Instance-Optimal PAC Contextual Bandits

Zhaoqi Li*, Lillian Ratliff*, Houssam Nassif ${ }^{\dagger}$, Kevin Jamieson*, Lalit Jain*
*University of Washington

\dagger Amazon

Motivation

Motivation

Motivation

Motivation

Motivation

Question: What is the best way to give personalized recommendations?

C
a
policy
π

Upcoming
Sale

Question: What is the best way to give

 personalized recommendations?
Contextual Bandit Setting

- At each time $t=1,2, \cdots$:
- Context $c_{t} \in \mathrm{C}$ arrives, $c_{t} \sim \nu \in \Delta_{\mathrm{C}}$
- Choose action $a_{t} \in \mathrm{~A}$
- Receive reward $r_{t}, \mathbb{E}\left[r_{t} \mid c_{t}, a_{t}\right]=r\left(c_{t}, a_{t}\right) \in \mathbb{R}$
- Policy class Π, each $\pi \in \Pi, \pi: \mathrm{C} \rightarrow \mathrm{A}$
- Average reward: $V(\pi):=\mathbb{E}_{c \sim \nu}[r(c, \pi(c))]$
. Optimal policy: $\pi_{\star}:=\arg \max V(\pi)$ $\pi \in \Pi$

(ϵ, δ) - PAC Guarantee

Return $\hat{\pi}$ satisfying, $V(\hat{\pi}) \geq V\left(\pi_{*}\right)-\varepsilon$ with probability greater than $1-\delta$ in a minimum number of samples.

Regret Minimization vs. Policy Identification

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_{T}=O(\sqrt{|\mathrm{~A}| T \log (\Pi)})$, computationally efficient

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_{T}=O(\sqrt{|\mathrm{~A}| T \log (\Pi)})$, computationally efficient
- Modification gives (ϵ, δ) - PAC algorithm w/ sample complexity $O\left(|\mathrm{~A}| \log (\Pi / \delta) / \epsilon^{2}\right)$, also see [Zanette et al. 2021]

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_{T}=O(\sqrt{|\mathrm{~A}| T \log (\Pi)})$, computationally efficient
- Modification gives (ϵ, δ) - PAC algorithm w/ sample complexity $O\left(|\mathrm{~A}| \log (\Pi / \delta) / \epsilon^{2}\right)$, also see [Zanette et al. 2021]

Two Problems
a) Minimax Result! Does not adapt to hardness of instance.

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_{T}=O(\sqrt{|\mathrm{~A}| T \log (\Pi)})$, computationally efficient
- Modification gives (ϵ, δ) - PAC algorithm w/ sample complexity $O\left(|\mathrm{~A}| \log (\Pi / \delta) / \epsilon^{2}\right)$, also see [Zanette et al. 2021]

Two Problems

True for any policy class! Not capturing difficulty for learning π_{*}
a) Minimax Result! Does not adapt to hardness of instance.

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T} r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)
$$

- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_{T}=O(\sqrt{|\mathrm{~A}| T \log (\Pi)})$, computationally efficient
- Modification gives (ϵ, δ) - PAC algorithm w/ sample complexity $O\left(|\mathrm{~A}| \log (\Pi / \delta) / \epsilon^{2}\right)$, also see [Zanette et al. 2021]

Two Problems

True for any policy class! Not capturing difficulty for learning π_{*}
a) Minimax Result! Does not adapt to hardness of instance.
b) Can construct an example, where any optimal regret algorithm won't be instance optimal!

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency - context space C and policy space Π could be infinite!

Challenges

－What is the statistical limits of learning，i．e．the instance－dependent lower bound？
－Can we design sampling procedure to achieve this？
－Computational efficiency－context space C and policy space Π could be infinite！
棚一相一

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency - context space C and policy space Π could be infinite!

Question: what is possible?

Our Contribution

- Show the first instance-dependent lower bound for PAC contextual bandit
- Present a simple algorithm that achieves this lower bound
- Design a computational efficient algorithm that also achieves this lower bound

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{gathered}
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
\Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t} \\
\text { IPS estimate! }
\end{gathered}
$$

A Lower Bound

A Lower Bound

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$

A Lower Bound

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

A Lower Bound

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)-$ PAC algorithm satisfies $\tau \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ with high probability where

$$
\rho_{\Pi, 0}=\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \text { gap }
$$

Our algorithm

Our algorithm

Our algorithm

Input: П

Our algorithm

Input: П
Initialize $\Pi_{1}=\Pi$

Our algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$
for $l=1,2, \cdots$

Our algorithm

```
Input: П
Initialize 泣= П
forl=1,2,\cdots
1. Choose \(p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}\) and \(n_{l}\) such that
```


Our algorithm

$$
\begin{aligned}
& \text { Input: } \Pi \\
& \text { Initialize } \Pi_{1}=\Pi \\
& \text { for } l=1,2, \cdots \\
& \text { 1. Choose } p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C} \text { and } n_{l} \text { such that } \\
& \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\end{aligned}
$$

Our algorithm

$$
\begin{aligned}
& \text { Input: } \Pi \\
& \text { Initialize } \Pi_{1}=\Pi \\
& \text { for } l=1,2, \cdots \\
& \text { 1. Choose } p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C} \text { and } n_{l} \text { such that } \\
& \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\end{aligned}
$$

Our algorithm

```
Input: П
Initialize \(\Pi_{1}=\Pi\)
for \(l=1,2, \cdots\)
1. Choose \(p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}\) and \(n_{l}\) such that
\[
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\]
```

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$

Our algorithm

```
Input: \(\Pi\)
Initialize \(\Pi_{1}=\Pi\)
for \(l=1,2, \cdots\)
1. Choose \(p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}\) and \(n_{l}\) such that
\[
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\]
```

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

Our algorithm

```
Input: П
Initialize \(\Pi_{1}=\Pi\)
for \(l=1,2, \cdots\)
1. Choose \(p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}\) and \(n_{l}\) such that
\[
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\]
```

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Our algorithm

```
Input: П
Initialize \(\Pi_{1}=\Pi\)
for \(l=1,2, \cdots\)
    1. Choose \(p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}\) and \(n_{l}\) such that
\[
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
\]
2. For \(t \in\left[n_{l}\right]\), for each context \(c_{t}\), sampling \(a_{t} \sim p_{c_{t}}^{(l)}\) and compute IPS estimate \(\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)\) for each \(\pi \in \Pi\)
3. Update
\[
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)
\]
```

Theorem [Li et al. 2022] The above algorithm returns an (ϵ, δ)-PAC policy with at most $O\left(\rho_{\Pi, \epsilon} \log (|\Pi| / \delta) \log _{2}(1 / \epsilon)\right)$ samples.

Our algorithm

Returning the empirical best policy at the end \Rightarrow at least 2ϵ-good

Towards an efficient algorithm

Input: П
Initialize $\Pi_{1}=\Pi$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Towards an efficient algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Towards an efficient algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$
for $l=1,2, \cdots$
not efficient since cannot hold on to p_{c} for all c !

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\Delta(\pi)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPS estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Dual Problem

- Consider the dual formulation:

Primal $\min _{p_{c} \in \triangle_{A}, \forall \in \in \mathrm{C}} \max _{\pi \in \Pi}-\Delta\left(\pi, \pi_{*}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}}$

Dual Problem

- Consider the dual formulation:

$$
\begin{aligned}
& \text { Primal } \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}-\Delta\left(\pi, \pi_{*}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}} \\
& \text { Dual } \\
& \quad \max _{\lambda \in \triangle_{\Pi} \gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} \min _{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{2 \gamma_{\pi} n}\right)
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} & =\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-2 \mathbf{1}\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
& =: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
& \min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-2 \mathbf{1}\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
&=: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \\
& \text { Implicitly maintain } p_{c} \text { for all } c \in \mathrm{C} \text { simultaneously! }
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
& \min _{p_{c} \in \triangle_{A}, \forall c \in C} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{\mu}}\right\|_{A(p)^{-1}}^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-21\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
&=: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \\
& \text { Implicitly maintain } p_{c} \text { for all } c \in \mathrm{C} \text { simultaneously! }
\end{aligned}
$$

- Dual becomes

$$
\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
& \min _{p_{c} \in \triangle_{A}, \forall c \in C} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{\mu}}\right\|_{A(p)^{-1}}^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-21\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
&=: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \\
& \text { Implicitly maintain } p_{c} \text { for all } c \in \mathrm{C} \text { simultaneously! }
\end{aligned}
$$

- Dual becomes

$$
\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]
$$

concave in λ and locally strongly convex in γ !

Frank-Wolfe

- Gives us a sparse yet good enough solution λ
- Plug in solution λ in the closed-form gives us $p_{c} \in \triangle_{\mathrm{A}}$

Thanks!

Towards an efficient algorithm

- argmax oracle: given $\left(c_{1}, s_{1}\right), \cdots,\left(c_{n}, s_{n}\right) \in \mathscr{C} \times \mathbb{R}^{|\mathscr{A}|}$, returns $\underset{\pi \in \Pi}{\arg \max } \sum_{t=1}^{n} s_{t}\left(\pi\left(c_{t}\right)\right)$
- Can be computed using cost-sensitive classification

A Lower Bound

- Choose action distribution p such that:

$$
\max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{(\Delta(\pi) \vee \epsilon)^{2}} \leq \frac{n}{2 \log (1 / \delta)}
$$

Agnostic Setting Reduces to Linear

- What if we do not assume linear structure of reward function?

We can reduce it to the previous setting by constructing ϕ !

- Let $\theta^{*} \in \mathbb{R}^{|\mathrm{C}| \times|\mathrm{A}|}$ where $\left[\theta^{*}\right]_{c, a}=r(c, a)$
a

Agnostic Setting Reduces to Linear

$$
\begin{aligned}
& r(c, a)=\left\langle\boldsymbol{\operatorname { v e c }}\left(e_{c} e_{a}^{\top}\right), \theta^{*}\right\rangle \\
& \phi(c, a) \\
& \left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}=\sum_{c} \nu_{c} \sum_{a} \frac{1}{p_{c, a}}\left(\mathbf{1}\{\pi(c)=a\}-\mathbf{1}\left\{\pi_{*}(c)=a\right\}\right)^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi(c)}}+\frac{1}{p_{c, \pi_{*}(c)}}\right) \mathbf{1}\left\{\pi_{*}(c) \neq \pi(c)\right\}\right] .
\end{aligned}
$$

Agnostic Setting Reduces to Linear

$$
\begin{aligned}
& r(c, a)=\left\langle\boldsymbol{\operatorname { v e c }}\left(e_{c} e_{a}^{\top}\right), \theta^{*}\right\rangle \\
& \phi(c, a) \\
& \left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p))^{-1}}^{2}=\sum_{c} \nu_{c} \sum_{a} \frac{1}{p_{c, a}}\left(\mathbf{1}\{\pi(c)=a\}-\mathbf{1}\left\{\pi_{*}(c)=a\right\}\right)^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi \tau}(c)}+\frac{1}{p_{c, \pi_{s}(c)}}\right) \mathbf{1}\left\{\pi_{*}(c) \neq \pi(c)\right\}\right] .
\end{aligned}
$$

$$
\rho_{\Pi, c}:=\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi \backslash \pi_{s}} \frac{\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi(c)}}+\frac{1}{p_{c, \pi, \pi}(c)}\right)\right.}{} \frac{\left.\mathbf{1}\left\{\begin{array}{l}
\text { Variance } \\
\left.\left(\mathbb{E}_{c \sim \nu}(c) \neq \pi(c)\right\}\right]
\end{array} r\left(c, \pi_{*}(c)\right)-r(c, \pi(c))\right] \vee \epsilon\right)^{2}}{\text { Gap }} .
$$

