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1 INTRODUCTION
A/B/N testing is a classic form of experimentation that has a proven

track record within industry [8]. Yet, experimenters are steadily

shifting toward Adaptive Experimental Design (AED) methods with

the goal of increasing testing throughput or reducing the cost of

experimentation. AED promises to use a fraction of the impressions

that traditional A/B/N tests require to yield precise and correct infer-

ence or to directly drive business impact. This paper shares lessons

learned regarding the challenges and pitfalls of naively using AED

in industrial settings. Moreover, we provide perspectives on the

proper objectives and system specifications in these settings. This

culminates in a presentation of an AED framework which simulta-

neously guarantees fast counterfactual inference while minimizing

experimentation cost by combining cumulative gain estimators,

always-valid confidence intervals, and an elimination algorithm.

2 REAL-WORLD PITFALLS AND LESSONS
We now present an experimentation case study and then generalize

to discuss lessons learned using AED systems and viewpoints on

the proper system specifications in industry.

2.1 Case Study: Adaptive Designs & Inference
Imagine a setting where on a retailer web page, a marketer has

been running a message 𝐴 for the last year and now wants to test

whether message 𝐵 beats 𝐴. Fearful of incurring a large amount

of loss from A/B testing opportunity cost, the marketer chooses

to use an AED method, namely Thompson Sampling (TS). At the

start of the experiment, the messages are initialized with a default

prior distribution, and then at each round the bandit dynamically

allocates traffic to each treatment, playing each message according

to the posterior probability of its mean being the highest. After day

8, the algorithm directs most traffic to message 𝐴 (see Figure 1).

On day 14, the experimenter needs to decide whether 𝐴 has ac-

tually beaten 𝐵. They conduct a paired 𝑡-test which, somewhat

surprisingly, does not produce a significant 𝑝-value. As the bandit

shifted all traffic to message 𝐴, not enough traffic was directed to

message 𝐵, diminishing the power of the test. The experimenter is

forced to conclude that they can not reject the null hypothesis that

there is no difference between the messages. A few days later, the

experimenter, who is still perplexed, looks at the daily means and

is then shocked to see that on most days, 𝐵 tends to have a higher

empirical mean than 𝐴, which disagrees with the bandit’s beliefs

that lead to the traffic allocation it produced.

To understand this behavior, note that in Figure 1c the running

empirical mean of 𝐴 is exceeding that of 𝐵, leading the algorithm

to put all its traffic on 𝐴. This phenomenon where the running

empirical mean shows a different direction than daily comparisons

is known as Simpson’s Paradox, and occurs in settings where the

traffic is dynamically allocated to arms whose means change over

time [8]. At an intuitive level, the experimenter has made a Type I

error by trusting the algorithm and choosing arm𝐴. Indeed, during

the time period from days 8 to 14, the algorithm decided to put

more traffic on arm 𝐴, exacerbating Simpson’s paradox. Convinced

by its own bad decision, the algorithm then chooses a bad traffic

allocation which further exacerbates the problem and leads to a

vicious cycle.

2.2 Lessons Learned & System Specifications
The previous simple case study demonstrates many of the chal-

lenges and pitfalls of naively using AED systems in industrial set-

tings with non-stationarity. We now dive deeper into such concerns

and provide thoughts on industrial objectives and specifications.

Regret Minimization Isn’t Enough. The fundamental goal of ex-

perimentation is to test hypothesis and deliver results that allow for

future iterations [2]. As a result, it is important that experimentation

procedures give the experimenter the ability to arrive at valid and

measurable inferences. In settings where the experimenter wants

to learn the best treatment, optimal regret minimization procedures

take a significantly longer time to return the identity of the best

arm with high probability [3] and lead to biased mean estimates.

Stochastic Bandit Algorithms Often Fail.While it is common in

industrial systems to deploy regret-minimizing algorithms based

on underlying stationarity assumptions, these algorithms fail with

regularity in any given experiment even for the sole purpose of

accruing an optimization metric. Often these failures go unnoticed

due to the absence of a suitable comparison. We highlight in our

experiments that stochastic bandit algorithms can fail to maximize

the accumulation of an optimization metric as a result of dynamic

traffic allocations in combination with an estimation based on the

observed adaptively collected data in time-varying environments.

Identify the Counterfactual Best. In settings where arm means are

shifting over time, it is challenging to define the notion of a “best-

arm” as the mean performance of an arm and the identity of the best

arm may change daily. To bridge this gap, our proposed objective

is to identify with high probability the treatment that would have
obtained the highest possible reward, if all traffic had been diverted
to it. This counterfactual metric is known as the cumulative gain.
Figure 1d demonstrates the cumulative gain over time for the case

study. With the exception of [1], we believe that this objective has

hardly been considered in the best-arm identification literature.

Always Valid Inference. In traditional A/B/N testing, the experi-

ment horizon is fixed ahead of time, with a significance test at the

end of the experiment. Monitoring 𝑝-values during the experiment

is heavily frowned upon as it leads to Type 1 error inflation [7].

Work in the experimental space has lead to generalizations of the 𝑝-

value known as always-valid p-values that can safely be sequentially
monitored [6, 7]. This capability is critical in practice.

The Best of Three Worlds (BOTW). Though optimal regret min-

imization procedures fail to provide valid inferences and tend to

identify the best arm more slowly, we still would like to minimize

the opportunity cost of experimentation. Thus experimentation sys-

tems should try to provide the best of three worlds: identification of

the counterfactual best, mitigation of opportunity cost, and robust-

ness to arbitrary time variation. In completely adversarial settings
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Figure 1: Case study of time-variation and adaptive allocations causing Simpson’s paradox.

we can’t hope to have all three [1], but real life settings mostly live

somewhere between fully stochastic and fully adversarial.

3 OUR APPROACH
We now sketch our methodology motivated by the above discussion.

At a high level, our approach consists of a) accurate estimation in

a time varying setting, b) anytime inference, c) an elimination

procedure. We demonstrate the effectiveness of our method both

for identification and regret minimization in several natural settings

both in theory and practice.

3.1 Experimentation Setting
We consider a setting with 𝑘 arms running for 𝑇 days beginning

on day 𝑡 = 1. On day 𝑡 ∈ [𝑇 ], arm 𝑖 ∈ [𝑘] receives 𝑛𝑖,𝑡 impressions

and 𝑛𝑡 =
∑
𝑖∈[𝑘 ] 𝑛𝑖,𝑡 is the total amount of traffic on that day. We

assume that the underlying reward distribution of an arm 𝑖 ∈ [𝑘]
on day 𝑡 ∈ [𝑇 ] is fixed over the period of a day (but not over

the experiment) and given by a Bernoulli distribution with mean

𝜇𝑖,𝑡 ∈ (0, 1). Finally, we let 𝑟𝑖,𝑡 and �̂�𝑖,𝑡 := 𝑟𝑖,𝑡/𝑛𝑖,𝑡 denote the total
reward (success) and empirical mean on day 𝑡 ∈ [𝑇 ] for any arm

𝑖 ∈ [𝑘], respectively.

3.2 Estimation with Time Variation
We now discuss estimation and inference with time-variation.

3.2.1 Empirical Means. The (running) empirical mean of arm 𝑖 ∈
[𝑘] after𝑇 days of an experiment is given by �̂�𝑖 := (∑𝑇

𝑡=1
𝑟𝑖,𝑡 )/(

∑𝑇
𝑡=1

𝑛𝑖,𝑡 ).
Given the standard assumptions of fixed horizon A/B/N testing,

the empirical mean is an unbiased estimator of the underlying

performance. However, when the underlying performance of an

arm exhibits daily time-variation, the mean performance is not

a well-defined metric and the empirical mean can be a problem-

atic estimator. Specifically, the estimate �̂�𝑖 is subject to Simpson’s
Paradox [8]. In the context of experimentation, Simpson’s paradox

refers to a circumstance in which the daily empirical mean of an

arm 𝑖 ∈ [𝑘] is higher than that of an arm 𝑗 ∈ [𝑘] on each given day

(�̂�𝑖,𝑡 > �̂� 𝑗,𝑡 ∀ 𝑡 ∈ [𝑇 ]), but the empirical mean of arm 𝑗 is higher

than that of arm 𝑖 over the course of an experiment (�̂� 𝑗 > �̂�𝑖 ). As

we saw in Case Study 1 (Figure 1c), in experimentation where the

traffic allocation is changing over time, this paradox often arises.

3.2.2 Cumulative Gain. As the above discussion implies, the em-

pirical mean estimator has many negative characteristics that make

it inappropriate for time-varying settings with adaptive traffic al-

location. Part of the challenge is that in time-varying settings the

notion of “the best performing arm” may be poorly defined since

the best-arm may change from day-to-day. To overcome this, we in-

stead try to answer the following counterfactual: “how much reward
would this arm have accrued if it had received all of the traffic”. For
any arm 𝑖 ∈ [𝑘], the cumulative gain (CG) after𝑇 days is defined as

𝐺𝑖,𝑇 :=
∑𝑇
𝑡=1

𝑛𝑡 𝜇𝑖,𝑡 . (1)

The corresponding cumulative gain rate variant is𝐺𝑖,𝑇 :== 𝐺𝑖,𝑇 /𝑛𝑇
where 𝑛𝑇 :=

∑𝑇
𝑡=1

𝑛𝑡 is the total experiment traffic.

Cumulative Gain Estimator. Assume that on each day 𝑡 ∈ [𝑇 ]
of the experiment, a probability vector 𝑝𝑡 = (𝑝1,𝑡 , · · · , 𝑝𝑘,𝑡 ) ∈ Δ𝑘
is selected and each visitor 𝑠𝑡 ∈ [𝑛𝑡 ] on day 𝑡 ∈ [𝑇 ] is shown an

arm 𝐼𝑠𝑡 ∈ [𝑘] that is selected with probability P(𝐼𝑠𝑡 = 𝑖) = 𝑝𝑖,𝑡 and

a reward 𝑟𝑠𝑡 is observed. A natural and unbiased cumulative gain

estimator is given by inverse propensity weighing [5]:

𝐺𝑖,𝑇 =
∑𝑇
𝑡=1
(𝑟𝑖,𝑡/𝑝𝑖,𝑡 ) . (2)

The cumulative gain estimator will never suffer from Simpson’s

paradox by definition, unlike the empirical mean estimator. As

shown in the case study (Fig 1c-1d), using the cumulative gain

would have prevented misleading inferences.

3.2.3 Always-Valid Inference. The high risk of error rate inflation

from fixed horizon 𝑝-values motivates adopting always-valid confi-
dence intervals [6, 7] on the cumulative gain gaps between arms as

a tool to yield always-valid inferences. In this context, an always-

valid confidence interval 𝐶 (𝑖, 𝑗, 𝑡, 𝛿) for a pair of arms 𝑖, 𝑗 ∈ [𝑘]
with error tolerance 𝛿 ∈ (0, 1) guarantees

P(∃ 𝑡 ≥ 1, 𝑖, 𝑗 ∈ [𝑘] : |𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 | ≥ 𝐶 (𝑖, 𝑗, 𝑡, 𝛿)) ≤ 𝛿.

To obtain the always-valid confidence interval, we apply theMSPRT
1

using the plugin estimators �̂�𝑖,𝑡 and �̂� 𝑗,𝑡 for the unknown armmeans

𝜇𝑖,𝑡 and 𝜇 𝑗,𝑡 on each day in an estimate of the variance to get

P(∃ 𝑡 ≥ 1, 𝑖, 𝑗 ∈ [𝑘] : |𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 | ≥ 𝐶 (𝑖, 𝑗, 𝑡, 𝛿)) ≤ 𝛿,

with 𝐶 (𝑖, 𝑗, 𝑡, 𝛿) :=

√︃
(𝑉𝑖, 𝑗,𝑡 + 𝜌) log((𝑉𝑖, 𝑗,𝑡 + 𝜌)/(𝜌𝛿2)) (3)

where 𝜌 > 0 is a fixed constant and

𝑉𝑖, 𝑗,𝑡 =
∑𝑡
𝜏=1

𝑛𝜏
(
�̂�𝑖,𝜏 (1 − �̂�𝑖,𝜏 )/𝑝𝑖,𝜏 + �̂� 𝑗,𝜏 (1 − �̂� 𝑗,𝜏 )/𝑝 𝑗,𝜏

)
.

1
For reference, see Eq. 14 in [6].



Best of Three Worlds:
Adaptive Experimentation for Digital Marketing in Practice

(a) TS & CGSE empirical means (b) CGSE cumulative gain rates (c) TS daily probability allocation (d) Algorithm daily empirical mean

Figure 2: Experiment: Thompson sampling catastrophically fails on production data and shifts all traffic to the worst arm.

Algorithm 1 Cumulative Gain Successive Elimination (CGSE)

1: Input Arm set [𝑘], error tolerance 𝛿 ∈ (0, 1)
2: Initialize Active arm set A ← [𝑘], day 𝑡 ← 1

3: while |A| > 1 do
4: Set 𝑝𝑖,𝑡 = 1/|A| for all 𝑖 ∈ A and 𝑝𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑘] \A
5: For each arrival 𝑠𝑡 ∈ [𝑛𝑡 ] show arm 𝐼𝑠𝑡 ∼ 𝑝𝑡
6: Collect observations {𝑟𝑠𝑡 , 𝐼𝑠𝑡 , 𝑝𝑡 }

𝑛𝑡
𝑠=1

7: A ← A \ { 𝑗 ∈ A s.t. ∃ 𝑖 ∈ A : 𝐺𝑖, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) > 0}
8: 𝑡 ← 𝑡 + 1

9: Return A

3.3 Adaptive Counterfactual Inference
We present an AEDmethod that gives sample efficient identification

of the counterfactual optimal treatment, while simultaneously min-

imizing regret in experiments where stationarity is not guaranteed.

3.3.1 Algorithm Description. Algorithm 1 (CGSE) is an elimination

based method on the cumulative gain. On each day, an active set

of arms A is maintained and each is shown to users with equal

probability 1/|A|. At the conclusion of each day, any arms that

can be concluded to not have the maximum cumulative gain up

through the current day among the active set based on the always-

valid confidence interval are removed and never sampled again.

This procedure controls the cumulative gain estimator variance and

sample complexity by keeping the sampling probabilities uniform

across the set of active arms, while the regret is controlled by ceasing

to give any traffic to provably sub-optimal arms.

3.3.2 Guarantees for Correct Inference. Define the cumulative gain

rate gap relative to an arm 𝑖∗ ∈ [𝑘] for any arm 𝑗 ∈ [𝑘] at any day

𝑡 ≥ 1 as Δ 𝑗,𝑡 := 𝐺𝑖∗,𝑡 −𝐺 𝑗,𝑡 . The assumption below implies that the

counterfactual optimal arm 𝑖∗ is time-independent. This is a mild

restriction that allows for daily-time variation among all arms and

does not require that 𝑖∗ always has the highest daily mean.

Assumption 1. There exists an arm 𝑖∗ such that for each arm
𝑗 ∈ [𝑘] \ {𝑖∗} the cumulative gain rate gap Δ 𝑗,𝑡 > 0 for all 𝑡 ≥ 1.

This following result gives a strong guarantee in a general time-

varying setting for the correctness of CGSE.

Proposition 1. CGSE with 𝛿 ∈ (0, 1) returns arm 𝑖∗ with proba-
bility at least 1 − 𝛿 under Assumption 1.

3.3.3 Guarantees in Stochastic Environments. In the stochastic sta-

tionary setting, CGSE reduces to a closely related version of the

classical successive elimination algorithm [4]. Thus, it obtains the

known guarantees for the algorithm in this situation and in settings

with constant performance gaps, which include near-optimality
with high probability for both sample complexity and regret.

3.3.4 Experiments. Fig. 2 shows the results of the experiment from

an online production environment. Traffic was split equally be-

tween TS and CGSE. After 2 weeks, CGSE eliminates Arm 1 (Fig. 2b),

while TS was allocating nearly 100% of the traffic to this arm at

the end of the experiment ( Fig. 2c). This may appear to be an ex-

ample where the arm switched from being the worst performer

and became the best performer, but we can validate that this is not

the case. Consider Fig. 2a, in this plot the solid lines represent the

empirical means of each arm as estimated from the TS algorithm,

versus the dashed lines with empirical means estimated from CGSE.

Since TS is giving little traffic to Arms 2-4 from day 30 onward, we

see that there is a huge bias downwards in their empirical means,

compared to SE which is uniformly allocating traffic. This suggests

that TS’s confidence in giving all of its traffic to Arm 1 is misplaced

and instead CGSE was wise to eliminate Arm 1 early. Specifically,

we see that the performance of all arms moves up as TS begins to

switch its allocation to Arm 1 and this reinforcing feedback loop

causes continued flawed allocations by TS. This is a real-world

example of Simpson’s paradox. As Fig. 2d shows, this has an impact

on the total successes observed. Indeed the daily empirical means

of the total successes observed by each algorithm shows that CGSE

has a higher overall success rate and thus minimizes regret more

effectively toward the end of the experiment.
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