FACTOR LEARNING PORTFOLIO OPTIMIZATION INFORMED BY CONTINUOUS-TIME FINANCE MODELS

Abstract

We study financial portfolio optimization in the presence of unknown We propose FaLPO with a neural stochastic factor model and a modeland uncontrolled system variables referred to as stochastic factors. We regularized policy learning method. propose FaLPO (factor learning portfolio optimization). a framework Neural Stochastic Factor Model that interpolates between deep policy learning and continuous-time finance models.

Problem Definition

Notations are provided below:

• Assets prices $S_t := [S_t^1, S_t^2, \cdots S_t^{d_S}]^\top$ and factors Y_t .

- Risk-free return as zero.
- Terminal wealth under a policy: Z_T^{π} .

Portfolio optimization aims to maximize the expected terminal utility: $\mathbb{E}[U(Z_T^{\pi})]$, with two examples: the power utility $U(z;\gamma) := \frac{1}{1-\gamma} z^{1-\gamma}$ with $\mathscr{Z} = \mathbb{R}^+$, $\gamma > 0$, and $\gamma \neq 1$; and the exponential utility $U(z; \gamma) :=$ $-\frac{\exp(-\gamma z)}{\gamma} \text{ with } \mathscr{Z} = \mathbb{R} \text{ and } \gamma > 0.$

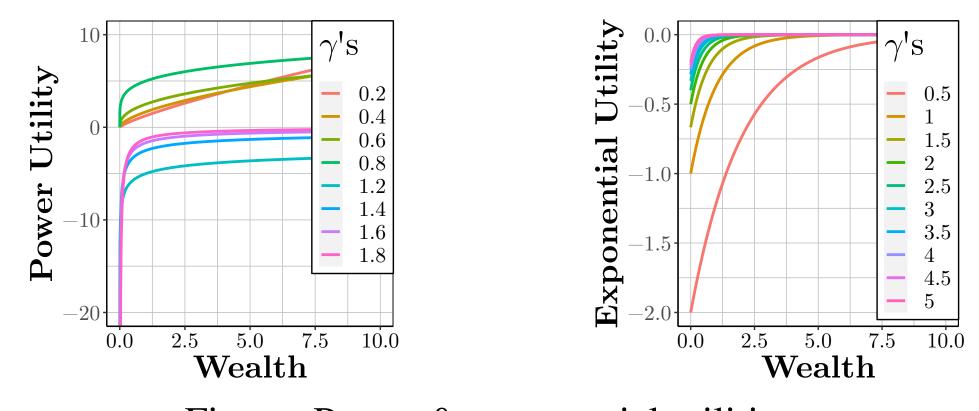


Figure: Power & exponential utilities.

Background

DDPG directly maximizes the following performant $\max_{\theta_D} V(\theta_D) \text{ with } V(\theta_D) := \mathbb{E}[U(Z_T^{\pi(\cdot;\theta_D)})].$

Stochastic Factor Models explicitly formulate the

$$\frac{dS_t^i}{S_t^i} = f_S^i(Y_t; \boldsymbol{\theta}_S^*) dt + \sum_{j=1}^{d_W} g_S^{ij}(Y_t; \boldsymbol{\theta}_S^*) dW_t^j,$$
$$dY_t = f_Y(Y_t; \boldsymbol{\theta}_S^*) dt + g_Y(Y_t; \boldsymbol{\theta}_S^*)^\top dW_t.$$

Sinong Geng¹, Houssam Nassif^{*2}, Zhaobin Kuang³, Anders Max Reppen⁴, Ronnie Sircar¹ Princeton University¹, Meta², Google³, Boston University⁴ *Work done at Amazon

FaLPO

$$\begin{split} \frac{dS_t^i}{S_t^i} &= f_S^i(X_t; \boldsymbol{\theta}_S^*) dt + \sum_{j=1}^{d_W} g_S^{ij}(X_t; \boldsymbol{\theta}_S^*) dW_t^j, \\ dX_t &= f_X(X_t; \boldsymbol{\theta}_S^*) dt + g_X(X_t; \boldsymbol{\theta}_S^*)^\top dW_t, \\ X_t &= \phi(Y_t; \boldsymbol{\theta}_\phi^*). \end{split}$$

Model-Regularized Policy Learning

• From the model we can derive the functional form of an optimal continuous-time policy:

 $\tilde{\pi}_{t}^{*} = \Pi(t, S_{t}, Z_{t}, X_{t}; \boldsymbol{\theta}_{\tilde{\pi}}^{*}),$ (3)where the functional form of Π can be obtained in many existing

- stochastic factor models.
- Given the specific functional forms in (2), FaLPO conducts model calibration :

$$\max_{\boldsymbol{\theta}_S} L(\boldsymbol{\theta}_{\boldsymbol{\phi}},$$

The policy learning procedure can be summarized as: $\max_{(\theta_{\phi},\theta_{\pi}\theta_{S})\in\mathscr{A}}H(\theta_{\phi},\theta_{\pi},\theta_{S}), \text{ with }$ $H(\theta_{\phi}, \theta_{\pi}, \theta_{S}) := (1 - \lambda)V(\theta_{\phi}, \theta_{\pi})$ -

Theory

Theorem 1 Define $V_{\Lambda t}^* := V(\pi^*)$ where π^* is an optimal discrete-time admissible policy with time interval Δt , and $\theta_{\Delta t}^* := (\theta_{\phi,\Delta t}^*, \theta_{\pi,\Delta t}^*, \theta_{S,\Delta t}^*) \in$ $\operatorname{argmax}_{(\theta_{\phi},\theta_{\pi},\theta_{S})\in\mathscr{A}}H(\theta_{\phi},\theta_{\pi},\theta_{S})$ with the policy functional form (3) With assumptions above,

 $\lim_{\Delta t \to 0} \left(V_{\Delta t}^* - V(\boldsymbol{\theta}_{\Delta t}^*) \right) = 0.$ **Theorem 2** Finite-sample performance bounds are provided.

nce objective:	
$; \theta_D)$	

(2)

(4)

(5)

 θ_S)

$$(\theta_{\phi}, \theta_{\pi}) + \lambda L(\theta_{\phi}, \theta_{S}).$$

	· · ·		
Methods	Factor Representation	Parametric Modeling	g Joint Optimization
MMMC	*		*
DDPG		*	*
SLAC		*	
RichID			*
CT-MB-RL	*		*
FaLPO			

Table: Average terminal utility after tuning with standard deviation for synthetic data

Annual Volatility	0.1	0.2	0.3
FaLPO	-0.465 ± 0.446	-1.35 ± 0.155	-2.737 ± 0.219
DDPG	-1.650 ± 0.456	-3.30 ± 1.294	-5.495 ± 1.269
SLAC	-0.750 ± 0.210	-5.50 ± 0.011	-6.160 ± 0.012
RichID	-3.350 ± 0.111	-5.65 ± 0.102	-6.325 ± 0.048
CT-MB-RL	-2.850 ± 0.014	-5.35 ± 0.020	-6.160 ± 0.026
MMMC	-4.723 ± 7.619	-5.602 ± 4.299	-6.124 ± 3.217

Table: Average terminal utility for real-world data. Mix denotes a mix of stocks in the previous three sectors.

Methods	Energy	Material	Industrials	Mix
FaLPO	-2.4 ± 1.9	-3.2 ± 1.0	−6.3 ±2.3	-3.5 ±1.5
DDPG	-6.6 ± 1.2	-7.3 ± 1.5	-7.3 ± 2.1	$-2.5\times10^4\pm3.3\times10^8$
SLAC	-6.8 ± 0.2	-7.0 ± 1.5	-342.4 ± 886.8	$-3.0 \times 10^8 \pm 4.3 \times 10^{12}$
RichID	-6.5 ± 0.1	-6.9 ± 1.4	-6.9 ± 0.4	-8.1 ± 3.9
CT-MB-RL	-4.2 ± 6.2	-5.4 ± 4.3	-11655 ± 32947.5	-5.7 ± 3.1
MMMC	-8.5 ± 7.6	-6.5 ± 1.7	-11.0 ± 5.4	-7.5 ± 4.4

[1] Tong Suk Kim and Edward Omberg. Dynamic nonmyopic portfolio behavior. *The Review of Financial Studies*, 9(1):141–161, 1996.

[2] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In International conference on machine learning, pages 387–395. PMLR, 2014.

Experiments

Table: Competing methods and their characteristics.

References