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Abstract

We study financial portfolio optimization in the presence of unknown
and uncontrolled system variables referred to as stochastic factors. We
propose FaLPO (factor learning portfolio optimization). a framework
that interpolates between deep policy learning and continuous-time
finance models.

Problem Definition

Notations are provided below:

•Assets prices St := [S1
t ,S

2
t , · · ·S

dS
t ]⊤ and factors Yt.

•Risk-free return as zero.
•Terminal wealth under a policy: Zπ

T .

Portfolio optimization aims to maximize the expected terminal utility:
E[U(Zπ

T )], with two examples: the power utility U(z;γ) := 1
1−γ

z1−γ

with Z = R
+, γ > 0, and γ ̸= 1; and the exponential utility U(z;γ) :=

−exp(−γz)
γ

with Z = R and γ > 0.
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Figure: Power & exponential utilities.

Background

DDPG directly maximizes the following performance objective:

max
θD

V (θD) with V (θD) := E[U(Zπ(·;θD)
T )]. (1)

Stochastic Factor Models explicitly formulate the dynamics

dSi
t

Si
t
= f i

S(Yt;θ
∗
S )dt +

dW∑
j=1

gi j
S (Yt;θ

∗
S )dW j

t ,

dYt = fY(Yt;θ
∗
S )dt +gY(Yt;θ

∗
S )

⊤dWt.

(2)

FaLPO

We propose FaLPO with a neural stochastic factor model and a model-
regularized policy learning method.
Neural Stochastic Factor Model

dSi
t

Si
t
= f i

S(Xt;θ
∗
S )dt +

dW∑
j=1

gi j
S (Xt;θ

∗
S )dW j

t ,

dXt = fX(Xt;θ
∗
S )dt +gX(Xt;θ

∗
S )

⊤dWt,

Xt = φ(Yt;θ
∗
φ).

Model-Regularized Policy Learning

•From the model we can derive the functional form of an optimal
continuous-time policy:

π̃
∗
t = Π(t,St,Zt,Xt;θ

∗
π̃), (3)

where the functional form of Π can be obtained in many existing
stochastic factor models.

•Given the specific functional forms in (2), FaLPO conducts model
calibration :

max
θS

L(θφ ,θS). (4)

The policy learning procedure can be summarized as:
max

(θφ ,θπθS)∈A
H(θφ ,θπ,θS), with

H(θφ ,θπ,θS) := (1−λ )V (θφ ,θπ)+λL(θφ ,θS).
(5)

Theory

Theorem 1 Define V ∗
∆t :=V (π∗) where π∗ is an optimal discrete-time

admissible policy with time interval ∆t, and θ ∗
∆t := (θ ∗

φ ,∆t,θ
∗
π,∆t,θ

∗
S,∆t) ∈

argmax(θφ ,θπ ,θS)∈A H(θφ ,θπ,θS) with the policy functional form (3)
With assumptions above,

lim
∆t→0

(
V ∗

∆t −V (θ ∗
∆t)

)
= 0.

Theorem 2 Finite-sample performance bounds are provided.

Experiments

Table: Competing methods and their characteristics.

Methods Factor Representation Parametric Modeling Joint Optimization
MMMC ✖ ✔ ✖

DDPG ✔ ✖ ✖

SLAC ✔ ✖ ✔

RichID ✔ ✔ ✖

CT-MB-RL ✖ ✔ ✖

FaLPO ✔ ✔ ✔

Table: Average terminal utility after tuning with standard deviation for
synthetic data

Annual Volatility 0.1 0.2 0.3
FaLPO −−−000...444666555±0.446 −−−111...333555±0.155 −−−222...777333777±0.219
DDPG −1.650±0.456 −3.30±1.294 −5.495±1.269
SLAC −0.750±0.210 −5.50±0.011 −6.160±0.012
RichID −3.350±0.111 −5.65±0.102 −6.325±0.048

CT-MB-RL −2.850±0.014 −5.35±0.020 −6.160±0.026
MMMC −4.723±7.619 −5.602±4.299 −6.124±3.217

Table: Average terminal utility for real-world data. Mix denotes a mix of stocks in the
previous three sectors.

Methods Energy Material Industrials Mix
FaLPO −−−222...444±1.9 −−−333...222±1.0 −−−666...333±2.3 −−−333...555±1.5
DDPG −6.6±1.2 −7.3±1.5 −7.3±2.1 −2.5×104±3.3×108

SLAC −6.8±0.2 −7.0±1.5 −342.4±886.8 −3.0×108±4.3×1012

RichID −6.5±0.1 −6.9±1.4 −6.9±0.4 −8.1±3.9
CT-MB-RL −4.2±6.2 −5.4±4.3 −11655±32947.5 −5.7±3.1

MMMC −8.5±7.6 −6.5±1.7 −11.0±5.4 −7.5±4.4
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