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ABSTRACT
In digital marketing, experimentingwith newwebsite content is one

of the key levers to improve customer engagement. However, creat-

ing successful marketing content is a manual and time-consuming

process that lacks clear guiding principles. This paper seeks to

close the loop between content creation and online experimen-

tation by offering marketers AI-driven actionable insights based

on historical data to improve their creative process. We present a

neural-network-based system that scores and extracts insights from

a marketing content design. Namely, a multimodal neural network

predicts the attractiveness of marketing contents, and a post-hoc
attribution method generates actionable insights for marketers to

improve their content in specific marketing locations. Our insights

not only point out the advantages and drawbacks of a given cur-

rent content, but also provide design recommendations based on

historical data. We show that our scoring model and insights work

well both quantitatively and qualitatively.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Information systems→Retrievalmodels and ranking;
Users and interactive retrieval; Information retrieval query
processing; • Computing methodologies→ Natural language
processing; Computer vision.
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1 INTRODUCTION

Figure 1: Diagram of AI-driven marketing content design.

Content experimentation plays an important role in driving

key performance indicators as part of present-day online market-

ing [21, 38]. In a typical industrial workflow, digital marketers

manually design content, launch controlled online experiments,

and receive feedback through collected impression logs. While this

process has proven to be reliable for measuring the incremental

impact of content creation, it fails to provide insights to the mar-

keter that can improve the likelihood of future experiments being

successful. Indeed, unless treatments are deliberately designed rela-

tive to a control, it is difficult to establish the source of causality in

an experiment outcome. This limits the opportunity to learn the

preferences of a customer base. Similarly, the outcomes of online

experiments do not immediately provide information to a marketer

on how they should design novel content for future experiments.

https://doi.org/10.1145/3580305.3599875
https://doi.org/10.1145/3580305.3599875
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As a result of the existing content experimentation paradigm,

creating new marketing elements is a manual and time-consuming

process with significant human involvement. Successful experi-

ments are often the result of subject matter expertise among mar-

keting teams, manual detection of patterns across campaigns, and

sequential testing of ideas [44, 47]. Consequently, it is common

that resulting insights suffer from cognitive and incentive bias by

marketing teams who analyze the results [11].

An opportunity exists to significantly improve the efficiency and

effectiveness of marketing content design through data-driven ac-

tionable insights. A fundamental challenge to this objective is that

extracting actionable content creation insights from data-driven

models requires methods that are interpretable by a human. Conse-

quently, existing work in this direction has relied on simple machine

learning techniques to model digital marketing content. In the clos-

est related work on the topic [60], a generalized linear model with

handcrafted features was developed to score marketing content and

provide insights. Despite the promise of this approach, the tech-

nique suffers from several shortcomings in real-world marketing

scenarios including: 𝑖) high prediction error, 𝑖𝑖) a limited number

of features, 𝑖𝑖𝑖) the inability to generalize to content with novel

features, and 𝑖𝑣) unclear actionability from interpretation results.

In this paper, we develop a neural-network-based system that

scores and extracts insights from a marketing content design to

close the loop between content creation and online experimentation

(see Figure 1). This approach is motivated by the remarkable success

of deep neural nets in diverse application areas [12, 14, 27, 28, 30, 31,

40, 49, 59, 66, 67]. However, providing insights to improve content

design is challenging and different from the traditional tasks where

deep learning has proven to be successful. This is due to the fact

that predictive performance is not the only objective, but it is also

necessary to interpret the model, which is challenging given that

deep learning models are generally difficult to interpret black-boxes.

We overcome this issue by using post-hoc model agnostic at-

tribution methods. In summary, our paper makes the following

contributions:

(1) To the best of our knowledge, we may be the first to apply

deep learning in the digital marketing design process. We

provide an analysis of how to leverage neural network inter-

pretations to help in digital marketing design, and propose

a novel image and text insight-generation framework based

on attributions from deep neural nets.

(2) We present interpretable insights in an interactive visual

format, with actionable insights overlaid with the content.

We validate the performance of the scoring model on an Amazon

industry dataset. We also benchmark a variety of interpretation

methods using a novel evaluation scheme. To the best of our knowl-

edge, this is the first work to apply deep learning as a tool to model

digital marketing content and provide insights to improve content

design. Lastly, we publicly release the pseudo-code of algorithms

described in this paper for researchers to easily reproduce the code

and run our pipeline on their own datasets. Besides, to facilitate

replications in other industrial settings, we do share images of our

interactive dashboard in Figure 7.

Organization. In Section 2, we introduce the workflow that

describes how digital marketers conduct experiments. In Section 3,

we present the neural network model used to model the content

data and the process used to train the neural network. In Section 4,

we explain the method proposed to generate insights for content

based on our multimodal neural network. In Section 5, we propose

a three-step approach to quantitatively evaluate the performance

of our insights with respect to the correlation between applying

insights-guided modification and the observed outcome. Finally, in

Section 6, we discuss our experiments and their results.

2 DATASET AND METRIC
Controlled experiments, also called randomized experiments or

A/B tests, have had a profound influence in multiple fields, includ-

ing medicine, agriculture, manufacturing, and advertising [21, 38].

Randomized and properly designed experiments can be used to es-

tablish causality, that is, to identify elements in marketing content

likely to provide incremental impact [55]. In this paper, our goal is

to use neural networks to model digital marketing experiments, and

learn causal effects from interpreting the behavior of the model.

A typical marketing dataset consists of multiple sequences of

controlled experiments conducted by marketers in different digital

marketing locations. The dataset used in this paper contains tens of

thousands of distinct content items and corresponding success rates.

Each marketing content includes various modalities, for instance,

an image 𝐼 corresponding to the web-page screenshot of the content,

a text 𝑇 that contains all textual campaigns in the content, a string

𝐷 that indicates the marketing content domain and location, and a

set of categorical features 𝐹 that are extracted from the raw content

with (potentially) handcrafted functions.

The target metric we adopt is the success rate. In a binary setting,

success can be defined as a click, a purchase, or other valuable

customer action. Using clicks as an example, success rate is the

number of clicks over the number of times the content is shown:

𝑌 = 𝑁
clicks
/𝑁

total
, (1)

where 𝑁
total

is the total number of people who viewed the content

and 𝑁
clicks

is the number of people who clicked on it. Our goal is

to predict the success rate 𝑌 using the multimodal input 𝑋 , while

providing insights by interpreting the model and its predictions.

3 MARKETING CONTENT NEURAL MODEL
We now introduce the details and components of our marketing

content scoring model. As a working example, we represent a mar-

keting content using four of its modalities: image 𝐼 , text 𝑇 , content

domain 𝐷 , and feature vector 𝐹 . We encode each modality using a

corresponding widely-used and efficient neural architecture (see

Equation 2). The image encoder is an RGB ResNet-18 [33] model

without the fully-connected classifier. The text encoder is a standard

BERT model [18] without the classification head. Fully-connected

MLP neural networks [53] serve as the encoders for both domain

and categorical features. The details of these networks are in Ap-

pendix B. We then use the most basic fusion strategy [25] by con-

catenating the embeddings from all modalities via their encoders

(see Equation 3). Finally, we feed the concatenated embeddings into

another fully-connected MLP neural network for regression.
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Formally, given input content𝑋 = {𝐼 ,𝑇 , 𝐷, 𝐹 }, the corresponding
embedding is given by 𝑋

emb
= {𝐼

emb
,𝑇

emb
, 𝐷

emb
, 𝐹

emb
}, where

𝐼
emb

= ResNet(𝐼 ), 𝑇
emb

= BERT(𝑇 ),
𝐷
emb

= MLP1 (𝐷), 𝐹
emb

= MLP2 (𝐹 ).
(2)

Then, denoting 𝐶 (·) as the final module which takes all modalities

as input, the success rate prediction 𝑦 is given as follows:

𝑦 = 𝐶 (𝑋
emb
) = MLP3 ({𝐼emb

,𝑇
emb

, 𝐷
emb

, 𝐹
emb
}) . (3)

To facilitate model convergence, each sub-network in the multi-

modal model is pretrained separately. We begin by appending a

classification head after each encoder to allow it to predict the suc-

cess rate. Then, we train each module using a view of the dataset

that only contains the respective modality. Importantly, the re-

gression network 𝐶 (·) is not trained since we do not have access

to its input (concatenated embeddings of all modalities) at this

(pretraining) stage. After pretraining each sub-network, the whole

multi-modal network is trained on the multi-modality dataset. The

encoders are initialized with the weights obtained in the pretraining

stage. We report the single-modality sub-networks and final model

performance metrics in Section 6.

Since we want to predict the continuous, but bounded, success

rate 𝑌 , we append a sigmoid function 𝜎 (·) after the output 𝑦 of

the final regression function𝐶 (·). Our optimization objective is the

mean-squared error (MSE) between 𝑌 and 𝜎 (𝑦):

𝐿 = MSE(𝑌, 𝜎 (𝑦)) . (4)

4 NEURAL INSIGHTS
In this section, we describe how we utilize post-hoc interpretation
methods to produce insights from our scoring model. A key advan-

tage of post-hoc interpretation is that it can be constructed from

an arbitrary prediction model. This property alleviates the need

to rely on customized model architectures for interpretable pre-

dictions [24, 65] or to train separate modules to explicitly produce

model explanations [16, 29]. This section begins by motivating the

utility of insights post-hoc attribution, then describes the attribution
methods, and concludes by explaining how we develop insights

from attribution techniques. Note that we are formulating a new

problem in deep learning, where our insights aim to help marketers

improve existing content.

4.1 Insights: guidance to improve current design
We start by addressing the attribution problem [7, 62], defined as

the assignment of contributions to individual input features [20].

The aim of this subsection is illustrative; we seek to show in a near-

ideal scenario that post-hoc attributions from a neural network can

help improve the success rate of content that is being developed,

whereas Section 6.3 verifies it empirically. Toward this goal, let us

define the input content as a bag a features with a success rate.

Definition 1. The input content 𝑋 is a bag of features 𝑋 = {𝑥𝑖 ∈
R𝑛 |𝑖 = 1, 2, ..., 𝑁 } with common success rate label 𝑌 ∈ [0, 1].

We now assume that the underlying success rate 𝑌 correspond-

ing to content 𝑋 can be represented as a linear combination of

attribution scores for each feature in the representation of 𝑋 .

Assumption 1. Given a tuple {𝑋,𝑌 }, let {𝑦𝑖 ∈ R|𝑖 = 1, 2, ..., 𝑁 }
be the contribution of features of 𝑋 to the ground-truth success rate
𝑌 , such that

∑
𝑦𝑖 = 𝑌 . Each individual attribution 𝑦𝑖 corresponds to

an individual input feature 𝑥𝑖 . We only have access to the bag label
𝑌 , while the ground-truth feature-level attribution 𝑦𝑖 is unknown.

We define an attributor as a function that estimates the contri-

bution 𝑦𝑖 of a feature 𝑥𝑖 ∈ 𝑋 to the success rate prediction for the

entire bag 𝑋 . For example, a digital marketer has a set of promo-

tional slogans {𝑥1, ..., 𝑥𝑟 }, the contribution of each slogan to the

success rate is {𝑦1, ..., 𝑦𝑟 }. After adding these slogans to a blank

content, the success rate of the blank content increased by an incre-

ment of 𝑌 =
∑
𝑖=1,...,𝑟 𝑦𝑖 . Our attributor predicts the contribution of

each slogan in the content such that 𝑐 (𝑥𝑖 ) = 𝑦𝑖∀𝑖 = 1, ..., 𝑟 .

Definition 2. Given a prediction function 𝐶 (·) such that 𝐶 (𝑋 )
predicts 𝑌 , define an attributor 𝑐 (·) as a function that estimates the
contributions of each input feature 𝑥𝑖 ∈ 𝑋 to the prediction 𝐶 (·),
which can be expressed as 𝐶 (𝑋 ) = ∑

𝑥∈𝑋 𝑐 (𝑥).

We now use this framework to show that using a feature with

a higher attribution score than an existing feature would increase

the overall success rate in a near-ideal scenario. This underscores

that attribution methods can act as a guide for digital marketers

to refine their existing content given that this effect can also be

validated empirically (see Section 6.3).

Consider replacing a feature 𝑥 in bag 𝑋 with another feature 𝑥 ′

such that 𝑐 (𝑥 ′) ≥ 𝑐 (𝑥), which is consistent with an A/B testing in

which a treatment is derived from a control [10, 21]. Let 𝑋 ′ be the
treated content𝑋 ′ = (𝑋\{𝑥}) ∪ {𝑥 ′}, where 𝑥 is replaced by 𝑥 ′. We

now show that the treated content 𝑋 ′ will have a higher success
rate under certain assumptions.

Proposition 1. Replacing a feature 𝑥 in bag 𝑋 with a feature 𝑥 ′

such that 𝑐 (𝑥 ′) ≥ 𝑐 (𝑥) will increase the overall success rate from 𝑌

to 𝑌 ′ when 𝐶 (𝑋 ′) ≥ 𝐶 (𝑋 ) ⇔ 𝑌 ′ ≥ 𝑌 , and under Assumption 1.

Proof. By Definition 2,𝐶 (𝑋 ) = ∑
𝑥∈𝑋 𝑐 (𝑥). Thus, since 𝑐 (𝑥 ′) ≥

𝑐 (𝑥) by construction, we have that

𝐶 (𝑋 ′) =
∑︁
𝑥∈𝑋

𝑐 (𝑥) + (𝑐 (𝑥 ′) − 𝑐 (𝑥)) ≥ 𝐶 (𝑋 ). (5)

Since 𝐶 (𝑋 ′) ≥ 𝐶 (𝑋 ) ⇒ 𝑌 ′ ≥ 𝑌 , we conclude that 𝑌 ′ ≥ 𝑌 . □

The above example indicates that replacing features with higher

𝑐 (𝑥) would increase 𝑌 when 𝐶 (𝑋 ) is positively correlated with 𝑌 .

In real-world datasets, the condition𝐶 (𝑋 ′) ≥ 𝐶 (𝑋 ) ⇒ 𝑌 ′ ≥ 𝑌 may

not always hold. However, we use pairwise accuracy to evaluate the

accuracy of our predictor when comparing two content elements

in Section 6.3 and validate the efficacy of the replacement. Below,

we detail both the prediction function 𝐶 (·) and attributor 𝑐 (·).

4.2 Post-hoc attribution methods
There are three common trends in mechanisms behind post-hoc
attribution. Back-propagation-based methods compute attributions

according to the gradients with respect to the input [62]. Activation-

based methods use a variety of ways to weigh activation maps of

intermediate layers in neural network to assign attributions [57].

Perturbation-based methods treat the network as a black-box and

assign importance by observing the change in the output after
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perturbing the inputs. For instance, feature ablation [46] is done

by replacing each input feature with a given baseline (zero vector),

and computing the difference in the output. Another alternative

is by approximating Shapley values in deep neural networks [6,

45]. Kernel SHAP leverages a kernel-weighted linear regression

to estimate the Shapley values of each input as the attribution

scores [45]. Langlois et al. [41] use PCA to aggregate a variety

of attribution methods to estimate the shared component of the

variance between different types of attention maps.

In our implementation, we borrow directly from the mentioned

post-hoc attribution methods, namely, GradCam, Integrated Gra-

dient, Kernel SHAP, Feature Ablation, and PCA, to approximate

the attributor 𝑐 (·). If the prediction function is a multimodal neural

network 𝐶 (𝑋 ) as defined in Section 3, the attributor is given by

𝑐 (𝑥𝑖 ) = attribution(𝐶 (𝑋 )) [𝑖]. Note that attributions are rescaled to
satisfy 𝐶 (𝑋 ) = ∑𝑛

𝑖=1
𝑐 (𝑥𝑖 ), as in Definition 2.

4.3 Insights: recommending design elements
Given this attribution framework, our system leverages historical

data to provide recommendations of visual and textual design ele-

ment alterations (see Figure 2). The goal of our recommendation

is to identify features that are highly likely to improve the success

rate of a content being iterated on, and to provide hints for mar-

keters as they embark on designing brand new creative content. We

recommend features ranked by their mean attribution score across

the whole dataset. We compute the rank score 𝑟 of a feature 𝑥 as:

𝑟 (𝑥) = 1

𝑁

∑︁
𝑋 ∈X

𝑐 (𝑥), (6)

where the rank score 𝑟 (𝑥) is an estimate of the expected attribution

score over the data distribution X.
We split the implementation of our recommendation strategy

according to its modality, whether text or image. We explain our

recommendation strategy below and illustrate it in Figure 2.

Figure 3: Example of marketing recommended phrases.

Text Recommendation. For text data, we include word-level
and phrase-level recommendations. In word-level recommenda-

tions, we simply recommend words that have high average attri-

bution scores across all text contents in a marketing location. In

phrase-level recommendations, 𝑖) we use phrasemachine [32] to

extract phrases from each single text content; 𝑖𝑖) we then compute

the attribution score of a phrase by averaging the attribution scores

of all its words; 𝑖𝑖𝑖) finally, we recommend phrases that have high

average attribution scores across all text contents within a domain.

We define positive phrases as phrases with the top-10 rank scores

while negative phrases are phrases with the bottom-10 rank scores.

Figure 3 shows an illustrative example of top and bottom scoring

phrases. In the positive phrases, our model recommends using

slogans about benefits such as “free game”, “free trial”, “free twitch”,

“unlimited access millions songs”, etc. The negative phrases are

about pricing, payment and legal terms, such as “prime 7. 99 month”,

“credit card”, “applicable taxes”, etc.

Image Recommendation. For image data, we overlay historical

ground truth attributions on top of the image in consideration, rec-

ommending actions on patches (subsets) of the image. While recent

works show the success of deep neural networks in image recom-

mendations [12, 34, 48, 61], our image recommendation zooms into

the salient patches inside images, aiming to provide users with key

visual elements that contribute most to the label of the image. The

goal of our image recommendation algorithm is very different from

that of existing works. Moreover, our methodology to use attribu-

tions to find salient patches and cluster them to detect common

patterns is innovative.

Our image recommendation consists of the following steps. 𝑖) We

first run the attribution method on each single content in the whole

dataset. Then, we extract patches with top-𝐾 attribution scores

in an image. Once a patch is selected, we execute non-maximum

suppression on the region of the selected patch to ensure each

patch is distinct. 𝑖𝑖) Subsequently, we cluster these patches based

on their ResNet-18 embeddings using K-Means clustering [8] to

uncover the design patterns of these patches. 𝑖𝑖𝑖) Finally, patch

recommendations are collected from each cluster.

In our work, we leverage K-means clustering to help us group

similar image patches, as it has been successfully used for unsuper-

vised image classification [5, 51]. We use the elbowmethod to select

the number 𝐾 of centroids [63]. In order to encourage a diverse set

of suggestions, we randomly sample an equal number of patches

from each cluster, as different clusters reflect distinct visual infor-

mation. This procedure ensures the image recommendations have

enough variety of patterns and avoids recommending repetitive

patches. The positive patches are randomly sampled from clus-

ters within the top-10 rank scores while the negative patches are

randomly sampled from clusters within the 10 lowest rank scores.

Figure 4 shows an illustrative example of our visual design rec-

ommendation. The recommendations of images have some insights

similar to text insights in Figure 3. Some positive patches are illus-

trations about benefits and some negative patches are illustrations

about payment (row 2, column 10) and offers without revealing

discounts and upgrades (row 2, column 2). This example seems

to suggest that using the icon of prime (row 1, column 3) is more

attractive than the generic Amazon icon (row 2, column 7). More-

over, negative patches shows a distorted Prime logo (row 2, column

4), an exaggerated human face (row 2, column 5) and an infan-

tile cartoon (row 2, column 8), characters that resonate less with

many customers [58], while positive patches recommend entertain-

ment icons (row 1 in columns 2, 4, 8) and more favorable human

illustrations such as upbeat smiling persons (row 1, columns 6, 9).
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Figure 2: Generating image and text recommendations. For all content instances in the same marketing location 𝐷 , we first
run attribution methods on ResNet-18 and BERT separately to get the attribution maps for text and images. For text data, the
scores are simply ranked by the average of the overlaid attribution values on the same words or phrases. For image data, we
crop the salient area in every image, and then cluster them based on their embeddings in ResNet-18. Their scores are ranked by
the average attribution scores in the same cluster. See Section 4 for details.

Figure 4: An example of visual insights. We show 10 positive patches within the top-10 rank scores and 10 negative patches
within bottom-10 rank scores.

5 INSIGHTS EVALUATION
We now tackle the open-ended problem of evaluating insights.

We need a practical insight-evaluation metric that marketers can

track and trust, that captures the relationship between acting on

an insight and its ensuing causal effect, and conveys the expected

success rate increase if that insight is applied. Existing evaluation

metrics of interpretation methods span faithfulness, stability and

fairness [3], which do not satisfy our needs. Runge et al. [54] quan-

tify the strength of causal relationships from observational time

series data with pairwise correlations. In our work, we aim to exam-

ine the relationship between insights-guided modifications and the

ensuing change in the actual success rate. However, evaluating our

insights is an inherently difficult problem since no explicit ground

truth feature-level attributions 𝑦 exist.

In Section 4, we show that one can leverage insights to improve

content attractiveness with an optimal prediction function 𝐶 (·).
However, in real-world situations, we may not be able to obtain a

model 𝐶 (·) satisfying the idealized properties. Further, a content

change could span multiple features of the original design. Similar

to [69], which computes the correlation of absolute neighbour dif-

ferences to detect heteroscedastic relationships, we use the Pearson

correlation between the predicted attribution difference and the ac-

tual success rate improvement to quantify the relative performance

of an an insight.

Algorithm 1: A generic three-step approach to evaluate

insights of attributor 𝑐 (·).
Data: Input pairs of control bags and treatment bags

(𝑋,𝑋 ′), ∀𝑋,𝑋 ′ ∈ X and (𝑌,𝑌 ′), ∀𝑌,𝑌 ′ ∈ [0, 1] are
the pairs of control labels and treatment labels

respectively, and the evaluated attributor

𝑐 (·) : R𝑛 → [0, 1] ⊂ R.
Result: Correlation coefficient 𝜌 .

Step 𝑖). Compute the distinct elements set 𝑆 , such that the

attributes in 𝑆 can be only found in 𝑋 or 𝑋 ′.
𝑆 := {𝑥 | (𝑥 ∈ 𝑋 ∧ 𝑥 ∉ 𝑋 ′) ∪ (𝑥 ∉ 𝑋 ∧ 𝑥 ∈ 𝑋 ′)};

Step 𝑖𝑖). Compute predicted attribution difference 𝑑𝐶 and

actual success rate improvement 𝑑𝑌 :

dC := sign(𝑌 ′ − 𝑌 ) ( ∑
𝑥∈ (𝑋 ′∩𝑆 )

𝑐 (𝑥) − ∑
𝑥∈ (𝑋∩𝑆 )

𝑐 (𝑥));

dY := |Δ𝑌 |;
Step 𝑖𝑖𝑖). Examine the linear relationship of variable dC and

variable dY by computing the Pearson Correlation 𝜌 on the

whole dataset.

Output 𝜌 .

Specifically, we define the difference between two contents as

the difference set 𝑆 = {𝑥 | (𝑥 ∈ 𝑋 ∧ 𝑥 ∉ 𝑋 ′) ∪ (𝑥 ∉ 𝑋 ∧ 𝑥 ∈ 𝑋 ′)},
the predicted attribution difference as Δ𝑐 (𝑥) = ∑

𝑥∈ (𝑋 ′∩𝑆 ) 𝑐 (𝑥) −∑
𝑥∈ (𝑋∩𝑆 ) 𝑐 (𝑥), and the actual success rate improvement as Δ𝑌 =
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Figure 5: Visual explanation of text evaluation Algorithm 3.

𝑌 ′ − 𝑌 . We postulate that a linear relationship exists between

(Δ𝑐 (𝑥),Δ𝑌 ), which implies that marketers can improve the con-

tent’s attractiveness by making modifications based on the insights.

Hence, we propose a method that first finds Δ𝑐 (𝑥) by computing

the difference set of instances 𝑆 , and then evaluates the Pearson cor-

relation coefficients 𝜌 across all possible control and treatment pairs

within the same content domain in the dataset [9]. The Pearson

Correlation Coefficient used in our evaluation is defined as:

𝜌 =
cov(Δ𝑐 (𝑥),Δ𝑌 )
𝜎Δ𝑐 (𝑥 )𝜎Δ𝑌

, (7)

where cov(Δ𝑐 (𝑥),Δ𝑌 ) is the covariance between Δ𝑐 (𝑥) and Δ𝑌 ,
𝜎Δ𝑐 (𝑥 ) is the standard deviation of Δ𝑐 (𝑥), and 𝜎Δ𝑌 the standard

deviation of Δ𝑌 . In our implementation, since we do not have

direct access to Δ𝑐 (𝑥) and Δ𝑌 , we compute the Pearson Correlation

Coefficient 𝜌 of their surrogates. We denote the surrogates of Δ𝑐 (𝑥)
and Δ𝑌 as d𝐶 and d𝑌 , respectively.

Evaluation Algorithm Description. We propose a generic

three-step approach to evaluate insights in Algorithm 1. We also

provide the pseudo-code of our implementation to evaluate insights

for real-world data structures including images and text in the

Appendix (Algorithms 3 and 4). The general idea of Algorithm 1 is:

(1) First, we find a difference set 𝑆 of two input samples, which

represents the distinct elements that only appear in one

of them. Based on the difference set 𝑆 , we generate two

masks for two input samples. Note that the masks retain the

elements in the set 𝑆 .

(2) Then, we use the masks to obtain the inner product of the

corresponding attribution maps for two samples, and com-

pute the difference 𝑑𝐶 of the inner product results. We call it

the predicted summed attributions of modifications. 𝑑𝐶 rep-

resents the total attributions when sample one is modified

to sample two, or vice versa. We also get 𝑑𝑦 by computing

the difference in ground truth success rates of two samples.

(3) Finally, we quantify the linear relationship between 𝑑𝐶 and

𝑑𝑦 by computing a correlation coefficient 𝜌 on the whole

test dataset.

The resulting correlation coefficient represents how well, when

the input sample is modified based on the attribution insight, can

Figure 6: Visual explanation of image evaluation Algorithm 4.

it contribute to the change of its ground truth success rate. This

metric is very useful in our digital marketing setting, where our

goal is to provide deep insights generated by attributions to help

digital marketers amend their content to improve its attractiveness.

To ensure the algorithms operates accurately, each pair of samples

used to compute 𝑑𝑐 and 𝑑𝑦 must be a pair of control and treatment

instances from the same content experiment.

Insight Examples. Figures 5 and 6 provide visual explanations

of our insights evaluation algorithm in text and image settings,

respectively. Figure 5, illustrating text evaluation, can be understood

as follows. In step 𝑖), we extract a set of words that only appear

either in the control sentence or the treatment sentence. In step

𝑖𝑖), we use this set to create a mask for both sentences, where each

element in the mask is 1 (orange color in the figure) if the word in

that position belongs to the set 𝑆, or 0 (blue color in the figure) if

the word in that position does not appear in set 𝑆 . In step 𝑖𝑖𝑖), we

take the inner product of the masks with the attribution maps to

produce 𝑑𝐶 .

Figure 6, illustrating image evaluation, can be understood as fol-

lows. Step 𝑖) creates the feature maps of the control and treatment

images. After properly reshaping the feature maps, step 𝑖𝑖) com-

putes the similarity between every pair of control-treatment feature

vectors, creating a similarity matrix. Step 𝑖𝑖𝑖) takes the matrix with

maximum control-treatment similarity score for each location. Step

𝑖𝑣) thresholds the similarity maps to create masks for differences

between control and treatment, and reshapes them to the same size

as their corresponding attribution maps. Step 𝑣) takes the inner

product of the masks with the attribution maps to produce 𝑑𝐶 .

6 EXPERIMENTS
We evaluate our algorithm on the dataset described in Section 2. If

a modality is missing, we use a zero vector to substitute the missing
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embedding. We split the dataset into training, validation and test

sets with a ratio of 50:10:40. To evaluate the performance of our

model on both existing and unseen content domains, we divide

the test set into in-domain and out-of-domain subsets. In-domain

only contains content domains present in the training set, and

out-of-domain includes market domains absent from it.

6.1 Model Specifications
Here, we describe the training hyper-parameters used in our exper-

iments. We use ResNet-18 as the image model. The image model

is trained via an Adam optimizer with a batch size of 32, 𝛽1 of

0.9, 𝛽2 of 0.999 and a learning rate of 0.001 for 50 epochs. During

pre-training, we randomly crop a 512×512 patch from the image as

input in order to limit GPU memory usage. When we train the full

multimodal model and infer new samples, we feed the whole image

as the input. Due to the high memory consumption of processing

full-size screenshots (size ranging from 1000× 1000 to 6000× 6000),

we freeze the weights of image models at this stage, avoiding GPU

out-of-memory issues. The text model uses BERT as its backbone,

and is trained by an Adam optimizer with a batch size of 8, 𝛽1 of

0.9, 𝛽2 of 0.999 and a learning rate of 0.001 for 50 epochs.

The domain, feature and regression modules are four-layer fully-

connected MLP neural networks, with each layer followed by batch

normalization and ELU activations. ELU activation is often used in

regression tasks [35]. The domain module and the feature module

are trained via an Adam optimizer with a batch size of 512, 𝛽1 of

0.9, 𝛽2 of 0.999 and a learning rate of 0.0005 for 50 epochs. The

regression network is trained when we optimize the complete mul-

timodal model. After separately pretraining the image, text, domain

and feature models, we train the whole multimodal model with a

batch size of 32, 𝛽1 of 0.9, 𝛽2 of 0.999 and a learning rate of 0.001 for

50 epochs. See Appendix B for neural network architecture details.

6.2 Interactive Dashboard
For ease of use, we propose an interactive dashboard for digital mar-

keters to visually work their content (see Figure 7). Our dashboard

aims to provide similar functionality to [60], but our framework

turns out to be more powerful and comprehensive. Specifically, our

dashboard has merits that facilitate digital marketing design.

(1) In [60], the insights are restricted to the handcrafted features,

which suffer from inefficient scalability and intuitiveness.

For example, it is unclear what to do with the insights on a

specific attribute like “lighting”. Does it direct themarketer to

increase the lighting of the whole page or a specific section?

In contrast, our insights are directly overlaid on the original

content as a saliency map, as in Figure 7.

(2) Our system provides recommendations of design elements

based on historical data. When the marketers design a web-

site content in a specific content domain, our dashboard

shows the patches and words/phrases with the highest av-

erage interpretation scores on historical data with the same

content domain 𝐷 .

(3) Our system easily extends to new marketing content and

novel features, thus our insights are not constrained to ex-

isting marketing content features.

(4) Our success rate prediction is more accurate. We compare

several commonly used machine learning models with our

proposed deep multi-modal method. The results in Table 1

show our model outperforming the rest. We also present

an insights “Trust Score”, which is based on the insights

evaluation results in Table 2.

6.3 Evaluation
We evaluate our method using multiple methods. We quantitatively

evaluate the success rate prediction, comparing our proposed multi-

modal neural network to competing methods. We then report the

predicted causal effect of applying our insights to improve content

using our proposed correlation metric. Qualitatively, we exhibit

some feedback of using our interactive dashboard in Section 6.2 to

design marketing contents from real-world digital marketers.

Algorithm 2: Pairwise Accuracy.
Data: Predictions ŷ = [𝑦1, . . . , 𝑦𝑛], truth y = [𝑦1, . . . , 𝑦𝑛]
Result: Pairwise accuracy score 𝑠 .

Initialize count = 0 and hit = 0 .

for every distinct pair (𝑦𝑖 , 𝑦 𝑗 ) and (𝑦𝑖 , 𝑦 𝑗 ) in dataset do;
if sign(𝑦𝑖 − 𝑦 𝑗 ) = sign(𝑦𝑖 − 𝑦 𝑗 ) ;

hit = hit + 1;

end ;

count = count + 1 ;

end ;

𝑠 ← hit/count;
Output 𝑠

Success rate and pairwise prediction. Table 1 shows the suc-
cess rate prediction results of different scoring models on our

dataset. Here, we report the change in Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE), both commonly used to

evaluate the performance of regression models. We test the Gen-

eralized Linear Model used in [60]; MLP and XGBoost using only

categorical features extracted from text and images, which are typi-

cally used in industrial applications; and deep learning models that

take a single modality as input (BERT with text as input and ResNet-

18 with image as input). The results show that our multi-modal

neural network outperforms all competing methods.

During content experimentation, marketers often target a con-

tent to iterate on and improve. Then they conduct an experiment

to compare the control content with its modified counterpart(s) (i.e.
treatments). We use the pairwise ranking accuracy [1] between

the control and each treatment counterpart to evaluate the perfor-

mance of our models. Algorithm 2 details how pairwise accuracy is

computed. The Pairwise Accuracy of our proposed model achieves

a relative percentage increase of +38% on an out-of-domain test set

when compared to GLM. This result shows that our neural network

model is much more accurate for marketers in real-world use-cases.

Evaluating Insights. In Table 2, we evaluate the insights gen-

erated from the trained deep neural networks using our proposed

evaluation scheme (see Section 5). In our dataset, we have multiple



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kong et al.

Figure 7: Exemplar dashboard of our interactive system to refine existing content or design new content.

Table 1: Success rate prediction results for different models and modality combinations. We show the percentage decrease of
RMSE and MAE for each model compared to GLM.

In-domain test set Out-of-domain test set

Model Modality RMSE change MAE change RMSE change MAE change

GLM Categorical Features 0 % 0% 0% 0%

MLP Categorical Features -42% -31% -44% -35%

MLP Domain -54% -33% -50% -29%

XGBoost Categorical Features -38% -9% -41% -24%

ResNet-18 images -25% 19% -38% -12%

BERT Text -59% -64% -59% -66%

Multi-modal Neural Network All modalities -68% -65% -66% -75%

Table 2: Results of insights evaluation. The performance
metric is the percentage increase of Pearson Correlation Co-
efficient defined in Equation 7 for each attribution method
compared to GradCam.

GradCam

Integrated Kernel Feature

PCA

Gradient SHAP Ablation

Δ𝜌text 0% +288% +109% -14% +493%
Δ𝜌image 0% +55% -18% +0.5% +145%

treatments related to a given control, requiring 𝑂 (𝑛2) time to com-

pute 𝑑𝐶 and 𝑑𝑦 . We avoid such computational complexity by only

comparing control with the best performing treatment in the same

content domain.

For text data, Integrated Gradients performs the best among

GradCam, Kernel SHAP and Feature Ablation. After we integrate

these interpretation methods together by PCA, our method yields

the highest correlation score. PCA returns a relative percentage

increase of +493%, which is a very high correlation score. The result

of PCA indicates a strong correlation between insights and success

rate improvement, suggesting that the insights are trustworthy.

Marketers should consider modifying their templates based on the

insight attribution scores, and the insights-guided modification are

highly likely to improve the success rate.

For image data, all above-mentioned attribution methods are

too slow or intractable, as the size of image inputs is much larger

than text inputs, taking too much time to compute attributions for

all input pixels. To run the experiment in a reasonable time, we

discard the very large images that has more than 5𝑒 + 06 pixels

and evaluate the insights of the remaining image data. From the

results, we still see the pattern that Integrated Gradients and PCA

methods outperform GradCam, with Integrated Gradient and PCA

posting a correlation increase of +55% and +145% respectively. We

hypothesize that Integrated Gradient is more accurate since it com-

putes attributions on the original image, as opposed to computing it

on the intermediate activations, as with GradCam. PCA integrates

different aspects of attributions and captures the shared variance of

attribution maps from GradCam, Integrated Gradients, KernelShap

and Feature Ablations, leading to the best results.

User Experience. To further demonstrate the claims in our paper,

we launched a demo of the functionality discussed in Section 6.2.

The demo dashboard looks similar to Figure 7, including a saliency

map that highlights which parts of the input content to keep or

redesign, and recommended phrase and patch insights to act on.
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The demo has been shown to tens of professional digital marketers,

with mostly positive feedback.

Here is a positive feedback example, which highlights the use-

fulness of our framework in facilitating marketing content design:

“The new demo visualization insights helped make analyzing our

current templates faster - allowing marketers to spend more time

identifying opportunities, create hypotheses, and test new experi-

ences based on the results. In addition, the positive and negative

contribution saliency maps enable marketers to select what areas

of a template may have the highest impact during experimentation.

We are looking forward to continue working to develop this tool

and use it to help with successful experiments!”

In the above user’s feedback, the marketer praises our positive

and negative contribution saliency maps. In our implementation,

the positive (negative) contribution map is based on the absolute

value of the positive (negative) part of the attribution map. This

visualization makes it easy for users to identify the positive and

negative impact of the input content.

7 RELATEDWORKS
In this section, we briefly discuss the existing works related to

our topic, including modeling digital marketing contents, related

deep learning approaches for text and image recommendations,

and evaluation metrics for attribution methods. Note that none of

these related works fully scales and solves our problem, especially

as we define distinct tasks in Sections 4 and 5.

Modeling Digital Marketing Contents. The problem of mod-

eling digital marketing content has triggered substantial research

efforts [22, 60, 68, 70] over the past decade. Fong et al. [22] developed

a machine learning pipeline to classify advertising images based

on their quality. Wang [68] combines deep neural network and

evolutionary algorithm to predict optimal personalized marketing

strategy for better incomes. Zhou [70] proposes a recommenda-

tion algorithm based on recurrent neural network and distributed

expression for recommending new products to consumers based

on their browsing history. The above-mentioned works are out of

our scope, as we focus on extracting insights from deep models to

help digital marketers improve their content. The closest research

to ours is Sinha et al. [60], which aims to improve the attractive-

ness of contents by providing AI insights. Nevertheless, they use a

much simpler machine learning pipeline than ours, such that our

framework has better prediction accuracy and more interpretable

insights. Besides, they don’t propose an insights evaluation met-

ric, making us the first researchers to quantitatively examine the

effectiveness of generated marketing AI insights.

Related Deep Learning Approaches. Among the reproducible

deep learning approaches, our recommendation is quite similar

to prototype learning. Prototype learning is a form of case-based

reasoning [39, 56], which draws conclusions for new inputs by

comparing them with a few exemplar cases (i.e prototypes) in the

problem domain [17, 43]. It is a natural practice in our day-to-day

problem-solving process. For example, physicians perform diag-

nosis and make prescriptions based on their experience with past

patients [19, 26], and mechanics predict potential malfunctions

by recalling vehicles exhibiting similar symptoms [27]. Prototype

learning imitates human problem-solving processes for better in-

terpretability. Recently the concept has been incorporated in con-

volutional neural networks to build interpretable image classifiers

[17, 43]. Our framework is somehow similar to ProtoPNet [17], in

the sense that we both first highlight the salient areas and then

make recommendations. ProtoPNet outputs the recommendations

that explain the image classification results, while our recommen-

dations focus on improving the attractiveness scores of the current

input. So far, prototype learning is not yet explored for modeling

and improving digital marketing contents. Our method can be seen

as learning prototypes that increase the regression scores, a new

problem that we leave for future work.

Evaluating Attribution Methods. Recent research have pro-

posed several metrics to evaluate attribution methods, which can

be divided into two categories: Sanity Checks and Localization-

Based Metrics. Sanity Checks [2, 3, 52] are designed to examine

the basic properties of attribution methods according to faithful-

ness, stability and fairness. We aim at quantifying the effectiveness

of attribution methods in real-world applications though. Hence

our evaluation scheme examines the relationship between insights-

guided modifications and the ensuing change in the actual success

rate. Localization-Based Metrics measure how well attributions co-

incide with object bounding boxes or image grid cells that contains

the key objects explaining the classification results [13, 15, 23]. In

our scenario, we do not have the ground-truth bounding boxes,

and our attribution methods explain the regression model. Thus

localization-based metrics do not apply.

8 CONCLUSION
This paper constitutes the first attempt to use deep learning to facil-

itate the digital marketing design process. Our multimodal neural

network outperforms competing methods in predicting success

rates, and leverages neural attribution methods to provide insights

that guide digital marketers to improve their existing design. Our

approach is modular and generalizable, and individual neural com-

ponents can be easily replaced as the state-of-the-art evolves. This

work underscores the need to explore causal-aware models for

modeling content experimentation, which we leave as future work.

Additionally, our system’s output insights can be further improved

by high-capacity language and vision models such as ChatGPT

[50] and SAM [37]. These models can provide clearer and more

actionable instructions for human experts. Besides, our proposed

insights evaluation methods may have broader impact on other

real-world use-cases such as in healthcare, finance, bank sales etc.

For example, quantifying the estimated contributions of biological

risk factors on healthcare costs [42] or examining the effectiveness

of a predicted business decision from an AI agent on the company’s

income/loss [4].
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APPENDIX
A DETAILED INSIGHT EVALUATION

ALGORITHMS

Algorithm 3: Evaluate attribution results of a text model.

Data: Input dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁 )} where
𝑥𝑖 ∈ R𝑛 is the input and 𝑦𝑖 ∈ R is the label, and their

corresponding attribution maps {𝐶1,𝐶2, ...,𝐶𝑛} where
𝐶𝑖 ∈ R𝑛 .

Result: Correlation coefficient 𝜌 .

Initialize 𝑘 ← 0, dC ← ®0
𝑛∗(𝑛−1)

2 and dy ← ®0
𝑛∗(𝑛−1)

2 .

1) Find the difference:

For every pair of control and treatment {𝑥𝑖 , 𝑥 𝑗 } in
dataset do:
i. Compute the distinct elements set 𝑆𝑖, 𝑗 , such that the

attributes in 𝑆𝑖, 𝑗 can be only found in 𝑥𝑖 or 𝑥 𝑗 .

𝑆𝑖 ← set(𝑥𝑖 ), 𝑆 𝑗 ← set(𝑥 𝑗 ) ;
𝑆𝑖, 𝑗 ← 𝑆𝑖 ∪ 𝑆 𝑗 − 𝑆𝑖 ∩ 𝑆 𝑗 ;

ii. Compute 𝑃𝑖 and 𝑃 𝑗 , indicator vectors where

𝑃𝑖 := {𝑝𝑠
𝑖
}𝑠=1,2,...𝑛 such that 𝑝𝑠

𝑖
= 1 if 𝑥𝑠

𝑖
∈ 𝑆𝑖, 𝑗 and 𝑝𝑠𝑖 = 0

if 𝑥𝑠
𝑖
∉ 𝑆𝑖, 𝑗 , and 𝑃 𝑗 := {𝑝𝑠

𝑗
}𝑠=1,2,...𝑛 such that 𝑝𝑠

𝑗
= 1 if

𝑥𝑠
𝑗
∈ 𝑆𝑖, 𝑗 and 𝑝𝑠𝑗 = 0 f 𝑥𝑠

𝑗
∉ 𝑆𝑖, 𝑗 .

iii. Compute 𝑑𝐶 = sign(𝑦𝑖 − 𝑦 𝑗 ) (𝑃𝑇𝑖 𝐶𝑖 − 𝑃
𝑇
𝑗
𝐶 𝑗) as the sum

of predicted attributions difference, and 𝑑𝑦 = |𝑦𝑖 − 𝑦 𝑗 | as
the actual success rate improvements.

Update:

dC [𝑘] ← 𝑑𝐶 , dy [𝑘] ← 𝑑𝑦 ;

𝑘 ← 𝑘 + 1 ;

end ;

2) Compute Pearson Correlation 𝜌 between dC and dY .

Output 𝜌 .

Algorithm 4: Evaluate attribution results of an image

model.

Data: Input dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁 )} where
𝑥𝑖 ∈ R𝑚×𝑛×𝑍 is an RGB input image and 𝑦𝑖 ∈ R is

the label of the image, their corresponding attribution

maps {𝐶1,𝐶2, ...,𝐶𝑛} where 𝐶𝑖 ∈ R𝑚×𝑛 , and the

vision model Φ(·) that can extract features of input

images.

Result: Correlation coefficient 𝜌 .

Initialize 𝑘 ← 0, dC ← ®0
𝑛∗(𝑛−1)

2 and dy ← ®0
𝑛∗(𝑛−1)

2 .

1) Find the difference:

For every pair of control and treatment {𝑥𝑖 , 𝑥 𝑗 } in
dataset do:
i. Compute the feature maps of inputs:

A𝑖 ← Φ(𝑥𝑖 ), A𝑗 ← Φ(𝑥 𝑗 ) ;
reshape A𝑖 and A𝑗 :

A𝑖 ← reshape(A𝑖 , (𝑚′𝑛′, 𝑍 ′)),
A𝑗 ← reshape(A𝑖 , (𝑍 ′,𝑚′𝑛′));

ii. Compute the Cosine Similarity matrix between every

feature vector in A𝑖 and every feature vector in A𝑗 :

S𝑖, 𝑗 [𝑘, 𝑙] ←
< A𝑖 [𝑘, :],A𝑗 [:, 𝑙] >
|A𝑖 [𝑘, :] | |A𝑗 [:, 𝑙] |

,

∀𝑘 = 0, 1, 2, ...,𝑚′𝑛′, ∀𝑙 = 0, 1, 2...,𝑚′𝑛′;
iii. Take the maximum similarity scores for each location in

𝑥𝑖 and 𝑥 𝑗 :

d𝑥𝑖 [𝑖] ← max

𝑙
S[𝑖, 𝑙], ∀𝑖 = 0, 1, 2...,𝑚′𝑛′ ;

d𝑥 𝑗
[ 𝑗] ← max

𝑘
S[𝑘, 𝑗], ∀𝑗 = 0, 1, 2...,𝑚′𝑛′

iv. Threshold d𝑥𝑖 , d𝑥 𝑗
and resize them to the same

dimension as 𝐶𝑖 , 𝐶 𝑗 :

𝑃𝑖 ← threshold(d𝑥𝑖 ), 𝑃 𝑗 ← threshold(d𝑥 𝑗
) ;

Resize 𝑃𝑖 and 𝑃 𝑗 :

𝑃𝑖 ← resize(𝑃𝑖 , (𝑚,𝑛)), 𝑃 𝑗 ← resize(𝑃 𝑗 , (𝑚,𝑛)) ;
v. Compute predicted attribution difference 𝑑𝐶 and acutal

success rate improvement 𝑑𝑦 :

𝑑𝐶 = sign(𝑦𝑖 − 𝑦 𝑗 ) (
∑
𝑃𝑖 ⊙ 𝐶𝑖 −

∑
𝑃 𝑗 ⊙ 𝐶 𝑗) ;

𝑑𝑦 = |𝑦𝑖 − 𝑦 𝑗 | ;
Update:

dC [𝑘] ← 𝑑𝐶 , dy [𝑘] ← 𝑑𝑦 ;

𝑘 ← 𝑘 + 1 ;

end ;

2) Compute Pearson Correlation 𝜌 between dC and dY .

Output 𝜌 .
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B NEURAL NETWORK ARCHITECTURE
DETAILS

In Table 3, the convolutional layer is denoted as "Conv", followed

by the kernel size, stride, padding and number of filters. "fc" means

fully-connected layer and the output hidden units is provided after

the dash. "ELU", "ReLU" and "Sigmoid" represent the non-linear

functions. "GlobalAveragePooling2D" is the global average pooling

operation in the spatial dimension of the tensors, functioning the

same as Keras’ Global Average Pooling 2D [36]. "ResBlock" is the

standard ResNet block [33]. In the brackets, we provide the kernel

size, stride, and number of filters. "TransformerLayer" is the stan-

dard layer in a transformer [64]. In the brackets, we provide the

size of hidden layers and the number of attention heads.

Table 3: The architecture of each component in our multi-
modal neural network.

ResNet(·)
Layer Type

1 Conv(3, 1, 1)-32 + ReLU()

2 ResBlock(3, 1, 32)

3 ResBlock(3, 2, 32)

4 ResBlock(3,2, 32)

5 ResBlock(3,2, 32)

6 BatchNorm()+ReLU()

7 GlobalAveragePooling2D()

BERT(·)
Layer Type

1-12 TransformerLayers(768, 12)

MLP1 (·)
Layer Type

1 fc-512 + BatchNorm + ELU()

2 fc-1024 + BatchNorm + ELU()

3 fc-1024 + BatchNorm + ELU()

4 fc-512 + BatchNorm + ELU()

MLP2 (·)
Layer Type

1 fc-512 + BatchNorm + ELU()

2 fc-1024 + BatchNorm + ELU()

3 fc-1024 + BatchNorm + ELU()

4 fc-512 + BatchNorm + ELU()

MLP3 (·)
Layer Type

1 fc-512 + BatchNorm + ELU()

2 fc-1024 + BatchNorm + ELU()

3 fc-1024 + BatchNorm + ELU()

4 fc-1 + Sigmoid()

C ADDITIONAL RESULTS
In this section, we offer an additional result to support the finding in

our main paper. Specifically, Figure 8 compares RMSE and MAE of

our multimodal neural network and the Generalized Linear Model

(GLM) on each domain. Notably, each bar for RMSE and MAE is

only computed on multimodal data from each respective domain.

The objective here is to underscore the consistent error reduction

achieved by our multimodal neural network across a variety of

domains.

Figure 8: RMSE (top) and MAE (bottom) of GLM (blue) and
our multimodal neural network (orange) evaluated on each
domain.
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