Diversifying Music Recommendations

Houssam Nassif, Kemal Oral Cansizlar, Mitchell Goodman, S.V.N. Vishwanathan

1 Amazon, Seattle, USA
2 University of California, Santa Cruz, USA

Takeaways
- We compared three methods to diversify Amazon Prime Music recommendations.
- Diversifying music recommendations improves recommendation quality and user engagement.
- Incorporate recommender score into diversity measure.
- Submodular approach produces relevant and uniformly diverse mix.

Why diversify music?
- Explicit clusters of songs, by album and artist.
- Songs within an album share album cover graphic, title and description.
- Users often play album songs back-to-back.
- Recommenders score same-album songs similarly.
- Ranking by relevance results in duplications.
- Problem amplified on small screens.

Amazon Prime Music mobile app
- Free benefit for prime members
- Millions of songs
- Thousands of expert-programmed playlists
- Upload your own music
- Create personal playlists
- Access your music from anywhere
- List-format recommender
- Devices with limited interaction capability

Jaccard Swap diversity method
- Heuristic algorithm by Yu et al.
- \(u : \) user, \(i : \) item
- ItemSim(\(i, j \)) similarity measure between two items
- ItemSim(\(i, j \)) > \(\varepsilon \)
- \(\varepsilon \)
- The explanation ItemSim of recommending item \(i \) to user \(u \) is the set of items similar to item \(i \) that user \(u \) has interacted with.

\[
D(S, i, j) = 1 - \frac{\text{ItemSim}(i, j)}{\text{ItemSim}(i, S) \cup \text{ItemSim}(j, S)}
\]

Submodular diversity method
- Naturally models diminishing returns
- Incorporates recommender score into diversity utility function
- \(c : \) category, \(i : \) item, \(S : \) diversified set
- score(\(i \)) recommender score for \(i \)
- Category utility:
 \[
f_c(S) = \log \left(1 + \sum_{i \in S} \text{score}(i) \right)
\]

Maximize sum of all category utilities:

\[
\argmax_S \sum_c f_c(S)
\]

Greedy near-optimal solution:

\[
S_{k+1} = S_k \cup \{ \argmax_{i \notin S_k} \sum_c f_c(S_k \cup \{ i \}) \}
\]

- See also Teo et al.

Experimental setup
- Baseline: Rank by recommender score
- Item-to-item collaborative filtering
- Artist and album as Jaccard-explanation set (by Linden et al.)
- Randomized controlled trial with equal customer allocation

Results

<table>
<thead>
<tr>
<th>Treatment comparison</th>
<th>Increase in minutes streamed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity vs Baseline</td>
<td>0.64% (p=0.03)</td>
</tr>
<tr>
<td>Jaccard Swap vs Baseline</td>
<td>0.40% (p=0.18)</td>
</tr>
<tr>
<td>Submodularity vs Jaccard Swap</td>
<td>0.24% (p=0.41)</td>
</tr>
</tbody>
</table>

Discussion
- Diversity affects recommendation quality
- Submodular method improvement is significant

- Smoothness:
 - Submodularity produces uniformly diverse set. All contiguous subsets are also diverse.
 - Jaccard Swap doesn’t

- Relevance:
 - Submodularity ensures most relevant item is first, followed by mix of most relevant items within each category
 - Swap may not retain most relevant content

Bibliography

Contacts
Houssam Nassif
Amazon Core Machine Learning Science Team
housanm@amazon.com, 608-443-9168
345 Boren Ave N, Seattle, WA, 98109, USA

Machine Learning @ Amazon