

Enhancing Transistor Sizing in Analog IC Design using a Circuit-Focused Semi-Supervised Learning

ESIB – USJ

Meta

Virgil systems

Rayan Mina, Houssam Nassif, George Sakr Beirut, December 2023

Machine Learning in IC Design

> Novelty of this Work

Conclusions and Perspectives

1/19/2024 Rayan MINA

Context

> Machine Learning in IC Design

> Novelty of this Work

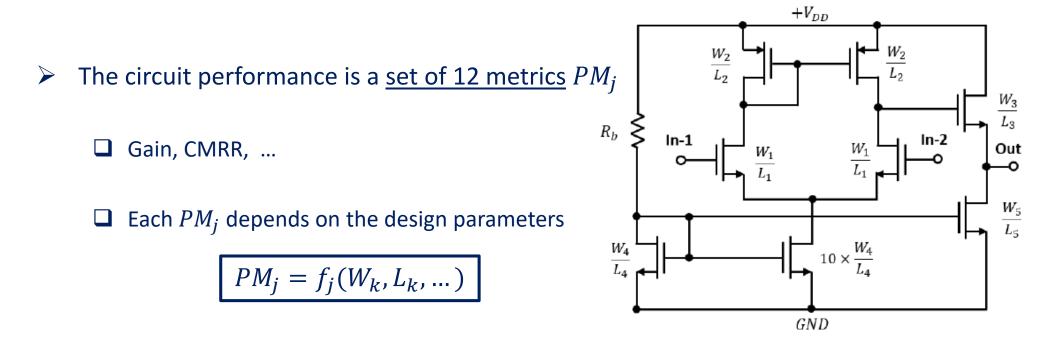
> Conclusions and Perspectives

The Analog Challenge

Analog IC Design is a 2-step process

Front-End Design (50%): Schematic, computer simulations to tune component dimensions

Back-End Design (50%): Layout, schematic to physical representation of devices


➤ Scope of this work → Front-End Design

Analog circuit performance depends heavily on physical dimensions of circuit components

Analog IC designers are rare

Analog IC Design Example

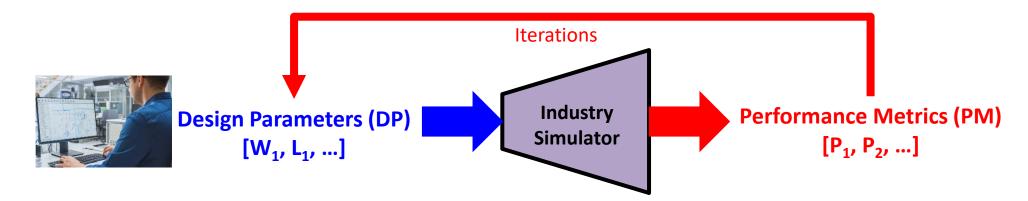
A simple CMOS 2-stage op-amp has 11 design parameters

▶ 12 mathematical functions of 11 variables $\in \mathbb{R}^+$ each → The design space is huge

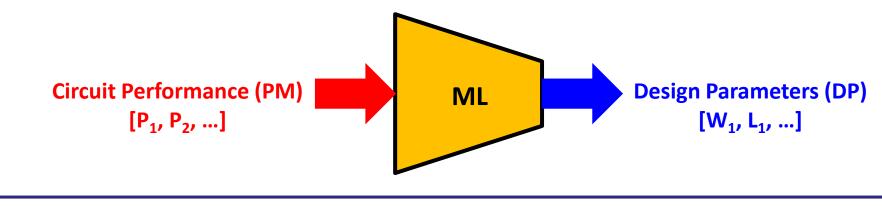
Agenda

Machine Learning in IC Design

> Novelty of this Work


> Conclusions and Perspectives

1/19/2024 Rayan MINA

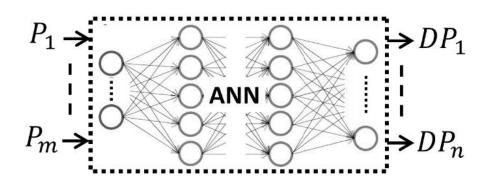

ML Application in IC Design

Time-consuming <u>Iterative</u> Analog IC design approach:

ML offers a solution by solving the Inverse-Problem in analog circuit design

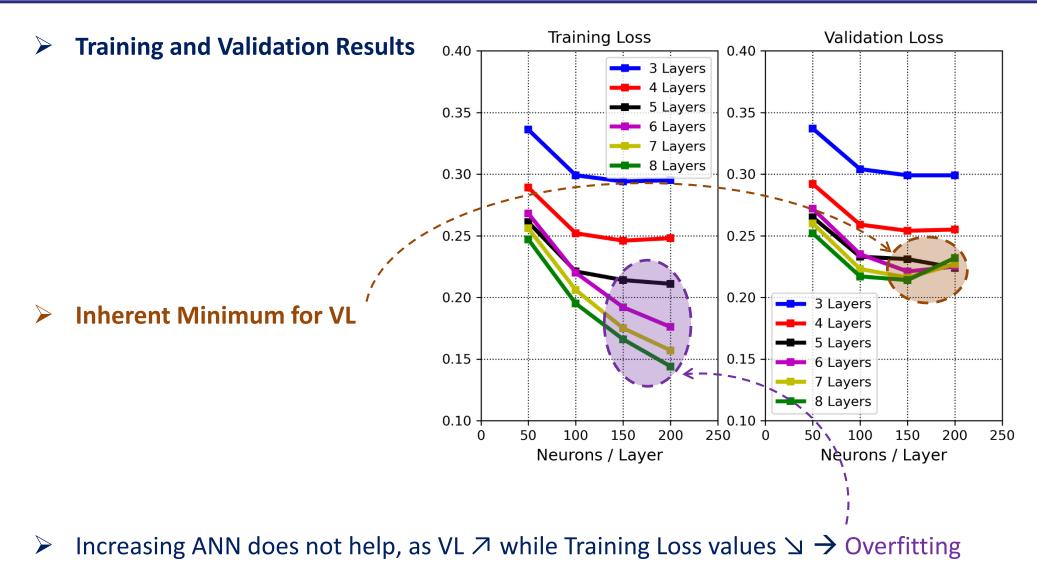
Agenda

> Machine Learning in IC Design


> Novelty of this Work

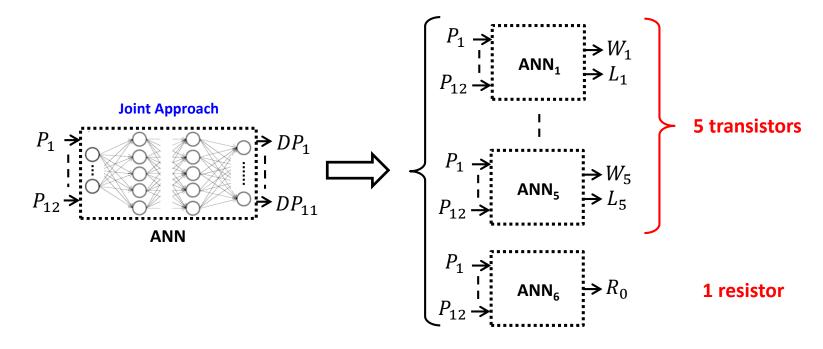
> Conclusions and Perspectives

First Attempt: Joint Approach (1)


- Target Circuit: 2-stage CMOS op-amp showed in slide #6, 11 DP
- Dataset: 150,000 samples = 120k +10k + 10k
- Idea: PM are inputs to one ANN, trained to predict all the DP <u>simultaneously</u>
 This joint approach is intuitive and straightforward

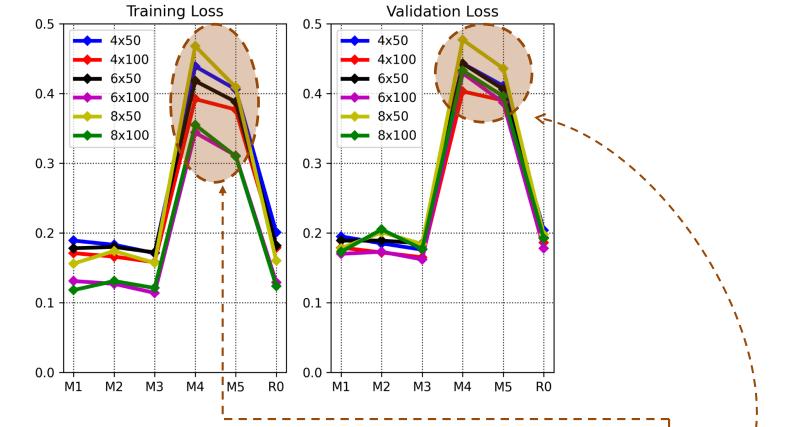
Av	Open-loop voltage Gain			
CMRR	Common-mode rejection ratio			
PSRR+	Positive supply rejection ratio			
NSRR-	Negative supply rejection ratio			
IIN	Integrated noise level			
NTH	Thermal noise floor			
Fc	Noise corner frequency			
GBW	Gain-bandwidth product			
PhM	Phase margin			
Ibs	Current consumption			
V _{OUT}	dc output level			
IIP ₃	3 rd order Input-intercept point			

First Attempt: Joint Approach (2)


IMCET 2023

Investigation: Single Approach (1)

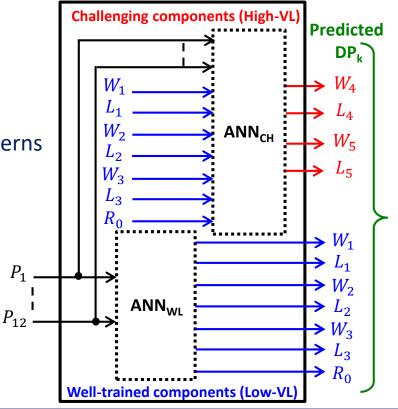
To understand why we reached a minimum for VL, <u>investigation</u> is carried out


Idea

- Each component is tuned as a standalone entity
- Width and Length of MOS transistors should be tuned together
- □ Assign a different ANN for each transistor to predict its W/L simultaneously

Investigation: Single Approach (2)

\succ Training and Validation Loss results of the investigation \rightarrow two loss patterns



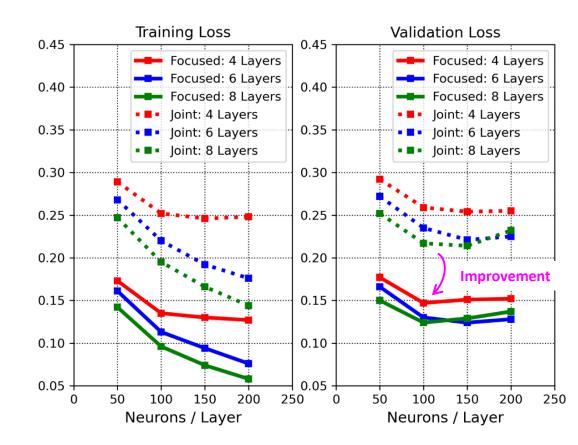
Conclusions:

- Transistors M₄ & M₅ are challenging components for ANN to learn, high Training Loss & VL
- **D** Relationships between PM & M_4 / M_5 are less meaningful than those with the remaining DP

Innovative Focused Approach (1)

- Based on VL results, we identified 2 patterns:
 - Well-trained components with low VL values
 - Challenging components with significant high VL values
- ➢ Solution → propose a Focused Learning Approach
 - □ Target \rightarrow enhance the VL results
 - Split the DP prediction into 2 ANNs based on VL patterns
 - □ Challenging ANN_{CH} has more inputs than ANN_{WL} \checkmark Inputs = PM + DP_{well-trained}

Innovative Focused Approach (2)


For the challenging transistors, VL decreased by ~3.5 compared to the single approach

□ 6-layer ANN, 100 neurons/layer: VL ↘ from ~0.4 to ~0.11

ANN Architecture		Investigative Approach (ANN for each transistor)		Focused Approach	
		VL	VL	VL	TL
Layers	Neurons per Layer	M4	M5	M5	
4	50	0.44	0.41	0.16	0.18
4	100	0.40	0.39	0.12	0.13
6	50	0.44	0.41	0.15	0.16
6	100	0.43	0.39	0.11	0.12
8	50	0.48	0.44	0.13	0.13
8	100	0.43	0.40	0.10	0.11

Joint vs Focused:

50% VL improvement on all ANN complexities

Agenda

Context

> Machine Learning in IC Design

> Novelty of this Work

Conclusions and Perspectives

Conclusions and Perspectives

Evaluate the component predicting difficulty by training 1 ANN for each, using PM as inputs

Classify components into two categories, challenging (high VL) and straightforward (low VL)

Split the learning process into an ANN for each category, the challenging having a modified input structure incorporating DP of remaining components

Future work: test and validate the proposed focused approach on more analog circuits