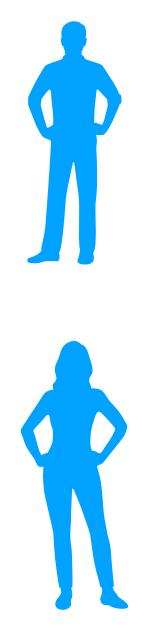
Instance-Optimal PAC **Contextual Bandits**

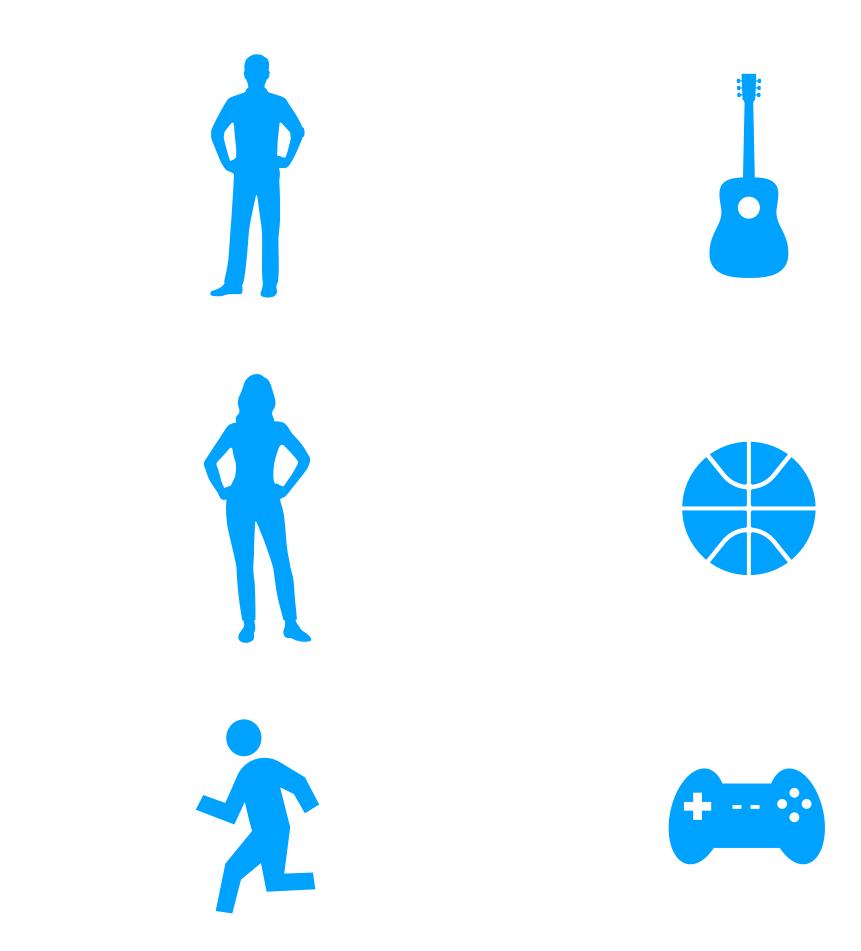
Zhaoqi Li*, Lillian Ratliff*, Houssam Nassif[†], Kevin Jamieson*, Lalit Jain*

*University of Washington

†Amazon



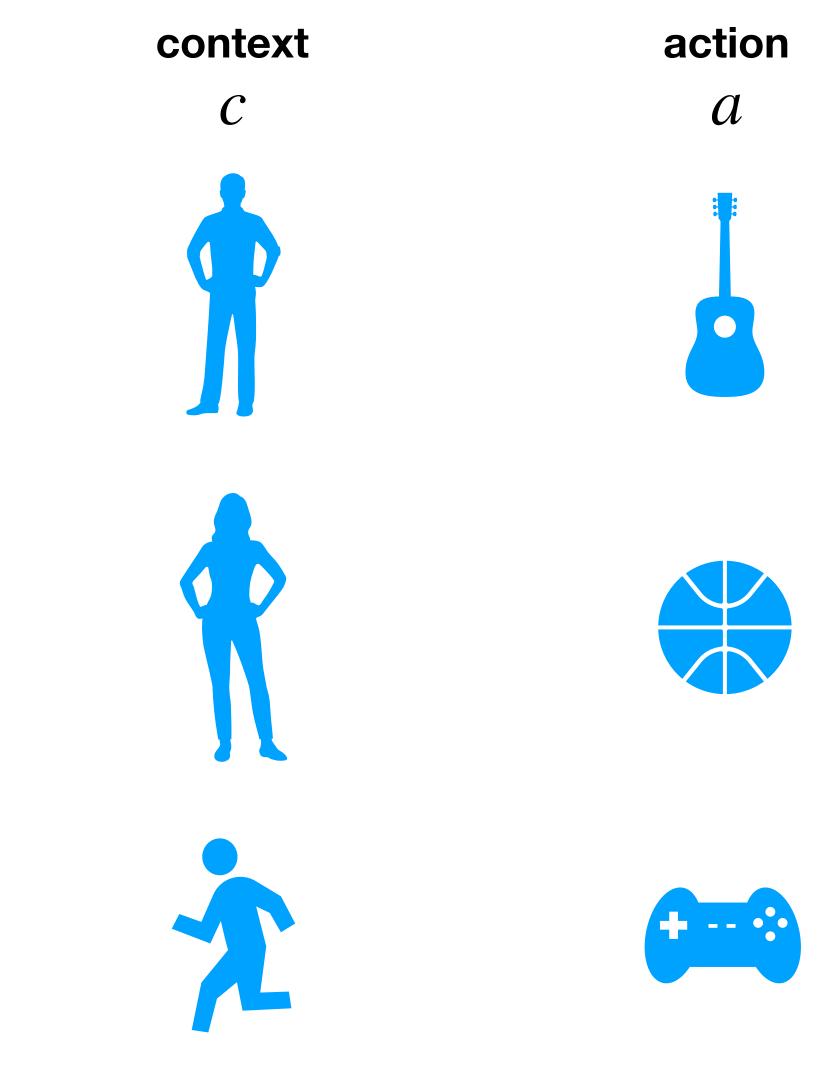
Question: What is the best way to give personalized recommendations?



policy

 π

Question: What is the best way to give personalized recommendations?



Contextual Bandit Setting

- At each time $t = 1, 2, \cdots$:

 - Choose action $a_t \in A$
- Policy class Π , each $\pi \in \Pi, \pi : \mathbb{C}$
- Average reward: $V(\pi) := \mathbb{E}_{c \sim \nu}[r(c, t)]$
- Optimal policy: $\pi_{\star} := \arg \max V(\pi)$ $\pi \in \Pi$

(ϵ, δ) – PAC Guarantee

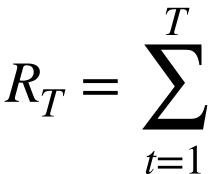
Return $\hat{\pi}$ satisfying, $V(\hat{\pi}) \geq V(\pi_*) - \varepsilon$ with probability greater than $1 - \delta$ in a minimum number of samples.

• Context $c_t \in C$ arrives, $c_t \sim \nu \in \Delta_C$ • Receive reward r_t , $\mathbb{E}[r_t | c_t, a_t] = r(c_t, a_t) \in \mathbb{R}$

$$\rightarrow A$$

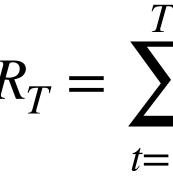
$$\pi(c))$$

• Regret heavily studied:



 $R_T = \sum_{t=1}^{T} r(c_t, \pi_*(c_t)) - r(c_t, a_t)$

• Regret heavily studied:

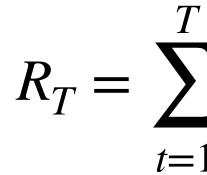


computationally efficient

 $R_T = \sum r(c_t, \pi_*(c_t)) - r(c_t, a_t)$

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|} T \log(\Pi))$,

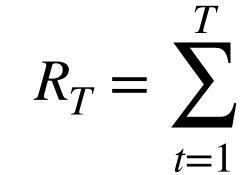
• Regret heavily studied:



- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|} T \log(\Pi))$, computationally efficient
- Modification gives (ϵ, δ)- PAC algorithm w/ sample complexity $O(|A|\log(\Pi/\delta)/\epsilon^2)$, also see [Zanette et al. 2021]

$$\sum_{t=1}^{t} r(c_t, \pi_*(c_t)) - r(c_t, a_t)$$

Regret heavily studied:



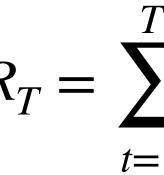
- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|} T \log(\Pi))$, computationally efficient
- Modification gives (ϵ, δ)- PAC algorithm w/ sample complexity $O(|A|\log(\Pi/\delta)/\epsilon^2)$, also see [Zanette et al. 2021]

Two Problems

Minimax Result! Does not adapt to hardness of instance. a)

$$\sum_{t=1}^{t} r(c_t, \pi_*(c_t)) - r(c_t, a_t)$$

Regret heavily studied:



- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|} T \log(\Pi))$, computationally efficient
- Modification gives (ϵ, δ)- PAC algorithm w/ sample complexity $O(|A|\log(\Pi/\delta)/\epsilon^2)$, also see [Zanette et al. 2021]

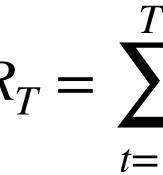
Two Problems

Minimax Result! Does not adapt to hardness of instance. a)

 $R_T = \sum r(c_t, \pi_*(c_t)) - r(c_t, a_t)$

True for any policy class! Not capturing difficulty for learning π_*

Regret heavily studied:



- ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|T \log(\Pi)})$, computationally efficient
- Modification gives (ϵ, δ)- PAC algorithm w/ sample complexity $O(|A|\log(\Pi/\delta)/\epsilon^2)$, also see [Zanette et al. 2021]

Two Problems

- Minimax Result! Does not adapt to hardness of instance. a)
- b) Can construct an example, where any optimal regret algorithm won't be instance optimal!

 $R_T = \sum r(c_t, \pi_*(c_t)) - r(c_t, a_t)$

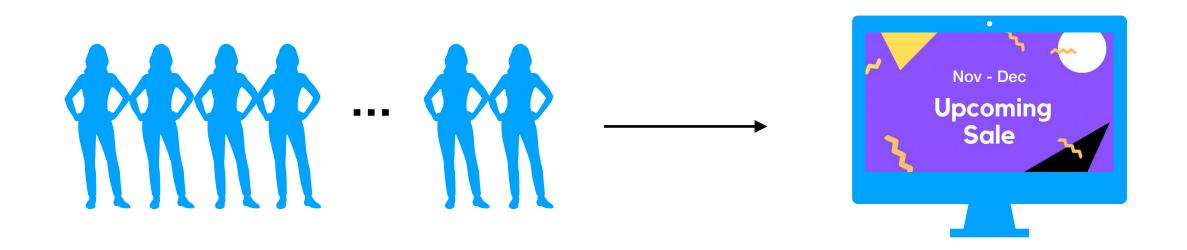
True for any policy class! Not capturing difficulty for learning π_*

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency context space C and policy space Π could be infinite!

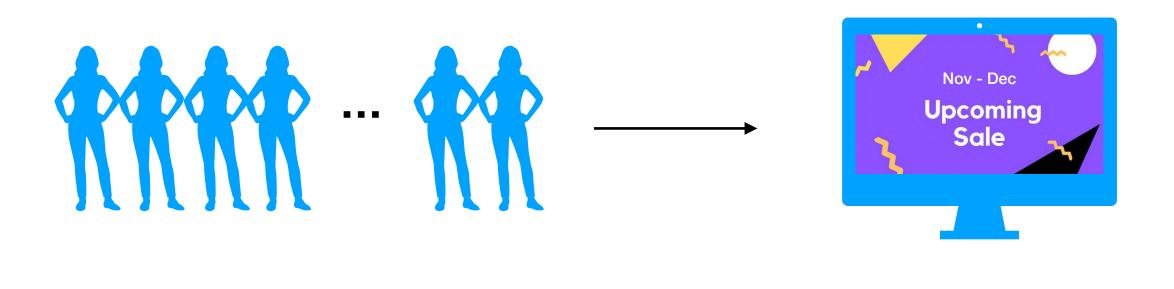
Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency context space C and policy space Π could be infinite!



Challenges

- What is the statistical limits of learning, i.e. the **instance-dependent** lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency context space C and policy space Π could be **infinite**!



Question: what is possible?

Our Contribution

- Show the first instance-dependent lower bound for PAC contextual bandit
- Present a simple algorithm that achieves this lower bound

Design a **computational efficient** algorithm that also achieves this lower bound

- - feature map: $\phi : \mathbb{C} \times \mathbb{A} \to \mathbb{R}^d$ such that $r(c, a) = \langle \phi(c, a), \theta^* \rangle$ for $\theta^* \in \Theta \subset \mathbb{R}^d$
- Given dataset $D = \{(c_t, a_t, r_t)\}_{t=1}^n$ where $a_t \sim p_{c_t} \in \Delta_A$,

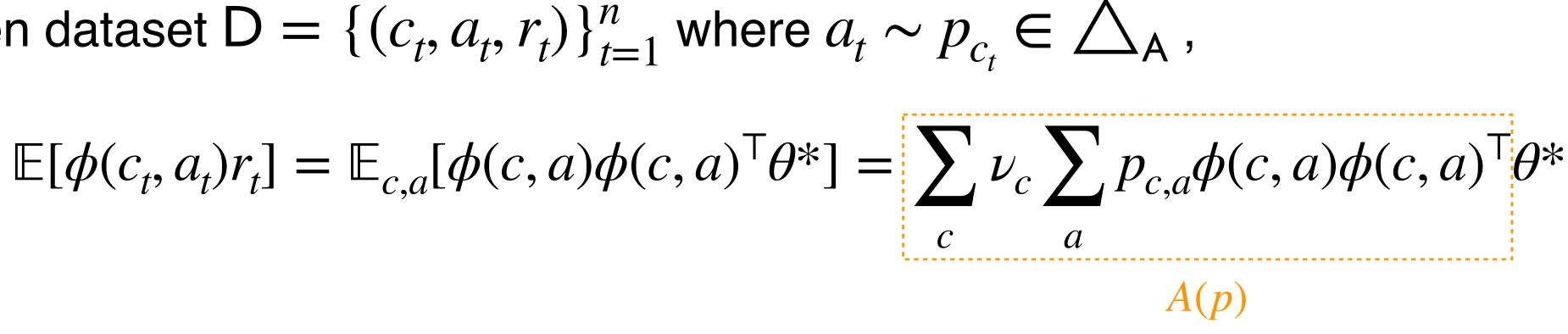
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

 $\mathbb{E}[\phi(c_t, a_t)r_t] = \mathbb{E}_{c,a}[\phi(c, a)\phi(c, a)^{\mathsf{T}}\theta^*] = \sum \nu_c \sum p_{c,a}\phi(c, a)\phi(c, a)^{\mathsf{T}}\theta^*$ *C a*

- Given dataset $D = \{(c_t, a_t, r_t)\}_{t=1}^n$ where $a_t \sim p_{c_t} \in \Delta_A$,

• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: $\phi : \mathbb{C} \times \mathbb{A} \to \mathbb{R}^d$ such that $r(c, a) = \langle \phi(c, a), \theta^* \rangle$ for $\theta^* \in \Theta \subset \mathbb{R}^d$



- Given dataset $D = \{(c_t, a_t, r_t)\}_{t=1}^n$ where $a_t \sim p_{c_t} \in \Delta_A$,

$$\Rightarrow \hat{\theta} = \frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi(c_t, a_t) r_t$$

• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: $\phi : \mathbb{C} \times \mathbb{A} \to \mathbb{R}^d$ such that $r(c, a) = \langle \phi(c, a), \theta^* \rangle$ for $\theta^* \in \Theta \subset \mathbb{R}^d$

 $\mathbb{E}[\phi(c_t, a_t)r_t] = \mathbb{E}_{c,a}[\phi(c, a)\phi(c, a)^{\mathsf{T}}\theta^*] = \sum \nu_c \sum p_{c,a}\phi(c, a)\phi(c, a)^{\mathsf{T}}\theta^*$ c a A(p)

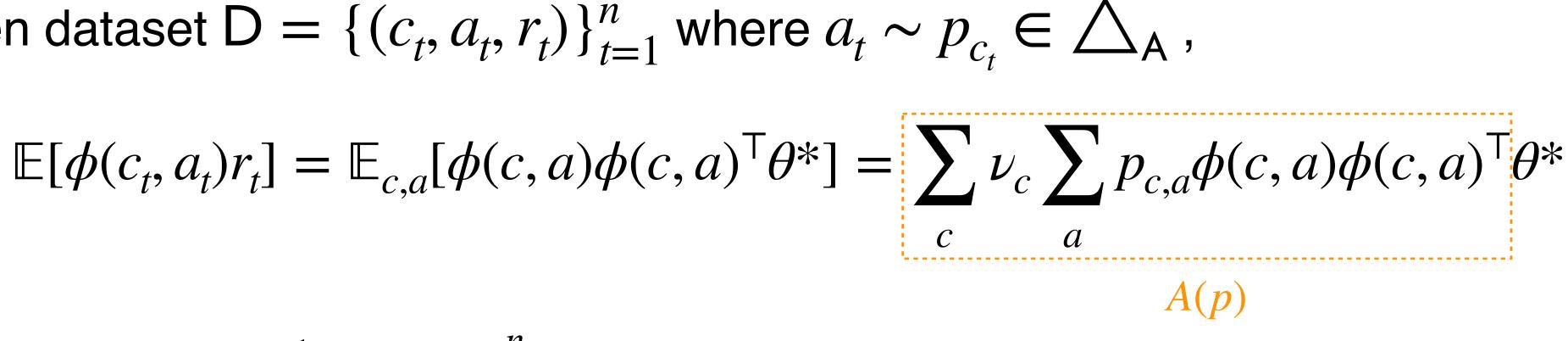
- Given dataset $D = \{(c_t, a_t, r_t)\}_{t=1}^n$ where $a_t \sim p_{c_t} \in \Delta_A$,

$$\Rightarrow \hat{\theta} = \frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi(c_t, a_t) r_t$$

$$\downarrow t=1$$
IPS estimate

• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: $\phi : \mathbb{C} \times \mathbb{A} \to \mathbb{R}^d$ such that $r(c, a) = \langle \phi(c, a), \theta^* \rangle$ for $\theta^* \in \Theta \subset \mathbb{R}^d$



ate!

A Lower Bound

• For each $\pi \in \Pi$, define the gap $\Delta(\pi) := V(\pi_*) - V(\pi)$

A Lower Bound

• For each $\pi \in \Pi$, define the gap $\Delta(\pi)$

• Let $\phi_{\pi} := \mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimation

 $Var(\hat{\Delta}(\pi)) = (\phi_{\pi_*} - \phi_{\pi})^{\mathsf{T}} Var(\hat{\theta})$

$$) := V(\pi_*) - V(\pi)$$

ate
$$\hat{\Delta}(\pi) = \hat{V}(\pi_*) - \hat{V}(\pi) = \left\langle \phi_{\pi_*} - \phi_{\pi}, \hat{\theta} \right\rangle$$

 $\hat{V}(\phi_{\pi_*} - \phi_{\pi}) = \frac{\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2}{n}$

A Lower Bound

• For each $\pi \in \Pi$, define the gap $\Delta(\pi)$

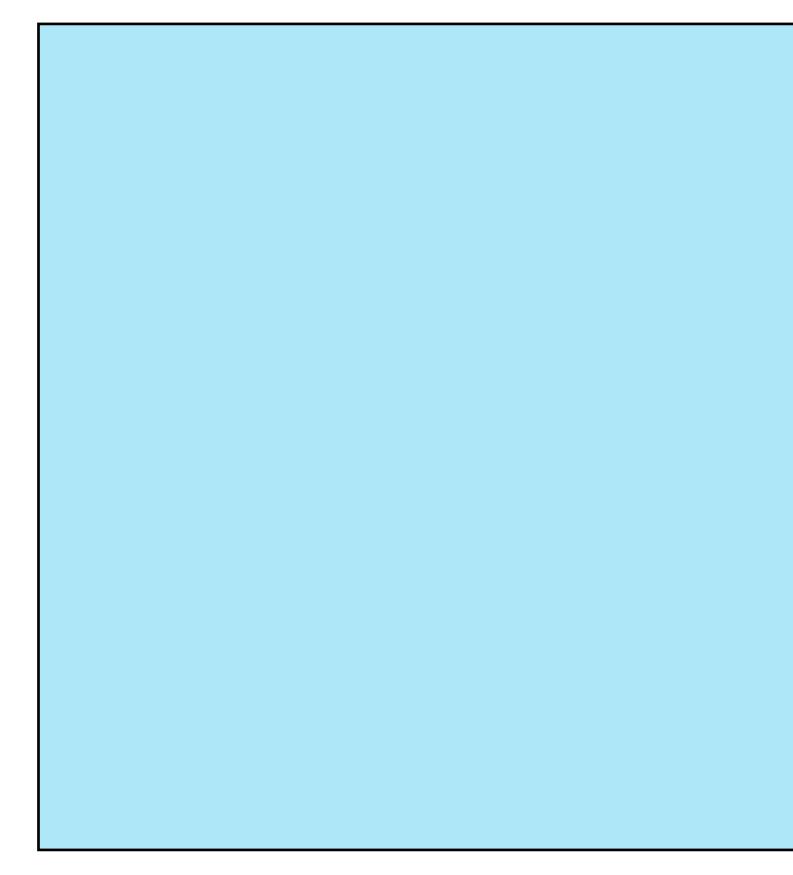
• Let ϕ_i

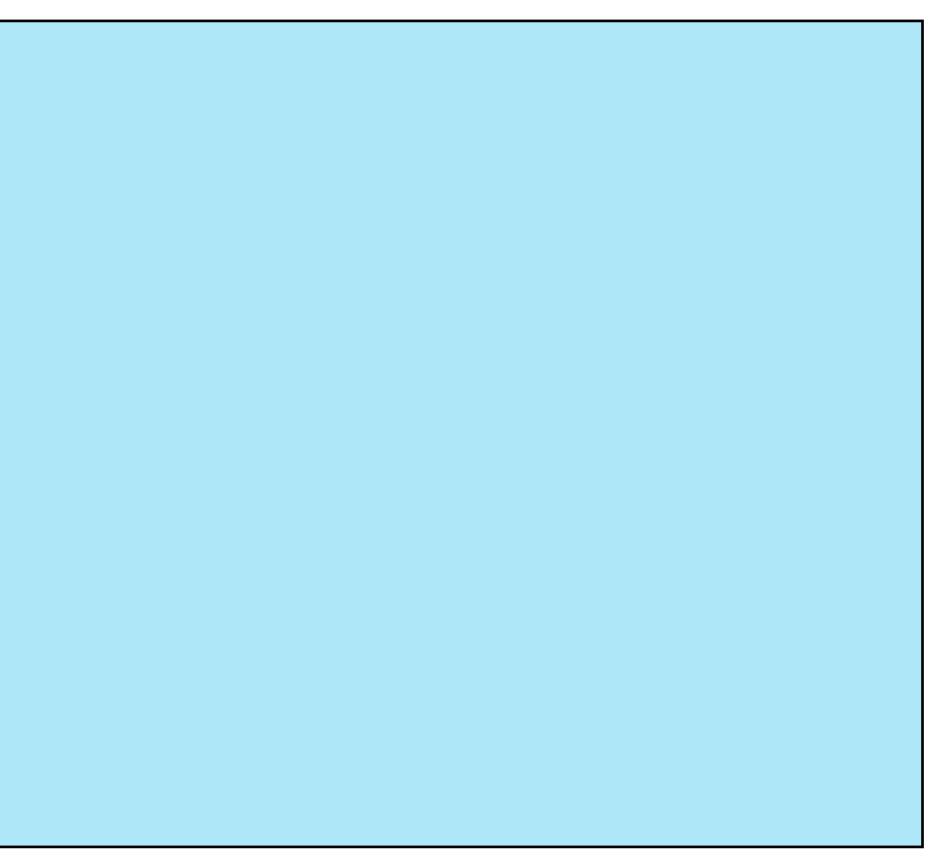
$$\pi := \mathbb{E}_{c \sim \nu} [\phi(c, \pi(c))], \text{ an estimate } \hat{\Delta}(\pi) = \hat{V}(\pi_*) - \hat{V}(\pi) = \left\langle \phi_{\pi_*} - \phi_{\pi}, \hat{\theta} \right\rangle$$
$$Var(\hat{\Delta}(\pi)) = (\phi_{\pi_*} - \phi_{\pi})^{\mathsf{T}} Var(\hat{\theta})(\phi_{\pi_*} - \phi_{\pi}) = \frac{\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2}{n}$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0,\delta)$ -PAC algorithm satisfies $\tau \ge \rho_{\Pi,0} \log(1/2.4\delta)$ with high probability where $\max_{\substack{C \in \mathbb{T} \setminus \pi_*}} \frac{\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2}{\Delta(\pi)^2}$

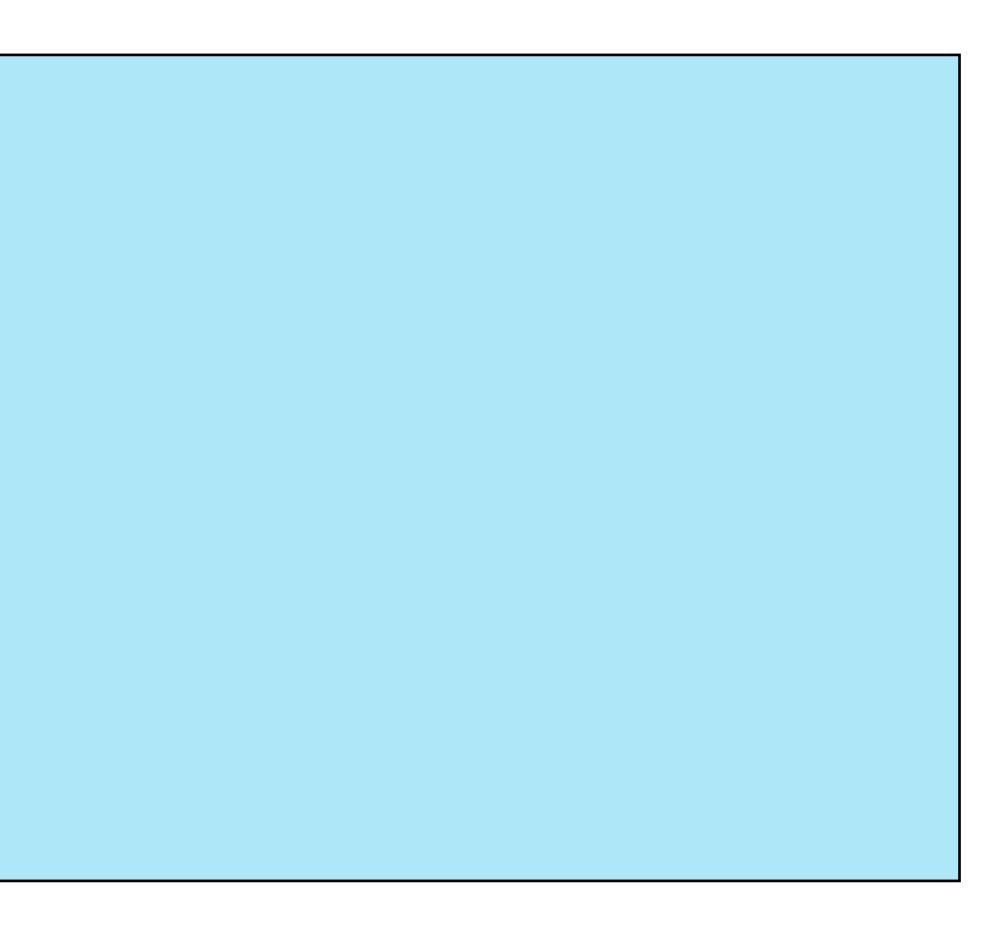
$$\rho_{\Pi,0} = \min_{\substack{p_c \in \triangle_A, \forall c \in C}}$$

$$V := V(\pi_*) - V(\pi)$$

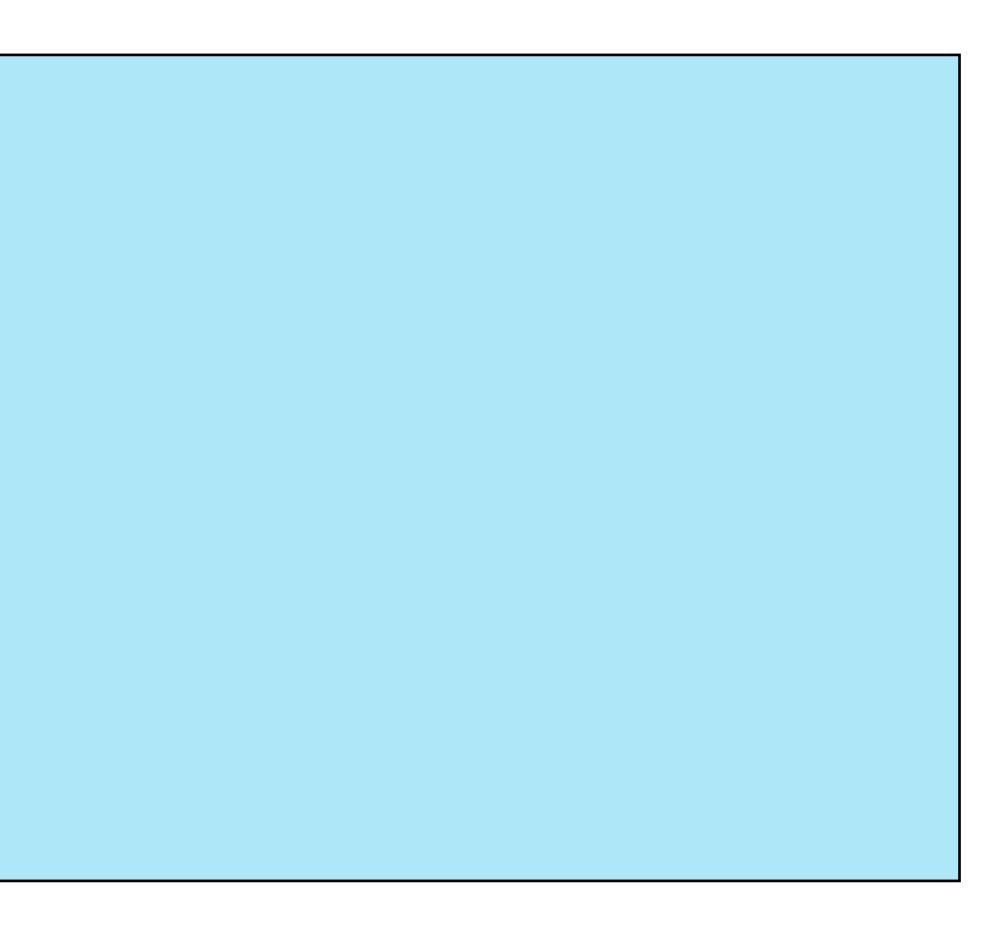




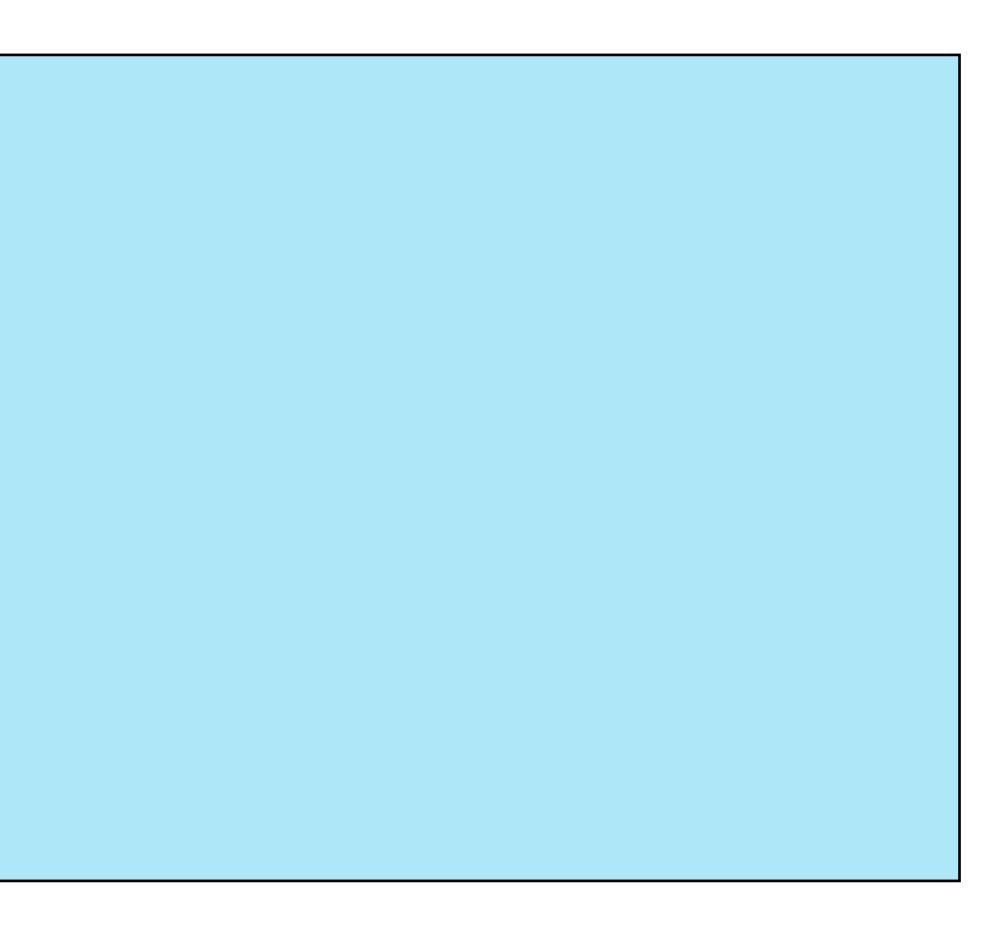
Input: Π



Input: Π Initialize $\Pi_1 = \Pi$



Input: Π Initialize $\Pi_1 = \Pi$ for $l = 1, 2, \cdots$

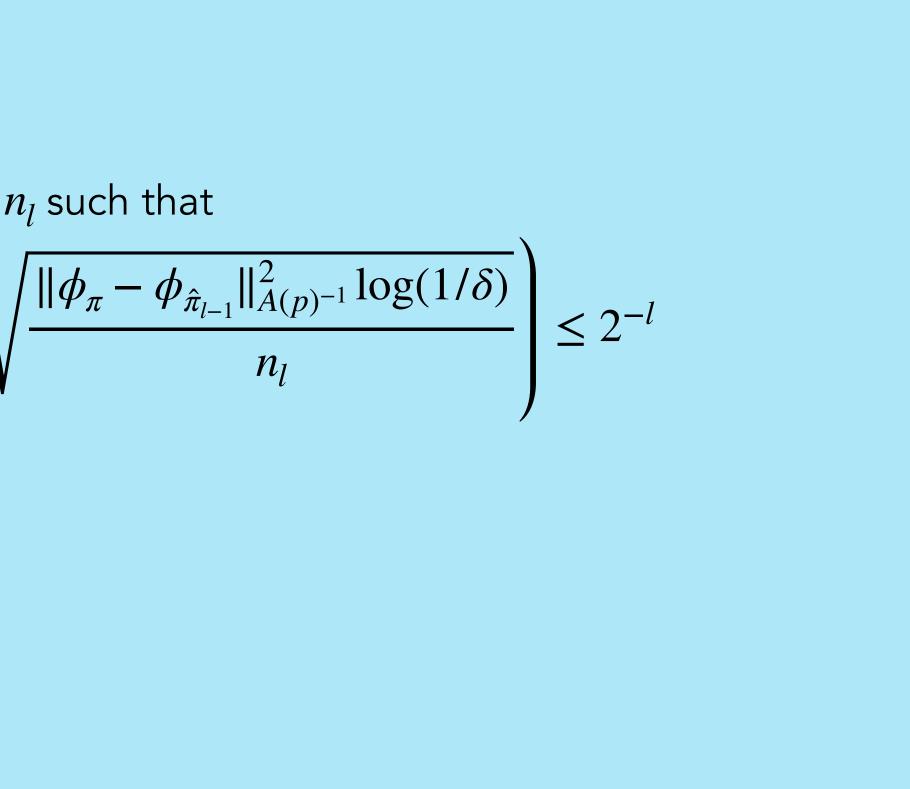


Input: Π Initialize $\Pi_1 = \Pi$ for $l = 1, 2, \cdots$ 1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and n_l such that

Input:
$$\Pi$$

Initialize $\Pi_1 = \Pi$
for $l = 1, 2, \cdots$
1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and p_c

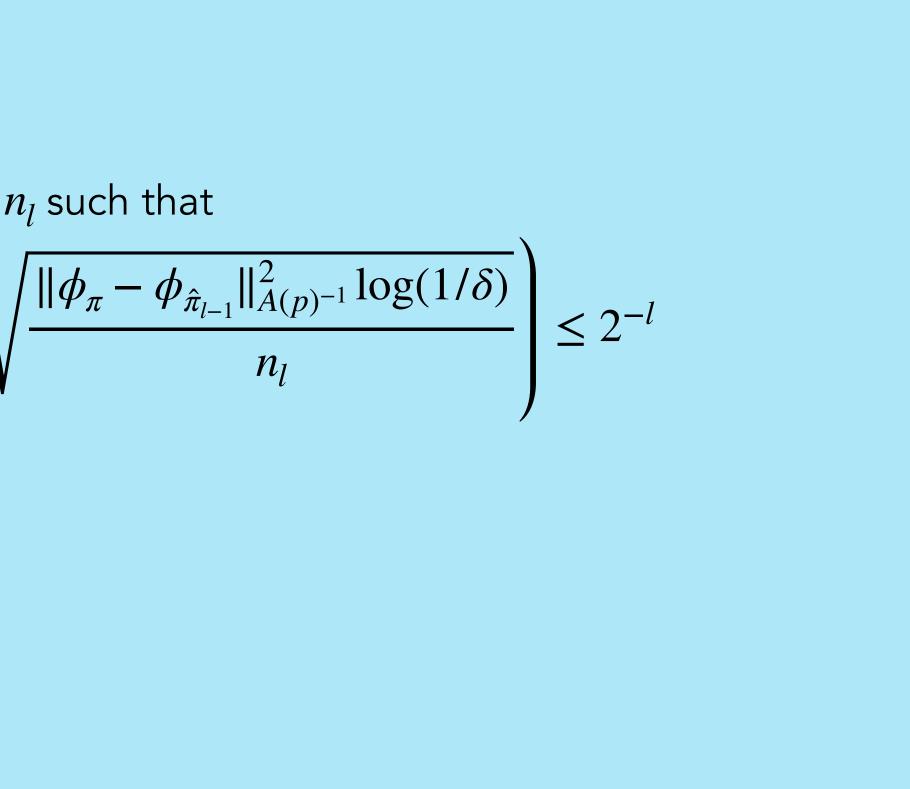
$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{2\pi} \right)$$



Input:
$$\Pi$$

Initialize $\Pi_1 = \Pi$
for $l = 1, 2, \cdots$
1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and p_c

$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{2\pi} \right)$$



nput:
$$\Pi$$

nitialize $\Pi_1 = \Pi$
or $l = 1, 2, \cdots$
1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and n_l such that

$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{\frac{\|\phi_{\pi} - \phi_{\hat{\pi}_{l-1}}\|_{A(p)^{-1}}^2 \log(1/\delta)}{n_l}} \right) \le 2^{-l}$$
2. For $t \in [n]$ for each context c , compliant $a \approx n^{(l)}$ and compute JPS estimate

2. For $t \in [n_l]$, for each context c_t , sampling $a_t \sim p_{c_t}^{(l)}$ and compute IPS estimate $\hat{\Delta}(\pi, \hat{\pi}_{l-1})$ for each $\pi \in \Pi$

nput:
$$\Pi$$

nitialize $\Pi_1 = \Pi$
or $l = 1, 2, \cdots$
1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and n_l such that

$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{\frac{\|\phi_{\pi} - \phi_{\hat{\pi}_{l-1}}\|_{A(p)^{-1}}^2 \log(1/\delta)}{n_l}} \right) \leq 2^{-l}$$
2. For $t \in [n_l]$, for each context c_t , sampling $a_t \sim p_{c_t}^{(l)}$ and compute IPS estimate

2. For $t \in [n_l]$, for each context c_t , sampling $a_t \sim \hat{\Delta}(\pi, \hat{\pi}_{l-1})$ for each $\pi \in \Pi$ 3. Update

Input:
$$\Pi$$

nitialize $\Pi_{l} = \Pi$
for $l = 1, 2, \cdots$
1. Choose $p_{c}^{(l)} \in \Delta_{A}$, $\forall c \in C$ and n_{l} such that

$$\lim_{p_{c} \in \Delta_{A}, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{\frac{\|\phi_{\pi} - \phi_{\hat{\pi}_{l-1}}\|_{A(p)^{-1}}^{2} \log(1/\delta)}{n_{l}}} \right) \leq 2^{-l}$$
2. For $t \in [n_{l}]$, for each context $c_{t'}$ sampling $a_{l} \sim p_{c_{l}}^{(l)}$ and compute IPS estimate
 $\hat{\Delta}(\pi, \hat{\pi}_{l-1})$ for each $\pi \in \Pi$
3. Update

 $\hat{\pi}_l = a a$

rg min Δ(π,
$$\hat{\pi}_{l-1}$$
)
π∈Π

nput:
$$\Pi$$

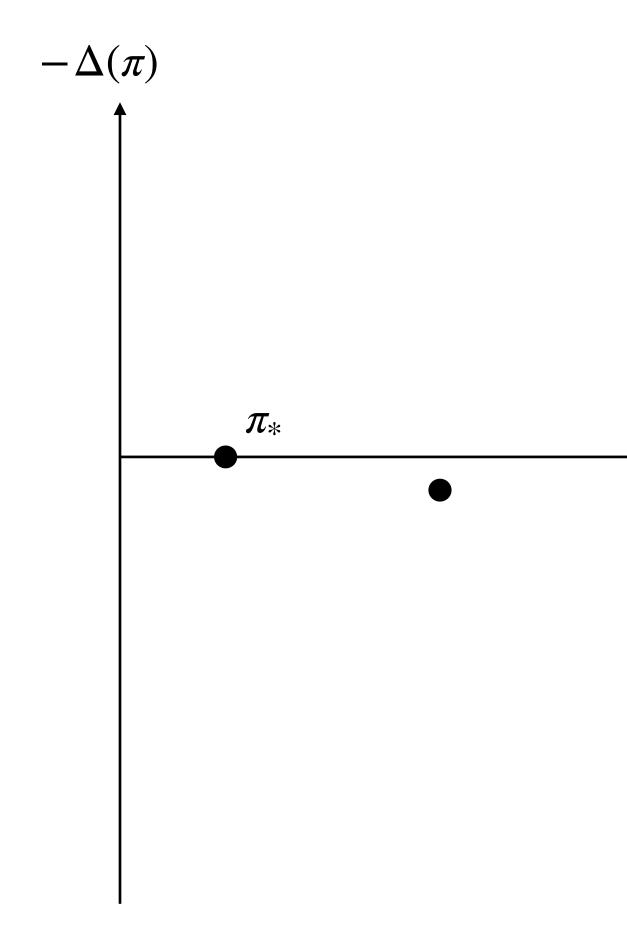
nitialize $\Pi_1 = \Pi$
or $l = 1, 2, \cdots$
1. Choose $p_c^{(l)} \in \Delta_A$, $\forall c \in C$ and n_l such that

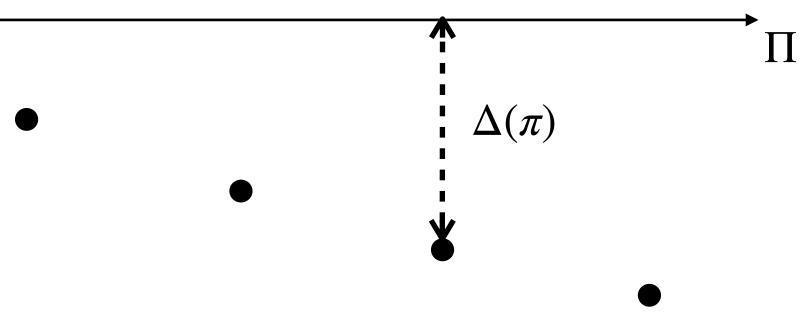
$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{\frac{\|\phi_{\pi} - \phi_{\hat{\pi}_{l-1}}\|_{A(p)^{-1}}^2 \log(1/\delta)}{n_l}} \right) \leq 2^{-l}$$
2. For $t \in [n_l]$, for each context c_t , sampling $a_t \sim p_{c_t}^{(l)}$ and compute IPS estimate $\hat{\Delta}(\pi, \hat{\pi}_{l-1})$ for each $\pi \in \Pi$
3. Update

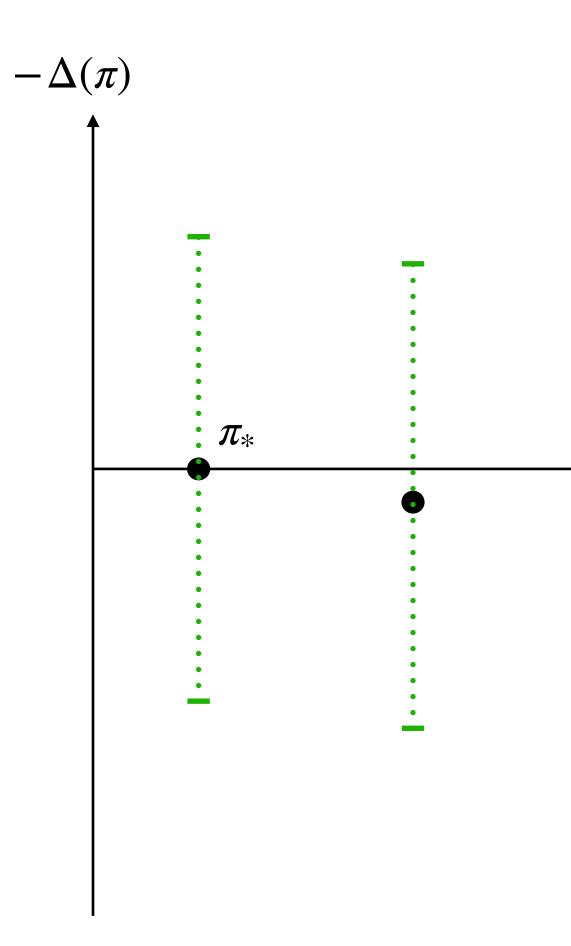
 $\hat{\pi}_l = a n$

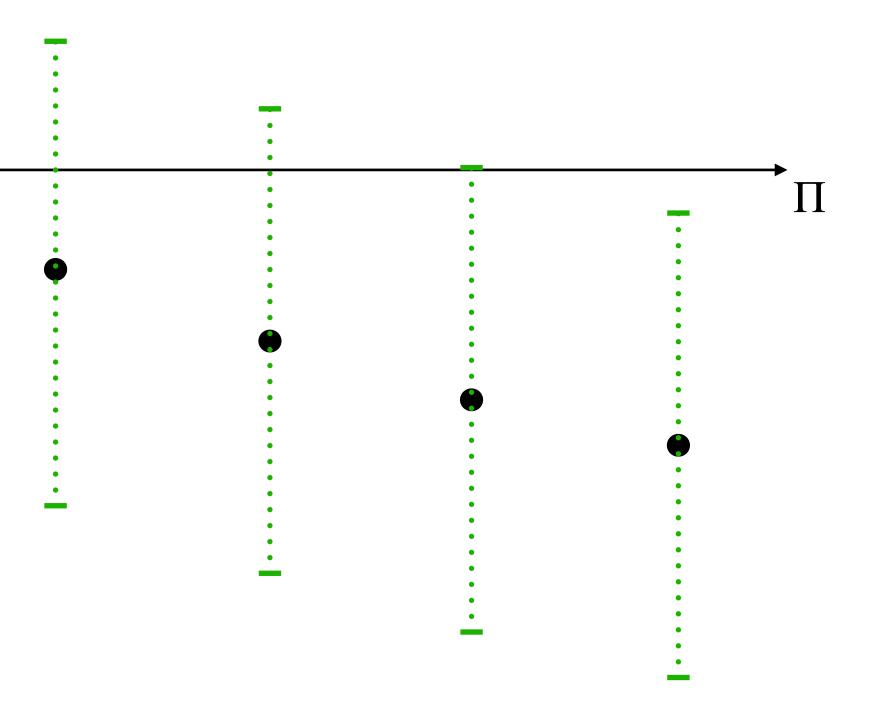
$$\operatorname{rg\,min}_{\pi \in \Pi} \hat{\Delta}(\pi, \hat{\pi}_{l-1})$$

Theorem [Li et al. 2022] The above algorithm returns an (ϵ, δ) -PAC policy with at most $O(\rho_{\Pi,\epsilon} \log(|\Pi|/\delta) \log_2(1/\epsilon))$ samples.

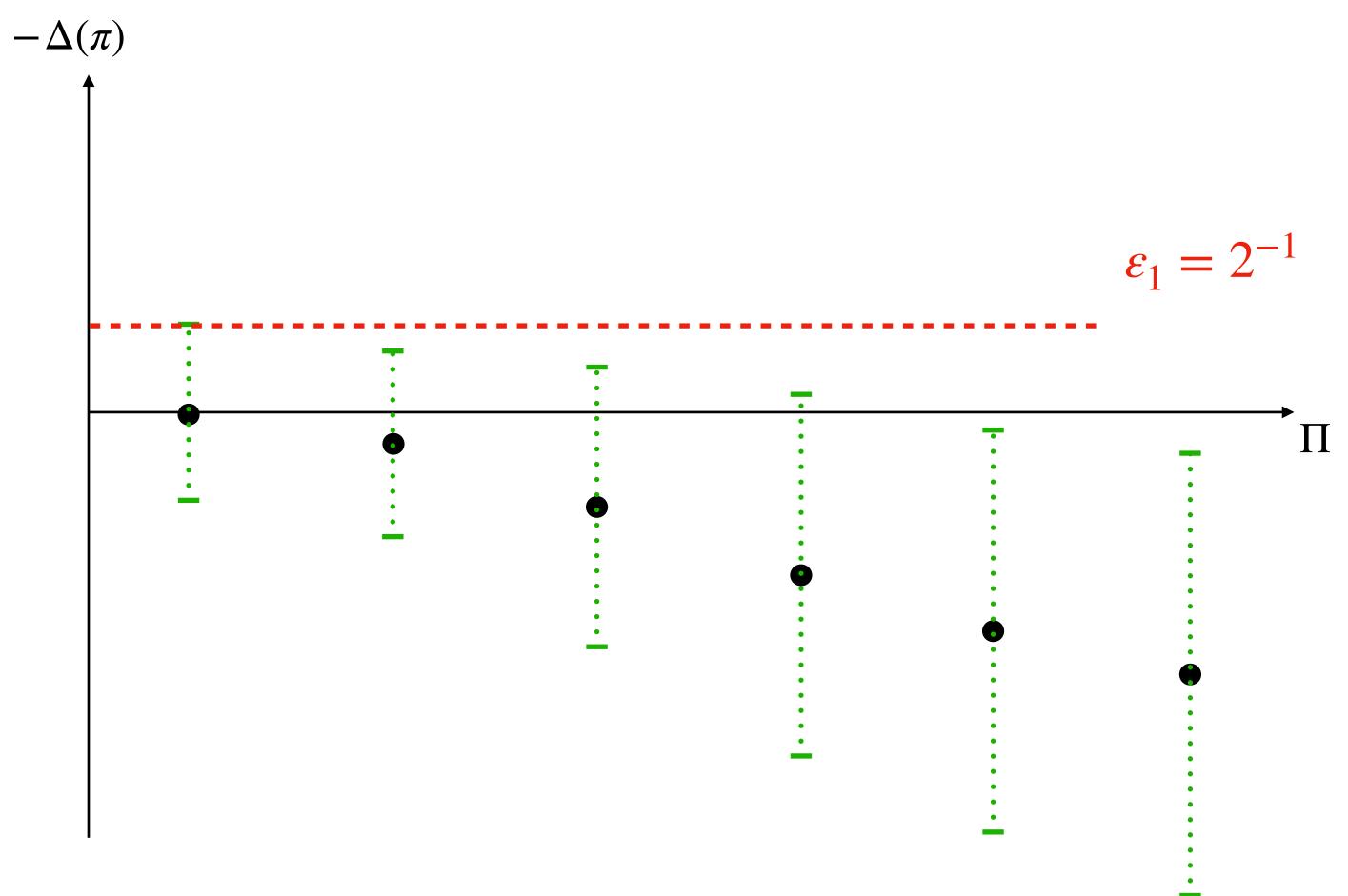




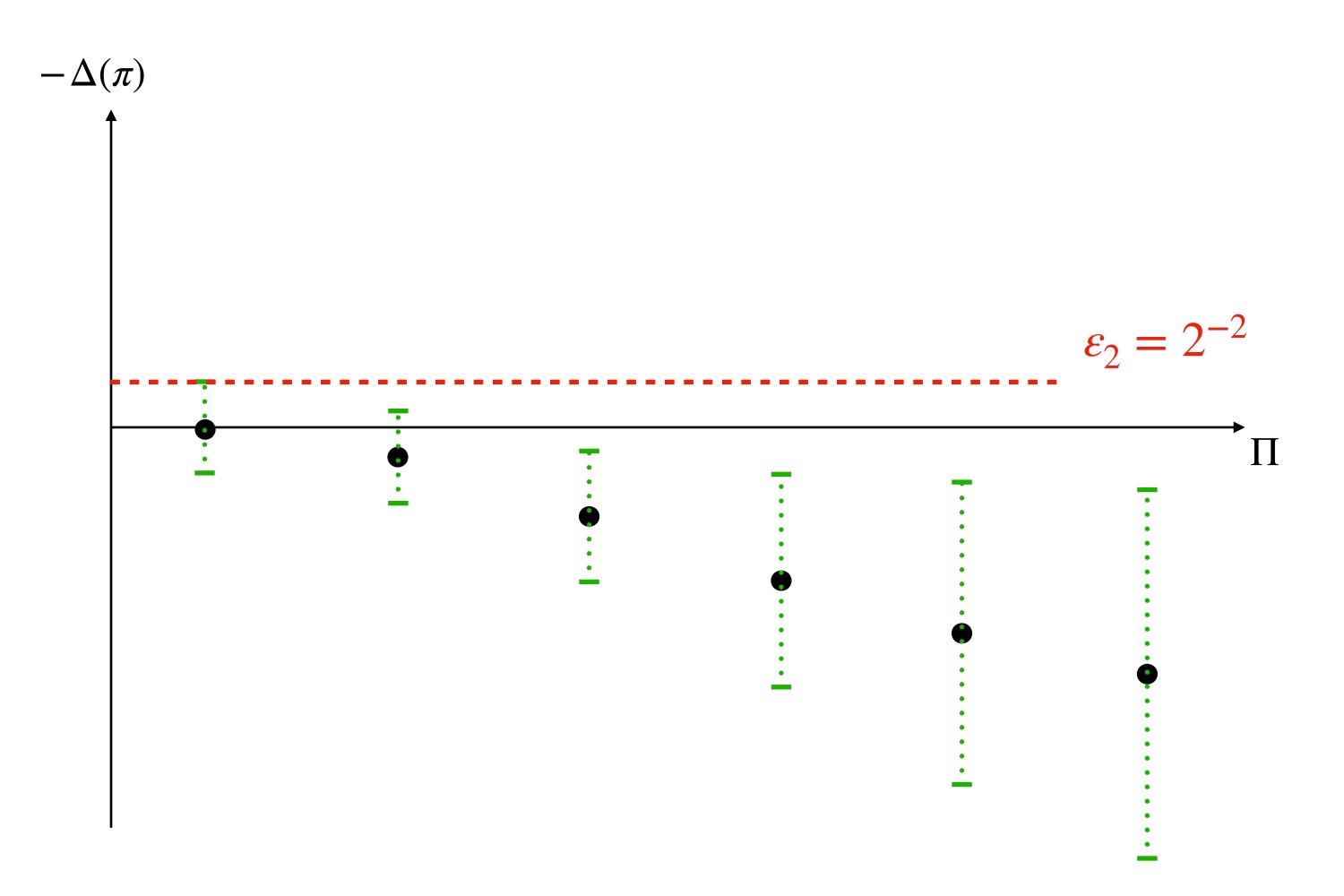


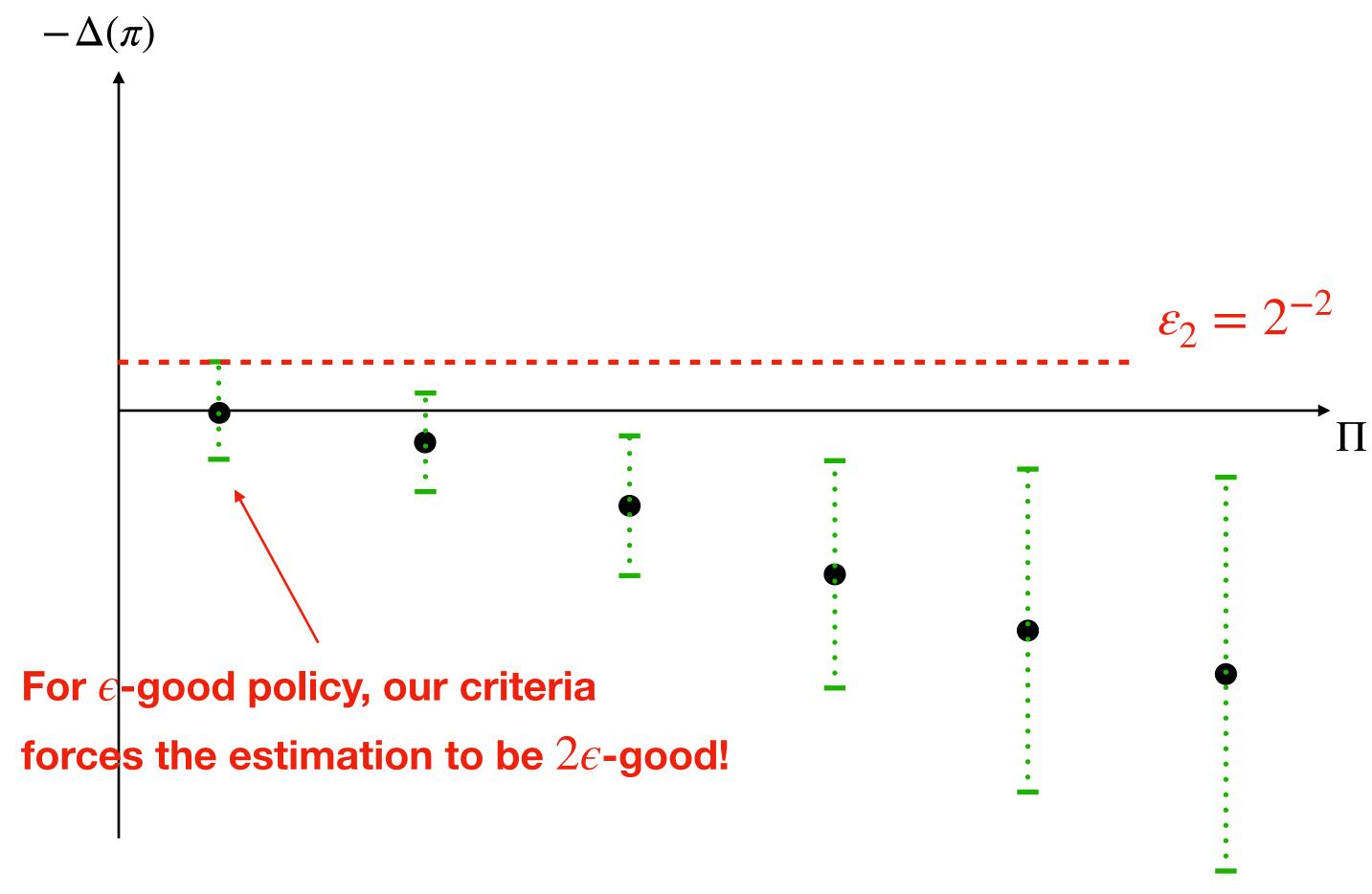


11



$$\epsilon_1 = 2^{-1}$$





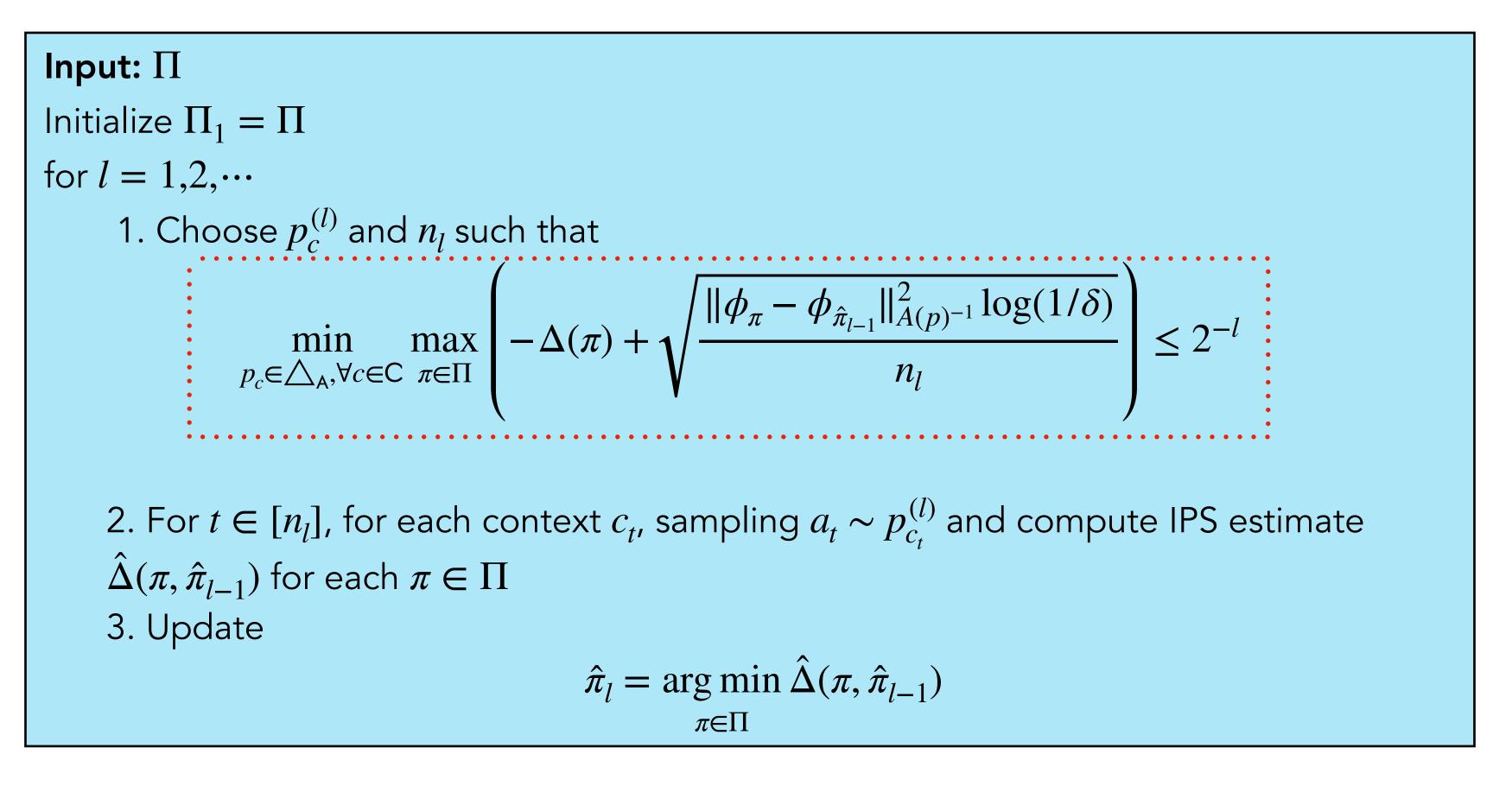
Returning the empirical best policy at the end \Rightarrow at least 2ϵ -good

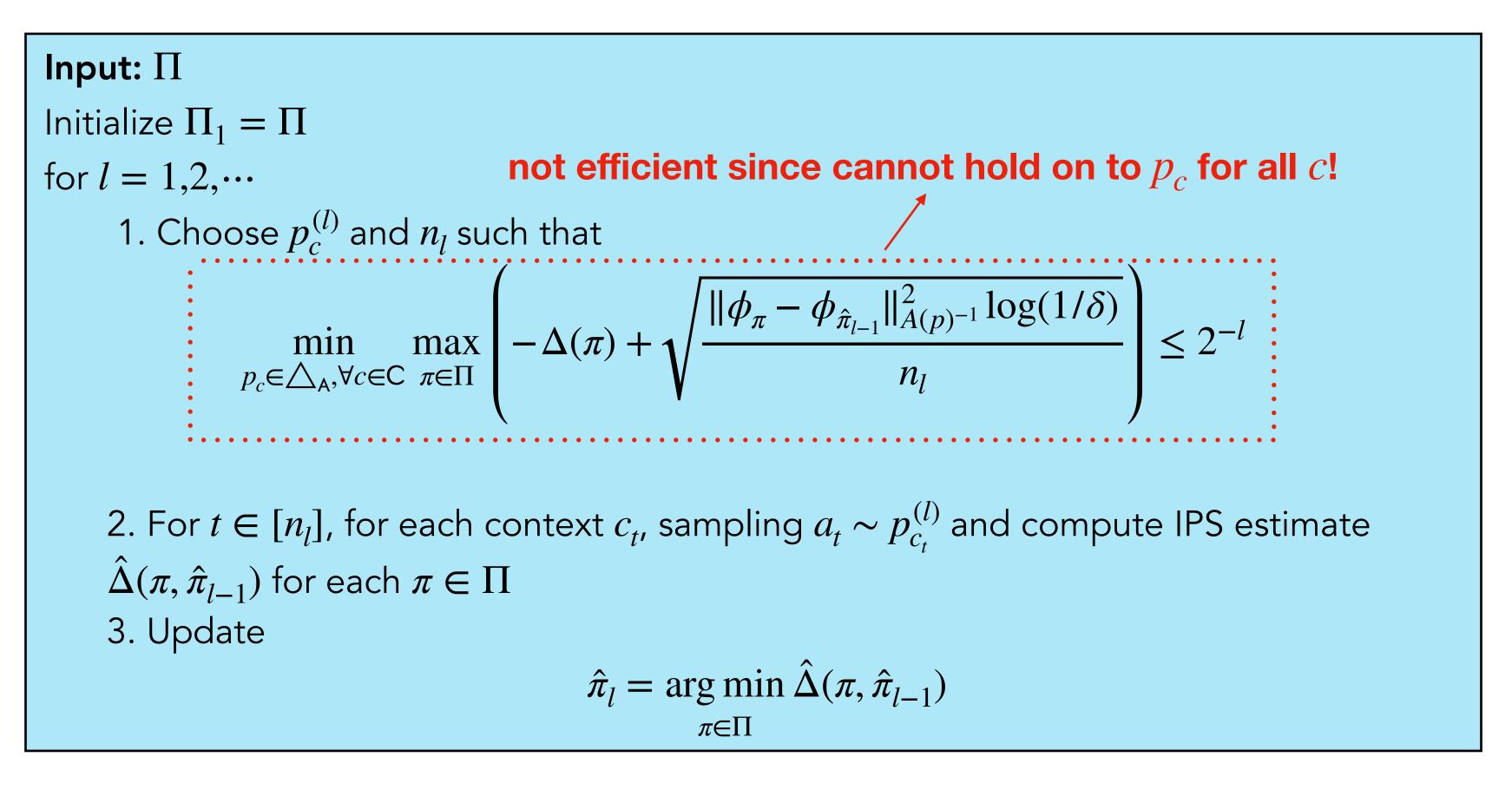
Input: Π Initialize $\Pi_1 = \Pi$ for $l = 1, 2, \cdots$ 1. Choose $p_c^{(l)}$ and n_l such that $\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} -\Delta(\pi) + 1$ 2. For $t \in [n_l]$, for each context c_t , sa $\hat{\Delta}(\pi, \hat{\pi}_{l-1})$ for each $\pi \in \Pi$ 3. Update $\hat{\pi}_l = at$

$$\left(\frac{\|\phi_{\pi} - \phi_{\hat{\pi}_{l-1}}\|_{A(p)^{-1}}^2 \log(1/\delta)}{n_l}\right) \le 2^{-l}$$

Impling $a_t \sim p_{c_t}^{(l)}$ and compute IPS estimate
$$\arg\min\hat{\Delta}(\pi, \hat{\pi}_{l-1})$$

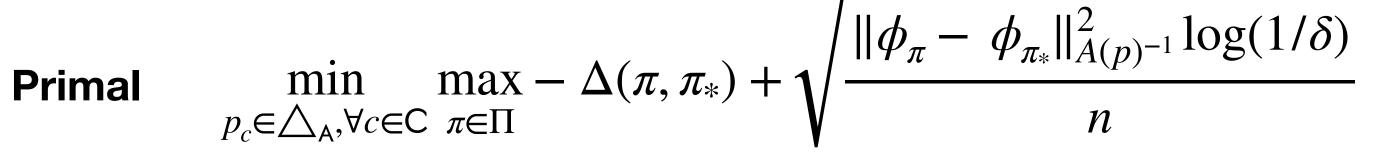
 $\pi \in \Pi$





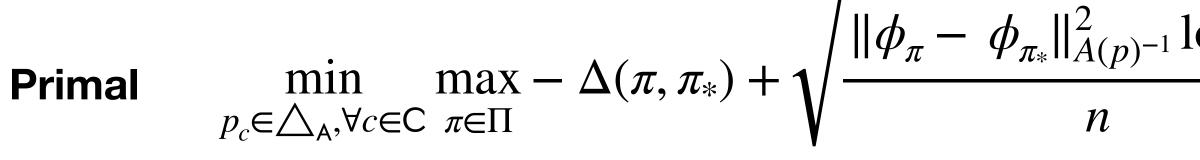
Dual Problem

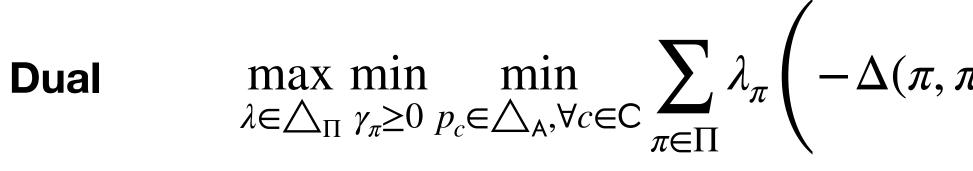
• Consider the dual formulation:



Dual Problem

• Consider the dual formulation:

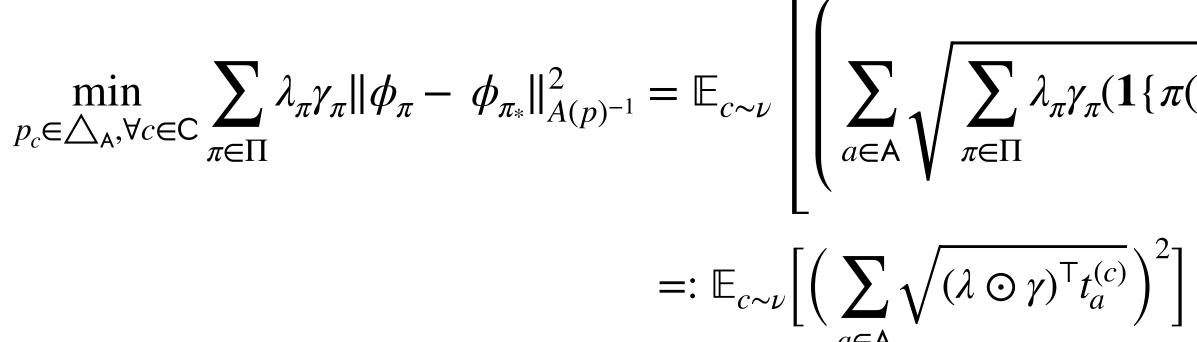




$$\phi_{\pi_*} \|_{A(p)^{-1}}^2 \log(1/\delta)$$

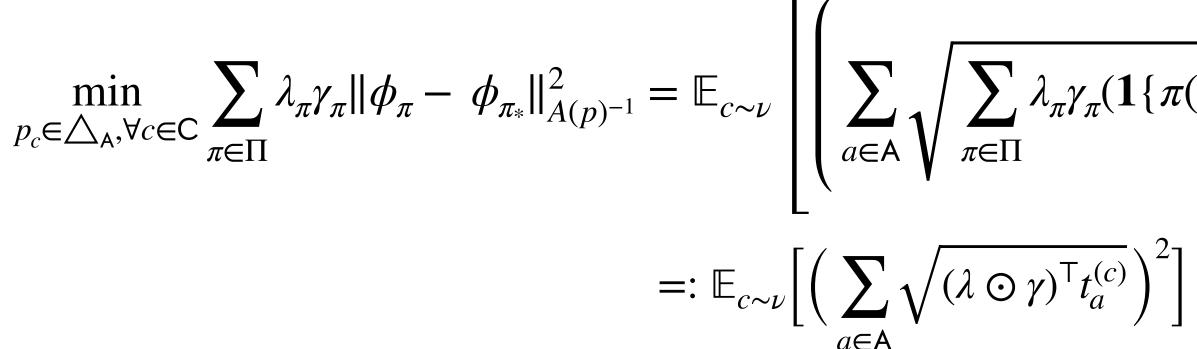
$$\pi_*) + \gamma_{\pi} \| \phi_{\pi} - \phi_{\pi_*} \|_{A(p)^{-1}}^2 + \frac{\log(1/\delta)}{2\gamma_{\pi} n} \bigg).$$

• If we solve for p_c for all c, we have an analytical solution:



 $\min_{p_c \in \Delta_A, \forall c \in \mathbb{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} \| \phi_{\pi} - \phi_{\pi_*} \|_{A(p)^{-1}}^2 = \mathbb{E}_{c \sim \nu} \left| \left(\sum_{a \in \mathbb{A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} (\mathbf{1}\{\pi(c) = a\} + \mathbf{1}\{\pi_*(c) = a\} - 2\mathbf{1}\{\pi(c) = \pi_*(c)\})} \right)^2 \right|$

• If we solve for p_c for all c, we have an analytical solution:



 $\min_{p_c \in \Delta_A, \forall c \in \mathbb{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} \| \phi_{\pi} - \phi_{\pi_*} \|_{A(p)^{-1}}^2 = \mathbb{E}_{c \sim \nu} \left| \left(\sum_{a \in \mathbb{A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} (\mathbf{1}\{\pi(c) = a\} + \mathbf{1}\{\pi_*(c) = a\} - 2\mathbf{1}\{\pi(c) = \pi_*(c)\})} \right)^2 \right|$

Implicitly maintain p_c for all $c \in C$ simultaneously!

• If we solve for p_c for all c, we have an analytical solution:

$$\min_{p_{c} \in \Delta_{\mathsf{A}}, \forall c \in \mathsf{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} \| \phi_{\pi} - \phi_{\pi_{*}} \|_{A(p)^{-1}}^{2} = \mathbb{E}_{c \sim \nu} \left[\left(\sum_{a \in \mathsf{A}} \sqrt{a} \right)^{2} \right]$$
$$=: \mathbb{E}_{c \sim \nu} \left[\left(\sum_{a \in \mathsf{A}} \sqrt{a} \right)^{2} \right]$$

• Dual becomes

$$\max_{\lambda \in \Delta_{\Pi}} \min_{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi} \left(-\Delta(\pi, \pi_*) + \frac{\log(1/\delta)}{\gamma_{\pi} n} \right) + \mathbb{E}_{c \sim \nu} \left[\left(\sum_{a \in \mathsf{A}} \sqrt{(\lambda \odot \gamma)^{\mathsf{T}} t_a^{(c)}} \right)^2 \right]$$

 $\left(\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} (\mathbf{1}\{\pi(c) = a\} + \mathbf{1}\{\pi_{*}(c) = a\} - 2\mathbf{1}\{\pi(c) = \pi_{*}(c)\})\right)^{2}$

 $(\lambda \odot \gamma)^{\mathsf{T}} t_a^{(c)} \Big)^{\mathbb{Z}}$

Implicitly maintain p_c for all $c \in C$ simultaneously!

• If we solve for p_c for all c, we have an analytical solution:

$$\min_{p_{c} \in \Delta_{\mathsf{A}}, \forall c \in \mathsf{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} \| \phi_{\pi} - \phi_{\pi_{*}} \|_{A(p)^{-1}}^{2} = \mathbb{E}_{c \sim \nu} \left[\left(\sum_{a \in \mathsf{A}} \sqrt{A_{a}} \right) \right]_{a \in \mathsf{A}} \left(\sum_{a \in \mathsf{A}} \sqrt{A_{a}} \right) \right]_{a \in \mathsf{A}} \left(\sum_{a \in \mathsf{A}} \sqrt{A_{a}} \right) \right]_{a \in \mathsf{A}} \left(\sum_{a \in \mathsf{A}} \sqrt{A_{a}} \right)$$

• Dual becomes

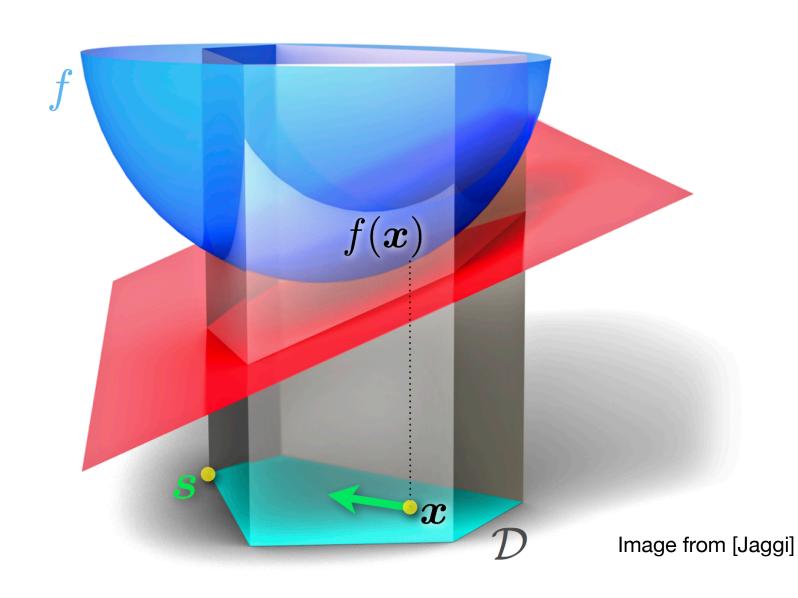
$$\max_{\lambda \in \Delta_{\Pi}} \min_{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi} \left(-\Delta(\pi, \pi_{*}) + \frac{\log(1/\delta)}{\gamma_{\pi} n} \right) + \mathbb{E}_{c \sim \nu} \left[\left(\sum_{a \in \mathsf{A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}} \right)^{2} \right]$$

$$\sum_{\alpha \in \mathsf{A}} \sum_{\alpha \in$$

 $\left(\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi} (\mathbf{1}\{\pi(c) = a\} + \mathbf{1}\{\pi_{*}(c) = a\} - 2\mathbf{1}\{\pi(c) = \pi_{*}(c)\})\right)^{2}$

 $(\lambda \odot \gamma)^{\mathsf{T}} t_a^{(c)} \Big)^2 \Big]$

Implicitly maintain p_c for all $c \in C$ simultaneously!



- Gives us a sparse yet good enough solution λ
- Plug in solution λ in the closed-form gives us $p_c \in \Delta_A$

Thanks!

• argmax oracle: given $(c_1, s_1), \dots, (c_n, s_n) \in \mathscr{C} \times \mathbb{R}^{|\mathscr{A}|}$, returns arg max $\sum s_t(\pi(c_t))$ $\pi \in \Pi$ $\overline{t=1}$

Can be computed using cost-sensitive classification

A Lower Bound

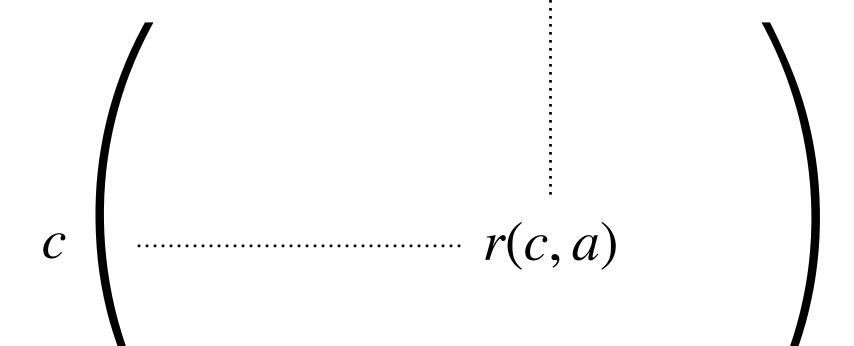
• Choose action distribution *p* such that:

$$\max_{\pi \in \Pi \setminus \pi_*} \frac{\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2}{(\Delta(\pi) \vee \epsilon)^2} \leq \frac{n}{2\log(1/\delta)}$$

Agnostic Setting Reduces to Linear

What if we do not assume linear structure of reward function?

• Let $\theta^* \in \mathbb{R}^{|C| \times |A|}$ where $[\theta^*]_{c,a} = r(c,a)$



We can reduce it to the previous setting by constructing ϕ !

vectorize

Agnostic Setting Reduces to Linear

 $r(c, a) = \left\langle \operatorname{vec}(e_c e_a^{\mathsf{T}}), \theta^* \right\rangle$ $\phi(c,a)$

 $\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2 = \sum_{c} \nu_c \sum_{a} \frac{1}{p_{c,a}} (\mathbf{1}\{\pi(c) = a\} - \mathbf{1}\{z\})$

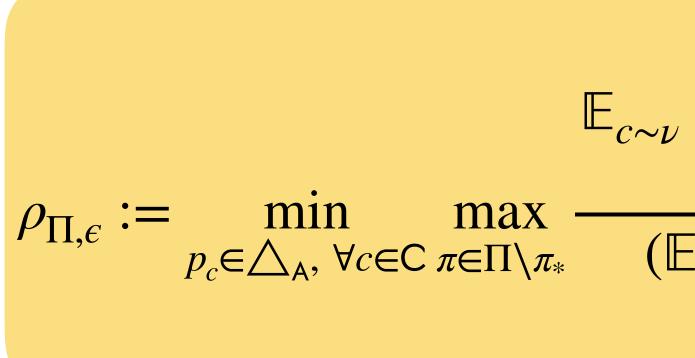
$$\{\pi_*(c) = a\})^2 = \mathbb{E}_{c \sim \nu} \left[\left(\frac{1}{p_{c,\pi(c)}} + \frac{1}{p_{c,\pi_*(c)}} \right) \mathbf{1} \{\pi_*(c) \neq \pi(c)\} \right]$$

Agnostic Setting Reduces to Linear

$$r(c, a) = \left\langle \operatorname{vec}(e_c e_a^{\top}), \theta^* \right\rangle$$

$$\phi(c, a)$$

$$\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2 = \sum_c \nu_c \sum_a \frac{1}{p_{c,a}} (\mathbf{1}\{\pi(c) = a\} - \mathbf{1}\{\pi_*(c) = a\})^2 = \mathbb{E}_{c \sim \nu} \left[\left(\frac{1}{p_{c,\pi(c)}} + \frac{1}{p_{c,\pi_*(c)}}\right) \mathbf{1}\{\pi_*(c) \neq \pi(c)\} + \frac{1}{p_{c,\pi_*(c)}} \right] \mathbf{1}\{\pi_*(c) \neq \pi(c)\}$$



$$\begin{bmatrix} \left(\frac{1}{p_{c,\pi(c)}} + \frac{1}{p_{c,\pi*(c)}}\right) \mathbf{1}\{\pi_*(c) \neq \pi(c)\} \end{bmatrix}$$

$$= \sum_{c \sim \nu} [r(c, \pi_*(c)) - r(c, \pi(c))] \lor \epsilon)^2$$

Gap

].