributes, and perform differential prediction. We
then select the stratification achieving the best results. This approach may be
used for differential subgroup discovery.

Third, we only proposed solutions for the 2-strata 2-class differential pre-
diction problem. We plan on extending it to multi-strata problems using f -
divergence functions. This being the first attempt at relational differential pre-
diction, we can similarly extend our approach to decision-tree learners.

9 Conclusion

In this work, we extend differential prediction to the multi-relational domain
using ILP. We devise and implement three methods to learn 2-strata 2-class
differential predictive rules. The first baseline method merges the two strata
together while including the stratifying attribute as an additional predicate. The
model filtering method generates rules on the target stratum and tests them for
differential prediction on the other stratum. The differential prediction search
approach alters the ILP search space to use a differential-prediction-sensitive
scoring function to assess rules over both strata during rule construction. Our
experiments over synthetic data show that the model filtering method is more
suitable for either clean or small datasets. For large and noisy data, which is
what most real world applications are, the differential prediction search method
outperforms both the baseline (p-value = 0.0018) and the model filtering (p-
value = 0.0374) approaches. We apply our methods on a breast cancer dataset,
and extract novel rules linking calcification to in situ disease in older women.

Acknowledgment

This work is supported by US National Institute of Health (NIH) grant R01-
CA127379-01. We thank Kendrick Boyd for his help in computing AUC-PR. VSC
was funded by the ERDF through the Progr. COMPETE, the Portuguese Gov.
through FCT, proj. HORUS ref. PTDC/EIA-EIA/100897/2008, ADE (PTDC/
EIA-EIA/121686/2010), and the EU Sev. Fram. Progr. FP7/2007-2013 under
grant aggrm. 288147.



References

1. Allegra, C.J., Aberle, D.R., Ganschow, P., Hahn, S.M., Lee, C.N., Millon-
Underwood, S., Pike, M.C., Reed, S., Saftlas, A.F., Scarvalone, S.A., Schwartz,
A.M., Slomski, C., Yothers, G., Zon, R.: National Institutes of Health State-of-the-
Science Conference Statement: Diagnosis and Management of Ductal Carcinoma
In Situ, September 22–24, 2009. J. Natl. Cancer Inst. 102(3), 161–169 (2010)

2. American Cancer Society: Breast Cancer Facts & Figures 2009-2010. American
Cancer Society, Atlanta, USA (2009)

3. American Cancer Society: Cancer Facts & Figures 2009. American Cancer Society,
Atlanta, USA (2009)

4. American College of Radiology, Reston, VA, USA: Breast Imaging Reporting and
Data System (BI-RADSTM), 3rd edn. (1998)

5. American Educational Research Association/American Psychological Associa-
tion/National Council on Measurement in Education: The Standards for Educa-
tional and Psychological Testing (1999)

6. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101, 285–297 (1998)

7. Chyou, P.H.: Patterns of bias due to differential misclassification by casecontrol
status in a casecontrol study. European Journal of Epidemiology 22, 7–17 (2007)

8. Cleary, T.A.: Test bias: Prediction of grades of negro and white students in inte-
grated colleges. Journal of Educational Measurement 5(2), 115–124 (1968)

9. Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Ramakrishnan, R., Santos
Costa, V., Shavlik, J.: View Learning for Statistical Relational Learning: With
an application to mammography. In: Proceedings of the 19th International Joint
Conference on Artificial Intelligence. pp. 677–683. Edinburgh, Scotland (2005)

10. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: Proc. of the 23rd International Conference on Machine Learning. pp. 233–240.
Pittsburgh, PA (2006)

11. De Raedt, L.: Logical and Relational Learning. Springer (2008)
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