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Why diversify music?
• Explicit clusters of songs, by album and 

artist.
• Songs within an album share album cover 

graphic, title and description.
• Users often play album songs back-to-back.

• Recommenders score same-album songs 
similarly

• Ranking by relevance results in duplications
• Problem amplified on small screens
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Jaccard Swap diversity method
• Heuristic algorithm by Yu et al.

• 𝑢: user, 𝑖: item
• ItemSim 𝑖, 𝑖$ : similarity measure between 

two items 
• Items(𝑢): Set of items user 𝑢 interacted with

• Expl 𝑢, 𝑖 = 𝑖$	
   	
  ItemSim 𝑖, 𝑖$ > 𝜀	
                       
                             & 𝑖’ ∈ Items(𝑢)}	
  

• The explanation Expl 𝑢, 𝑖 of recommending 
item 𝑖 to user 𝑢 is the set of items similar to 
item 𝑖 that user 𝑢 has interacted with.

• Jaccard diversity distance between items 𝑖, 𝑗
for user 𝑢:

𝐷𝑢(𝑖, 𝑗) 	
  = 1	
   −	
  
Expl 𝑢, 𝑖 	
  ∩  Expl 𝑢, 𝑗
Expl 𝑢, 𝑖 	
  ∪ 	
  Expl 𝑢, 𝑗

Experimental	
  setup
• Baseline: Rank by recommender score

• Item-to-item collaborative filtering 
recommender provides item score and 
explanation set (by Linden et al.)

• Artist and album as Jaccard explanation set 
features and submodular categories (           )

• Randomized controlled trial with equal 
customer allocation
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Discussion
• Diversity affects recommendation quality
• Submodular method improvement is 

significant

• Smoothness:
• Submodularity produces uniformly 

diverse set. All contiguous subsets are 
also diverse.

• Jaccard Swap doesn’t

• Relevance:
• Submodularity ensures most relevant 

item is first, followed by mix of most 
relevant items within each category 

• Swap may not retain most relevant 
content

Takeaways
• We compared three methods to diversify 

Amazon Prime Music recommendations.
• Diversifying music recommendations 

improves recommendation quality and user 
engagement. 

• Incorporate recommender score into 
diversity measure.

• Submodular approach produces relevant and 
uniformly diverse mix.

Amazon Prime Music mobile app
• Free benefit for prime members
• Millions of songs
• Thousands of expert-programmed playlists
• Upload your own music
• Create personal playlists

• Access your music from anywhere
• List-form recommender
• Devices with limited interaction capability 

Submodular diversity method
• Naturally models diminishing returns
• Incorporates recommender score into 

diversity utility function

• 𝑐: category, 𝑖: item, 𝑆: diversified set
• score(𝑖): recommender score for 𝑖
• Category utility:

𝑓𝑐(𝑆) 	
  = 	
  log 1	
   + 	
   ; score(𝑖)
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• Maximize sum of all category utilities:

	
  𝑎𝑟𝑔𝑚𝑎𝑥> 𝜌 𝑆 =;𝑓𝑐 𝑆
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• Greedy near-optimal solution:

𝑆FGH = 𝑆F ∪ {𝑎𝑟𝑔𝑚𝑎𝑥=\>K𝜌 𝑆F ∪ {𝑖} }

• See also Teo et al.
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Results

Baseline                                    Submodular

Treatment comparison Increase in minutes 
streamed

Submodularity vs Baseline 0.64% (p=0.03)

Jaccard Swap vs Baseline 0.40% (p=0.18)

Submodularity vs Jaccard Swap 0.24% (p=0.41)


